

Juan L. Mateo and Luis de la Ossa

Intelligent Systems and Datamining Group

Computing Systems Department – I3A

University of Castilla-La Mancha

Spain

Programming
metaheuristics with LiO

http://www.dsi.uclm.es/simd
http://www.dsi.uclm.es/simd
http://www.dsi.uclm.es/simd
http://www.dsi.uclm.es/
http://www.dsi.uclm.es/simd
http://www.i3a.uclm.es/
http://www.i3a.uclm.es/
http://www.i3a.uclm.es/
http://www.uclm.es/
http://www.uclm.es/
http://www.uclm.es/
http://www.uclm.es/

Programming metaheuristics with LiO

 Introduction to LiO:
• Individuals and data types.
• Resorces.

 Creating new tasks.
 Implementation of operators.
 Search algorithms in LiO.
 Custom data types
 Internal functioning of LiO
 Using LiO from outside.
 Some useful hints

Introduction to LiO

Introduction to LiO

 In LiO, solutions of problemas are codified in classes extending
lio.individuals.Individual.

 The most important method in an individual is value(), which
returns a double resulting from evaluating the solution.

 Currently, 3 kind of individuals are defined in LiO:

Chains of bits: BitChain
Chains of real numbers: ContChain
Permutations: Permutation

 However, most algorithms can deal with datatypes defined by the
 user.

Individuals and data types

 Each one of the classes provides methods to access its data.

Thus, for the pre-defined data typed we have:

Individuals and data types

 See lio.individuals.Individual.java, lio.individuals.ContChain, etc.

Introduction to LiO

There are operators which can only deal with a certain kind of
representation:

I.e, mutations, crossovers, etc.

However, there are some other, as RouletteWheelSelector,
which work with all data types.

Individuals and data types

It is quite important pointing out that operators used in the set
up of an algorithm must be compatible with the kind of
individual used to code the solutions.

Introduction to LiO

Introduction to LiO

 In LiO, almost everything (tasks, operators, search algorithms,
stop conditions) is defined as a resource.

 Technically, it means that almost everything implements the
interface

 lio.core.LiOResource

 In this interface, only a function is declared:

public LiOResourceDefinition getDefinition();

Resources

Introduction to LiO

Resources

 Next code shows the implementation of getDefinition() for an
operator which implements the arithmetical crossover for real vectors
(ContChain).

Resources

The constructor takes four parameters:

 1) The interface or class implemented or extended by the object
which defines its functionality.

 2) The name of the class implementing the resource.

 3) The kind of individuals the resource is designed to work with.

 4) A description of the resource.

Introduction to LiO

Resources

Moreover, a line must be added for each parameter of the resource
that is going to be configured either in the GUI or in the configuration
file:

It is composed by the name of the parameter and one description.

The class must declare a member called alpha.

Introduction to LiO

Resources

 The last thing about resouces is that, for each parameter, there
must be two functions defined in order to be able to automatically
access to it.

 The convention used with the names of the functions is the one
from JavaBeans, consisting in prefixing with get and set the name of
the variable.

 See lio.crossover.contchain.ArithmeticalCrossover.java

Introduction to LiO

Creating new tasks

Creating new tasks

LiOTask

Classes implementing tasks, extends the class LiOTask:

Creating new tasks

LiOTask

• The first function, getDefinition(), has been described and it is
necessary for both defining the kind of individuals and configurating
the resource.

• Since we work with maximization problem, the optimum is fixed to
 infinity. If the optimum of a task is known, the function must be
 overrided.

Creating new tasks

LiOTask

• The third function must be implemented. It is necessary to specify the
ranges of the individuals.

 In this case, we use a ContChainBounds object (which extends
LiOBounds), necessary to define size and ranges ([0,1]) for the
variables in a chain of real numbers. LiO also implements
BitChainBounds and PermutationBounds

 See lio.individuals.LiOBounds and lio.individuals.ContChainBounds

Creating new tasks

LiOTask

 Last, the function evaluate() evaluates an individual and returns the value
of the solution represented with it. The example shows the evaluation in
OneMax for continuous problems.

Notice that it is necessary to make a cast to the specific kind
of individual used by the task!

 See lio.LiOTask and problems.contchain.OneMax

Creating new tasks

LiOTask

 Once a task is implemented by the user, it can be selected by using
“custom” in the menú, or declare the whole name of the class in the
configuration file.

Implementation of
operators

Implementation of operators

 As mentioned, an operator is also a Resource, thus, it must implement the
interface LiOResource described above.

 For instance, in the ArithmeticalCrossover, the getDefinition()
function looks as follows:

 Moreover, the get and set methods must be declared for each
 parameter, in this case, for the member alpha.

 See lio.individuals.LiOBounds and lio.individuals.ContChainBounds

Implementation of operators

 Besides the common interface LiOResource, each operator has a certain
functionality. In the case considered, as it is shown in the resource definition
this is given by the interface:

lio.crossover.Crossover

Implementation of operators

 As it can be seen, the interface is generic, that is, doesn’t depend on the
kind of data, and neither the class implementing it. Thus, a cast must be done
in the implementation.

Implementation of operators

 An operator designed by the user, as it happened with tasks, can
be used with the search algorithms of the library by clicking the
“custom” option in the GUI or giving the full name in the
configuration file.

 If the operator is not compatible with the kind of data necessary to
represent the task, then a warning will be generated

Search algorithms in LiO

Search algorithms in LiO

LiOEnv

 This class provides some statics members that must be
accesed from several parts of LiO such as (algorithms,
individuals, etc.)

