
University of Castilla-La Mancha

A publication of the
Department of Computer Science

Incremental compilation
of a

Bayesian network
by

María Julia Flores Gallego

Technical Report #DIAB-01-04-15 February 2001

DEPARTAMENTO DE INFORMÁTICA
ESCUELA POLITÉCNICA SUPERIOR

UNIVERSIDAD DE CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete – 02071 – Spain

Phone +34.967.599200, Fax +34.967.599224

1

Abstract
When Bayesian networks are modified, for example by adding or deleting edges or nodes,

or by changing probability tables, a recompilation of the model is usually required even though a
partial (re)compilation could be sufficient.

Especially when considering dynamical models, where variables are frequently added and
deleted, such recompilations use many resources, but also common model building, which is
most often an iterative process, suffers from this lack of flexibility.

The project tries to investigate and implement methods for addition and deletion of nodes
and edges and changes in potentials and develop methods for partial compilation in these
situations.

CONTENTS

 1. Introduction …………………………………………………………………… 5

 2. Compilation of a Bayesian network ………………….…… 7
2.1. A brief introduction to Bayesian networks ………. 7
2.2. What compilation of a Bayesian network is ……. 8
2.3. Process of compilation ………………………………… 9

 3. Possible modifications in a Bayesian network .….. 23
3.1. Why we should look into it ………………………………… 23
3.2. Systematic search of possible changes …………… 23
3.3. Potentials ……………………………………………………………….. 23
3.4. Graph ……………………………………………………………………….. 25

3.4.1. Variables ……………………………………………………. 25
3.4.1.1. States ………………………………………… 25

3.4.1.2. Deletion ……………………………………… 28

3.4.1.3. Addition ……………………………………… 43

3.4.2. Edges …………………………………………………………. 44
3.4.2.1. Addition ……………………………………… 44

3.4.2.2. Deletion ……………………………………… 52

3.5. Discussion ……………………………………………………………… 58

Use of Maximal Prime Subgraph Decomposition in 4.
Incremental Compilation of Bayesian networks .… 59
4.1. Purpose of using this method ……………………………. 59

Presentation of Maximal Prime Subgraph4.2.
Decomposition ………………………………………………………. 60

4.3. Procedure ………………………………………………………………… 62
When and how we can apply it in4.4.
incremental compilation ……………………………………… 68

4.5. Discussion ……………………………………………………………… 79

 5. Implementation ……………………………………………………………… 81

CONTENTS

4

5.1. r-Hugin tool …………………………………………………………… 81
5.2. Programming with Visual C++ …………………………. 81
5.3. Implemented examples ………………………………………… 82
5.4. Discussion ……………………………………………………………… 83

 6. Conclusion …..…………………………………………………………………… 85

Bibliography …..……………………………………………………………………….. 87

A. r-Hugin details …..…………………………………………………………… 89
A.1. Introduction to r-Hugin for Visual C++ …………… 89
A.2. Class hierarchy …….……………………………………………… 89
A.3. Program examples ……………………………………………….. 91

A.3.1. Compilation.cpp ………………………………………… 91
A.3.2. Changing potentials in A …………………………. 96
A.3.3. Deleting X …………………………………………………. 106

Chapter 1. INTRODUCTION

5

Chapter 1. INTRODUCTION

A Bayesian network is a graphical model that we use to represent knowledge of a domain
and the casual interaction between different variables in this domain. Once the Bayesian network
for a problem has been modelled, a junction tree is created as a computational structure for
reasoning about the domain.

This process is called compilation. Compilation consumes a significant amount of time.
As we are going to see, it includes several steps: moralisation, triangulation and junction tree
construction. If we are working with a big network the compilation time becomes really
important. Then, the question that rises is the following one: if we do some modifications in a
Bayesian network, is it necessary to recompile all of it again? We can guess that if this
modification is not too comprehensive within the global network, it is very probable that we can
find a way to save time.

We have an initial Bayesian network BN and its corresponding junction tree JT. But now
we modify BN to the new one BN’, for that JT will not be a valid junction tree, but another one
we call JT’. The key is to find a faster way than a full recompilation of BN’ to arrive from the
new Bayesian network BN’ to the new junction tree JT’. Therefore, we are trying to observe the
differences between the two networks and find a method to reach JT’ avoiding a new compilation
(See Figure 1-1).

BN
Compilation

JT

 ?

BN’
Compilation

JT’

Figure 1-1. Drawing explaining the process of incremental compilation of a BN.

The purpose of this project is to analyse the modifications in a Bayesian network in order
to answer to the question mark of Figure 1-1. For the development of this idea we have divided
the work in a set of chapters.

Chapter 1. INTRODUCTION

6

The first one is about Compilation of a Bayesian network. To elaborate this chapter, the
main reference has been [Jensen 1996]. Here we try to describe in a simple way how the
compilation takes place. We find it important to undertake this point because the whole repetition
of this process is exactly the one we want to avoid. So, we need to have some knowledge on how
this process is carried out.

Afterwards, we start examining the Possible modifications in a Bayesian network. To
accomplish this task we would use the method “learning by examples”, since it is a good way
both to study the subject and to explain it. As we will see, this analysis is not thoroughly
accomplished, but we are going to look over most of the possibilities that include a reduced set of
modifications. We touch upon most of the key questions and we present solutions to some of
them.

For those cases where this analysis does not give a clear solution, we think about applying
a new idea described in [Olesen and Madsen 1999] and we present the Use of Maximal Prime
Subgraph Decomposition in incremental compilation of Bayesian networks. In this chapter we
will try to put in practice this technique of decomposition to save time in recompilation.

In the next chapter we will implement some of the examples described in the previous
chapters in order to illustrate the viability of using these ideas.

Finally we summarise and conclude that it is possible to make a partial compilation of a
Bayesian network in a way that we can save quite a lot of computational time and work. We
present some ideas and solutions, and we suggest future and deeper studies about this subject
because we trust that they will lead to more attractive solutions and applications.

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

7

Chapter 2. COMPILATION OF A
BAYESIAN NETWORK

1. A brief introduction to Bayesian networks.

A Bayesian network is a Directed Acyclic Graph (DAG) with some special
characteristics. It lets us represent a domain, showing relationships between nodes, normally
casual relationships. This is a graphical representation which will help us modelling the given
domain.

To give a more formal definition [Jensen 1996], A Bayesian network consists of the following:

A set of variables and a set of directed edges between variables.

Each variable has a finite set of mutually exclusive states.

The variables together with the directed edges form a directed acyclic graph, i.e. a graph
with no directed cycles.

Figure 2- 1-. Example of a Bayesian network frequently used in the literature and called “Asia”. This network
presents eight variables: “Visit to Asia?”, “Smoker?”, “Has tuberculosis”, “Has lung cancer”, “Has
bronchitis”, “Tuberculosis or cancer”, “Positive X-ray?” and “Dyspnoea?”. All of them have escatly two
possible states: yes (if it is true) or no (otherwise). The edges and their directions are visible in the network.

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

8

To each variable A with parents B1, …,Bn there is attached a conditional probability table
P(A|B1, …,Bn).

In Figure 2-1 we can see an example of a Bayesian network.

It can be demonstrated by the theorem called “the chain rule for Bayesian networks” that
given a Bayesian network BN over the universe U = {A1,…,An}, the joint probability P(U) is the
product of all conditional probabilities specified in the BN.

P(U)=�i P(Ai| pa(Ai))

where pa(Ai) is the parent set of Ai.

Without entering further into this subject we will only introduce that inside a Bayesian
network there are these three aspects:

� Factored joint probability distribution as a directed graph:

- It is a structure for representing knowledge about uncertain variables.

- It is used as the basis for a computational architecture for calculating the impact of
evidence on beliefs.

� Knowledge structure:

- Variables are depicted as nodes.

- Arcs represent direct probabilistic dependence between variables.

- Conditional probabilities encode the strength of the dependencies.

� Computational architecture:

- We can compute posterior probabilities given evidence about selected nodes.

