Analysis of Web Services Secure Conversation with Formal Methods

*

Llanos Tobarra, Diego Cazorla, Fernando Cuartero and Gregorio Diaz
Escuela Politecnica Superior de Albacete
University of Castilla-La Mancha
Campus Universitario s/n
Albacete (Spain), 02071
{mtobarra,dcazorla,fernando, gregorio} @dsi.uclm.es

Abstract

Web Services Secure Conversation extends Web Services
Trust to provide mechanisms for establishing security con-
texts. A security context is an abstract concept that refers an
authenticated state where the participants have derived se-
cure session keys for multiples request/response exchanges.
In this paper we model this protocol with the HLPSL lan-
guage and we analyse it with the AVISPA toolbox.

1. Introduction

Web Services technologies offer some advantages to e-
commerce business like dynamic discovering and composi-
tion of Web Services, platform and programming-language
independence, the widespread adoption of Web services
mechanisms, etc But one of the main issues related to web
services is that they are exposed to new security attacks. A
proposal security architecture could be found in [7]. That
document describes a collection of specifications for de-
scribing a Web Services security model.

The basic protocol of that architecture is Web Services
Security [13]. WS-Security is a protocol that extends
SOAP[17] in order to implement message integrity and con-
fidentiality. WS-Security builds on the SOAP specifica-
tion, structuring the use of essential security capabilities.
It is based on XML Encryption [15] and XML Signature
[16]. WS-Security uses binary tokens for authentication,
digital signatures for integrity and content-level encryption
for confidentiality. It has been proved that using only WS-
Security is inefficient to secure Web Services ([11, 14, 3]).

Web Services Secure Conversation[8] extends WS-
Security in order to introduce security context. A security

*This work has been supported by the spanish government (cofinanced by
FEDER founds) with the project ”Application of Formal Methods to Web Services”
(TIN2006-15578-C02-02), and the JCCM project “Application of Formal Methods to
the design and the analysis of Web Services and E-commerce”(PAC06-0008-6995)

context is a state where the participants of the context have
been authenticated and have negotiated session keys. It is
represented by a new type of security token that is issued
and propagated using the mechanisms defined by WS-Trust
[9]. Thus, WS-Secure Conversation describes how secu-
rity context are established, renewed and canceled. It also
describes how derived keys are computed and exchanged
among the participants.

In line with the development of e-commerce and secu-
rity protocols, some techniques have also been developed
to model a system and check its properties on it. One of the
most promising techniques of this type is model checking.
Model checking [4] is a formal methods based technique
for verifying finite-state-concurrent systems, and has been
implemented in several tools. One of the main advantages
of this technique is that it is automatic and allows us to see
if a system works properly or not. In case the system does
not work as expected, the model checking tool provides a
trace that leads to the source of the error.

In this paper, we present a formal verification of WS-
Secure Conversation using AVISPA (Automated Validation
of Internet Security Protocol an Applications) framework
[1]. AVISPA provides a high-level formal language HLPSL
for specifying protocols and their security properties. Once
we have specified the model of the system AVISPA trans-
lates it to an intermediate format IF. This is the input of
several backends that are integrated into AVISPA frame-
work: SATMC, OFMC, Cl-Atse and TA4SP. Besides, only
one model is specified although it is analysed with the four
backends. AVISPA also offers a graphical interface SPAN
[6] that helps the specifying task.

Several papers [10, 5, 12] can be found which use for-
mal methods to analyse Web Services, and in which formal
methods are used to analyse the behavior and the perfor-
mance of web services standards; these analyses help de-
signers to correct any errors. More related to our work,
however, is [2]. In that article, they analyse WS-Trust and
WS-Secure Conversation with TulaFale tool [3]. This arti-

cle is concentrated on extending the Tulafalse semantics for
WS-Trust and WS-Secure Conversation. While we analyse
several bindings proposed in [8] they are only focused on
establishing the security context and they offer basic primi-
tives for specific use cases.

This paper is organized as follows. In Section 2 WS-
Secure Conversation is described in more detail. In Sec-
tion 3 we build the AVISPA specification that models the
system, describe the security requirements that the system
should achieve, and verify the model against these require-
ments. Finally, in Section 4 we give our conclusions and
some outlines for future work.

2. Web Services Secure Conversation
2.1. Security Context and Session Keys

A security context is an abstract concept that represents
a state where the participants have been authenticated and
they have computed session keys associated to the context.

