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Abstract

When Bayesian networks are modified, for example by adding or deleting edges or nodes,
or by changing probability tables, a recompilation of the model is usually required even though a
partial (re)compilation could be sufficient.

Especially when considering dynamical models, where variables are frequently added and
deleted, such recompilations use many resources, but also common model building, which is
most often an iterative process, suffers from this lack of flexibility.

The project tries to investigate and implement methods for addition and deletion of nodes
and edges and changes in potentials and develop methods for partial compilation in these
situations.
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Chapter 1. INTRODUCTION

Chapter 1. INTRODUCTION

A Bayesian network is a graphical model that we use to represent knowledge of a domain
and the casual interaction between different variables in this domain. Once the Bayesian network
for a problem has been modelled, a junction tree is created as a computational structure for
reasoning about the domain.

This process is called compilation. Compilation consumes a significant amount of time.
As we are going to see, it includes severa steps. moralisation, triangulation and junction tree
construction. If we are working with a big network the compilation time becomes redly
important. Then, the question that rises is the following one: if we do some modifications in a
Bayesian network, is it necessary to recompile al of it again? We can guess that if this
modification is not too comprehensive within the global network, it is very probable that we can
find away to savetime.

We have an initial Bayesian network BN and its corresponding junction tree JT. But now
we modify BN to the new one BN’, for that JT will not be avalid junction tree, but another one
we call JT'. The key is to find a faster way than a full recompilation of BN’ to arrive from the
new Bayesian network BN’ to the new junction tree JT'. Therefore, we are trying to observe the
differences between the two networks and find a method to reach JT' avoiding a new compilation
(SeeFigure 1-1).

Compilation
BN > JT
i 12
v Compilation v
BN’ > JT

Figure 1-1. Drawing explaining the process of incremental compilation of a BN.

The purpose of this project is to analyse the modifications in a Bayesian network in order
to answer to the question mark of Figure 1-1. For the development of this idea we have divided
the work in a set of chapters.
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The first one is about Compilation of a Bayesian network. To elaborate this chapter, the
main reference has been [Jensen 1996]. Here we try to describe in a ssimple way how the
compilation takes place. We find it important to undertake this point because the whole repetition
of this processis exactly the one we want to avoid. So, we need to have some knowledge on how
this processis carried out.

Afterwards, we start examining the Possible modifications in a Bayesian network. To
accomplish this task we would use the method “learning by examples’, since it is a good way
both to study the subject and to explain it. As we will see, this analysis is not thoroughly
accomplished, but we are going to look over most of the possibilities that include a reduced set of
modifications. We touch upon most of the key questions and we present solutions to some of
them.

For those cases where this analysis does not give a clear solution, we think about applying
a new idea described in [Olesen and Madsen 1999] and we present the Use of Maximal Prime
Subgraph Decomposition in incremental compilation of Bayesian networks. In this chapter we
will try to put in practice this technique of decomposition to save timein recompilation.

In the next chapter we will implement some of the examples described in the previous
chaptersin order to illustrate the viability of using these ideas.

Finally we summarise and conclude that it is possible to make a partial compilation of a
Bayesian network in a way that we can save quite a lot of computational time and work. We
present some ideas and solutions, and we suggest future and deeper studies about this subject
because we trust that they will lead to more attractive solutions and applications.
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Chapter 2. COMPILATION OF A
BAYESIAN NETWORK

1. A brief introduction to Bayesian networks.

A Bayesian network is a Directed Acyclic Graph (DAG) with some specia
characteristics. It lets us represent a domain, showing relationships between nodes, normally
casual relationships. This is a graphical representation which will help us modelling the given
domain.

To give amore formal definition [Jensen 1996], A Bayesian network consists of the following:
A set of variables and a set of directed edges between variables.
Each variable has afinite set of mutually exclusive states.

The variables together with the directed edges form a directed acyclic graph, i.e. a graph
with no directed cycles.

Yigitto Asia? Smaoker?
Has tuberculosis /aalu—ngmsg—’}’sﬁ

( Tuherculosis or cancer
i

-
Positive ¥-ray? > ( Cyspnoea? :.'-
e

Figure 2- 1-. Example of a Bayesian network frequently used in theliterature and called “ Asia”. This network
presentseight variables: “ Visit to Asia?”, “ Smoker?”, “Hastuberculosis’, “Haslung cancer”, “Has
bronchitis’, “ Tuberculosisor cancer”, “ Positive X-ray?” and “Dyspnoea?”. All of them have escatly two
possible states: yes (if it istrue) or no (otherwise). The edges and their directionsarevisiblein the network.
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To each variable A with parents By, ...,B,, there is attached a conditional probability table
P(A|By, ...,Bn).

In Figure 2-1 we can see an example of a Bayesian network.

It can be demonstrated by the theorem called “the chain rule for Bayesian networks’ that
given a Bayesian network BN over the universe U = {A4,...,Aq}, the joint probability P(U) isthe
product of all conditional probabilities specified in the BN.

P(U)=[Ti P(Ai| pa(Ai))
where pa(A)) isthe parent set of A;.

Without entering further into this subject we will only introduce that inside a Bayesian
network there are these three aspects:

= Factored joint probability distribution as a directed graph:
- Itisastructure for representing knowledge about uncertain variables.

- It is used as the basis for a computational architecture for calculating the impact of
evidence on beliefs.

= Knowledge structure:

- Variables are depicted as nodes.

- Arcsrepresent direct probabilistic dependence between variables.
- Conditional probabilities encode the strength of the dependencies.

» Computational architecture:
- We can compute posterior probabilities given evidence about sel ected nodes.

- Thegoal isto exploit probabilistic independence for efficient local computation.

2. What the compilation of a Bayesian network is.

After this superficial introduction to Bayesian networks, it is the point to locate the role of
compilation in them. As we have seen, initially in a Bayesian network we find nodes, which
represent variables of a domain U, edges which indicate relations between them and probability
tables. These will be the prior probabilities, P(X), for variables without parents and the
conditional probabilities P(X|pa(X)) for variables with parents. So, these are our initial data.
Now, we want to “trandate” this information into a structure in which way we can compute
marginal beliefs easily. We want a structure capable of giving numerical results about variables
states after entering any kind of evidence. Compilation is the process followed to build this
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structure. This is a systematic task, where in a first approach we find a deterministic number of
steps that we will describe below.

3. Processof compilation.

Basically the compilation of a Bayesian network includes two parts:
@ Junction tree construction
@ Propagation of potentials along the tree

Below we present the initial situation (the network) and a detailed description of these
two steps:

Let be aBayesian network BN ={G, P}, where
- Gisadirected acyclic graph, G = (V, E)
V = set of vertices or nodes in the graph.
E = set of edges which connect these nodes, and

- Pisthe set of probability tables required for this network ( P(A; | pa(Aj) ).

1% Step. JUNCTION TREE CONSTRUCTION

In this step we must build the moral graph G™, an undirected graph which will be based
on G. To construct GV, there are two actions. First, connect all nodes which have an edge
pointing to the same node, i.e. those which have a child in common. From this terminology each
of these new edges are also called marriages. We can call them moral edges as well. And
afterwards keep the edges but dropping their directions.

Hence, if we had the graph G =(V,E), after moralising it we obtain G* = ( V,EM), that is,
it has exactly the same nodes but another set of edges E¥ = ‘Marriage edges O ‘E without
directions'.

Following the example of Figure 2-1, G™ would be as shown in Figure 2-2.
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Figure2- 2. Moral Graph for the onein Figure 2-1. M arriages between Has tuberculosis - Has lung cancer
Oand Tuberculosisor cancer —Has bronchitis.

Now it is time for triangulation. The moral graph GM is triangulated if every cycle of
length greater than 3 has a chord. To triangulate the graph we add the so-called fill-in edges in
order to satisfy this condition. One way to achieve a proper triangulation is to decide a sequence
order to eliminate nodes. This order will give us the edges to add. This sequence order is caled
elimination ordering or deletion sequence, it is usually denoted by . If consist of a function
which relates every node in the graph with a unique number between 1 and n, where n = |V|, that
IS, the number of nodesin the graph.

Finding an optimal ordering means giving an optimal triangulation, and this is a NP-hard
problem. Thus, for solving it, heuristic methods are used. Some examples of them in the literature
could be minimum fill, minimum size or minimum weight [Kjagluff 1993]. They are based on
choosing one node first and after it, taking those whose elimination involve less fill-ins, less
clique size or less clique weight.

Once we have decided about the heuristic method to use, and we have obtained a deletion
sequence, then the triangulation is as follows:

10
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Letbe 6 = {v1 Vo, ..., Vn}
Fori <21 untili =ndo
= Remove v; from the graph and all hisincident links.
= Add links between all his neighbours, if they did not exist before.
We will denominate the set of new links or edges (fill-in edges) added as T.

After triangulation our graphisG' = (V, EM O T) = (V, E")
In the example we are following we will use |etters to make the expressions easier:

Visit to Asia=A, Smoker=Sm, Has tuberculosis=T, Has lung cancer=L, Has bronchitis=B, Has
Tuberculosis or Cancer=ToC, Positive X-ray=X, Dyspnoea=D.

o L T e

D "

_,_,r’}
SN
f”ﬂf //_4 =t 5 T
S -

-
. L P }
_'_'_'_'_,.:-"" _'_'_'_‘_.o-"'-

Figure 2- 3. Example of triangulation following the elimination order {A, T, X, D, Sm, B, L, ToC}; 1) A has
only one neighbour, so no fill-in link isintroduced; 2) T has his neighbour s already connected; 3) X and D do
not introduce new links either; 4) Elimination of Sm, for ces usto introduce thefill-in link (L ,B) and 5)
{L,ToC,B} isalready a complete subgraph. Thetriangulation isfinished. Thelink added isdrawn with a
doubleline.

11
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In fact, MCS is a technique that we will use for being able to finally build the junction
tree. There are other possibilities. We can divide this step in three actions over G'. The first one
will be the basis for the other two.

© Numbering

® |dentifying cliques

© Building thetree
Let us explain them:

© Numbering - We choose randomly one node, and give him number 1. Then, we go on
numbering the rest with the condition “next node to number is the one with more aready
numbered neighbours’. In case of draw, choose any of them.

® Identifying cligues 2 In the inverse order of the numbering we go through al the
nodes. For each one we will take the clique made up of this node and al his neighbours with a
smaller number, excepting the cliques included in another clique already found in this process.

© Building the tree > Finadly, we retake the initial numbering. Begin by 1, and take the
clique associated (if any) as the first one. Next, take the second one, and look for one clique
previously treated which implies the maximum intersection. If there are more than one, any of
them can be chosen. This intersection will create a new object, aso part of the tree, caled a
separator. As the name says it separates cliquesin the tree.

Example:
Following the example of Figure 2-3 we would do:
1.- Numbering: A< L then: T <2, L €3, ToC< 4, B<5 Sm< 6,D< 7, X <8
2.- Cliques:
Number Node Clique

> 8 (X) {X,ToC}

> 7 (D) {ToC,B,D}

> 6 (Sm) {L,B,Sm}

»5 (B) {L,B,ToC}

> 4 (ToC) {T,L,ToC}

>3 L B
»2 (M) {TA}
1 A

12
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3.- Tree:
We skip number 1 because there is no clique associated.
Built tree Process explanation
Start by 2 and its corresponding
T.A clique.

After 2, number 3. But it has no clique too. So,
we take 4 and we search in the previous ones

T,L,ToC _ _ :
(now only 2) the maximum intersection. Then

Oﬁ

{AT} N{T,L,ToC} ={T}
L,ToC
L,ToC,B And we continue
repeating this
Process...
L.B
@ Here, the maximum
ToC,B intersection is with the clique

formed from node 5

: ToC,B,D

ToC

This one could be joined to whichever
node containing ToC (no other contains
X), for example that formed in number 4.

13
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2" Step. PROPAGATION.

Before the propagation we must calculate the initial tables. This task is aso included in
the compilation itself, while the other two (2.2 and 2.3) are not really a part in this process, but as
they are also relevant we find it convenient to explain them here.

Let us remember the two components of ajunction tree:
* Cliques: maximal sets of variables that form complete subgraphs.

» Separators: elements used for linking pairs of cliques, containing the set which results
from the intersection between the cliques they relate.

All cliques and separators have a table initially composed only by ones. There will be a
“1” in each entry which corresponds to the different combinations of the possible statesin al the
variablesinside.

Since we are speaking about Bayesian networks, the conditional probability tables are
available for us, and that will be the initial data to build the cliques tables necessary for this step.
We will speak about potentials, whose notation is normally @ cigue or separator’ SO, the goal is to
introduce the information we have in the junction tree we have just built. We must introduce the
conditional probability tables in the adequate place and it is as we next explain.