- The goal is to exploit probabilistic independence for efficient local computation.

2. What the compilation of a Bayesian network is.

After this superficial introduction to Bayesian networks, it is the point to locate the role of
compilation in them. As we have seen, initially in a Bayesian network we find nodes, which
represent variables of a domain U, edges which indicate relations between them and probability
tables. These will be the prior probabilities, P(X), for variables without parents and the
conditional probabilities P(X|pa(X)) for variables with parents. So, these are our initial data.
Now, we want to “translate” this information into a structure in which way we can compute
marginal beliefs easily. We want a structure capable of giving numerical results about variables
states after entering any kind of evidence. Compilation is the process followed to build this

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

9

structure. This is a systematic task, where in a first approach we find a deterministic number of
steps that we will describe below.

3. Process of compilation.

Basically the compilation of a Bayesian network includes two parts:

� Junction tree construction

 � Propagation of potentials along the tree

Below we present the initial situation (the network) and a detailed description of these
two steps:

Let be a Bayesian network BN = {G, P}, where

��G is a directed acyclic graph, G = (V, E)

V = set of vertices or nodes in the graph.

E = set of edges which connect these nodes, and

��P is the set of probability tables required for this network (P(Ai | pa(Ai)).

1st Step. JUNCTION TREE CONSTRUCTION

Step 1.1.- Moralise the graph G.

In this step we must build the moral graph GM, an undirected graph which will be based
on G. To construct GM, there are two actions. First, connect all nodes which have an edge
pointing to the same node, i.e. those which have a child in common. From this terminology each
of these new edges are also called marriages. We can call them moral edges as well. And
afterwards keep the edges but dropping their directions.

Hence, if we had the graph G =(V,E), after moralising it we obtain GM = (V,EM), that is,
it has exactly the same nodes but another set of edges EM = ‘Marriage edges’ ∪ ‘E without
directions’.

Following the example of Figure 2-1, GM would be as shown in Figure 2-2.

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

10

Figure 2- 2. Moral Graph for the one in Figure 2-1. Marriages between Has tuberculosis - Has lung cancer
0and Tuberculosis or cancer – Has bronchitis.

Step 1.2.- Triangulate GM.

Now it is time for triangulation. The moral graph GM is triangulated if every cycle of
length greater than 3 has a chord. To triangulate the graph we add the so-called fill-in edges in
order to satisfy this condition. One way to achieve a proper triangulation is to decide a sequence
order to eliminate nodes. This order will give us the edges to add. This sequence order is called
���������	�
 	������
 	�
 ������	�
 ���������
 ��
 ��
 �������
 ���	���
 ��
��
 ��
 �	�����
 	�
 �
 ������	�

which relates every node in the graph with a unique number between 1 and n, where n = |V|, that
is, the number of nodes in the graph.

Finding an optimal ordering means giving an optimal triangulation, and this is a NP-hard
problem. Thus, for solving it, heuristic methods are used. Some examples of them in the literature
could be minimum fill, minimum size or minimum weight [Kjærluff 1993]. They are based on
choosing one node first and after it, taking those whose elimination involve less fill-ins, less
clique size or less clique weight.

Once we have decided about the heuristic method to use, and we have obtained a deletion
sequence, then the triangulation is as follows:

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

11

���
��
�
�
��1, v2, …, vn}

For i �1 until i = n do

� Remove vi from the graph and all his incident links.

� Add links between all his neighbours, if they did not exist before.

We will denominate the set of new links or edges (fill-in edges) added as T.

After triangulation our graph is GT = (V, EM ∪ T) = (V, ET)

In the example we are following we will use letters to make the expressions easier:

Visit to Asia=A, Smoker=Sm, Has tuberculosis=T, Has lung cancer=L, Has bronchitis=B, Has
Tuberculosis or Cancer=ToC, Positive X-ray=X, Dyspnoea=D.

Figure 2- 3. Example of triangulation following the elimination order {A, T, X, D, Sm, B, L, ToC}; 1) A has
only one neighbour, so no fill-in link is introduced; 2) T has his neighbours already connected; 3) X and D do

not introduce new links either; 4) Elimination of Sm, forces us to introduce the fill-in link (L,B) and 5)
{L,ToC,B} is already a complete subgraph. The triangulation is finished. The link added is drawn with a

double line.

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

12

Step 1.3.- Maximum Cardinality Search (MCS).

In fact, MCS is a technique that we will use for being able to finally build the junction
tree. There are other possibilities. We can divide this step in three actions over GT. The first one
will be the basis for the other two.

� Numbering

� Identifying cliques

� Building the tree

Let us explain them:

� Numbering � We choose randomly one node, and give him number 1. Then, we go on
numbering the rest with the condition “next node to number is the one with more already
numbered neighbours”. In case of draw, choose any of them.

� Identifying cliques � In the inverse order of the numbering we go through all the
nodes. For each one we will take the clique made up of this node and all his neighbours with a
smaller number, excepting the cliques included in another clique already found in this process.

� Building the tree � Finally, we retake the initial numbering. Begin by 1, and take the
clique associated (if any) as the first one. Next, take the second one, and look for one clique
previously treated which implies the maximum intersection. If there are more than one, any of
them can be chosen. This intersection will create a new object, also part of the tree, called a
separator. As the name says it separates cliques in the tree.

Example:
Following the example of Figure 2-3 we would do:
1.- Numbering : A�1, then: T �2, L �3, ToC � 4, B � 5, Sm � 6, D� 7, X �8.
2.- Cliques:

Number Node Clique
	 8 (X) {X,ToC}
	 7 (D) {ToC,B,D}
	 6 (Sm) {L,B,Sm}
	 5 (B) {L,B,ToC}
	 4 (ToC) {T,L,ToC}
	 3 (L) {L,T}
	 2 (T) {T,A}
	 1 (A) {A}

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

13

3.- Tree:

We skip number 1 because there is no clique associated.
 Built tree Process explanation

 2:

4:

5:

6:

7:

8:

T,A

T

T,L,ToC

Start by 2 and its corresponding
clique.

After 2, number 3. But it has no clique too. So,
we take 4 and we search in the previous ones
(now only 2) the maximum intersection. Then
{A,T} �
�T,L,ToC} = {T}

L,ToC,B

L,ToC

And we continue
repeating this
process…

L,B

L,B,Sm

ToC,B,D

ToC,B
Here, the maximum
intersection is with the clique
formed from node 5

This one could be joined to whichever
node containing ToC (no other contains
X), for example that formed in number 4.

ToC

X,ToC

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

14

 2nd Step. PROPAGATION.

Before the propagation we must calculate the initial tables. This task is also included in
the compilation itself, while the other two (2.2 and 2.3) are not really a part in this process, but as
they are also relevant we find it convenient to explain them here.

Step 2.1.- Obtain the initial tables.

Let us remember the two components of a junction tree:

• Cliques: maximal sets of variables that form complete subgraphs.

• Separators: elements used for linking pairs of cliques, containing the set which results
from the intersection between the cliques they relate.

All cliques and separators have a table initially composed only by ones. There will be a
“1” in each entry which corresponds to the different combinations of the possible states in all the
variables inside.

Since we are speaking about Bayesian networks, the conditional probability tables are
available for us, and that will be the initial data to build the cliques tables necessary for this step.
��
����
 �����
 ��	��
 �	���������
� 	��
 �	����	�
 ��
 �	������
�
 clique or separator

. So, the goal is to
introduce the information we have in the junction tree we have just built. We must introduce the
conditional probability tables in the adequate place and it is as we next explain.

If we remember the formula introduced in the introduction of this chapter, we had:

P(U)=�i P(Ai| pa(Ai))

So, we are trying to represent this information in the tree. The systematic way to do this is
to go through all potentials and find a clique and only one (because in the previous multiple
product each potential appears also only once) to attach it to.

If we have a clique C={A1,…,Ak}, its table will contain the product of all the associated
potentials. To carry through this operation, we must take into account every possible combination
of states in order to multiply them properly. If there are no related potentials the table will keep
the initial ones.