 The most important are shown below:

Search algorithms in LiO

 The search algorithms implemented in LiO allow the configuration
of some of their components.

 They can work with several data types always that resources
required are defined for them.

The execution process of an algorithm can be decomposed in 4
steps:

• Read of the algorithm configuration, either from GUI or
 from a configuration file.

• Consistency checking among data types used in tasks,
 resources, and the algorithm itself. Assignament of
 default resources for non specified parameters.
• Objects instantiation

• Algorithm execution

Search algorithms in LiO

All these actions are transparent even for the programmer!!

..and are implemented in the class lio.search.LiOSearch.

 All search algorithms must inherit this class, composed by two
abstract functions that must be implemented:

Search algorithms in LiO

 The first function, worksWith(), is to use the compatibility
of the task with the search algorithm: For instance, a Greedy
based algorithm can only process LiOGreedyTask tasks.

 The second, run(), implements the main cycle of the search.

Search algorithms in LiO

Next, some members and methods of LiOSearch that can be usefull
for the programmer are shown.

• public static SearchOutput searchOutput:

Provides an interface with the statistics LiOEnv.statistic that allows
selecting which data are shown and how.

The class Statistics is a resource, thus, it can be extended and configured
so that some information non computed by default can be processed. For
instance, since steps necessary to build a valid solution with a Greedy
algorithm which are not evaluations of whole solutions, it should be accounted
apart.

SearchOutput also implements LiOResource in order to adapt to the
different kind of statistics. Thus, a GreedySearchOutput is used to show the
statistics in GreedyStatistics.

See lio.search.local.greedy.GreedySearchOutput

Search algorithms in LiO

 public static StopCondition stopCondition:

This object determines the stop conditions of the algorithm according to
LiOEnv.statistics.

Thus, it is also a resource that can be configured to adapt to particular
algorithms and statistics.

LiOSearch implements the function:

protected boolean stopCondition()

It returns the value depending on the stopCondition object or an external
interruption.

Search algorithms in LiO

 Last, LiOSearch provides an static method to carry out all the
tasks necessary to build an algorithm and run it in an independent
thread.

Search algorithms in LiO

 Next, the code of the StdGeneticAlgorith is shown, notice that
declarations use generic interfaces or abstract classes.

Search algorithms in LiO

 The constructor is simple since resources are configured outside
the class and depending on the kind of data.

 Since the Genetic Algorithm can a priori work with every kind of
tasks:

Search algorithms in LiO

As we are working with resources:

We must declare the methods getGenerator(), setGenerator(), etc.

Search algorithms in LiO

The main bucle is as follows:

Search algorithms in LiO

Notice that functions work with Individuals:

Search algorithms in LiO

Last, the main function allows executing the algorithm:

Custom Data Types

Custom data types

 LiO search algorithms allow working with data types other than
BitChain, ContChain, or Permutation.

 Thus, a new datatype can be created with the only condition that it
extends the class Individual

Custom data types

 Resources necessary to perform the search with this kind of
individual must be also implemented.

 getDefinition() would take this form:

Custom data types

In the case of custom datatypes, there are no default values for the
resources used in an algorithm.

Thus, a whole configuration file must be specified to run the
algorithms either from the GUI or the command line.

Internal functioning of LiO

Internal functioning of LiO

 As mentioned above, one of the main tasks that must be carried out
before the algorithm is executed consists of checkint data type
consiscency. This is done trough their definitiones.

 LiO also contains a configuration file where all resources are
registered, besides the data type they can work with.

 This file is used to select default resources when no instantiations
of them have been specified.

 Moreover, the file is also used for integrating the resources in the
GUI menus.

See lio.core.LiO.conf

Internal functioning of LiO

The file gathers resources available for each data type

Internal functioning of LiO

Thus, some operators are generic.

Internal functioning of LiO

The file also keeps a register with tasks and algotithms in order to
show them on the menus:

Using LiO from outside

Using LiO from outside

 Lets imagine that we want to program some algorithm but neither
want it to be integrated in the library, nor to be generic, for
instance, this dummy algorithm:

solucion = generateSolucion()
best = fitness(solucion);
noImproves = 0;

while (noImproves<10) do
newSolution = Mutation(solution);
fNS = fitness(newSolution);
if fNS>best

best=fNS;
noImproves=0;
solution = newSolution;

if not
noImproves++;

Using LiO from outside

Lets also imagine that we want to solve this evaluation function:

f(x)=x1+…+xn, n=100.

Which is already implemented (although it doesn’t have to):

problems.continuous.OneMaxCont

 And codifies solutions in objects:

lio.individuals.ContChain

Using LiO from outside

First, we need to know which objects we need:

An object which generates individuals (ContChain)

lio.generators.contchain.RandomGenerator

 An object to mutate individuals

lio.mutation.contchain.MinMaxMutation

Using LiO from outside

 Let’s show the declarations necessary to implement this
algorithm

Using LiO from outside

Next, constructor is shown:

Using LiO from outside

Last, we show the search function:

Using LiO from outside

 We can also use the class LiOEnv. Then, the search
algorithm described could be written as follows:

Using LiO from outside

And the main cycle is reduced to:

Some useful hints

Some usefull hints

Individuals

 It is necessary to take a look at the value() method:

 As it can be seen, it only makes a real evaluation of the
 individual if it hasn’t been evaluated yet.

Some usefull hints

Individuals

 Thus, if some change is carried out in the individual by
some operator like a mutation, it must be evaluated again.

 The change is notified as follows:

 In the class inheriting Individual implemented in LiO, calls to
change() are made automatically whenever a change on the
elements is done.

FIN