If we remember the formulaintroduced in the introduction of this chapter, we had:
P(U)=[Ti P(Ail pa(Ai))

So, we are trying to represent this information in the tree. The systematic way to do thisis
to go through al potentials and find a clique and only one (because in the previous multiple
product each potential appears also only once) to attach it to.

If we have a clique C={A4,...,Ay}, its table will contain the product of all the associated
potentials. To carry through this operation, we must take into account every possible combination
of states in order to multiply them properly. If there are no related potentials the table will keep
theinitial ones.

Example:
For our initial network in Figure 2-1, the tree associated is shown in Figure 2-4.
Looking at Figure 2-1, we know which prior probabilities we shall treat:

P(A), P(Sm), P(T|A), P(L|Sm), P(B|Sm), P(ToC|T,L), P(X|ToC) and P(D|B,ToC). As we
can see, there are eight, one for each node.

P(A) O the only possibility is to introduce it in @ a T.

14
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P(Sm) [ this one can only be introduce in ® | g sm, SiNCe it is the only place where the
variable Sm appears.

P(TIA) Oin @ at
P(LIST) Oin @ | g sm
P(B|Sm) Jin @ g sm
P(ToC[T,L) 0 in @ 1 toc
P(X|[ToC) O in ® toc.x
P(D|B,ToC) O in @ tecp

Therefore, in the junction treein Figure 2-4 we will have theinitial tables:

® x 1oc = P(X|T0C)

® toce,p = P(D[TOC,B)

@  gsm=P(L[Sm) - P(B|Sm) - P(Sm)

® | g toc = All ones (there is no new information introduced)
® 1 10c = P(TOC[T,L)

© a1=P(TIA) - P(A)

@ g=Droce = DL 10C

1.00 1.00
1.00 1.00
(DTOC = q)T = (100,100)

Let us take @ A 1 asan example. Initially we have that:
P(A) = (0.01, 0.99)

P(TIA) =
T A Yes No
Yes 0.05 0.01
No 0.95 0.99

15
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S0, @ A1 will resultto be:

N Yes No
Yes 0.05x0.01= | 0.01x0.99 =
0.0005 0.0099
No 0.95x0.01= | 0.99x0.99=
0.0095 0.9801

LB ToC,B
LTod
T
LB.Sm ) (,————.H { TLToC )
# ToC,BD )
\m.‘_____d_,,-*
Tac:

Figure 2- 4. Junction tree of the example built in step 1.3.



Chapter 2. COMPILATION OF A BAYESIAN NETWORK

As we have commented before, at this point the compilation, as we understand it, has
finished. Anyhow, it is interesting to describe propagation, because with this point it will be
easier to clarify the necessity of a compilation process.

For the following two steps, we need to choose one of the cliques as the root one. Now,
we are going to propagate al the origina information through al the cliques. The purpose we
pursue with steps 2.2 and 2.3 is a consistent tree. This consistence grants us to acquire the same
marginal probability for each node, no matter from which clique or separator to which he
belongs, we marginalise.

One clique C; gets information from another one C; by means of the separator, S,
between them. The separator has the nodes C; n C,, and we update the potential using the
operation illustrated bellow, which is commonly called calibration:

Cdlibration

--------- G

D’s= 201\5 Dcy

O’co= (D’s/ Ds) - D

Once we have chosen the root node, we can think about the collect phase as a kind of
survey which this node makes to all his neighbours, and these ones make it to their neighbours
recursively, until finding a node without more neighbours, except the one who “asks” him.

17
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root node

(1) - S
T / / 2
A1) (™
LB ToC B e ]
L. TLToC )
a'am ) f;,E.DR} >~—i

(2)

\ (2)
Toc:

\\ (3) A\
© >

Figure 2- 5. Example of the collect phase development for treein Figure 2-4. The download arrows are
(recursive) callsto collect evidence and the upwardsarrowsis calibration.

Now, we can say that the root node “knows” everything about al cligues. So, he is going
to communicate the rest. And performing a similar method we will distribute this information to
his neighbours and so forth in a recursive way. Now what the nodes says to his neighbours is
“calibrate from me”, take what | know to have the complete information.
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root node

~—

(1) //‘ ’ !x

LB ToC,B
TLToC
ToC,B,D

(2)
W
ToG T

\
& @

Figure 2- 6. Example of the distribute phase development for treein Figure 2-4. Thearrows symbolise
(recursive) callsto distribute evidence, which resultsin calibration along the same paths.

Example

In the previous tree if we take, for instance, {L,ToC,B} as the root. We recommend

following this sequence of steps watching Figure 2-5 (Collect) and Figure 2-6 (Distribute),
numbers in brackets correspond with those in the drawings.

Collect phase 2 {L,ToC,B} “asks’
={L,B,Sm}, he aso asks his neighbours. (1)

In this case he has only {L,ToC,B} which sent him the message. So he can “answer”
directly, and provokes the cal culation of the separator:
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O’ = Z o Puesm; (9
={ToC,B,D}, he also asks his neighbours. As before, he has not any. Then, (1)
O’1ocp = Z 5 Procep; (2)

={T,L,ToC }, this one has neighbours, so he asksrecursively: (1)

= {ToC,X}, no more neighbours. (2)
P’roc= H , Procx; (3)
= {A, T}, no more neighbours (2)

o= z A Pam ()

\%Q’T,L,TOC: (@’1oc/ Proc) * (@'7/ @7) - @ 1700 P’LT0C= Z s @ 1LT0c (4)
3 3

|L>(D’L,TOC,B =@ g /DPLg) (Proce /DPTocs) (P’L1oc/ PL1oc) * P LToCcE
() () (4)

Distribute phase - {L,ToC,B} says to his neighbours to calibrate from him. To do this,
the separator must be updated [step a], and then cliques will use this new value of the separator
combined with the previous one to update its potential [step b].

={L,B,Sm}, he calibrates taking (1)

D’Lp= ) o Purece [stepa]and @’Lp si= (P ’Le/ ’Lp) DLpsm[step b]

He has no more neighbours for telling them to calibrate from him.

20
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={ToC,B,D}, the same case as before. (1)

D rocp= ) | Puroce, and @’rocpp= (P '1oc,8/ P 1oce) P Tocs D

={T,L,ToC}, we start calibrating him. (1)

D’Lroc= ) ; Puroce and @1 1oc= (P71 100/ Livoc) P 1L ToC

= {ToC,X}, he calibrates from the previous one: (2)
O’ roc = z o PrLTec; Procx = (P 1oc /P Toc ) P Tocx ;
= {AT}, (2
D7r= % ol PrLTec: @ar= (071 /07) Pax;

At this point the tree is globally consistent. With these steps the Bayesian network is
initialised. Now we are ready to work with the network for example by introducing evidencein it.

To finish this chapter, we want to point out that its purpose is to introduce the method
used for compiling a Bayesian network. We have tried to show a description easy to follow. For
further details we recommend [Jensen 1996].

21






Chapter 3 POSSIBLE MODIFICATIONS
IN A BAYESIAN NETWORK

2. Why we should look into it.

Since we want to study incremental compilation of a Bayesian network, we must start by
analysing possible changes in it. These changes can arise a any time in the Bayesian network
construction (the modelling phase) or maybe later in arevision task.

3. Systematic search of possible changes.

Looking at the definition of Bayesian network, given in chapter 2, we are able to examine
the different parts of a Bayesian network that can be modified.

We have the structure BN = {G, P}, where G isadirected acyclic graph, G = (V, E). So,
how can we go through each component of this structure? What we are going to do is that, for
each element, we will try to identify the possible modifications and afterwards seek to deduce the
implications in the compilation process as well as the cases where any computation work could
be saved.

4. Potentials.

If we take the process of compilation, when do we use the potentials? Following the
compilation steps described in chapter 2, we see that these data first appear in the construction of
theinitia tablesin the junction tree. The potentials let us obtain every clique potential.

We commented that the real compilation ends by filling initial tables. Afterwards, we pass
to propagation phase. Here, we should say that this discussion would be dlightly different if we
consider propagation inside compilation or not. For example, in this point about potentials if
propagation is not included we will have to change only initial tables. Otherwise, we can imagine
that making a change in an initial potential will imply changes in every clique potential table
where the implicated variables participate. The junction tree is still the same, but the potentials
are not.

* Possible conseguences of changing potentials

If we change initial potentials for any variable we could expect that from step 2
(propagation), everything should be redone. It would be necessary to introduce the changed
potentialsin the corresponding tables. That would affect all the following process.
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In order to do a better study, we are going to take the initial example of the Bayesian
network Asia and we will try to make modifications with the purpose of observing the
consequences in the compilation process. We know this is only a network example, and it will
present particular characteristics that cannot necessarily be extended to genera conclusions.
Anyway, it can be interesting to see what happens in each of the described cases. Then, examples

are taken from there.

Initially we had the values:

Now we suppose changes and:

Example 3.0.
Yes | No
A 0.01 |0.99
Yes | No
A 02 |08

Let study what happens with these new values:

It is clear that, as the qualitative structure of the Bayesian network does not change,
neither does G, so neither does G', and finally the junction tree does not change either. But, in
step 2.1, we start seeing that P(A) is not the same. That makes ® A 1 different too.

Before we had:
P(A) = (0.01, 0.99)
P(TIA) =
A Yes No
T @A’T
Yes 0.05 0.01 >
No 0.95 0.99
And now, we would have;
P(A) =(0.2,0.8)
P(TIA) =
A Yes No
T q)A,T
Yes 0.05 0.01 ->
No 0.95 0.99

24

Yes No
Yes 0.05x0.01=|0.02x 0.99 =
0.0005 0.0099
No 0.95x0.01=|0.99x0.99 =
0.0095 0.9801
Yes No
Yes 0.05x0.2= | 0.01x0.8=
0.01 0.008
No 095x0.2= |099x08=
0.19 0.792
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As it seemed evident, tables have changed, that means that from step 2.1. the process
must be retaken.

* Proposed solutions

In this case we find one solution quite easy. As in the example before, changing initial
potentials implies changing potential tables in cliques, but not in a random way, what we actually
do is substitute the old value by the new one. So, in the incremental compilation one possible
method to cope with it would be to divide by the old value and multiply by the new one. That
would be done in the table where this potential participated. We have to remember the step 2.1 in
compilation (obtaining the initial table), where every potential had to be included in one and only
oneclique. Like that, we only detect one situation where this solution would not work, if the old
value is 0 we cannot divide by it. But if the new vaue is also O, then nothing has to be done,
because the value remains the same.

5. Graph.

The next component to see is the graph. But this one will be more complicated to study. A
graph is, composed of other elements. Let us remember its definition G=(V, E). The division is
then immediate, variables and edges.

4.1Variables.

It can be very reasonable to change one or more variables in a Bayesian network. Which
possibilities can we find? Once more, we will try to look into them in a systematic way.

4.1.1. States.

To start with, we can find that the possible states in a variable are not the correct ones, too
many or maybe too few states. It is not really part of the graph, we could consider it outside the
graph, but it is clear that states are closely related to variables. For that reason we will discuss this
case at this point.

* Possible consequences of changing the states at avariable.

What happens if a variable changes its states? Firstly, the number of states will cause
changes in potentials values. Hence, that will provoke at least the same consequences as changes
in potential values. But also, the states are very close to the potentia tables, since they determine
the size of these tables. So, incrementing or decrementing the number of states in one variable
will modify tables. For example, assuming that there is a variable A without parents, its table will
change. But even more, any variable child (B for instance) of A, will change its table as well.

25



Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

Conditional probability for B would be P(B| pa(B)), if A is one of its parents, then for each new
state of A, B will have to extend the table. And if a state of A disappears, the table of B will be
reduced too.

Let B be a variable with s possible states. If this variable has m parents p; (1<i<m) the
number of entriesin the probability table related to B will be E, where

E=s [ I_JStat&e of p

So, it is not hard to see that if A, one parent of B, increases the number of states then the
number of entries for B is bigger. Or if one or more states in A are deleted then the number of
entriesissmaller.

.

Figure 3- 1. Example of variable B with several parents p; and, between them,
variable A whose state set has been modified.

Then, changing the number of states in a variable will form new tables. These tables will
provoke new clique sizes and therefore new clique tables. Like this, if for example we use the
minimum clique size heuristic, the process will be aready affected in triangulation step.
Otherwise, propagation will be again the point from which we must begin the recompilation.

Example4.1.1.0®.
Let us imagine that now we reconsider the global problem and a new state for A (Visit to Asia?)
Is required. We have learnt that the time passed from the visit to Asia is quite important to
determine that illness. Thus, we find that A ={yes in two months time, yes more than two months
ago, no}.

—> Looking to the compilation chapter, we can see that nothing changes until step 2 (initialisation
of junction tree). But then, we will have:
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-2months +2months no
PA)=( = . = )
Dp 7
A - 2 months + 2 months No
T
Yes
No

We see that changing the sates of A will provoke changes in P(A) ans in potential table ®a 7.
A has now one more state and whatever table including it must consider this new state in the
configurations.