Example:

For our initial network in Figure 2-1, the tree associated is shown in Figure 2-4.

Looking at Figure 2-1, we know which prior probabilities we shall treat:

P(A), P(Sm), P(T|A), P(L|Sm), P(B|Sm), P(ToC|T,L), P(X|ToC) and P(D|B,ToC). As we
can see, there are eight, one for each node.

P(A) ∀
� �
	���
�	���������
��
�	
����	����
��
��
�
A,T.

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

15

P(Sm) ∀
 � ��
	��
���
	���
��
 ����	����
 ��
�
L,B,Sm, since it is the only place where the
variable Sm appears.

P(T|A) ∀
��
�
A,T

P(L|Sm) ∀
��
�
L,B,Sm

P(B|Sm) ∀
��
�
L,B,Sm

P(ToC|T,L) ∀
��
�
T,L,ToC

P(X|ToC) ∀
��
�
ToC,X

P(D|B,ToC) ∀
��
�
ToC,B,D

Therefore, in the junction tree in Figure 2-4 we will have the initial tables:

�
X,ToC = P(X|ToC)

�
ToC,B,D = P(D|ToC,B)

�
L,B,Sm = P(L|Sm) · P(B|Sm) · P(Sm)

�
L,B,ToC = All ones (there is no new information introduced)

�
T,L,ToC = P(ToC|T,L)

�
A,T = P(T|A) · P(A)

�L,B= �ToC,B �
�L,ToC

1.00 1.00

1.00 1.00

�ToC = �T = (1.00,1.00)

���
��
����
�
A,T as an example. Initially we have that:

P(A) = (0.01, 0.99)

P(T|A) =

T A Yes No

Yes 0.05 0.01

No 0.95 0.99

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

16

So, �
A,T will result to be:

T A Yes No

Yes 0.05 x 0.01 =

0.0005

0.01 x 0.99 =

0.0099

No 0.95 x 0.01 =

0.0095

0.99 x 0.99 =

 0.9801

Figure 2- 4. Junction tree of the example built in step 1.3.

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

17

As we have commented before, at this point the compilation, as we understand it, has
finished. Anyhow, it is interesting to describe propagation, because with this point it will be
easier to clarify the necessity of a compilation process.

For the following two steps, we need to choose one of the cliques as the root one. Now,
we are going to propagate all the original information through all the cliques. The purpose we
pursue with steps 2.2 and 2.3 is a consistent tree. This consistence grants us to acquire the same
marginal probability for each node, no matter from which clique or separator to which he
belongs, we marginalise.

Step 2.2.- Collect phase.

One clique C2 gets information from another one C1 by means of the separator, S,
between them. The separator has the nodes C1 @ C2, and we update the potential using the
operation illustrated bellow, which is commonly called calibration:

�!S = ∑ SC \1

�C1

�!C2 �

"
�!S
#
�S) $
�C2

Once we have chosen the root node, we can think about the collect phase as a kind of
survey which this node makes to all his neighbours, and these ones make it to their neighbours
recursively, until finding a node without more neighbours, except the one who “asks” him.

C1 C2

Calibration

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

18

Figure 2- 5. Example of the collect phase development for tree in Figure 2-4. The download arrows are
(recursive) calls to collect evidence and the upwards arrows is calibration.

Step 2.3.- Distribute phase.

Now, we can say that the root node “knows” everything about all cliques. So, he is going
to communicate the rest. And performing a similar method we will distribute this information to
his neighbours and so forth in a recursive way. Now what the nodes says to his neighbours is
“calibrate from me”, take what I know to have the complete information.

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

19

Figure 2- 6. Example of the distribute phase development for tree in Figure 2-4. The arrows symbolise
(recursive) calls to distribute evidence, which results in calibration along the same paths.

Example
In the previous tree if we take, for instance, {L,ToC,B} as the root. We recommend

following this sequence of steps watching Figure 2-5 (Collect) and Figure 2-6 (Distribute),
numbers in brackets correspond with those in the drawings.

Collect phase � {L,ToC,B} “asks”

{L,B,Sm}, he also asks his neighbours. (1)
In this case he has only {L,ToC,B} which sent him the message. So he can “answer”
directly, and provokes the calculation of the separator:

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

20

�!L,B = ∑ Sm
�L,B,Sm ; (2)

{ToC,B,D}, he also asks his neighbours. As before, he has not any. Then, (1)

�!ToC,B = ∑ D
�ToC,B,D ; (2)

{T,L,ToC }, this one has neighbours, so he asks recursively: (1)

� {ToC,X}, no more neighbours: (2)

�!ToC = ∑ X
�ToC,X ; (3)

� {A,T}, no more neighbours (2)

�!T = ∑ A
�
A,T; (3)

 �!T,L,ToC
�
"�!ToC #
�ToC) $
"�!T #
�T) $
�
T,L,ToC%

�!L,ToC = ∑ B
�!
T,L,ToC; (4)

�!L,ToC,B
�
"�!L,B #
�
L,B) $
"�!ToC,B #
�
ToC,B) $
"�!L,ToC #
�L,ToC) $
�
L,ToC,B

Distribute phase � {L,ToC,B} says to his neighbours to calibrate from him. To do this,
the separator must be updated [step a], and then cliques will use this new value of the separator
combined with the previous one to update its potential [step b].

{L,B,Sm}, he calibrates taking (1)

�!!L,B = ∑ ToC
�L,ToC,B
&����
�'
���

�!L,B, Sm�
"�!!L,B#
�!L,B(
�L,B,Sm [step b]

He has no more neighbours for telling them to calibrate from him.

 (3) (3)

(2) (2) (4)

Chapter 2. COMPILATION OF A BAYESIAN NETWORK

21

{ToC,B,D}, the same case as before. (1)

�!!ToC,B = ∑ L
�L,ToC,B,
���

�!ToC,B,D�
"�!!ToC,,B#
�!ToC,B(
�
ToC,B,D

{T,L,ToC }, we start calibrating him. (1)

�!!L,ToC = ∑ B
�L,ToC,B
���

�!!T,L,ToC�
"�!!L,ToC#
�!L,ToC(
�!T,L,ToC

� {ToC,X}, he calibrates from the previous one: (2)

�!!ToC = ∑ LT,
�!T,L,ToC %
�!ToC,X �
"�!!ToC
#�!ToC
(
�
ToC,X ;

� {A,T}, (2)

�!!T = ∑ LToC,
�!T,L,ToC %
�!A,T �
"�!!T
#�!T
(
�!A,T ;

At this point the tree is globally consistent. With these steps the Bayesian network is
initialised. Now we are ready to work with the network for example by introducing evidence in it.

To finish this chapter, we want to point out that its purpose is to introduce the method
used for compiling a Bayesian network. We have tried to show a description easy to follow. For
further details we recommend [Jensen 1996].

Chapter 3. POSSIBLE MODIFICATIONS
IN A BAYESIAN NETWORK

2. Why we should look into it.

Since we want to study incremental compilation of a Bayesian network, we must start by
analysing possible changes in it. These changes can arise at any time in the Bayesian network
construction (the modelling phase) or maybe later in a revision task.

3. Systematic search of possible changes.

Looking at the definition of Bayesian network, given in chapter 2, we are able to examine
the different parts of a Bayesian network that can be modified.

We have the structure BN = {G, P}, where G is a directed acyclic graph, G = (V, E). So,
how can we go through each component of this structure? What we are going to do is that, for
each element, we will try to identify the possible modifications and afterwards seek to deduce the
implications in the compilation process as well as the cases where any computation work could
be saved.

4. Potentials.
If we take the process of compilation, when do we use the potentials? Following the

compilation steps described in chapter 2, we see that these data first appear in the construction of
the initial tables in the junction tree. The potentials let us obtain every clique potential.

We commented that the real compilation ends by filling initial tables. Afterwards, we pass
to propagation phase. Here, we should say that this discussion would be slightly different if we
consider propagation inside compilation or not. For example, in this point about potentials if
propagation is not included we will have to change only initial tables. Otherwise, we can imagine
that making a change in an initial potential will imply changes in every clique potential table
where the implicated variables participate. The junction tree is still the same, but the potentials
are not.