The abstract concept of security context is represented
by means of a token. In fig. 1 we can see the structure of
a security context token (SCT). The Identifier element
contains an unique URI which identifies the token. It allows
other elements to refer the context. When a SCT is referred
inaKeyInfo elementorinthe Security header, the key
related to the context should be used to encrypt data. Some-
times the security context is updated and the participants
could generate new session keys. So Instance element
should be used to indicate which is the current key.

As we mentioned before, when participants establish a
security context, they also exchange some key material in
order to generate session keys for encrypting or computing
digital signatures. Although two participants use the same
key material, they can generate different keys. Thus the
first time a security participant uses a new context derived
key, this entity indicates it with a DerivedKeyToken
(see fig. 1). In order to generate keys, participants should
agree on some parameters(algorithm, key size, etc) and it is
recommended to do it through policies. But they can also
use some constant labels or nonces. They indicate these ele-
ments with the DerivedKeyToken. In a message we can
find several DerivedKeyToken, one for each generated
key that is used in the message.

2.2. Establishing a security context

Although in [8] they mention three ways of establish-
ing a security context, we only focus on one of these three
options. We consider that a initiator agent request a se-
curity context to a Security Token Service (STS) with a
RequestSecurityToken message (see fig. 2). This
agent could include some secret data that the SCS should

<soap:Envelope>
<soap:Header>

<wsse:Security>

<wssc:SecurityContextToken
wsu:Id="SecurityToken-5b3f409a-4301f2461b3a">
<wssc:Identifier>
urn:uuid:d7648de7-acac-d879c6112a76
</wssc:Identifier>
<wsc:Instance>
1
</wsc:Instance>
</wssc:SecurityContextToken>
<wssc:DerivedKeyToken
wsu:Id="SecurityToken-f20426d3-adaf3ccfb04a"
Algorithm="http://.../sc/dk/p_shal">
<wsse:SecurityTokenReference>

<wsse:Reference
URI="#SecurityToken-5b3f409a-4301f2461b3a"
ValueType="http://../sc/sct" />
</wsse:SecurityTokenReference>
<wssc:Generation>0</wssc:Generation>
<wssc:Length>24</wssc:Length>
<wssc:Label>
WS-SecureConversation
WS-SecureConversation
</wssc:Label>
<wssc:Nonce>
qHHrc2P3PPx3j00tPrJ+mw==
</wssc:Nonce>
</wssc:DerivedKeyToken>
</wsse:Security>
</soap:Header>
<soap:Body>
<xenc:EncryptedData>
<xenc:EncryptionMethod
Algorithm="http://.../xmlenc#aes256-cbc" />
<KeyInfo xmlns="http://.../xmldsig#">
<wsse:SecurityTokenReference>
<wsse:Reference
URI="#SecurityToken-f20426d3-adaf3ccfb04a"
ValueType="http://.../dk" />
</wsse:SecurityTokenReference>
</KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>

</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>

</soap:Body>
</soap:Envelope>

Figure 1. Examples of use of security context
token and derived key token elements

take into account when it creates the security context.
The initiator must authenticate himself with a security to-
ken, usually a UsernameToken. This token is included
in the Security header when the request is secured
with WS-Security. The Security Token Service returns a
RequestSecurityTokenResponse. This response
contains or refers to the Security Context Token and a
RequestProofToken, which points to the key material
associated to the security context. Both messages must be
secure with WS-Security.

The generated security context token is distributed
to the rest of the participants through a propagation
RequestSecurityTokenResponse message.

2.3. Renewal of a security context

A security context has associated a set of claims and a
lifetime when is established. But, sometimes, a participant
desires to update the associated claims or to extend the va-
lidity time of a security context. WS-Secure Conversation

A Request Security Context Token :

<soap:Envelope>
<soap:Body>
<wst :RequestSecurityToken>
<wst:TokenType>
http://.../sct
</wst:TokenType>
<wst:RequestType>
http://.../trust/Issue
</wst:RequestType>
<wst :Entropy>
<wst:BinarySecret
Type="http://.../trust/SymmetricKey">
tzYesb28omI6ogx fUSQTMA==
</wst:BinarySecret>
</wst:Entropy>
<wst:Lifetime>
<wsu:Expires>
2006-12-04T21:08:062
</wsu:Expires>
</wst:Lifetime>
</wst:RequestSecurityToken>
</soap:Body>