Example4.1.1.0@.
Changesin T = {no, mild, severe}.
- Inthiscasein step 2.1 we will obtain:

no mild severe

PM=(— — , = )
D1LT10C
L Yes No
ToC Yes No Yes No
No
Mild
Severe
DAt
A Yes No
T
No
Mild
Severe

Thisisa similar example to the previous one. In this case a change in T potentials will affect
in two tables, since it participated in these two clique potential tables.
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* Proposed solutions

Here we have another change in tables at step 2.1, but this change is more serious, it does
not only deas with values but also with table dimensions. So, this time we should find one
dynamic way to change these table dimensions, and we could also use the previous method for
those existing states, if their values are changed too.

4.1.2. Deetion.

But, going further, suddenly we can recognise that this variable is not really essential in
our network and we simply want to delete it. Probably, making modifications in a variable will
have some kind of impact in the edges set within the graph G. For that, the only thing we must
think about is that deleting a variable will obviously involve deleting any edge containing it. We
must remember that an edge is a pair of two variables, without one of them it would have no
sense to keep it.

* Possible conseguences of deleting an existing variable

This case starts to be a little more “annoying”. Deleting a variable and its incident edges
as we told before produces a different moral graph G*. Subsequently, this new G takes to a
different triangulation and a different G', and finally it drives to another junction tree.

But, we can think in particular cases where the change in the junction tree provoked by a
deleted variable might not be so serious from the point of view of compilation. When could it
happen?

For example, let usthink of those variables that only appear in one clique. Deleting one of
them will only reduce this clique and the separators related, and maybe it could make the clique
disappear (if it becomes a subset of another clique). That means our junction tree is reduced, but
we will probably not have to do all the junction tree construction again. For this purpose, we will
need some method to detect these cases.

Example4.1.2.0.
Deleting variable X in Asia . The simplest case, deleting a variable that has only one parent and
no children. Thisisthe simplest one because deleting a child only affects itself and its potentials.

For the first time, | am going to explain the example in detail as in the compilation
chapter, but afterwards we are going to simplify the examples in order to make it lighter to
follow. So, the way of showing this first example coincides with the one taken in chapter 2 of
compilation: initial network, moral graph, triangulated graph, MCS numbering that will take to
identification of cliques. Then, finally we will see the junction tree, the structure we was looking
for. But, since this chapter will present many examples, for the other ones we will show them in a
more compact way: initial network (showing the changes from Asia), graph after being moralised
and triangulated (fill-ins represented by double lines) with a certain elimination order. Then we
will give the MCS numbering and finally we will show the junction tree.
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So, the Bayesian network is:

— ,r'_/_,_,_,—'—'_'_'_'—\_\_‘_‘—\—\_\_\__‘_\_h\
/—/_?—\_\ >:- { Smoker? 3

igit to Asia?
ol

—

. ™, "

Has tuberculosis /:' Has lung cancer Has bronchitis
ol

{

Tuberculosis or cancer )
—~

Figure 3- 2. Asiawithout variable X.

After moralisation we have:

29



Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

e
- >_\
f,.f‘f T /‘/_\4 _‘“a\} . _“‘“-m\}
_ "

T L

Figure 3- 3. Asia without X moralised.
Triangulation sequence: {A, T, D, Sm, B, L, ToC}, which introducesfill link {L,B}.

D =D
B g N

T L

e

Figure 3- 4. Asiawithout X triangulated.
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* Numbering: A<1, then: T €2, L €3, ToC < 4, B< 5 Sm<6,D <7.
e Cliques:
Number Node Clique
> 7 (D) {ToC,B,D}
> 6 (Sm) {L,B,Sm}
»5 (B) {L,ToC,B}
> 4 (ToC) {T,L,ToC}

3 L &5
>2 (M) {TA}
1 A)

e Tree
We will not show the tree construction. We think that the number of cliquesis reduced
enough to see this construction process directly in the final tree.

T

LB ToC B LToC
LBSM ) /TQ—EI\DE> .

2N
)“{ :
A

Figure 3- 5. Junction treewithout X. We have already mar ked the differencesfrom the original JT.

In this example deleting X takes us to delete one branch in the junction tree. This branch
corresponds with the only clique related to it.
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Example4.1.2.@.

Delete Visit to Asia? Thisis a little more complicated in the sense that this time, since the deleted
nodeis a parent there are more potentials implicated.

Gy €y €5 G @ —@

( Tat h ( Tol )

Figure 3- 6. Asiawithout A Figure 3- 7. Asia without A moralised and
triangulated (fill-in {L ,B}) .Sequence order taken:
{A,T,D,Sm,B,L,ToC}.

And with the numbering: T< 1, then: L €2, ToC <3,B < 4, Sm< 5, D € 6, X< 7,
we obtain the tree shown in Figure 3-8.

In this example, we will “lose” only a branch in asimilar way to 4.1.2.®. But, as we told
before, this is not exactly the same case. Now deleting A will also affect on T potentias. If we
see the original Bayesian network T isachild of A. So, its conditional probabilty will be P(T|A).
So, if A isdeleted the potential of T changes as well.

Once seen two cases of a variable father of only another one and a variable child of
another one, it arrives to think about one variable linked to the rest of the network with more
edges. To start with, we will consider two other edges. In which position? There are three
possible ways: two incoming links (the ssmplest case following the same reasoning as for only
one link), two outgoing, and one incoming and one outgoing.
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Lasm) {TDCED

& C AT N

Figure 3- 8. Junction tree of Asia without A

Example4.1.2.0.
One variable with two incoming links deleted. In Asia, we could delete D to see this point.

Taking the process as always we obtain

& G

Figure 3- 9. Asiawithout D.
Figure 3- 10. Asia without D moralised and

triangulated. Sequence: {A,T,X,B,Sm,L,ToC}

33



Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

With the numbering A<1, and then T<2, L<3, ToC<4, SmE5, B&6 , X<7, we
obtain the tree:

i
{ TLToC }

T

T ToC L

Figure 3- 11. JT for Asiawithout D following the usual compilation process.

Looking at this new tree we can see that this tree differs alittle bit from the original one. It keeps the same
the part { T,L,ToC} connected to {A,T} and { ToC,X}, but the rest turnsto be dightly simpler.

Wéll, this was the first option, redoing everything. But this, recompilation, is precisely
what we want to avoid. So, is there another way to do it? The easiest way to act will be taking the
junction tree and delete the variable in the cliques where it appears. It isin fact what we did in the
previous cases. Once the affected cliques are deleted we have to see if the tree is correct and
absorb those cliques subset of others.

But, isit possible to do in this way? We are going to see what happens, in fact the point is
that if D is deleted then the marriage between B and ToC is not necessary either. That means that
we do not need the moral link between these two nodes. So acting directly on the junction tree
will not consider the disappearing of this moral link. We realise that if this moral link continues
there the tree is quite easier to reach, even there is a systematic method to obtain it from the
previous junction tree. And thistree will be aso valid, but no the most simplified one.

This validity can be justified from the principle of junction trees. That lies on the
necessity of reducing the total number of configuration between variables of the Bayesian
network to store. With moralisation step we can assure that parents of the same node are related,
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since they are dependent in some way. And later on, triangulation is charged of splitting the
moral graph up into smaller modules or subsystems that will provide smaller configurations than

aglobal one.

So, deleting a link could never produce new dependencies to consider. And the worst
thing to happen is having more tables (configurations) than we could, but the structure is till
valid.

To illustrate this we are going to take again Example 4.1.2. @.(Figure 3-9), but this time
without removing moral link between B and ToC.

Figure 3- 12. Asia without D having kept previous moral links.

With the numbering A< 1, and then T<2, L<3, ToC<4, BS5, Sm<6 , X<7, we
obtain the tree:
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\ {/

@,A,

Toc

Figure 3- 13. JT of Asiawithout D having kept previous moral links.

T

In this case the branch where D was disappears. It makes us see that the method can be:
take the clique (or cliques) where the variable deleted appeared in the original JT. So, if deleting
this variable inside a clique provokes a situation where the cligue coincides exactly with one
separator linked to it, this clique has no more sense in the JT, since it is then a subset of another
one (the one with the separator connects with). Then, in this example it is that what happens, we
delete D from the only clique where we find it. Doing that the new clique stays as{ Toc,B} which
Isjust the same as the separator closeto it. It isfor that reason, that both of them disappear.

Then, for this example we have seen two possibilities:

1.- Recompile the network again (the one we are trying to avoid in this report). It gives a
quite simpler tree, but it is computationally demanding.

2.- Delete the cliques that contains the variable. It is a ssmpler method and gives a valid
tree, but not the best result.

We have passed from the “traditional” way with a good solution to a much faster way,
but offering a worse solution. So, we wonder it maybe there is an intermediate point to solve the
problem. It could be quite interesting if we are able to infer that the elimination of a variable will
take us to the elimination of a certain moral link. And looking at it, we notice it is possible. We
only need that in moralisation process we noted in some way the introduced moral links relating
it to the nodes that provoked them. Like that, if a node whose parents were married is deleted
then this/these moral link(s) between them will disappear.
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So, we can guess that a third solution could be reached. And the obtained tree will be
probably simpler than the one shown in Figure 3-13. We comment it because we find it is a way
to follow the analysis, but let us leave the discussion at this point, without entering in more detail
in this intermediate solution.

Anyway, wee are going to show it with more examples to see if these methods can be
generalised.

Example 4.1.2.®.
One variable with two outgoing links deleted. In Asia, we could delete Sm to see this point.

Emy pa( .
LA T
C C e o@D &

__H.

‘“‘\
(™

A
" ( TaC
I / /

Figure 3- 14. Asia without Sm Figure 3- 15. Asia without Sm moralised and
triangulated. Sequence: {A,T,X,D,B,L,ToC}

With the numbering A €1, and then T €2, L €3, ToC €4, B€5, D €6, X <7, we obtain
thetree:

{ T.LToC }

8

ToC Toc T

T AT
I:l 1= 1 1
CORCGIRE

Figure 3- 16. JT of Asiawithout Sm.
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If we compare with the original tree, we have “lost” two cliques {L,B,Sm} (quite normal
because Sm has been deleted}, but also {L,ToC,B}. This one is not so obvious to see, but we
have to bear in mind that the links related to Sm provoked the fill-in edge L-B, that now we have
not. Again, the explanation is not so hard, but we do not really know how to mechanise this type
of situations.

Maybe we can follow the same line of reasoning than in the previous example. We can
delete the variable directly from the junction tree. We have just told that the key hereis the fill-in
between L and B, this link with the disappearing of Sm is no more necessary. If we keep it, the
tree will be still valid taking the same justification as before.

Let see in the example. We delete Sm not from the original Bayesian network, but from
the original G'. And then we have asthe new G':

Figure 3- 17. Asia without Sm moralised and triangulated having kept previousfill-in links.

With the numbering A<-1, and then T&2, L<3, ToC<4, B&5, D6, X<7, weaobtain
the tree:
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Figure 3- 18. JT for Asiawithout Sm having kept fill-in edges.

Here, we find that a similar situation has taken place. If we delete Sm from the origina
G', then it is quite simple to identify a new junction tree. We look for a clique containing Sm,
then deleteit, and the clique isthen { L,B}, but asit is the same as the separator . So, both of them
are absorbed by the tree.

Subsequently, that is very near to the previous case. First, we have the obvious but slow
way to do it: do all the process from the Bayesian network to the junction tree again. Or, second,
deleting the associated cliquesin the old tree. Thisis quite easier, but less effective, since the tree
is not the best one we could have. And what about the third solution?

Here it is even more complicated, because the link which was in the origina G™ and
which does not appear anymore is afill-in. Keeping track of amoral link could be relatively easy,
but it is not the same when we talk about triangulation links. Why? A moral link is associated to a
child node that makes his parents marry. But a triangulation link can influence on several nodes
deletion, not only on the one whose elimination introduced it. Here, according to the triangul ation
sequence we chose, elimination of both Sm and B could induce this link.

Still, we can distinguish one question to reach an intermediate solution. In this case, a
cycle is broken. Cycles and triangulation links, fill-in links, are quite related (see definition in
chapter 2, at step 1.2) as we will see later. And detecting cycles is a possible task to do in the
graph that we have aready. Thus, this is the hint we launch to attain a better solution to the
second one and faster than the other one.
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Let us go on with the next example: deleting a node with one outgoing edge and one
incoming one.

Example4.1.2.0.
Suppose we realise we do not need variable B (Bronchitis). A more complicated situation, since

B is both child and parent.

- That means we have change our graphical Bayesian network. Let see step 1.