• Possible consequences of changing potentials

If we change initial potentials for any variable we could expect that from step 2
(propagation), everything should be redone. It would be necessary to introduce the changed
potentials in the corresponding tables. That would affect all the following process.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

24

In order to do a better study, we are going to take the initial example of the Bayesian
network Asia and we will try to make modifications with the purpose of observing the
consequences in the compilation process. We know this is only a network example, and it will
present particular characteristics that cannot necessarily be extended to general conclusions.
Anyway, it can be interesting to see what happens in each of the described cases. Then, examples
are taken from there.

Example 3.�.
Initially we had the values:

Yes No
A 0.01 0.99

Now we suppose changes and:
Yes No

A 0.2 0.8

Let study what happens with these new values:

It is clear that, as the qualitative structure of the Bayesian network does not change,
neither does GM, so neither does GT, and finally the junction tree does not change either. But, in
����
)�*�
��
�����
�����
� ��
+",(
��
�	�
� �
�����
- ��
�����
�
A,T different too.

Before we had:

P(A) = (0.01, 0.99)

P(T|A) =
 A
T

Yes No T A Yes No

Yes 0.05 0.01 Yes 0.05 x 0.01 =
0.0005

0.02 x 0.99 =
 0.0099

No 0.95 0.99

�A,T

 �

No 0.95 x 0.01 =
0.0095

0.99 x 0.99 =
 0.9801

And now, we would have:

P(A) = (0.2, 0.8)

P(T|A) =
 A
T

Yes No T A Yes No

Yes 0.05 0.01 Yes 0.05 x 0.2=
0.01

0.01x 0.8 =
 0.008

No 0.95 0.99

�A,T

 �

No 0.95 x 0.2 =
0.19

0.99 x 0.8 =
 0.792

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

25

As it seemed evident, tables have changed, that means that from step 2.1. the process
must be retaken.

• Proposed solutions

In this case we find one solution quite easy. As in the example before, changing initial
potentials implies changing potential tables in cliques, but not in a random way, what we actually
do is substitute the old value by the new one. So, in the incremental compilation one possible
method to cope with it would be to divide by the old value and multiply by the new one. That
would be done in the table where this potential participated. We have to remember the step 2.1 in
compilation (obtaining the initial table), where every potential had to be included in one and only
one clique. Like that, we only detect one situation where this solution would not work, if the old
value is 0 we cannot divide by it. But if the new value is also 0, then nothing has to be done,
because the value remains the same.

5. Graph.

The next component to see is the graph. But this one will be more complicated to study. A
graph is, composed of other elements. Let us remember its definition G=(V, E). The division is
then immediate, variables and edges.

4.1.Variables.

It can be very reasonable to change one or more variables in a Bayesian network. Which
possibilities can we find? Once more, we will try to look into them in a systematic way.

4.1.1. States.

To start with, we can find that the possible states in a variable are not the correct ones, too
many or maybe too few states. It is not really part of the graph, we could consider it outside the
graph, but it is clear that states are closely related to variables. For that reason we will discuss this
case at this point.

• Possible consequences of changing the states at a variable.

What happens if a variable changes its states? Firstly, the number of states will cause
changes in potentials values. Hence, that will provoke at least the same consequences as changes
in potential values. But also, the states are very close to the potential tables, since they determine
the size of these tables. So, incrementing or decrementing the number of states in one variable
will modify tables. For example, assuming that there is a variable A without parents, its table will
change. But even more, any variable child (B for instance) of A, will change its table as well.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

26

Conditional probability for B would be P(B| pa(B)), if A is one of its parents, then for each new
state of A, B will have to extend the table. And if a state of A disappears, the table of B will be
reduced too.

Let B be a variable with s possible states. If this variable has m parents pi (1�i�m) the
number of entries in the probability table related to B will be E, where

i

m

i

pofStatessE ∏
=

∗=
1

So, it is not hard to see that if A, one parent of B, increases the number of states then the
number of entries for B is bigger. Or if one or more states in A are deleted then the number of
entries is smaller.

Figure 3- 1. Example of variable B with several parents pi and, between them,
variable A whose state set has been modified.

Then, changing the number of states in a variable will form new tables. These tables will
provoke new clique sizes and therefore new clique tables. Like this, if for example we use the
minimum clique size heuristic, the process will be already affected in triangulation step.
Otherwise, propagation will be again the point from which we must begin the recompilation.

Example 4.1.1.�.
Let us imagine that now we reconsider the global problem and a new state for A (Visit to Asia?)
is required. We have learnt that the time passed from the visit to Asia is quite important to
determine that illness. Thus, we find that A ={yes in two months time, yes more than two months
ago, no}.

� Looking to the compilation chapter, we can see that nothing changes until step 2 (initialisation
of junction tree). But then, we will have:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

27

 - 2 months + 2 months no
P(A) = (--- , --- , ---)
�A,T

 A
T

- 2 months + 2 months No

Yes ---- ---- ----
No ---- ---- ----

��
���
� ��
� ����
� �
�����
	�
,
����
��	�	��
� ����
��
+",(
���
��
�	�������
�����
�A,T.
A has now one more state and whatever table including it must consider this new state in the
configurations.

Example 4.1.1.�.
Changes in T = {no, mild, severe}.

� In this case in step 2.1 we will obtain:

 no mild severe
P(T) = (---, --- , ---)
�
T,L,ToC

L Yes No
ToC Yes No Yes No
No --- --- --- ---

Mild --- --- --- ---
Severe --- --- --- ---

� A,T

 A
T

Yes No

No ---- ----
Mild ---- ----
Severe ---- ----

This is a similar example to the previous one. In this case a change in T potentials will affect
in two tables, since it participated in these two clique potential tables.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

28

• Proposed solutions

Here we have another change in tables at step 2.1, but this change is more serious, it does
not only deals with values but also with table dimensions. So, this time we should find one
dynamic way to change these table dimensions, and we could also use the previous method for
those existing states, if their values are changed too.

 4.1.2. Deletion.

But, going further, suddenly we can recognise that this variable is not really essential in
our network and we simply want to delete it. Probably, making modifications in a variable will
have some kind of impact in the edges set within the graph G. For that, the only thing we must
think about is that deleting a variable will obviously involve deleting any edge containing it. We
must remember that an edge is a pair of two variables, without one of them it would have no
sense to keep it.

• Possible consequences of deleting an existing variable

This case starts to be a little more “annoying”. Deleting a variable and its incident edges
as we told before produces a different moral graph GM. Subsequently, this new GM takes to a
different triangulation and a different GT, and finally it drives to another junction tree.

But, we can think in particular cases where the change in the junction tree provoked by a
deleted variable might not be so serious from the point of view of compilation. When could it
happen?

For example, let us think of those variables that only appear in one clique. Deleting one of
them will only reduce this clique and the separators related, and maybe it could make the clique
disappear (if it becomes a subset of another clique). That means our junction tree is reduced, but
we will probably not have to do all the junction tree construction again. For this purpose, we will
need some method to detect these cases.

Example 4.1.2.�.
Deleting variable X in Asia . The simplest case, deleting a variable that has only one parent and
no children. This is the simplest one because deleting a child only affects itself and its potentials.

For the first time, I am going to explain the example in detail as in the compilation
chapter, but afterwards we are going to simplify the examples in order to make it lighter to
follow. So, the way of showing this first example coincides with the one taken in chapter 2 of
compilation: initial network, moral graph, triangulated graph, MCS numbering that will take to
identification of cliques. Then, finally we will see the junction tree, the structure we was looking
for. But, since this chapter will present many examples, for the other ones we will show them in a
more compact way: initial network (showing the changes from Asia), graph after being moralised
and triangulated (fill-ins represented by double lines) with a certain elimination order. Then we
will give the MCS numbering and finally we will show the junction tree.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

29

So, the Bayesian network is:

Figure 3- 2. Asia without variable X.