B. Request Security Context Token Response:

<soap:Envelope>
<soap:Header />
<soap:Body>
<wst :RequestSecurityTokenResponse>
<wst :KeySize>256</wst :KeySize>
<wst:RequestedSecurityToken>
<wssc:SecurityContextToken>
<wssc:Identifier>
urn:uuid:d7648de7-acac-d879c6112a76
</wssc:Identifier>
</wssc:SecurityContextToken>
</wst:RequestedSecurityToken>
<wst :RequestedProofToken>
<wst:ComputedKey>
http://.../trust/CK/PSHAL
</wst :ComputedKey>
</wst:RequestedProofToken>
<wst:Entropy>
<wst:BinarySecret Type="http://.../SymmetricKey">
XNFzpWGEQXngsKgq/ f+vtA==
</wst:BinarySecret>
</wst:Entropy>
<wst:Lifetime>
<wsu:Expires>
2006-12-04T21:08:072
</wsu:Expires>
</wst:Lifetime>
</wst :RequestSecurityTokenResponse>
</soap:Body>
</soap:Envelope>

Figure 2. Examples of request and response SOAP messages for establishing a security context

token

defines two bindings for these proposes.

A participant could add new claims by means of
the Amending binding. This way, the context is
“amended”. That agent could send an amended SCT in
a RequestSecurityTokenResponse without previ-
ous related request. The additional claims of the security
context must be included inside new security tokens at this
response message.

The Renew binding allows participants to extend the
lifetime of an SCT. This binding is based on WS-Trust
Renew binding. A context participant sends a request to
the Security Token Server, which previously generated the
SCT. This request must include a proof of possession of
the SCT associated keys. Besides, the participant must re-
authenticate the claims associated to the security context.
They could exchange new key material during the renew
protocol, but this secret date must not be encrypted with the
previous context keys.

2.4. Cancellation of a security context

A security context could be canceled before it expires.
If a security context is canceled, it can not be renewed nor
amended. If a participant wants to cancel a context it will
send a RequestSecurityToken (see fig. 3) message.
CancelTarget element that refers to the SCT is included
inside this request message. The agent must include a proof
of possession of the security context key as well.

Once the cancel request is sent, the participant must con-
sider the security context canceled, even if it does not re-
ceive any response. The response message is only informa-
five.

A. Cancel request:

<soap:Envelope>
<soap:Body>
<wst :RequestSecurityToken>
<wst:RequestType>
http://.../trust/Cancel
</wst :RequestType>
<wst:CancelTarget>
<wsse:SecurityTokenReference>
<wsse:Reference
URI="urn:uuid:d7648de7-acac-
dg879c6112a76"
ValueType="http://../sct" />
</wsse:SecurityTokenReference>
</wst:CancelTarget>
</wst:RequestSecurityToken>
</soap:Body>
</soap:Envelope>

B. Cancel Response:

<soap:Envelope>
<soap:Header />
<soap:Body>
<wst:RequestSecurityTokenResponse>
<wst:RequestedTokenCancelled />
</wst :RequestSecurityTokenResponse>
</soap:Body>
</soap:Envelope>

Figure 3. Examples of request/response mes-
sage for canceling a security context token

3. Analysis of WS Secure Conversation

In this section, we will analyse the main WS-Secure
Conversation bindings described in the previous section
with the AVISPA toolbox. These bindings allow to estab-
lish, to renew and to cancel a security context among two
parties. In addition we analyse how two endpoints can ex-
change data using the derived keys associated to an SCT.

In our model, we will consider an intruder who can per-

form the following actions:

e Overhear and intercept all the messages over the net-
work.

e Modify the messages. The intruder can add bytes,
delete bytes or change the value of several bytes.

e Generate new messages using its initial knowledge or
parts of the overheard messages.

e Send a new or captured message to another entity in
the system.

We will assume that the intruder cannot perform any crypt-
analysis.

Our analysis is focused on WS-Secure Conversation,
however, other Web Services specifications are taken into
account. In particular, it is considered that Web Services
Addressing and WS-Security are applied in combination
with WS-Secure Conversation.

Each message contains a MessageId header, a
RelatesTo header, a To header and a ReplyTo header.
The MessageId elements is a unique random identifier
for the message. In this way the server could check if it
has already received the same message . Message identi-
fiers are represented by nonces, called M; in our model,
where ¢ is the sequence number of the message. A response
message also includes a ReplyTo element that indicates
the correlated request message identifier. So the correlation
between both messages could be checked by the requester.
The To element and ReplayTo element indicate the in-
tended receiver and the sender, which are agent variables in
our models.