( ToC )

Figure 3- 19. Asia without variable B

Figure 3- 20. G from Asia without B,already
triangulated, so it also coincideswith G'. Wetried
sequence {A,T,X,D,Sm,L,ToC}

And with the numbering: A< 1, then: T €2, L €3, ToC €< 4, Sm < 5, D<€ 6, X <7,
we obtain the tree:
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L[ X

( LSm T

{ ToCD }
d ToC T
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Figure 3- 21. Junction tree of Asia without B, marked parts are exactly the same asthe initial tree.

We can see that the tree is not the same, but it is neither completely different. Marked part
in Figure 3-21 shows which ones are the same. Clique {L,Toc,B} has disappeared. {L,B,Sm} is
reduced to {L, Sm}, { ToC,B,D} isreduced to { ToC,D} and since {L,ToC,B} does not exist yet,
itislinkedto {ToC,L,T} by L.

Even here where it seems to be quite different from the original tree, it deals with the
disappearing of B in cliques (obvioudly, B is no more there) and the reduction of those cliques
where B participated.

A methodical way to seeit in this tree could be the following one:

Let seethe original tree with the cliques numbered to be able to refer to them:
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LTaoC,B C4

LB ToC.B L Toc

C5

AN

T

Co
ToC
/ cC32 C1
A D

We start by one clique, for example C4. As we have deleted B the clique remains as
L,ToC. But L,ToC is exactly the same as the separator S, 4. So, we do not need it any more and
we can remove both of them. But, if we remove C4 then C5 and C6 are automatically joined to
C2. Doing that Ss, turnsto be L and Sg2 T. (B hasto disappear also in C5 and C6). And then, the
tree isthe one shown in Figure 3-21.

So here we can conclude that the proposed solution of just deleting the node in the JT
sometimes leads to the “best” tree (example 4.1.2.®), but that this is not always the case (earlier
examples4.1.2.® and 4.1.2.@).

We have to say that here a cycle has been broken. Maybe that will have special
consequences. We will seeit in the point of edges deletion (4.2.2).

*  Proposed solutions

In the examples we can realise that changing a variable which isachild or afather of only
one other variable will simply prune the branch in the junction tree where it appears. And we can
be sure that this clique will be a leaf in the junction tree, we know that the variable is only
connected to one other variable.

Taking this idea, we can think that for these situations a possible solution can be deleting
the clique in the junction tree that this variable forms if it is a binomial clique, or reducing it if
the sizeis more than 2.
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But, if we go further to a variable with two links (they can be incoming, outgoing or one
of each), we have found a way to avoid the whole recompilation. It consists in eliminating the
variable in the junction tree of the origina network. In this manner we will save time of
triangulation. But even more, we do not have to reconstruct again the whole tree. There is a
solution to treat only the necessary part. We have already described it. The point isto delete it in
al the cligues where it appeared. If that reduces a clique to his separator both of them are
removed and the tree merges by this place. Actually, this solution is the same as the presented for
the previous case. The reason is that when we eliminate a variable from a clique of size 2 the
separator must be eliminated too, if it contained this variable, or absorbed, if it contained the
other one. Thereis no other possibility because the separator must be a subset of the clique.

It is important to remark that this solution does not always give the optimal tree, as we
have pointed out with the examples before. Although we do not say that a better solution could
not be reached giving simpler trees, we do consider that this solution is satisfactory in the sense
that it lets us do what we wanted at the beginning: obtain a valid junction tree for a modified
Bayesian network without recompilation and assuming not too much time. An idea could be to
inspect more exhaustively the different cases in the more simplified trees. But, maybe this will
take us to a deeper study of the tree. This study can mean spending more time, when our main
purpose isto be asfast as possible.

Looking ahead, a generaisation to one deleted variable with more than two associated
edges can be interesting. In the line of this chapter, analyse by examples, Asia does not offer the
possibility to do complete experiments further with deletion of edges. Although there exist nodes
with more than two links, we cannot find all possibilities (3 parents or 3 children for example).

Anyway, with the progressive study we have done, we dare to guess that the solution will
be quite similar to this one. Maybe then the resulting tree will be even less “optimal”, but as
before, still valid, what is the most important point. And the lack of optimality will influence less
in the global processif the network islarge.

We cannot demonstrate it, but in this project we would want to introduce the subject and
to encourage future studies and evaluations.

4.1.3. Addition.

Finally, here we have the last aternative for variables. Instead of finding that avariableis
not necessary, the opposite can happen too. Going deeply into the problem to solve, or better, to
model, we could notice we have forgotten one important aspect. This aspect could be represented
by one or more new variables. It seems likely that adding a variable will mean adding new edges,
we would want to relate in some way this new variable to the previous ones. At this point we can
ask: when are we going to recompile? Just after adding a new variable or when all the new
elements we find necessary are included. It appears that the second option is more reasonable, we
will not want to recompile until we will have introduced every modification in the Bayesian
network. Adopting this option, adding a new variable will lead us directly to the later point 4.2.1
(adding edges). However, we will try to examine the case of introducing a new variable alone.
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* Possible conseguences of changing variables adding a new variable

Although adding an isolate variable seems to be a trivia situation, it could be interesting
looking at it. If this new variable islinked to no other one, it will form a clique itself. Like that, in
the junction tree there will be one node disconnected to the rest. In propagation this node is not
going to participate, since it has no mean (no separator, the intersection between it and the rest is
the empty set) to communicate with the rest. This new clique (made up of only the new variable)
will keep theinitial belief probability, for it will never affected by the other ones.!

4.2. Edges.

An edge alteration seems to be quite similar to the variable one. It is due to the fact that
both of them will probably take us to a different mora graph, or maybe a bit later to a different
triangulation, and, like that, the junction tree will a'so change. Once more, the point is to identify
which are the thinkable variations carrying to a set of diverse types of consequences.

4.2.1. Addition.

If we add an edge, E will have a new element. The first effect will be on GM. If this new
edge or link points to a variable with one or more other parents, then in the moral construction all
these variables must be joined to the variable pointed to by the new edge. That will probably
produce a new triangulation, but there may be a possibility that it does not: if the new edge and
those provoked by the moralisation already belonged to the initia triangulation. So, there is
another case we should be able to tell apart.

L et see the possibilities of adding one new edge in amore detailed way:
°  New edges between existing variables:

o |f the new edge does not introduce other new edges in moralisation apart from
itself (and it already belonged to G') then the result is trivial, because G will be
the same, and so will be the junction tree. Or if the new edges changes the moral
graph but keep the same G'. In any case, we cannot forget that one new edge will
alwaysimply a changein its children, the conditional probabilities change.

Example4.2.1.0.
Imagine that we put a new edge from “Has lung cancer” to “Has bronchitis’.

! That if we do not take into account the concept of dummy separators, used to avoid a disconnected graph. The only
reason to introduce dummy separators would be the fact of afinding of it. By how, we are going to omit this.
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Figure 3- 23. Asia with link from L-B moralised

Figure 3- 22. Asiawith link from L to B. and triangulated (the moral graph was already
triangulated).

What happens then? In fact nothing happens to the compilation process, because G' does
not change and the junction tree is exactly the same. The new link will put a moral link, but this
one was aready in the graph. But we have to change conditional probability for B, because now
itisP(B|Sm,L).

o If the new edge introduces other new edges at moralising time and some of them
are not in G, then this triangulated graph may be different. That would imply
different cliques and consequently a different tree. Studying this case can be quite
difficult, it depends on the situation of the new edges. We are going to show one
possible situation in Asia.

Example 4.2.1.@.
AnewedgefromT to L.

45



Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

.
( Sm /} :
-:- A x;- _[F gm x:
it e v P oy L
- - e o x_
) { L ) { 5 A - - —i —

— i ra
| —, L y | B !
- = i _.-"__._.- -.- o
-\. ’ ~
k' i ,.-'":"'-f - f
L r o - !
N T f
- ey /!
7 R v
i ol r [
——— i
~ - ]
e
— S
R
|

Figure 3- 25. Asiawith link T-L moralised and
triangulated. Sequence: {A,X,D,T,B,Sm,L,ToC}.
Theelimination of T will provoke thefill-in.

Figure 3- 24. Asiawith link from T toL.

With the numbering A< 1, T<2, L<3, ToC<&4, SmE5, B&6, D7, X <8, we obtain the

tree:
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Figure 3- 26. JT of ASiawith link from T to L.

ToC B

The differences between this tree and the original one for Asia seem to be more difficult
to analyse. One link will probably add new moral links, and these ones will give a quite different
triangulation like in this example, where the fill-in { Sm, ToC} has never before appeared in the
other cases, it could have appeared with another elimination order. So, we think that thisis not at
al very predictable. It seems that maybe this is one of the cases without a clear solution, that is,
where incremental compilation cannot be used, and a new compilation should be completely
done.
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° Add an edge pointing from an existing variable to the new one. Thisis the simplest case

again, since the new variable potential only will influence on itself.

Example 4.2.1. 3.
Let suppose we will reconsider the possibility of a new variable whose father will be X.

W W

New )

Figure 3- 27. Bayesian network for asia after
adding a new variable New Figure 3- 28. Asia with New child of X moralised
child of Positive X-ray? and triangulated. Sequence:
{A,T,New,X,D,Sm,B,L,ToC}

And with the numbering: A<1, then: T €2, L €3, ToC €4, B&5, Sm €6, D<7, X
<8, New<-9, we obtain the tree:

a7
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P
{ LToC,B )
LB Toz B LToo
/L\\
TLToZ
( LEISm> (_TocED ) ( /
S
BN
pd
Toc: qF

-

-
XN

‘\1_. L

Figure 3- 29. Junction treefor Asia with the New variable pointed by X.
(Herethename New is shortened to N)

So, after seeing this example, we could think that adding a new variable and making this
one to be pointed at by an existing one makes that after recompilation our junction tree grow in
one branch.

°  Add an edge pointing from the new variable to an existing one.

Here we can distinguish two cases: 1.- the new one is the only father of this existing variable;
and 2.-there are aready other existing variables pointing to the same one, that will provoke a
marriage between New and these other parents, atering GM, and probably implying more
changes in the junction tree. Let us see two other modification examples to illustrate these two
cases.
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Example4.2.1.®.
We decide it is necessary a new variable and this one will have a causal relation to Asia? (A).

The Bayesian network would be as follows:

M
< A ,:} <Tj
<IT\} L — 5

_ o _ Figure 3- 31. Asiawith a New variable pointing to
Figure 3- 30. Asia with a New variable A moralised and triangulated. Sequence:
pointing to A {New,A,X,D,Sm,B,L,ToC}

And with the numbering New<1, then: A<2, T <3, L €4, ToC &< 5, B<& 6,Sm < 7,
D& 8, X<9, we obtain the tree:
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LToC B )

L.E TDC,E LTo

Al

Toc,B.0 -\} ( TLTaZ

{ LBSm ) {M____#’
o T
/ \

Toc

R

DL

—

\

A
.

Figure 3- 32. Junction tree of Asiawith New pointingto A.
(New isshortened to N)

The fact that there is a new leaf is observed. A appeared before in one leaf, since it was
connected only to T. As the new one is also only connected to A, it should be joined to its clique
by a new separator. So, in this case, we could say the addition of a new variable pointing to an
existing one, when thisis the only father will conduce to an extension of one extreme of the tree.

But now, we are going to complicate it a little bit. In the next example, the new variable
will point to B, which is aready child of Sm. Let us show what happens.

Example4.2.1.5.
We decide it is necessary a new variable and this one will be pointing to B.
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So, thistime our network looks like:

o S > [ ewy

Tac

Figure 3- 33. Asia network with a new variable
New pointing to B.

Figure 3- 34. Asia network with new parent to B
mor alised and triangulated. Sequence:
{A,T,X,D,N,Sm,B,L,ToC}

With the numbering: A< 1, then: T €2, L €3, ToC &< 4, B& 5, Sm < 6, D& 7,N<8,
X €9, we obtain the tree:

W
{ LTocB )

TN

B TaC B LTac

T
R-\ a-""ﬁ_—-_/““\ /L .
&L/ & &

Figure 3- 35. Junction tree Asia network with a new variable
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The result is quite similar to the case before, but now, the new clique is bigger, that is
because in addition to the new edge between N and B, we will add the moral edge Sm and N.

* Proposed solutions

In the first case (new edge aready in G' that does not introduce new edges in G™) the
solution is very simple, we only have to update the potentials of the new child and those in the
junction tree.

In the second case (new edge between existing nodes that leads to a different G"), we
have concluded we recommend recompiling, maybe other methods could be studied, but we have
not reached them.

And finally, a new variable with a new edge. As we have seen, adding a new edge that
joins an existing variable to a new one will imply one new clique in the tree. This clique will be
formed by the new one, by the one connected to it, and maybe by other variables if moral edges
have been added.