After moralisation we have:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

30

Figure 3- 3. Asia without X moralised.

Triangulation sequence: {A, T, D, Sm, B, L, ToC}, which introduces fill link {L,B}.

Figure 3- 4. Asia without X triangulated.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

31

• Numbering: A�1, then: T �2, L �3, ToC � 4, B � 5, Sm� 6, D �7.
• Cliques:

Number Node Clique
	 7 (D) {ToC,B,D}
	 6 (Sm) {L,B,Sm}
	 5 (B) {L,ToC,B}
	 4 (ToC) {T,L,ToC}
	 3 (L) {L,T}
	 2 (T) {T,A}
	 1 (A) {A}

• Tree:
We will not show the tree construction. We think that the number of cliques is reduced

enough to see this construction process directly in the final tree.

Figure 3- 5. Junction tree without X. We have already marked the differences from the original JT.

In this example deleting X takes us to delete one branch in the junction tree. This branch
corresponds with the only clique related to it.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

32

Example 4.1.2.�.
Delete Visit to Asia? This is a little more complicated in the sense that this time, since the deleted
node is a parent there are more potentials implicated.

Figure 3- 6. Asia without A Figure 3- 7. Asia without A moralised and
triangulated (fill-in {L,B}) .Sequence order taken:

{A,T,D,Sm,B,L,ToC}.

And with the numbering: T�1, then: L �2, ToC �3, B � 4, Sm � 5, D � 6, X� 7,
we obtain the tree shown in Figure 3-8.

In this example, we will “lose” only a branch in a similar way to 4.1.2.�. But, as we told
before, this is not exactly the same case. Now deleting A will also affect on T potentials. If we
see the original Bayesian network T is a child of A. So, its conditional probabilty will be P(T|A).
So, if A is deleted the potential of T changes as well.

Once seen two cases of a variable father of only another one and a variable child of
another one, it arrives to think about one variable linked to the rest of the network with more
edges. To start with, we will consider two other edges. In which position? There are three
possible ways: two incoming links (the simplest case following the same reasoning as for only
one link), two outgoing, and one incoming and one outgoing.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

33

Figure 3- 8. Junction tree of Asia without A

Example 4.1.2.�.
One variable with two incoming links deleted. In Asia, we could delete D to see this point.
Taking the process as always we obtain

Figure 3- 9. Asia without D.
Figure 3- 10. Asia without D moralised and

triangulated. Sequence: {A,T,X,B,Sm,L,ToC}

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

34

With the numbering A�1, and then T�2, L�3, ToC�4, Sm�5, B�6 , X�7, we
obtain the tree:

Figure 3- 11. JT for Asia without D following the usual compilation process.

Looking at this new tree we can see that this tree differs a little bit from the original one. It keeps the same
the part {T,L,ToC} connected to {A,T} and {ToC,X}, but the rest turns to be slightly simpler.

Well, this was the first option, redoing everything. But this, recompilation, is precisely
what we want to avoid. So, is there another way to do it? The easiest way to act will be taking the
junction tree and delete the variable in the cliques where it appears. It is in fact what we did in the
previous cases. Once the affected cliques are deleted we have to see if the tree is correct and
absorb those cliques subset of others.

But, is it possible to do in this way? We are going to see what happens, in fact the point is
that if D is deleted then the marriage between B and ToC is not necessary either. That means that
we do not need the moral link between these two nodes. So acting directly on the junction tree
will not consider the disappearing of this moral link. We realise that if this moral link continues
there the tree is quite easier to reach, even there is a systematic method to obtain it from the
previous junction tree. And this tree will be also valid, but no the most simplified one.

This validity can be justified from the principle of junction trees. That lies on the
necessity of reducing the total number of configuration between variables of the Bayesian
network to store. With moralisation step we can assure that parents of the same node are related,

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

35

since they are dependent in some way. And later on, triangulation is charged of splitting the
moral graph up into smaller modules or subsystems that will provide smaller configurations than
a global one.

So, deleting a link could never produce new dependencies to consider. And the worst
thing to happen is having more tables (configurations) than we could, but the structure is still
valid.

To illustrate this we are going to take again Example 4.1.2.�.(Figure 3-9), but this time
without removing moral link between B and ToC.

Figure 3- 12. Asia without D having kept previous moral links.

With the numbering A�1, and then T�2, L�3, ToC�4, B�5, Sm�6 , X�7, we
obtain the tree:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

36

Figure 3- 13. JT of Asia without D having kept previous moral links.

In this case the branch where D was disappears. It makes us see that the method can be:
take the clique (or cliques) where the variable deleted appeared in the original JT. So, if deleting
this variable inside a clique provokes a situation where the clique coincides exactly with one
separator linked to it, this clique has no more sense in the JT, since it is then a subset of another
one (the one with the separator connects with). Then, in this example it is that what happens, we
delete D from the only clique where we find it. Doing that the new clique stays as {Toc,B} which
is just the same as the separator close to it. It is for that reason, that both of them disappear.

Then, for this example we have seen two possibilities:

1.- Recompile the network again (the one we are trying to avoid in this report). It gives a
quite simpler tree, but it is computationally demanding.

2.- Delete the cliques that contains the variable. It is a simpler method and gives a valid
tree, but not the best result.

 We have passed from the “traditional” way with a good solution to a much faster way,
but offering a worse solution. So, we wonder it maybe there is an intermediate point to solve the
problem. It could be quite interesting if we are able to infer that the elimination of a variable will
take us to the elimination of a certain moral link. And looking at it, we notice it is possible. We
only need that in moralisation process we noted in some way the introduced moral links relating
it to the nodes that provoked them. Like that, if a node whose parents were married is deleted
then this/these moral link(s) between them will disappear.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

37

So, we can guess that a third solution could be reached. And the obtained tree will be
probably simpler than the one shown in Figure 3-13. We comment it because we find it is a way
to follow the analysis, but let us leave the discussion at this point, without entering in more detail
in this intermediate solution.

Anyway, wee are going to show it with more examples to see if these methods can be
generalised.

Example 4.1.2..
One variable with two outgoing links deleted. In Asia, we could delete Sm to see this point.

Figure 3- 14. Asia without Sm Figure 3- 15. Asia without Sm moralised and
triangulated. Sequence: {A,T,X,D,B,L,ToC}

With the numbering A�1, and then T�2, L�3, ToC�4, B�5, D�6, X�7 , we obtain
the tree:

Figure 3- 16. JT of Asia without Sm.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

38

If we compare with the original tree, we have “lost” two cliques {L,B,Sm} (quite normal
because Sm has been deleted}, but also {L,ToC,B}. This one is not so obvious to see, but we
have to bear in mind that the links related to Sm provoked the fill-in edge L-B, that now we have
not. Again, the explanation is not so hard, but we do not really know how to mechanise this type
of situations.

Maybe we can follow the same line of reasoning than in the previous example. We can
delete the variable directly from the junction tree. We have just told that the key here is the fill-in
between L and B, this link with the disappearing of Sm is no more necessary. If we keep it, the
tree will be still valid taking the same justification as before.

Let see in the example. We delete Sm not from the original Bayesian network, but from
the original GT. And then we have as the new GT:

Figure 3- 17. Asia without Sm moralised and triangulated having kept previous fill-in links.

With the numbering A�1, and then T�2, L�3, ToC�4, B�5, D�6, X�7 , we obtain
the tree:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

39

Figure 3- 18. JT for Asia without Sm having kept fill-in edges.

Here, we find that a similar situation has taken place. If we delete Sm from the original
GT, then it is quite simple to identify a new junction tree. We look for a clique containing Sm,
then delete it, and the clique is then {L,B}, but as it is the same as the separator . So, both of them
are absorbed by the tree.

Subsequently, that is very near to the previous case. First, we have the obvious but slow
way to do it: do all the process from the Bayesian network to the junction tree again. Or, second,
deleting the associated cliques in the old tree. This is quite easier, but less effective, since the tree
is not the best one we could have. And what about the third solution?