We consider that every message is secured by WS-
Security. Key material and secret data are encrypted. In
addition, the main elements are digitally signed. It is also
recommended to include timestamps. However, AVISPA
does not offer time semantics, so we can not perform time
analysis.

3.1. Establishing a security context

First, we analyse the binding for establishing security
context between a client and a Security Token Service
(Fig. 4). In our model, there are two types of agents: clients
and servers. The client role represents an initiator partici-
pant that request a new security context token. The server
role represents the Security Token Server.

As we mentioned before, the Establish binding is com-
posed by two SOAP messages. The first one is the
RequestSecurityToken. The My, C and S variables
represent the WS-Addressing MessageID, ReplayTo
y To elements. A UsernameToken is represented by
{C.Pwd}. This token is ciphered with the Security Token

Service public key PK.S. The message body is composed
of two elements. A constant request which indicates the
objective of the message. And some secret data represented
by the nonce SecretC'. This variable is also ciphered by the
SCS public key PK S in order to keep it in secret.

The sender digitally sign main variables of the message:
My, C, S, request and SecretC. Sha is a function that
computes the digest of its parameters.

The second message is the
RequestSecurityTokenResponse. It includes
the previously mentioned WS-Addressing elements in
this message. A digital signature of main elements in
the message Mo, My, response, SCT and SecrectS is
computed by the server. The key material SecretS is
cipher with the client public key PK S as well.

Avispa input language, HLPSL, has semantics for sets.
It has basic set operations to insert elements, to delete el-
ements and to find elements in set. Inside the local state
of the server we define a set called C'ontext. Each ele-
ment of this set is a concatenation of an agent identifier,
its password, an SCT variable, and the two secret elements
SecretC' and SecretS. Once the Token Services generates
anew SCT and new key material, it records this information
with the UsernameToken in the Context set. This way
the server could retrieve information related to the context.

We verity the following properties:

e The secrecy of the variables SecretC, SecretS'y Pwd. It
is evident these values must secret in order to guarantee
that the derived session keys are secret.

e The client and the server agree on the value of Pwd
and SCT. Thus, the client is authenticated at the
server by Pwd and the server generates shared SCT
with the client.

We find the following attack on this specification:

1. C— I M;.C.S{C.Pwd},s. {sha(M;. C.S. request.
SecretC)}pis. request. {SecretC} s

2. I — S: M;.C.S.{C.FalsePwd}is. {sha(M;. C.S. re-
quest. SecretC)}pxs. request. {SecretC}pys

3. S — . My.M;.C. {shaM2. M1. C. response. SCT.
SecretS) }ino(pks)- response.SCT. {SecretS}px.

As we can observe the client ciphers its username and the
corresponding password with the public key of the server.
An intruder could generate a false password. It could re-
place the username token for a false username token as well,
because it knows the public key of the server. This attack
could be avoided if UsernameToken is included in the com-
putation of the digital signature of the message. We do this
modification to our model and we do not find any attack
with Avispa back-ends.

3.2. Exchange data

Once two endpoint have established a secure context,
they can use the context derived keys. In [8] they propose
the following formula P_SH Al(secret, label + nonce) to
compute a session key, where secret is the exchanged key
material, label is agreed with endpoints policies and nonce
is some random data exchanged by the endpoints. The
nonce is included in the DerivedKeyToken when the de-
rived key is used. The derivation key process is represented
by a function called DerivedKey. It accepts as parame-
ters the secret data exchanged in the establishing protocol,
SecretC and SecretS, and a nonce, Nc for the client and Ns
for the web service server. It returns a symmetric key. The
labels are ignored because they are constants.

In this model we analyse the exchange of data using
a security context (Fig. 4). A client requests a web ser-
vice at the server and it responses. At this moment, they
have established a security context SCT successfully. Each
endpoint computes only one session key. The security to-
ken identifier SC'T is included in all the messages. The
DerivedKeyToken is represented by a nonce, Nc or
N s, depending on the agent. As in the previous model, the
server has a Context set where it stores the security context
SCT, their associated key material SecretC and SecretsS,
and the UsernameToken {C. Pwd}. When it receives the re-
quest it checks if the security context is related to that agent
and retrieves the key material from that set.