This is quite similar to deleting a variable, but in the opposite direction, that is, now we
should add a new clique to the tree. This clique will also be a leaf in the tree. We need some
method to detect which clique and where to locate it.

Asachild will always be connected to its other parents there will always be a clique with
al of these nodes and the new one cannot be connected to others in G™. Therefore, this will
always result in exactly one new clique that should be connected to an existing one. However this
existing clique might be a subset of the new one, resulting in an extension of the existing rather
than the addition of a new one.

So, in general adding a new variable with only one new link will take us to the creation of
anew clique or to add one component to an existing clique.

4.2.2. Deetion.

Here something similar occurs. If we decide to remove one edge, it is very probable that
the moral graph will change, since the moral graph only contributes with new edges between
variables with a common child. If so, once again triangulation can change or not. G' will be equal
if in the process of triangulation this edge reappears and the deleted edge did not take to any other
fill-in edge.

It can produce an isolate variable if it is the only edge containing this variable. In this
case, it would be asimilar case to add a new variable without edges associated. Now this variable
will belost in all the previous cliques where it appeared before.
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We will try to see first what happens if we remove one variable only related to another
one. The systematic way to take here starts to be a challenging task. Anyway, we propose one
method to do it:

o Dedete alink with connects one node to the rest of the network. It seems to be the easiest
one:

or

Both cases are alike, but once more, considering that deleting the link from the node
“outside” will have more implications in potential tables due to conditional probabilities.

Example 4.2.2. @.
Deleting the edge from ToC to X

Bayesian network would be:

L -\-\.\_\_\_‘ e B
—_ e II.: A h | sm :I
& H“ l'.. Em b ﬂ.-?___'{:
Y L, S i .
£
Vi " S Y
r: k ! :'f-f T . 2 L H‘—f B -H'"
= - = B S - d_.-"ll‘ ""\-\..\_ o
lr__.i' g .H"'.l i L “:l II_.-' B "'\-\.h': — _i .-_\_ — -._-_.__.-'-' -? pni=
- T — -.---l .\-‘-"— —_ '\-‘- —"'...-. x""\-\. .-".ll-. _-—"---._-_. '
& .r_,.-" ? e - .-'I
§ ) : i
j‘_ _rr' .-'I {:, ol ."l
l:-"' Fol ™ } T —— 'y
b oL i - i

—— —_— Figure 3- 37. Triangulated graph of Asia without

. L edgef ToC to X
Figure 3- 36. Asia without edge from ToC to X gefrom Tot-to
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- |solated variable.

Now, the other possibility isto delete alink “inside” the BN, that is a link which will not
isolate one node from the network. In that case, we distinguish between those breaking a cycle or
not.

The reason for choosing this election is quite simple and after analysing some cases it
fitted for the results. We know that a graph is triangulated if and only if every cycle of length
greater than 3 has a chord. So cycles will provoke fill-ins in the triangulation process. For that,
removing alink which participated in a cycle will probably suppose changes in triangulation and
infill-ins.

But even further, the bigger the broken cycle is the more this deleted edge will affect on
the new G' and therefore on the junction tree.
0 Those which do not break acycle
We are going to take the edge from T to ToC, one that fulfils the condition.

Example 4.2.2. @.
Asia without edge from T to ToC.

Figure 3- 38. Asiawithout edge from T to ToC. Figure 3- 39. Asia without edge from T to ToC
moralised and triangulated. Sequence;
{A,T,X,D,Sm,B,L,ToC}

With the numbering A<1, andthen T&2, L<3, ToC<4, B&E5, Sm<6, D7, X <8, we
obtain the tree:
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el
{ LTocE ) (’T\}
- "H.__I__,-F‘/
LB Toc ToC,B
- - -
(tesm 3 ( x10c } { TocaD )

Figure 3- 40. JT for Asiawithout edgefrom T to ToC.

As we can see it differs from the original in several cliques, and besides there is an
isolated one, A, T. Here it can arrive to think about doing the same thing as we did in elimination
of nodes, that is, keep the moral and fill-in links from the original network. But we have not
found an easy way to reach the new JT either. It could be detecting cliques with the two extremes
of the edge implicated, but thiswill aso affect on other |eafs hanging from this one.

0 Breaking acycle.

Example 4.2.2. 3.
Asia without edge from B to D.
—_— e T —
Pl g [ - .xl s : ) 3 )
g A " i Sm . 3 A " i Sm J
F F R
& rd '-\H
B , T e
"r-i- T hx‘- i \/] "f-f T hx‘-—- i xﬁ" "f-. B -H':
! __.-"I e B - s - e = J_..-"I ".\_‘_ -
Rl ¥ e T g N
y ) ‘\.. #
b Y
' _!r T —i-:l:
{ T ) ¢ Tec
H"'-\-\_- -
i b
<> ¢ <> a5
Ml - ‘H-.,_____,-"' e
Figure 3- 41. Asia without edge from B to D. Figure 3- 42. Moral graph for Asia without edge

from B to D. It was already triangulated.
Sequence:{A,T,X,D,B,Sm,L,ToC}
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With the numbering: A< 1, then: T €2, L €3, ToC & 4, Sm& 5 B< 6, X<7,D €8,
we obtain the tree:

/-"'F—_—""m
{ TLTaC

T

=l
Tac T T —‘ L ‘
/LH

G GGy ()

T
( SmBE 4
"“‘“""——_-

Figure 3- 43. Junction treefor Asiawithout edge from B to D.

The branch marked is the one that changes. We have deleted the edge from B to D. Then,
clique{Toc,B,D} does not exist any more. But, in addition , there is not afill-in from L to B, and
that is the resulting junction tree.

Example 4.2.2.@.
Asia without edge from Smto B.

We have the following network:

56



Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK
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Figure 3- 44. Asia without edge between Sm and B. Figure 3- 45. Moral graph from Asia without

edge from Sm to B moralised and triangulated (it
was already). Sequence: {A,T,X,D,Sm,B,L,ToC}

With the numbering: A< 1, then: T €2, L €3, ToC & 4, B& 5, D& 6, Sm&7, X €8,
we obtain the tree:

(Teres )

ToG TaC

T
T =g P
&= @ @& @&

Figure 3- 46. Junction tree of Asia without edge from Sm to B.

Here, for example, we can think that if link from Sm to B is removed, then there will not
be afill-in (L,B) what leads to the loss of cliques{L,B,Sm} and {L,ToC,B}.
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* Possible consequences of deleting an edge

This case is maybe one of the most difficult. If one edge disappears the changes are bigger
because probably this will mean important changes in GM. The only two simple cases we can
think about is the first one where a variable turns to be isolated (this modification seems to be
little probable, for what do we want a variable if it is not related to any other one?) and the
second one, deleting one edge which will reappear afterwards in the triangulation process. Then
the compilation will turn to be the same.

If none of these two cases take place, then the conclusion starts to be a bit confused. The
key isto be able to determine in what fill-ins and later in what cliques this edge participated. Like
this, we can probably know which cliques disappeared and what other cliques can raise. This
study starts to be a hard work.

*  Proposed solutions:

As we have just discussed, apart from the two easiest cases, the other seem to be quite
difficult to solve here. So, we will try to see if we can treat these cases with a different method:
Maxima Prime Subgraph Decomposition of Bayesian Networks. We will deal with it in the
following chapter.

As we told before (section 4.1.2.), a deeper analysis can be done looking into the number
of deleted edges and their influence on the G and G graphs. Once again, we cannot attack all
the possibilitiesin this project. At least we have introduced a representative set of them and a hint
about tricks to execute an incremental compilation.

5. Discussion.

In this chapter, we have elaborated a methodological study about the main alterations
inside a Bayesian network that can occur in arevision task. These alterations go from the easiest
one and deal with every component inside a network.

This study has shown a progressive inspection of the possible modifications, the
consequences that each of them can provoke and finally the most important question, in some of
the cases we have been able to state a practicable solution to tackle the problem of recompiling,
which is the purpose of this work.

To try to study some of the unsolved cases here next chapter will show a different method
that we may use in order to do the partial compilation we are looking for.
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Chapter 4. USE OF MAXIMAL PRIME

SUBGRAPH DECOMPOSITION IN
INCREMENTAL COMPILATION OF
BAYESIAN NETWORKS

1. Purpose of using this method.

In the previous chapter we have tried to solve our problem from the original junction tree.
Repeating the figure of the introduction, we made an attempt to obtain the new junction tree
using as a basis the original one:

Compilation
BN > JT
5 1o
v Compilation v
BN’ > Jr

Figure 4- 1. Drawing explaining the process of incremental compilation of a BN.

Nevertheless, we found some cases where this solution was not practicable. But, we can
think about using another mechanism, probably a bit more sophisticated. In the article about
Maximal Prime Subgraph Decomposition of Bayesian networks [Olesen and Madsen 1999] the
idea was launched.

In the said article the concept of a Maximal Prime Decomposition tree (Iypp) IS
explained. In section 2 of this chapter we will give a more detailed description about it. At this
introductory level we would only say that it is an intermediate structure we place between one
Bayesian network and its associated junction tree. As we will see this I'ypp can be extracted from
the “normal” junction tree. So, the idea is to go one step backwards to reach I'ypp from the
original junction tree JT. And then, taking I'vpp, We are going to determine a way of “trandating”
it to the new I'vpp . So, with the new I'ypp and a certain knowledge (that we have) about the
changes in the new Bayesian network BN’, we can arrive to the new junction tree JT'.
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Then, as means to illustrate this new strategy for partial compilation we will employ a
similar scheme to the original onein Figure 4-1. Like that we can perceived the path we follow to
avoid atotal recompilation of the network.

Compilation
BN > - JT
| T
! MPD.tree
! :?
i MPDYtree,.
v ? e
Compilation A
BN’ > JT

Figure 4- 2. Drawing explaining the process of incremental compilation of a BN by means of the M PD.

As the quoted article says, and as we will explain in the following points, the tree of
maximal prime subgraphs will allow us to re-triangulate only determined parts of the network,
and this feature is quite attractive in order to save computational time as well as effort, specially
if the Bayesian network is large.

2. Presentation of Maximal Prime Subgraph Decomposition.

To use this new structure, we should first present it and its most important characteristics.
Let G=(V, E) be agraph. A subgraph G(V’) is maximal with respect to the property p if V" is not
a subset of some larger set V'’ that induces a subgraph G(V'’) with the property p. A maximal
complete subgraph is called a clique. If the nodes V of a graph G can be partitioned into a triple
(V’,SV’'") of non-empty sets, where Sisaclique of V' and V'’ in G such that every path from a
nodeY’ € V' toanodeY" € V'’ includes anodein S, then G is decomposable (or reducible)
otherwise G isprime (or irreducible). Sis called a separator of V' andV'’.

A Maximal Prime Sugbraph Decomposition of G is then the identification of all maximal
prime subgraphsin G.

After defining what we understand by prime subgraph we will seek to give the principal
idea of the Maximal Prime Subgraph Decomposition (MPSD). First of al, taking the previous
definition, we would say that the property p we are interested in is primeness.
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A MPSD tree is a tree with the same structure as the junction tree. It will aso have
separators, except that now the cluster nodes are not cliques but maximal prime subgraphs within
the moral graph. The reason for choosing the moral graph is that this one will contain the edges
that must necessarily belong to the graph, whereas we could find some different ways to
triangulate it, that is, several different G' al of them valid.

It is known that a Bayesian network BN is constituted of a directed acyclic graph G and a
set of potentials related to each variable in the graph BN = (G, P). So, in compilation process we
did:

BN=(G,P) G G, G

We have just said that I'vep is obtained from GM, for it is formed by the maximal prime
subgraphs of the moral graph. Anyway, the process needed to attain to [ypp from G¥ is not at all
clear at this moment. There are some proposed methods in the literature and all of them include
some kind of triangulation step.

In [Olesen and Madsen 1999] article the alternative to produce I'vpp iS an easy way that
goes through a minimal triangulation T, of the graph G (the triangulated graph will be denoted
then by G'™"). Given a graph G, a triangulation T is minimal if and only if there is no other
triangulation T' O T such that [T’| < |T|. After achieving a minimal triangulation I'ypp could be
obtained from the corresponding junction tree JT. Let see it in the explicative Figure 4-3.

Tmin
BN=(G.P) G > ——>© \
; : ~
H H L 4 JT

N

Unknown * ~
‘A

rMPD

Figure 4- 3. Graphic process to reach I'ypp. Dashed line shows the unknown direct method from G" to Tyep
and the double onerepresentsthe method proposed in [Olesen and M adsen 1999] .

For constructing the Impp We will need to identify the different maximal prime subgraphs
of GM. The step from a junction tree to the associated I'ypp iS What [Olesen and Madsen 1999]
described. It consists basically in aggregating the cliques in the JT whose separators are not
complete. A more concrete explanation will be presented in the next section.
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3. Procedure.