Here it is even more complicated, because the link which was in the original GT and
which does not appear anymore is a fill-in. Keeping track of a moral link could be relatively easy,
but it is not the same when we talk about triangulation links. Why? A moral link is associated to a
child node that makes his parents marry. But a triangulation link can influence on several nodes
deletion, not only on the one whose elimination introduced it. Here, according to the triangulation
sequence we chose, elimination of both Sm and B could induce this link.

Still, we can distinguish one question to reach an intermediate solution. In this case, a
cycle is broken. Cycles and triangulation links, fill-in links, are quite related (see definition in
chapter 2, at step 1.2) as we will see later. And detecting cycles is a possible task to do in the
graph that we have already. Thus, this is the hint we launch to attain a better solution to the
second one and faster than the other one.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

40

Let us go on with the next example: deleting a node with one outgoing edge and one
incoming one.

Example 4.1.2.�.
Suppose we realise we do not need variable B (Bronchitis). A more complicated situation, since
B is both child and parent.

Æ That means we have change our graphical Bayesian network. Let see step 1.

Figure 3- 19. Asia without variable B Figure 3- 20. GM from Asia without B,already
triangulated, so it also coincides with GT. We tried

sequence {A,T,X,D,Sm,L,ToC}

And with the numbering: A�1, then: T �2, L �3, ToC � 4, Sm � 5, D� 6, X �7,
we obtain the tree:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

41

Figure 3- 21. Junction tree of Asia without B, marked parts are exactly the same as the initial tree.

We can see that the tree is not the same, but it is neither completely different. Marked part
in Figure 3-21 shows which ones are the same. Clique {L,Toc,B} has disappeared. {L,B,Sm} is
reduced to {L, Sm}, {ToC,B,D} is reduced to {ToC,D} and since {L,ToC,B} does not exist yet,
it is linked to {ToC,L,T} by L.

Even here where it seems to be quite different from the original tree, it deals with the
disappearing of B in cliques (obviously, B is no more there) and the reduction of those cliques
where B participated.

A methodical way to see it in this tree could be the following one:

Let see the original tree with the cliques numbered to be able to refer to them:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

42

We start by one clique, for example C4. As we have deleted B the clique remains as
L,ToC. But L,ToC is exactly the same as the separator S2,4. So, we do not need it any more and
we can remove both of them. But, if we remove C4 then C5 and C6 are automatically joined to
C2. Doing that S5,2 turns to be L and S6,2 T. (B has to disappear also in C5 and C6). And then, the
tree is the one shown in Figure 3-21.

So here we can conclude that the proposed solution of just deleting the node in the JT
sometimes leads to the “best” tree (example 4.1.2.�), but that this is not always the case (earlier
examples 4.1.2.� and 4.1.2.).

We have to say that here a cycle has been broken. Maybe that will have special
consequences. We will see it in the point of edges deletion (4.2.2).

• Proposed solutions

In the examples we can realise that changing a variable which is a child or a father of only
one other variable will simply prune the branch in the junction tree where it appears. And we can
be sure that this clique will be a leaf in the junction tree, we know that the variable is only
connected to one other variable.

Taking this idea, we can think that for these situations a possible solution can be deleting
the clique in the junction tree that this variable forms if it is a binomial clique, or reducing it if
the size is more than 2.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

43

But, if we go further to a variable with two links (they can be incoming, outgoing or one
of each), we have found a way to avoid the whole recompilation. It consists in eliminating the
variable in the junction tree of the original network. In this manner we will save time of
triangulation. But even more, we do not have to reconstruct again the whole tree. There is a
solution to treat only the necessary part. We have already described it. The point is to delete it in
all the cliques where it appeared. If that reduces a clique to his separator both of them are
removed and the tree merges by this place. Actually, this solution is the same as the presented for
the previous case. The reason is that when we eliminate a variable from a clique of size 2 the
separator must be eliminated too, if it contained this variable, or absorbed, if it contained the
other one. There is no other possibility because the separator must be a subset of the clique.

It is important to remark that this solution does not always give the optimal tree, as we
have pointed out with the examples before. Although we do not say that a better solution could
not be reached giving simpler trees, we do consider that this solution is satisfactory in the sense
that it lets us do what we wanted at the beginning: obtain a valid junction tree for a modified
Bayesian network without recompilation and assuming not too much time. An idea could be to
inspect more exhaustively the different cases in the more simplified trees. But, maybe this will
take us to a deeper study of the tree. This study can mean spending more time, when our main
purpose is to be as fast as possible.

Looking ahead, a generalisation to one deleted variable with more than two associated
edges can be interesting. In the line of this chapter, analyse by examples, Asia does not offer the
possibility to do complete experiments further with deletion of edges. Although there exist nodes
with more than two links, we cannot find all possibilities (3 parents or 3 children for example).

Anyway, with the progressive study we have done, we dare to guess that the solution will
be quite similar to this one. Maybe then the resulting tree will be even less “optimal”, but as
before, still valid, what is the most important point. And the lack of optimality will influence less
in the global process if the network is large.

We cannot demonstrate it, but in this project we would want to introduce the subject and
to encourage future studies and evaluations.

 4.1.3. Addition.

Finally, here we have the last alternative for variables. Instead of finding that a variable is
not necessary, the opposite can happen too. Going deeply into the problem to solve, or better, to
model, we could notice we have forgotten one important aspect. This aspect could be represented
by one or more new variables. It seems likely that adding a variable will mean adding new edges,
we would want to relate in some way this new variable to the previous ones. At this point we can
ask: when are we going to recompile? Just after adding a new variable or when all the new
elements we find necessary are included. It appears that the second option is more reasonable, we
will not want to recompile until we will have introduced every modification in the Bayesian
network. Adopting this option, adding a new variable will lead us directly to the later point 4.2.1
(adding edges). However, we will try to examine the case of introducing a new variable alone.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

44

• Possible consequences of changing variables adding a new variable

Although adding an isolate variable seems to be a trivial situation, it could be interesting
looking at it. If this new variable is linked to no other one, it will form a clique itself. Like that, in
the junction tree there will be one node disconnected to the rest. In propagation this node is not
going to participate, since it has no mean (no separator, the intersection between it and the rest is
the empty set) to communicate with the rest. This new clique (made up of only the new variable)
will keep the initial belief probability, for it will never affected by the other ones.1

4.2. Edges.

An edge alteration seems to be quite similar to the variable one. It is due to the fact that
both of them will probably take us to a different moral graph, or maybe a bit later to a different
triangulation, and, like that, the junction tree will also change. Once more, the point is to identify
which are the thinkable variations carrying to a set of diverse types of consequences.

 4.2.1. Addition.

If we add an edge, E will have a new element. The first effect will be on GM. If this new
edge or link points to a variable with one or more other parents, then in the moral construction all
these variables must be joined to the variable pointed to by the new edge. That will probably
produce a new triangulation, but there may be a possibility that it does not: if the new edge and
those provoked by the moralisation already belonged to the initial triangulation. So, there is
another case we should be able to tell apart.

Let see the possibilities of adding one new edge in a more detailed way:
o New edges between existing variables:

� If the new edge does not introduce other new edges in moralisation apart from
itself (and it already belonged to GT) then the result is trivial, because GT will be
the same, and so will be the junction tree. Or if the new edges changes the moral
graph but keep the same GT. In any case, we cannot forget that one new edge will
always imply a change in its children, the conditional probabilities change.

Example 4.2.1.�.
Imagine that we put a new edge from “Has lung cancer” to “Has bronchitis”.

1 That if we do not take into account the concept of dummy separators, used to avoid a disconnected graph. The only
reason to introduce dummy separators would be the fact of a finding of it. By now, we are going to omit this.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

45

Figure 3- 22. Asia with link from L to B.
Figure 3- 23. Asia with link from L-B moralised
and triangulated (the moral graph was already

triangulated).