We verify that the request and the response elements are
secret with AVISPA backends and we do not find any attack.

3.3. Renewal of a security context token

In Fig. 4 we can see the SPAN representation of our
model for the Renew binding. The request message is al-
most the same message that for the establish request mes-
sage. But it includes a new Lifetime element. This
variable indicates the new validity period of time. When
the server receives this message, it searches in the Con-
text set for the security context information. It checks
if the username token is correct and that there is a pre-
vious security context SCT. It retrieves too the key
material SecretS and SecretC. If all the verifications
are correct, it generates new key material. It returns
a RequestSecurityTokenResponse message with
the new Li fetime value. Otherwise the protocol finishes.

We verify the following properties:

o The secrecy of the key material SecretS and SecretC,
as before.

e The client and the server agree on the values of SC'T
and Lifetime, thus they authenticate each other with
these values.

We do not find any attack.
3.4. Cancel a security context

Last, we analyse the Cancel binding (Fig. 4). We con-
sider two session keys, K C generated by the client and K S
generated by the server.

We verify that the client and the server agree on the secu-
rity context SC'T, and they exchage the cancel request and
the cancel response. We find the following attack:

1. C—1I: M;. C. S. cancel. sct. {sha(M1. C. S. cancel.
sct) bie

2. I —S: M;. L. S. cancel. badsct. {sha(M;. L. S. cancel.
badsct) }

3. S — I My. M;. L cancelresponse. {sha(M,. M;. L
cancelresponse) }

The intruder intercepts the cancel message and it sends
its own cancel message. Thus the server ignores that the
SCT context is canceled and it will accept the following
messages with this context until it expires. In previous sec-
tions, we verified that the session keys are secure. As a
consequence of that, the encrypted data is kept as a secret
and the intruder can not guess it. Message identifiers are
taken into account in order to avoid replay attacks. If these
message identifiers are omitted, the intruder could replay
any previous request message before the context expires.

4. Conclusions

In this paper, we have analyzed the main mechanisms
of management of the security context tokens proposed in
[8]. First, we have focused on the establishment of the se-
curity context token. In this analysis we found an attack
that demonstrates the importance of combining WS-Secure
Conversation with WS-Security in an appropriate way. So
that the integrity of all the elements of the message should
be guaranteed.

We have also analyzed what it happens once the context
is generated how they guarantee the confidentiality and in-
tegrity of the message. We did not found any attack in this
case.

Together with the establishment of the context, the reno-
vation of the token has been analyzed. This binding allows
to enlarge the period of validity of a security context token.
We have verified that, under the configuration that we have
selected, it is safe.

Lastly, the cancellation of the security context token has
been verified. In this case we have found an attack. An
intruder can eliminate the cancellation request and it avoids

W1.C.8.{C.Pwd)_PKS.{Sha(M1.C.S requesL SecreiC)}_PKS.requesl{SecrelC)_PKS

M2.M1.C.{Sha(M2.M1.C.response SCT.SecrelS)}_(inv(PKS)) response. SCT {SecrelS}_(PKC)

(a) Establish Context:

M1.C.8.{C Pwd}_PKS.{Sha(M1.C.S.renew.SCT Lifelime. SecretC)}_KSC.renew.SCT Lifetime.{SecretC}_PKS

M2.M1.C.{Sha(M2.M1..SCT rstr. SecretS)}_(Inv(PKS)).SCT rstr.Lifetime. {SecretS}_(PKC)

(c) Renew Context:

Client Server
M1, SCT e (ShalM1..§ SCT N resest)_(DerivedKey (SecreiC SecretNej) request)_{Derivadey(SecretC SecretS Nol)
Step1 L
Step?. | gl ZMI.CSCT Ns (Shahz M1 C SCT N (D 1S.Ns)).{respanse) (D cretS Ns))
<
(b) Exchange Data in a Context:
Client Server
M1.C.S.cancel. 8CT.{Sha(M1.C.S.cancel.SCT)}_KC
>
Step1 L
Step?. | <l M2.M1.C. {Sha(M2.M1.C. |_KS
<

(d) Cancel Context:

Figure 4. Representation of the protocol models generated by SPAN

that it arrives to the server. So, the server could accept false
messages while the security context is no longer valid.

As conclusion we can highlight that WS-Secure Conver-
sation allows to establish security context in combination
with the appropriate mechanisms of other protocols, such
as WS-Addressing and WS-Security. This security context
can guarantee the security in an exchange of messages un-
der these group of specifications.