Having defined the structure of the I'ypp and explained a little bit about how to obatin it,
we go on describing the algorithm of this method.

The idea is that the MPD junction tree produced can be stored as an intermediate data
structure that fits in between the moral graph and the triangulated graph. And the method
proposed in [Olesen and Madsen 1999] to identify these maximal prime subgraphs inside a
Bayesian network uses the junction tree. For that we presented Figure 4-2.

Until now, the style used to describe a process has been a bit informal, trying to give a
detailed explanation, but using natural language. However, in this part we will use an algorithmic
form due to the significance of this new method in the development of this project. We really
think that precision is required to show how it works exactly.

To reach the maximal prime subgraph decomposition tree I'ypp, We are going to construct
it by aggregation of cliques connected by separators that are incomplete in the moralised graph.

[Algorithm 1] Construction of a MPD Junction Tree

- Input: A junction tree I obtained from aminimal triangulation T, Of a Bayesian
network BN= (G, P)
- Output: a MPD Junction tree I'mpp

Stepl-T €T
Step 2.- Repeat

(a) Take a separator S of T' connecting C' and C'".
(b) If GM(S) is not complete then aggregate C’ and C’ in T

Until no separators Sof T' such that GM(S) is incomplete exists.

Step3.- Return T

In the article there are some properties of this new structure with their demonstration. We
are not going to reproduce them, but if we use any of these properties the associated point will be
referred.

As we mentioned before, a precondition to use this method is a minimal triangulation of
GY. There are severa methods for finding minima triangulation, for example the LEX-M
Algorithm. Following the method of the aforementioned article we will use the recursive thinning
method to assure minimal triangulation when, as in our case, the triangulation algorithm is not
guaranteed to produce minimal triangulations.

First of all we describe:
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[Algorithm 2] Recursive Thinning:

- Input: An undirected graph G =(V,E) and atriangulation T of him.
- Output: A minimal triangulation Ty, of G.

StepL-GE (VEVOT,R€T
Step2.-R ¢{e € T| Ue, € Rst. e n e# 3}
Step 3.- T € {{X)Y} € R|G(adj(X) n adj(Y)) iscompletein G}
Step4.-1f T'=Dthenreturn T else
@T€ET\T
(b)) GE(VEOT).
0 R€T
(d) Goto Step 2.

(So, the technique is to keep only fill-ins whose variables adjacency sets have a non-
complete intersection.)

And now, we will write the final algorithm to follow:

[Algorithm 3] Constructing the Maximal Prime Subgraph Decomposition Junction Tree.

- Input: A Bayesian network BN= (G, P)
- Output: A maximal prime subgraph decomposition junction tree I'ypp

Step 1.- Moralise G to obtain G.

Step 2.- Triangulate G™ to obtain G'.

Step 3.- Thin out redundant fill-in edges with Recursive Thinning

Step 4.- Organise the clique decomposition induced by G" asa junction treeT.
Step 5.- Construct the MPD junction tree I'ypp'.

To see better the problem we are going to show an example. And to pursue the same line
aong all this project Asiais the best choice. First, we are going to construct its maximal prime
subgraph decomposition junction tree. Let us take the algorithm step by step.
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Asia Example

Figure 4- 4. Bayesian network Asia.

= Steps1 and 2 are already done in Compilation Chapter

Co—C & )

Figure4- 5. Asa moralised and triangulated.

»  Step 3 2 Recursive thinning. We had the fill-in set {L,B}
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Step Action

[1] -- R={L,B}

[2] -- R = @ (because thereis no other e;)

[3--T'=0

[4] -- Like T is@ wereturn theinitial and only fill-in {L,B}.
[~

It seems quite visible that this triangul ation was aready minimal, due to the small
size of the graph, but anyway we wanted to show it.

To see that this algorithm would eliminate unnecessary fill-ins we could invent a
non-minimal triangulation. For example we could add { A,L} and {A,Sm}. In fact, we
do not have an elimination ordering to obtain these fill-ins, but the question is to see
that the algorithm works. So, let see this example:

o Com D

NN
Co—Co—CD
TN\

{f;nc ‘“-.>

Figure 4- 6. Invented triangulation of Asia for an example of Recursive Thinning algorithm.

T={{AL}{A,Sm}{L,B}}

Step Action
[1] -R= {{A1L} ,{A,SITI} 1{L’B}}
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[2] -R = {AL} (AL} € Tand Z7{AST} € Rst{AL}n{ASTI=A% D)
+
{A,Sm} (AST} € Tand [F{AL} € R st. {AST} n {AL}=A+ D)
+
{LB} (LB} € Tand [T{AL} € R st.{L,B} n {AL}=L # @)

= {{AL}{A,Sm} {L,B}}

(3 - T =
» {AL} 2 adj(A) n adj(L) ={T,L,Sm} n {T,A,Sm,ToC,B} ={T,Sm}
Isit completein G? No

» {A,Sm} 2> adj(A) n adj(Sm)={T,L,Sm} n {A,L,B} =L
Isit completein G? Yes

» {L,B} 2 adj(L) n adj(B) ={T,A,Sm,B,ToC} n {Sm,L,ToC,D} ={Sm,ToC}
Isit completein G? No

{ASm}

[4]--T' 0 =>
@ T=T/T ={{A L} {L,B}}
() G=(V,EOT)
(© R=T" ={{AL}{L,B}
(d) Goto Step 2

R={{AL}{L,B}}
[2] -R = {AL} (AL} € Tand 7{AST} € Rst{AL}n{LB}=L+ )
+
{LB} (LB} € Tand [T{AL} € R st.{L,B} n {AL}=L # @)

= {{AL}{L,B}}

(3 - T =
» {AL} 2 adj(A) n adj(L) ={T,L} n {T,A,SmToCB} =T
Isit completein G? Yes

» {L,B} 2 adj(L) n adj(B) ={T,A,Sm,B,ToC} n {Sm,L,ToC,D} ={Sm,ToC}
Isit completein G? No
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(AL}

[4-T+0>
e T=T/T ={L,B}
) G=(V,EOT)
(9 R=T" ={L,B}
(h) Goto Step 2 5

[2) R = {LB)
(8- T =

> {L,B} > adj(L) n adj(B)={T,SmB,ToC} n {Sm,L,ToC,D} ={T,Sm,ToC}

Isit completein G? No

[4] -- T'=@ =» return T(={L,B}) (Which isthe only necessary fill-inin this case)

Step 4 - Already done too.

R
{ LToC.B )

LB ToC.B

LToc

Al

-,
TLTaC )

)
VAR

Toc

/

Figure4- 7. Junction Treefor Asia.
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= Step 5 > The only separator S which has a G*(S) not complete is {L,B}, since
thislink was added in triangulation. So the MPSD junction tree will be:

Figure 4- 9. I'ypp. Result of
combining {L,ToC,B} and
{L,B,Sm}into a prime
subgraph.

Figure4- 8. MPSD for Asia. {L,B} isnot completein G,

4. When and how we can apply it in incremental compilation.

In the chapter 3 there were some cases we could not find a way to treat, and we advanced
that maybe MPSD could be useful. So, in this point we are going to consider the modifications
related to a Bayesian network where alink has been deleted.

Just after looking at how construction of MPSD tree works. How can we use it for our
purpose. We are going to outline the method to follow:

© Construct the Maximal Prime Decomposition tree [Alg. 3]

® Identify the relevant Maximal Prime Subgraphs in the MPSD tree and the corresponding
part of the junction tree.
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© Redo triangulation of this(these) MPS and reconstruct the junction tree for that(those)
parts.

O Replace the old junction tree part by the new one obtained.

© Connect old separators to the new JT part (check if cliques are aready included in
existing ones).

Examplesin Asia

Example @. We will now illustrate the method in a “failed” example on the previous
chapter. We will go through Example 4.2.2.®. of chapter 3. So, it deals with deleting the edge
from Smto B.

12 Construct MPD tree:
It is aready done, see Figure 4-9 in this chapter.

29 ldentify the relevant Maximal Prime Subgraphs in the MPD tree and the
corresponding part of the junction tree.

WEéll, here the first complication is to determine which are the relevant MPS. After
examining the problem we arrive to the conclusion that these relevant MPS are those containing
both variables. It is only in these subgraphs where the deletion of the edge can affect. This
deletion will provoke different cliques and prime subgraphs, but in the rest of them, it has no
influence, since this edge does not participate in this union of variables.

In this case, both Sm and B. Besides, if both variables are included in the same separator
then this is no more a complete set in G and I'ypp should be modified. It is important to remark
that completeness of S is checked in GM. This implies that this completeness should be checked
in the modified moral graph. For that, we realise that when alink is removed it could easily (and
locally) be determined what changes are implied in GV. For example, deleting {B,D} would
provoke the elimination of the moral link from B to ToC. How can we see that? Well, we know
the parents of D and we can keep track of the moral links that have been introduced by this child.
So, deleting { B,D} can automatically take to remove the moral links from B to the parents of D.

3% Redo triangulation of this MPS and construct the junction tree for that part.
One of the properties about I'ypp demonstrated in [Olesen and Madsen 1999] (in its

section 5) is that it can identify a partial triangulation of GM. And it is possible to triangulate the
clusters of I'ypp independently. So, we are going to take advantage of this resullt.

The affected part that has to be retriangulated is then the original maximal prime subgraph
of FMpD { L,TOC,B,S[T]} .
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{;s? )
—
D

L
Yol —

Figure 4- 10. The part of BN’ (in BN it wasa MPS) to retriangulate in the new network.

The retriangulation of this part does not give any fill-in, because it is already triangul ated.
Now, the JT for this part is quite easy to see:

/.rﬁ . /,.-rﬁ . _.-"'ﬂ_H_H'“*--\
(Cre e e e )

Figure4- 11. Junction treefor the affected part.
42 Replace the old junction tree part by the new one obtained.

TDCIE L,TDC
@? TLToC )
_d-v*‘/ >~—/\
Toc: aF
T

Figure4- 12. Original JT with the affeced part removed.
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T P
{ smL »— L — LToC }—— ToC

Toz,B i

( Tocep ) (_TLTEC )

Toc i

Figure 4- 13. Replacing the new JT for the affected part inside the original one.

53 Connect old separators to the new JT part.

For achieving this connection we are going to describe a systematic way to do it:

4 N

for each separator S connected to the deleted part in the old MPSD JT do
1.- Findaclique Cinthenew part suchasS [ C (Itissureto find one
because Sis completein G*)
2.-if S=Cthen
a DeleteCand S.
b. Connect other separators of C to the clique that S was connected

-
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So, we are going to follow this:
Going through separators.
« {ToC,B}
1.- old separator { ToC,B} I new clique {ToC,B}.
2.-{ToC,B} = {ToC,B}
Delete old separator and new clique.

Connect other separators of C ({ToC}) to the clique that S was
connected to ({ ToC,B,D}).

_ T T,
{ BmL %\}— L —{ LTaC }——— ToC
‘a_____,;—"’ ~—_

L
B L Tac

(" Toc,BD H} { TLToC )

Toc T

Figure 4- 14. Situation in process of connection between the old JT and the replaced part
after treating separtor {ToC,B}.

 {L,ToC}
1.- old separator {L,ToC} OO new clique{L,ToC}.
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2.-{L,ToC} = {L,ToC}
Delete old separator and new clique.

Connect other separators of C ({L}) to the clique that S was
connected to ({ T,L,ToC}).

’__,_fd—’—-,.
{ smL }— L | L§c »—— ToC
e - .

TeC B.D
—_

,,;:'

ToG i

Figure 4- 15. Situation in process of connection between the old JT and the replaced part

after treating separtor {ToC,B}.

So, the final junction tree turns to be the one shown in Figure 4-16.
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ToC b

T fﬁh)

VAN
T

Tao

oy

Figure 4- 16. New junction tree obtained after step 5.

We can observe it coincides to the one we reached in chapter 3. (Figure 3-46). Then, we
have reached the same tree from two different ways. The first one implied a total recompilation
of the network, and this one avoids most of the steps we used in that recompilation. Using this
intermediate structure, MPSD, the work to do is maybe not easier but more effective.

In addition, with point 2 of step 5 we have already checked if there were some cliques
included in existing ones.

And, then, the process has finished.

But, in this example, there is only one MPSD node containing both extremes of the
deleted edge. So, we can wonder: What happens if there are more? In this case the two implicated
variables will also be present in a separator between them. But this separator is no more
complete, since the edge joining them has disappeared.

Example @. So, to illustrate this case, we are going to follow the process in one example
commented previously as well, due to the fact that this aso implies deletion of a moral link. The
example, deleting edge from B to D correspondsto 4.2.2.® in chapter 3.

12 Construct MPD tree:

Once more MPD tree for Asiais already seen (Figure 4-9).
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29 ldentify the relevant Maximal Prime Subgraphs in the MPD tree and the
corresponding part of the junction tree.