What happens then? In fact nothing happens to the compilation process, because GT does
not change and the junction tree is exactly the same. The new link will put a moral link, but this
one was already in the graph. But we have to change conditional probability for B, because now
it is P(B|Sm,L).

� If the new edge introduces other new edges at moralising time and some of them
are not in GT, then this triangulated graph may be different. That would imply
different cliques and consequently a different tree. Studying this case can be quite
difficult, it depends on the situation of the new edges. We are going to show one
possible situation in Asia.

Example 4.2.1.� .

 A new edge from T to L.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

46

Figure 3- 24. Asia with link from T to L.

Figure 3- 25. Asia with link T-L moralised and
triangulated. Sequence: {A,X,D,T,B,Sm,L,ToC}.

The elimination of T will provoke the fill-in.

With the numbering A�1, T�2, L�3, ToC�4, Sm�5, B�6, D�7, X�8, we obtain the
tree:

Figure 3- 26. JT of ASia with link from T to L.

The differences between this tree and the original one for Asia seem to be more difficult
to analyse. One link will probably add new moral links, and these ones will give a quite different
triangulation like in this example, where the fill-in {Sm, ToC} has never before appeared in the
other cases, it could have appeared with another elimination order. So, we think that this is not at
all very predictable. It seems that maybe this is one of the cases without a clear solution, that is,
where incremental compilation cannot be used, and a new compilation should be completely
done.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

47

o Add an edge pointing from an existing variable to the new one. This is the simplest case
again, since the new variable potential only will influence on itself.

Example 4.2.1.�.

Let suppose we will reconsider the possibility of a new variable whose father will be X.

Figure 3- 27. Bayesian network for asia after
adding a new variable New

child of Positive X-ray?
Figure 3- 28. Asia with New child of X moralised

and triangulated. Sequence:
{A,T,New,X,D,Sm,B,L,ToC}

And with the numbering: A�1, then: T �2, L �3, ToC �4, B�5, Sm �6, D�7, X
�8, New�9, we obtain the tree:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

48

Figure 3- 29. Junction tree for Asia with the New variable pointed by X.
(Here the name New is shortened to N)

So, after seeing this example, we could think that adding a new variable and making this
one to be pointed at by an existing one makes that after recompilation our junction tree grow in
one branch.

o Add an edge pointing from the new variable to an existing one.

Here we can distinguish two cases: 1.- the new one is the only father of this existing variable;
and 2.-there are already other existing variables pointing to the same one, that will provoke a
marriage between New and these other parents, altering GM, and probably implying more
changes in the junction tree. Let us see two other modification examples to illustrate these two
cases.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

49

Example 4.2.1..

We decide it is necessary a new variable and this one will have a causal relation to Asia? (A).

The Bayesian network would be as follows:

Figure 3- 30. Asia with a New variable
pointing to A

Figure 3- 31. Asia with a New variable pointing to
A moralised and triangulated. Sequence:

{New,A,X,D,Sm,B,L,ToC}

And with the numbering New�1, then: A�2, T �3, L �4, ToC � 5, B� 6, Sm � 7,
D� 8, X�9, we obtain the tree:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

50

Figure 3- 32. Junction tree of Asia with New pointing to A.
(New is shortened to N)

The fact that there is a new leaf is observed. A appeared before in one leaf, since it was
connected only to T. As the new one is also only connected to A, it should be joined to its clique
by a new separator. So, in this case, we could say the addition of a new variable pointing to an
existing one, when this is the only father will conduce to an extension of one extreme of the tree.

But now, we are going to complicate it a little bit. In the next example, the new variable
will point to B, which is already child of Sm. Let us show what happens.

Example 4.2.1.�.
We decide it is necessary a new variable and this one will be pointing to B.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

51

 So, this time our network looks like:

Figure 3- 33. Asia network with a new variable
New pointing to B. Figure 3- 34. Asia network with new parent to B

moralised and triangulated. Sequence:
{A,T,X,D,N,Sm,B,L,ToC}

With the numbering: A�1, then: T �2, L �3, ToC � 4, B� 5, Sm � 6, D� 7,N�8,
X �9, we obtain the tree:

Figure 3- 35. Junction tree Asia network with a new variable

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

52

The result is quite similar to the case before, but now, the new clique is bigger, that is
because in addition to the new edge between N and B, we will add the moral edge Sm and N.

• Proposed solutions

In the first case (new edge already in GT that does not introduce new edges in GM) the
solution is very simple, we only have to update the potentials of the new child and those in the
junction tree.

In the second case (new edge between existing nodes that leads to a different GT), we
have concluded we recommend recompiling, maybe other methods could be studied, but we have
not reached them.

And finally, a new variable with a new edge. As we have seen, adding a new edge that
joins an existing variable to a new one will imply one new clique in the tree. This clique will be
formed by the new one, by the one connected to it, and maybe by other variables if moral edges
have been added.

This is quite similar to deleting a variable, but in the opposite direction, that is, now we
should add a new clique to the tree. This clique will also be a leaf in the tree. We need some
method to detect which clique and where to locate it.

 As a child will always be connected to its other parents there will always be a clique with
all of these nodes and the new one cannot be connected to others in GM. Therefore, this will
always result in exactly one new clique that should be connected to an existing one. However this
existing clique might be a subset of the new one, resulting in an extension of the existing rather
than the addition of a new one.

So, in general adding a new variable with only one new link will take us to the creation of
a new clique or to add one component to an existing clique.

 4.2.2. Deletion.

Here something similar occurs. If we decide to remove one edge, it is very probable that
the moral graph will change, since the moral graph only contributes with new edges between
variables with a common child. If so, once again triangulation can change or not. GT will be equal
if in the process of triangulation this edge reappears and the deleted edge did not take to any other
fill-in edge.

It can produce an isolate variable if it is the only edge containing this variable. In this
case, it would be a similar case to add a new variable without edges associated. Now this variable
will be lost in all the previous cliques where it appeared before.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

53

We will try to see first what happens if we remove one variable only related to another
one. The systematic way to take here starts to be a challenging task. Anyway, we propose one
method to do it:

o Delete a link with connects one node to the rest of the network. It seems to be the easiest
one:

or

Both cases are alike, but once more, considering that deleting the link from the node
“outside” will have more implications in potential tables due to conditional probabilities.

Example 4.2.2.�.
Deleting the edge from ToC to X

Bayesian network would be:

Figure 3- 36. Asia without edge from ToC to X

Figure 3- 37. Triangulated graph of Asia without
edge from ToC to X

Node

BN

BN

Node

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

54

� Isolated variable.

Now, the other possibility is to delete a link “inside” the BN, that is a link which will not
isolate one node from the network. In that case, we distinguish between those breaking a cycle or
not.

The reason for choosing this election is quite simple and after analysing some cases it
fitted for the results. We know that a graph is triangulated if and only if every cycle of length
greater than 3 has a chord. So cycles will provoke fill-ins in the triangulation process. For that,
removing a link which participated in a cycle will probably suppose changes in triangulation and
in fill-ins.

But even further, the bigger the broken cycle is the more this deleted edge will affect on
the new GT and therefore on the junction tree.

o Those which do not break a cycle

We are going to take the edge from T to ToC, one that fulfils the condition.

Example 4.2.2.�.
Asia without edge from T to ToC.

Figure 3- 38. Asia without edge from T to ToC. Figure 3- 39. Asia without edge from T to ToC
moralised and triangulated. Sequence:

{A,T,X,D,Sm,B,L,ToC}

With the numbering A�1, and then T�2, L�3, ToC�4, B�5, Sm�6, D�7, X�8, we
obtain the tree:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

55

Figure 3- 40. JT for Asia without edge from T to ToC.

As we can see it differs from the original in several cliques, and besides there is an
isolated one, A,T. Here it can arrive to think about doing the same thing as we did in elimination
of nodes, that is, keep the moral and fill-in links from the original network. But we have not
found an easy way to reach the new JT either. It could be detecting cliques with the two extremes
of the edge implicated, but this will also affect on other leafs hanging from this one.

o Breaking a cycle.