Our future work is concerned with building a model of
the system which allows us to analyse all the cases for es-
tablishing a secure context without Security Token Service.
We also would like to analyse the amending binding.

References

[1] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Com-
pagna, J. Cuellar, P. Hankes Drielsma, P.-C. Hedm, J. Man-
tovani, S. Mddersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Vigano, and L. Vigneron. The
avispa tool for the automated validation of internet security
protocols and applications. In K. Etessami and S. K. Ra-
jamani, editors, Proceedings of the 17th International Con-
ference on Computer Aided Verification (CAV’05), volume

3576 of LNCS. Springer, 2005. Available at

http://www.avispa-project.org/publications.html.

K. Bhargavan, C. Fournet, A. Gordon, and R.Corin. “Secure

Sessions for Web Services”, August 2004. At

http://research.microsoft.com/projects/samoa/secure-

sessions-with-scripts.pdf.

[3] K.Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. Tu-
lafale: A security tool for web services. In Formal Methods
for Components and Objects: Second International Sympo-
sium, FMCO 2003, volume 3188 of Lecture Notes in Com-
puter Science, pages 197 — 222. Springer, November 2003.

[4] E.M. Clarke, O. Grumberg, and D. A. Peled. Model Check-

ing. The MIT Press, 1999.

G.Diaz, J. Pardo, E. Cambronero, V. Valero, and F. Cuartero.

“Verification of Web Services with Timed Automata”. Ist

Int’l Workshop on Automated Specification and Verification

of Web Sites, 2005.

[6] Y. Glouche and T. Genet. Span, a security
protocol animator for avispa. version 1.0. At
http://www.irisa.fr/lande/genet/span/, September 2006.

2

—

[5

—

(7]

(8]

(9]

[10]

[11]

[12]

(13]

(14]

[15]
[16]

(17]

IBM and Microsoft. Security in a web services world:
a proposed architecture and roadmap. At http://www-
128.ibm.com/developerworks/library/specification/ws-

secmap/, April 2002.
IBM, B. Systems, Microsoft, C. Associates, Actional,

VeriSign, L. . Technologies, Oblix, O. Technolo-
gies, P. Identity, Reactivity, and R. Security. = Web
services secure conversation language. At http://www-
128.ibm.com/developerworks/library/specification/ws-

secon/, February 2005.
IBM, B. Systems, Microsoft, C. Associates, Actional,

VeriSign, L. . Technologies, Oblix, O. Technologies, P. Iden-
tity, Reactivity, and R. Security. Web services trust lan-
guage (ws-trust). At http://www-128.ibm.com/ developer-
works/webservices/ library/specification /ws-trust/, Febru-

ary 2005.
J. Johnson, D. Langworthy, L. Lamport, and F.H.Vogt. “For-

mal Specification of a Web Services Protocol”. Electronic
Notes in Theoretical Computer Science 105 (2004) 147-158,

February 2004.

E. Kleiner and A.W.Roscoe. “Web Services Security: a pre-
liminary study using Casper and FDR”. Proceedings of the
Workshop on Automated Reasoning for Security Protocol
Analysis (ARSPA 2004), June 2004.

S. Nakijima. “On verifying Web Services Flows”. Proc.

SAINT 2002 Workshop, pages 223-224, January 2002.
OASIS. Web services security: Soap message security.

At http://www.oasis-open.org/specs/index.php#wssv1.0,

March 2004.

M. L. Tobarra, D. Cazorla, F. Cuartero, and G. Diaz. Ap-
plication of formal methods to the analysis of web services
security. In M. Bravetti, L. Kloul, and G. Zavattaro, edi-
tors, Formal Techniques for Computer Systems and Business
Processes, European Performance Engineering Workshop,
EPEW 2005 and International Workshop on Web Services
and Formal Methods, WS-FM 2005, Versailles, France,
September 1-3, 2005, Proceedings, volume 3670 of Lecture
Notes in Computer Science, pages 215-229. Springer, 2005.
W3C. Xml encryption syntax and processing.
http://www.w3.org/TR/xmlenc-core/, December 2002.
W3C. Xml-signature syntax and processing. At

http://www.w3.org/TR/xmldsig-core/, February 2002.
W3C. Soap 1.2 part 1: Messaging framework.

http://www.w3.org/TR/soap12-partl/, June 2003. W3C
Recommendation.