Here, as we mentioned we find one peculiarity. If B and D are no more connected, then
the moral link from ToC to B has no sense. For that, we have to be able to detect these situations.
So, before going on the process we need to modify our basis MPD tree. So, first of all, we take
separator { ToC,B} from originad MPSD tree and delete it, since they are no more complete.
Afterwards, we merge the tree and we obtain the following one:

-

AT )

-~

TaC

JoCESMO)—— LToC

e
T
\;ﬁx\
ToC X yi

-

Figure4- 17. MPSD treefor Asia after deleting edge from b to D (moral link {ToC,B} disappearsaswell).

Now, we are able to see what are the relevant MPS and thisis {L,ToC,B,Sm,D}, the only
one which contains B and D (and ToC and B, the moral link consequence of the first one).

32 Redo triangulation of this MPS and construct the junction tree for that part.

We must remember that now our GV is;

T :)—{ ) 8 )
N/

Figure 4- 18. GM for Asiain the MPSD process after deleting edge from B to D.
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Then we are going to retriangulate the part of {L,ToC,B,Sm,D}:

(
(\x

\.ﬁ
s
{\i)
Figure4- 19. Part toretriangulate ({L,ToC,B,SmD}.

But thisis aready triangulated. So, the corresponding JT isimmediate:

—

@ >— ToC —@:} L CL,Sm >7 sm ——— smB

— ——

Figure 4- 20. JT from the new part after deleting edgefrom B to D.

43 Replace the old junction tree part by the new one obtained.

"'\-\._\'II
ﬂ-" /
TaoC

X —Gi
T \ T
ToCK )
\H"""——_\_,_,-o—ﬁ"-’

Figure 4- 21. Deleting affected part (L,ToC,B,Sm,D} in the MPSD.
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-
N/ AT )
"'H-\.,_\_\_\_'_'_,_.-
ToC
1 -—1 LToC { TLToC
T

Figure 4- 22. Replacing new part to the previous M PSD.

52 Connect old separatorsto the new JT part.
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Going through separators: Now thereisonly one, {L,ToC}. It isequal to one cliquein the
new JT part. So, both of them disappear (step 2a). And later we have to join the separators
connected to { ToC,L} to the clique the old separator was connected before (step 2b):

~

Y

-

AT )

—

Toc

ToC K J

-

P

T

DToC )— Toc

f_.__
{

Figure 4- 23. Disappearance of both clique and separator {L,ToC} an we connect other separatorsof C (Toc
and L) tothe cliqueit was connected to ({T,L,ToC}) .
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To seeit properly, the final result is then:

T,
Qﬁ,-"’}
Sm
T
B ) { aT 7
oy

TLToC )
e
Toc
ToC X

Figure 4- 24. Resulting junction tree after the process.

This tree is the same we obtained with the conventional way, that is, redoing all the
compilation process. (See Figure3-43).

5. Discussion.

To conclude this chapter, we should point out the results obtained from this new method
using MPSD. As we have shown we have been able to reduce the task of recompilation for
problems we could not solve in the previous chapter.

Taking one of the cases, deletion of an edge, we think we have presented a quite
interesting algorithm to solveit. A justification of each of the necessary steps has been done, and
the application of this method in two examples over the network used in all the project helps usto
show the positive results. We are convinced that this idea (the MPSD) could be used in many
more cases and its importance will grow with the size of the network to recompile. The larger the
network the more time we will save.
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Chapter 5. IMPLEMENTATION

1. r-Hugin tool.
r-Hugin (research Hugin) is a programming environment based on Hugin code [r-Hugin
1998]. Its main reason is to provide a set of classes and methods about Bayesian networks. All
this code makes use of Hugin one, but it has one advantage: the simplicity. r-Hugin presents a
code much clearer to follow than the Hugin one. The latter searches optimal efficiency that
makes it quite confused to understand easily.

Therefore, r-Hugin has been conceived for research purposes, and this work has an
investigation side. So, we thought it could be interesting to use this existing tool.

2. Programming with Visual C++.

r-Hugin was available for Unix systems. In the department network (cs.auc.dk) it can be
found from /user/raistlin/RHugin directory. Inside it there are some documentation and figures,
we can see one Specs folder with includes some net-files, they have the same format as
specification files for Hugin.

In the first phase of the development of this work, | tried to divide my time. On one hand
it was necessary to study and attack directly Bayesian networks and especially their compilation
process. And on the other hand, | had to make the existing r-Hugin code for Unix work in the
Windows environment. This task was not so obvious, because of the known differences between
both Operating Systems. The programming environment in Windows system had to be Visual
C++ due to University available software. Although C++ is a standard language, this kind of
environments usually present their particular features. This fact made my task a little more
difficult. But finally, after working on it and having made some small changes, the whole set of
header and source files was correctly combined with the hugin header (hugin.h) and its api
(hugin.api). Fortunately, we had a program (project or workspace) that could be finally compiled
and linked.

The technical problem was then solved. Later, for being able to work on this chapter, we
needed to know about the hierarchy model (see Appendix A), classes, methods and some
knowledge about their implementation. Once | have assumed these points, it was time to
implement some examples in order to illustrate some of the ideas introduced in this work.

So, in the following section we will try to show programs based on some of the examples
in chapter 3.

3. Implemented examples.

Once r-Hugin seemed to work in Windows environment and after having outlined the
analysis part, it was time to start the real programming. Obviously, this task has had to be done at
the end of the development of this work.
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Implementing the proposed solutions turned to be a complicated work. The most difficult
part is to understand the whole mechanism between classes and methods, and how they match
with the theoretical ones. For example, how atree is represented, how to introduce potentias, the
Interactions between elements (variables, cliques, separators, probabilities)...

We started programming from the easiest case and with the intention of arriving as far as
possible. But, finally, we could not do too much. In those cases where we have to modify
variables, or delete certain structures like cliques, we have found many problems, and unexpected
errors. Most of them are due to the interactions we talked about. Most of the elements are linked
in lists and they are referred and also make references to elements of other nature. For example,
variables refer cliques, cliques refer separators, nodes refer variables, etc. We have to bear in
mind many factors every time we modify, insert or remove a structure. For example, modifying a
variable needs to modify every reference to it, and all these references are not clear to find.
Probably with some more time this task could be accomplished, but at least we are going to show
acouple of examples.

« Compilation program

The first program we have done is one that makes the compilation of a network. This
program takes a Bayesian network from a Hugin net specification file and compiles it, the main
program is compilation.cpp (see Appendix A.3.1).

* Changing potentialsin avariable of the Bayesian networ k

For this first example we thought about showing two different programs:

1.- The conventional form, with recompilation. It means that first we will take the
Bayesian network BN and we will compile it. Afterwards, we will do the corresponding
modification to transform it to BN’. Finally BN’ will be compiled giving the resulting JT".

2.- Our proposed solution. We compile BN and obtain JT. From this JT we are going to
reach JT’, without recompiling BN'. We have to remember that the proposed solution was
multiply by the new potential value and divide by the old one in the corresponding clique
potential.

These two programs have been done for a concrete case, the one showed in chapter 3,
example 3.0., that is, changing A probability from (0.01, 0.99) to (0.20, 0.80). For the first case
we can see ChangingPotRecompilate.cpp (see Appendix A.3.2.8) and for the second one
ChangingPotProposedSol.cpp (see Appendix A.3.2.b)

For the following examples we decided not to take both possibilities because the first one
IS not so interesting, that is what we actually do. If we change a network for example in Hugin, to
compile it we will need to do a complete compilation again. But, for further studies in larger
networks it will be interested to have both programs and compare times.
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So, for the rest we will write programs that take the original Bayesian network BN and
compilesit giving the resulting JT. Later we will make the modifications commented on chapter
3, depending on the case, to obtain JT’ from JT. Using compilation.cpp or Hugin tool over the
modified Bayesian network (in a net specification file) we will be able to see if the results are the
good ones.

 Dedeting avariable child of only other one

Aswe saw (example 4.1.2.0 in chapter 3), this was the easiest case in deleting variables.
It meant that we had to remove the corresponding branch in the junction tree and no potentials
(apart from the deleted variable that has already disappeared) have to be touched.

So we have implemented the mentioned example 4.1.2.0, deleting variable X from Asia
network. The program deletingX.cpp can be seen in Appendix A.3.3.

There are many examples we have not implemented, we have already presented the
reason. These two cases are maybe the easiest ones to implement because they do not have many
dependencies when we do changes. For example, changing the number of states of a variable
(example 4.1.0. and 4.1.@.) can seem simple, but after trying it we can conclude it is not, since
this change means changing amost al the structure.

4. Discussion.

With this chapter we had two immediate objectives. Firstly, using the r-Hugin tool, a
programming environment for working with Bayesian networks. This tool wants to imitate most
of the Hugin functionalities. r-Hugin presents aless optimal code, but thisis aso the point which
makes it easier to understand and work with. This feature is especially important for research
pUrposes.

And secondly, we wanted to prove that the proposed solutions given in chapter 3, and aso
in chapter 4 were possible. In fact, we have already shown it, with the different examples done
“by hand”, but using the implementation we can see that these modifications are practicable.

At last, we have fulfilled the first goal. This is the first time that r-Hugin tool has been
used for someone different from its programmers. And we have also been able to port the code to
aWindows machine.

Unfortunately, all examples of chapter 3 are not implemented, for time limitations. And
the same for the method based on MPSD used in chapter 4. Anyhow, we are satisfied because we
have been able to show a couple of them and how the global structure is. Besides we find it quite
interesting if in afuture the rest can be done.
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From the introduction of this project the goal to achieve was very clear: how to do a
partial recompilation of a Bayesian network. The reason for undertaking this subject was
basically the great computation time that the compilation process of a Bayesian network can take.
This drawback becomes especially relevant in large models. So, it seems quite attractive looking
for aternative ways to afull recompilation.

This idea rises from the fact that once a Bayesian network is already compiled,
modifications can be made on it. But, it is probable that these modifications will not be so
serious, since the network is still almost the same.

For this study we have chosen an example Bayesian network to inspect. This network,
Asig, is one of the most referenced in the literature. In spite of its small number of nodes and
edges, it is quite descriptive because we can find several casesin its structure.

Firstly, we have described in an informal way, but also a detailed one, how compilation is
accomplished. And it isin this chapter where we start applying the process of compilation on the
Asianetwork in order to see what isreally done.

Secondly, we go on analysing directly the problem. For that, the method has been
searching the possible modifications that can be made in a Bayesian network. As always, we have
used the Asia network as an example, and we have tried to show the different possible
modifications in a network. We have explained how these modifications will imply problems of
distinct nature in obtaining the final junction tree, and we proposed a set of solutions for most of
the presented cases. In addition, we leave an open door to future research on this subject, since
the number of possibilitiesislarge.

After this, we have tried to take advantage of an intermediate structure between a
Bayesian network and its associated junction tree. The process of compilation takes us from one
Bayesian network to its associated tree and this intermediate point could somehow take us to a
faster way than the full recompilation. This structure is called a Maximal Prime Subgraph
Decomposition (MPSD) tree and it was described in [Olesen and Madsen 1999]. One of its
properties, the possibility of triangulate each maximal prime subgraph independently from the
rest, has allowed us to only execute a partial recompilation. Even more, we have written an
algorithm that uses this idea about I'ypp, and we have applied it on Asia obtaining the same
results as we obtained by completely recompiling the network.

The last part tries to give a real view of al these analysis and studies. Taking as a basis
the C++ code of RHugin, we have implemented a couple of the mentioned cases in order to show
in more detailed how our solutions can be used.



Chapter 6. CONCLUSION

To finish, | would only like to say that | have found quite interesting the development of
this project, and since there has been limitations of time and work, | trust this report could at least
show an investigation line with possible solutions with reference to the viability of an
incremental compilation of a Bayesian network.
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Appendix A r—Hugin detalls

1. Introduction to r-Hugin for Visual C++.

In this work we do not want to give an exhaustive explanation about this subject, since it
is not the main point. But for following the code alittle bit, it would be convenient to present the
main idess.

As we told in chapter 5 about Implementation, the r-Hugin code has been taken from a
Unix environment to a Windows one. In the latter Operating System we have used the Microsft
Visual C++ 6.0 tool. To do our programs we have taken the source and header files from r-Hugin
in Unix. Some small modifications were necessary, because the compiler of Visual C++ was
stricter than the Unix one. Thesefiles are:

bn.hpp and bn.cpp hugin_stuff.hpp and .cpp variable.hpp and .cpp
bn2jt_hugin.hpp and .cpp jt.hpp and .cpp types.hpp and .cpp
graph.hpp and .cpp potential .hpp and .cpp yapc.hpp

hugin2rhugin.hpp and .cpp status.cpp

And the support files linkedlist.hpp and array.hpp used to organise structures.The header
file hugin.h (from Hugin) is also quite important, since it allows the interaction with Hugin and
we a'so need to link hugin.api for making it work.

We do not include the code all of them because we consider it is not necessary, the most
important isto follow the main ideas. For further detail this code could be provided.

So, we have programmed with Visual C++ workspaces, like projects, where all these files
were contained and also a main .cpp one, which we have written for each case. It is this main
program that we will include in A.3 section.

2. Classhierarchy.

Before attacking directly the programs, a global view of r-Hugin structure can help. The
class structure will be shown and commented in order to understand it better. Figure A-1 shows
the hierarchy class of r-Hugin. We must say it is not complete. First, the root class should be
Model that is divided into Bayesian network and Influence Diagram. Furthermore, we cannot see
the Utility and Decision nodes, variables and potentials, they these classes are present. There is
something missed about edges. In r-Hugin there are different classes for directed edges (utility,
informational or causal) and the same happens with the undirected ones (fill-in and moral). And

89



Appendix A

finally, a class configuration in relation to variable. But these missing elements are not relevant
for our programming task, since they do not influence on it.

Erpeian
| Fierenrk

— (=] = =3
A
=) = = o)
il
I i ’ Rl

v A
(e | | [omencoter e )
M

Figure A- 1. ClassHierarchy in r-Hugin.
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Looking at Figure A-1 we see the relations considered in r-Hugin. A Bayesian Network is
divided into a Graph, Potentials, (remember BN = {G, P}) and Variables. Here we start seeing
one of the dependencies we talked about: nodes (in graph) and variables are quite related. Node
presents methods both to obtain and to set the associated variable.

Afterwards a graph is constituted of Nodes and Edges (remember G=(V,E)), but also
connected to a Junction tree structure. This conexion illustrate even more the interaction between
structures. Later the Junction tree has a specialised class Hugin Junction tree which, at the same
time is made up of Cliques and Separators. The other specialisation of classes (Edges, Variables
and Potentials) are easy to understand from the Bayesian network theory.

3. Program examples

The way of presenting the programs will be the following one: main program (with grey
background), obtained output from this program (this is quite large, but we will mark the most
important results in bold and also the less important parts will be omitted), and the corresponding
output in Hugin, for both programs in section 3.2 this Hugin output is the same. For the last
example, we cannot give the variable marginal values, again due to references problems, but the
resulting junction tree is correct because we have contrasted it by the one compilation.cpp would
give.

3.1. Compilation.cpp

Program

[l -*- Ct+ -*-

/1

/1 conpilation.cpp - to prove conpilation of a Bayesian network in order to use
/1 it in the project "lIncrenmental conpilation of Bayesi an networks"
/1

/1 Aut hor : Julia Flores

//we will need to include the foll ow ng headers fromr-Hugin

#i ncl ude "types. hpp"

#i ncl ude "bn. hpp"

#i nclude "jt. hpp"

#i ncl ude "graph. hpp"

#i ncl ude "potential . hpp"

#i ncl ude "vari abl e. hpp"

#i ncl ude "bn2jt_hugin. hpp"

#i ncl ude "hugi n2r hugi n. hpp"
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//the result we expected.

cout << "finishing...\n";

}

Program Output

(This has been checked usi ng Hugi n out put).

Output of compilation.cpp with asia.net (hugin net specification for Asia network):

starting...

Bayesian Network

Variable
-name 'E
-identifier : 8
Variable
-name  : B
-identifier : 2
Variable
-name L
-identifier : 6
Variable
-name @S
-identifier : 5
Graph
-nodes:
Node

-index :0

-variable : Variable

-name  :D
-identifier : 3
Node

-index :0

-variable : Variable

-name CA
-identifier : 4
-edges:
Edge
-head : Node
-index :0

-variable : Variable
-name X
-identifier : 1

-tail : Node

-index :0
-variable : Variable
-name :E

-identifier : 8

Edge

-head : Node
-index :0
-variable : Variable
-name B
-identifier : 2

-tail : Node

-index :0

-variable: Variable

-name 'S

-identifier : 5

Hugin Clique
-identifier : -1
-potential :
Probability Potential
-identifier : 0

-size 8

-heads  : Variable
-name 'B
-identifier : 2
Variable

-name :E
-identifier : 8
Variable

-name :D
-identifier : 3

-tails

-numbers : 0.9 0.1 0.8 0.2
0.70.30.10.9

-potential :
UtilityPotential

-identifier : -1
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-size 18

-domain : Variable

-name  :B
-identifier : 2
Variable

-name  :E
-identifier : 8
Variable

-name :D
-identifier : 3

-numbers : 00000000

-variables :

Discrete Chance Variable
-identifier : 2

-name B

-states :20yesl1lno

Discrete Chance Variable
-identifier : 8
-name ' E

-states :20yesl1no

Discrete Chance Variable

-identifier : 3
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-name :D
-states :20yesl1no

-separators:
Separator
-variables: Variable
-name :E
-identifier : 8
Variable

-name 'B
-identifier : 2

Hugin Clique
-identifier : -1
-potential :
Probability Potential

-identifier : 0
-size 4
-heads  : Variable
-name T
-identifier : 7
Variable

-name CA
-identifier : 4
-tails

-numbers : 0.0005 0.0099
0.0095 0.9801

Probability Potential
-identifier : 0
-size 2
-heads  : Variable
-name :E
-identifier : 8
-tails

0.064828

-numbers

0.935172

Probability Potential

-identifier : 0
-size 12
-heads  : Variable
-name :B
-identifier : 2
-tails

-numbers : 0.45 0.55

Probability Potential

-identifier : 0

-size 12

-heads  : Variable
-name  :S
-identifier : 5

-tails

Probability Potential
-identifier : 0

-size 12

-heads  : Variable
-name X
-identifier: 1

-tails

-numbers
0.88971

0.11029

Probability Potential

-identifier : 0
-size 2
-heads  : Variable
-name L
-identifier : 6
-tails

-numbers: 0.055 0.945

Probability Potential
-identifier : 0

-size 12

-heads  : Variable
-name T
-identifier : 7

-tails

-numbers
0.9896

Probability Potential

-identifier : 0
-size 2
-heads  : Variable
-name A
-identifier : 4
-tails

-numbers : 0.01 0.99

Probability Potential
-identifier : 0

-size 2
-heads  : Variable
-name : D
-identifier : 3

-tails

0.435971

-numbers

0.564029

Discrete Chance Variable
-identifier : 3
-name :D
-states :20yes1no

finishing...

Since, we understand the difficulty to follow this output for the next examples we will only

show the final part.
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E Hugin Output for Asia

@ Dysphoea? (D)

— 43.60 yes
_ m 56.40 no
¢ Has bronchitis (B}

— 45.00 yes
_ m 55.00 ho
& Has lung cancer (L)
= | 5.480 yes
_ e 59450 no
¢ Has tuberculosis (T)
— | 1.04 yes
_ e 59296 no
@ Positive X-ray? (¥)
= | 11.03 yes
_ e 2297 no
O Smoker? (S)

_ o 50.00 yes
_ 50.00 no
& Tuberculosis or cancer (E)
= | B.48 yes
_ e 59357 no
> Visit to Asia? (&)

— | 1.00 yes
L mmm 599.00 no

3.2. Changing potentialsin A
3.2.a.ChangingPotRecompilate.cpp

Program
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£ Program Output
starting
process_compilation... for
\\wa.na -name . L

Probability Potential

-identifier : 0

-size 12

-heads  : Variable
-name :E

-identifier : 8

-tails

-numbers: 0.064828
0.935172

-name :B

-numbers: 0.45 0.55

-numbers: 0.055 0.945

-name :S
-numbers: 0.5 0.5

-name  : X

0.11029

-numbers

0.88971

-name T

0.0104

-numbers

0.9896

A
-numbers: 0.01 0.99

-name

-name :D

-numbers 0.435971
0.564029

finishing process

compilation for ..\..\asia.net
(recompilation)

Probability Potential

-name :E

-numbers

0.92799

0.07201
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-name :B
-numbers: 0.45 0.55

-name L
-numbers: 0.055 0.945

-name X

-numbers
0.883031

0.116969

-hame
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-numbers 0.018 | -number
0.982

............ “name
name A

s:0.20.8 -numbers 0.43869
0.56131
:D
JUNCTION TREE IS

End of the program

Hugin Output for Asia changing A potentialsfrom (0.01, 0.99) to (0.20,0.80)

> Dyspnoea? (D)

— 43.87 yes
= | a6.13 no

& Has bronchitis {B)
— 45.00 yes
= | 55.00 no
& Has lung cancer iL)
— 1 52.450 yes
4450 no

&» Has tuberculosis (T)
— | 1.80 yes
— 9220 no
& Positive X-ray? {¥)

= | 11.70 yes

— 228.30 no
&> Smoker? {S)

— a0.00 yes

= | a20.00 no
& Tuberculosis or cancer {E}

— 7.20 yes

— | 9280 no
& Visit to Asia? (&)

— M 20,00 yes

— 20.00 no

3.2.b.ChangingPotProposedSolution.cpp

EH Program

We will not show the body of the compilation functions, since they are always the same.

[l -*- Ct+ -*-

/1

/'l changi ngPot Pr oposedSol . cpp -
/1 After conpilating we change p
/1 reconpilation. In this case,

/! by the new potential and dici

otentials and we want to avoid
the solution will be nultiply

de by the old one (Exanple 3.1.

/1 in chapter "Possible Mdifications in a Bayesi an network")

/1 Aut hor : Julia Flore

S
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Program Out
Probability Potential
-identifier : 0
-size 12
-heads  : Variable
-name :E
-identifier : 8
-tails

-numbers

0.92799

)
=

0.07201

The sameas 3.2.a

3.3. Deleting X

=

-name L

Hugin Output

Program

-name X

0.116969

-numbers

0.883031

-name T
-numbers: 0.018 0.982

-name :D

-numbers
0.56131

End of program
ChangingPotProposedSol ut
ion

0.43869
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// W will probably renove the separator,

but that gave sone problens. This has been

//comented in chapter 5, where we have presented the encountered problens at progranmm g

[1time.

/I \W\& peopagate the new "evi dence".

//affect on any child.

j t->propagate();

It's the sane but without X whose val ues did not

cout << "

cout << "After changes the junction tree is "

cout << "End of program Del eti ngX" <<endl ;

Program Output
After changes the junction treeis

Hugin Junction Tree

Hugin Clique
-identifier : -1
-potential :

Probability Potential

-identifier : 0

-size : 8

-heads  : Variable
-name  : B
-identifier : 2
Variable

-name :E
-identifier : 8
Variable

-name  :D
-identifier : 3

-tails

-numbers : 0.0322672 0.00358524

0.331318 0.0828295 0.0202829
0.00869268 0.0521024 0.468922

Hugin Clique
-identifier : -1
-potential :

<< *jt << endl;

Probability Potential

-identifier : 0

-size 4

-heads  : Variable
-name T
-identifier : 7
Variable

-name A
-identifier : 4

-tails

-numbers : 0.0005 0.0099 0.0095
0.9801

Hugin Clique
-identifier : -1
-potential :

Probability Potential

-identifier : 0

8

-size

108

' << endl;
-heads  : Variable
-name L
-identifier : 6
Variable
-name :E
-identifier : 8
Variable
-name T
-identifier : 7
-tails

-numbers : 0.000572 0.054428 0 O
0.009828 0 0 0.935172

Hugin Clique
-identifier : -1
-potential :
Probability Potential

-identifier : 0
-size : 8
-heads  : Variable
-name L
-identifier : 6
Variable
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-name 'B
-identifier : 2
Variable
-name :E
-identifier : 8
-tails

-numbers
0.0043524 0.414148
0.521024

Hugin Clique

Output using compilation.cpp to show thetree.

0.0315 0 00235 O

0.0054756

-identifier : -1
-potential :
Probability Potential

-identifier : 0

-size : 8

-heads  : Variable
-name :S
-identifier : 5
Variable

-name L

To do it easier we have compacted it.:

-identifier : 6
Variable
-name  :B
-identifier : 2
-tails

-numbers : 0.03 0.02 0.27 0.18
0.0015 0.0035 0.1485 0.3465

End of program  DeletingX

BDE

AT

LET

LBE

S.B

-numbers : 0.0005 0.0099 0.0095 0.9801

-numbers : 0.000572 0.054428 0 0 0.009828 0 0 0.935172

-numbers: 0.03 0.02 0.27 0.18 0.0015 0.0035 0.1485 0.3465

-numbers : 0.0322672 0.00358524 0.331318 0.0828295 0.0202829 0.00869268 0.0521024 0.468922

-numbers : 0.0315 0 0.0235 0 0.0043524 0.414148 0.0054756 0.521024

Aswe can see the values are the same.
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