Example 4.2.2.�.
Asia without edge from B to D.

Figure 3- 41. Asia without edge from B to D. Figure 3- 42. Moral graph for Asia without edge
from B to D. It was already triangulated.

Sequence:{A,T,X,D,B,Sm,L,ToC}

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

56

With the numbering: A�1, then: T �2, L �3, ToC � 4, Sm� 5, B� 6, X�7, D �8,
we obtain the tree:

Figure 3- 43. Junction tree for Asia without edge from B to D.

The branch marked is the one that changes. We have deleted the edge from B to D. Then,
clique {Toc,B,D} does not exist any more. But, in addition , there is not a fill-in from L to B, and
that is the resulting junction tree.

Example 4.2.2.�.
Asia without edge from Sm to B.

 We have the following network:

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

57

Figure 3- 44. Asia without edge between Sm and B. Figure 3- 45. Moral graph from Asia without
edge from Sm to B moralised and triangulated (it
was already). Sequence: {A,T,X,D,Sm,B,L,ToC}

With the numbering: A�1, then: T �2, L �3, ToC � 4, B� 5, D� 6, Sm�7, X �8,
we obtain the tree:

Figure 3- 46. Junction tree of Asia without edge from Sm to B.

Here, for example, we can think that if link from Sm to B is removed, then there will not
be a fill-in (L,B) what leads to the loss of cliques {L,B,Sm} and {L,ToC,B}.

Chapter 3. POSSIBLE MODIFICATIONS IN A BAYESIAN NETWORK

58

• Possible consequences of deleting an edge

This case is maybe one of the most difficult. If one edge disappears the changes are bigger
because probably this will mean important changes in GM. The only two simple cases we can
think about is the first one where a variable turns to be isolated (this modification seems to be
little probable, for what do we want a variable if it is not related to any other one?) and the
second one, deleting one edge which will reappear afterwards in the triangulation process. Then
the compilation will turn to be the same.

If none of these two cases take place, then the conclusion starts to be a bit confused. The
key is to be able to determine in what fill-ins and later in what cliques this edge participated. Like
this, we can probably know which cliques disappeared and what other cliques can raise. This
study starts to be a hard work.

• Proposed solutions:

As we have just discussed, apart from the two easiest cases, the other seem to be quite
difficult to solve here. So, we will try to see if we can treat these cases with a different method:
Maximal Prime Subgraph Decomposition of Bayesian Networks. We will deal with it in the
following chapter.

As we told before (section 4.1.2.), a deeper analysis can be done looking into the number
of deleted edges and their influence on the GM and GT graphs. Once again, we cannot attack all
the possibilities in this project. At least we have introduced a representative set of them and a hint
about tricks to execute an incremental compilation.

5. Discussion.

In this chapter, we have elaborated a methodological study about the main alterations
inside a Bayesian network that can occur in a revision task. These alterations go from the easiest
one and deal with every component inside a network.

This study has shown a progressive inspection of the possible modifications, the
consequences that each of them can provoke and finally the most important question, in some of
the cases we have been able to state a practicable solution to tackle the problem of recompiling,
which is the purpose of this work.

To try to study some of the unsolved cases here next chapter will show a different method
that we may use in order to do the partial compilation we are looking for.

Chapter 4. USE OF MAXIMAL PRIME
SUBGRAPH DECOMPOSITION IN

INCREMENTAL COMPILATION OF
BAYESIAN NETWORKS

1. Purpose of using this method.

In the previous chapter we have tried to solve our problem from the original junction tree.
Repeating the figure of the introduction, we made an attempt to obtain the new junction tree
using as a basis the original one:

BN
Compilation

JT

 ?

BN’
Compilation

JT’

Figure 4- 1. Drawing explaining the process of incremental compilation of a BN.

Nevertheless, we found some cases where this solution was not practicable. But, we can
think about using another mechanism, probably a bit more sophisticated. In the article about
Maximal Prime Subgraph Decomposition of Bayesian networks [Olesen and Madsen 1999] the
idea was launched.

��
 � �
 ����
 �������
 � �
 �	�����
 	�
 �
 .�/����
 +����
 0��	��	����	�
 ����
 "�MPD) is
explained. In section 2 of this chapter we will give a more detailed description about it. At this
introductory level we would only say that it is an intermediate structure we place between one
1�������
����	��
���
���
���	������
2�����	�
�����
,�
��
����
���
� ��
�MPD can be extracted from
the “normal” junction tree. So, the idea is to go one step backwards to reach �MPD from the
original junction tree JT. And then, taking �MPD, we are going to determine a way of “translating”
��
 �	
 � �
���
�MPD’
 �
3	�
���
 � �
���
�MPD’ and a certain knowledge (that we have) about the
changes in the new Bayesian network BN’, we can arrive to the new junction tree JT’.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

60

Then, as means to illustrate this new strategy for partial compilation we will employ a
similar scheme to the original one in Figure 4-1. Like that we can perceived the path we follow to
avoid a total recompilation of the network.

BN
Compilation

JT

MPD tree

 ?

MPD’ tree

 ?

BN’
Compilation

JT’

Figure 4- 2. Drawing explaining the process of incremental compilation of a BN by means of the MPD.

As the quoted article says, and as we will explain in the following points, the tree of
maximal prime subgraphs will allow us to re-triangulate only determined parts of the network,
and this feature is quite attractive in order to save computational time as well as effort, specially
if the Bayesian network is large.

2. Presentation of Maximal Prime Subgraph Decomposition.

To use this new structure, we should first present it and its most important characteristics.
Let G=(V, E) be a graph. A subgraph G(V’) is maximal with respect to the property p if V´ is not
a subset of some larger set V’’ that induces a subgraph G(V’’) with the property p. A maximal
complete subgraph is called a clique. If the nodes V of a graph G can be partitioned into a triple
(V’,S,V’’) of non-empty sets, where S is a clique of V’ and V’’ in G such that every path from a
node Y’ � V’ to a node Y’’ � V’’ includes a node in S, then G is decomposable (or reducible)
otherwise G is prime (or irreducible). S is called a separator of V’ and V’’.

A Maximal Prime Sugbraph Decomposition of G is then the identification of all maximal
prime subgraphs in G.

After defining what we understand by prime subgraph we will seek to give the principal
idea of the Maximal Prime Subgraph Decomposition (MPSD). First of all, taking the previous
definition, we would say that the property p we are interested in is primeness.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

61

A MPSD tree is a tree with the same structure as the junction tree. It will also have
separators, except that now the cluster nodes are not cliques but maximal prime subgraphs within
the moral graph. The reason for choosing the moral graph is that this one will contain the edges
that must necessarily belong to the graph, whereas we could find some different ways to
triangulate it, that is, several different GT all of them valid.

It is known that a Bayesian network BN is constituted of a directed acyclic graph G and a
set of potentials related to each variable in the graph BN = (G, P). So, in compilation process we
did:

 BN = (G, P) G GM GT

We have just said that �MPD is obtained from GM, for it is formed by the maximal prime
������ �
	�
� �
�	���
��� �
,������
� �
��	����
������
�	
������
�	
�MPD from GM is not at all
clear at this moment. There are some proposed methods in the literature and all of them include
some kind of triangulation step.

��
&4�����
���
.�����
*555'
�������
� �
�����������
�	
��	����
�MPD is an easy way that
goes through a minimal triangulation Tmin of the graph G (the triangulated graph will be denoted
then by GTmin). Given a graph G, a triangulation T is minimal if and only if there is no other
triangulation T’ ⊂ -
���
 � ��
 6-!6
 7
 6-6�
,����
 �� �����
 �
�������
 ����������	�
�MPD could be
obtained from the corresponding junction tree JT. Let see it in the explicative Figure 4-3.

BN= (G , P) G GM GTmin

Unknown

 JT

�MPD

Figure 4- 3� *UDSKLF SURFHVV WR UHDFK �MPD. Dashed line shows the unknown direct method from GM
WR �MPD

and the double one represents the method proposed in [Olesen and Madsen 1999] .

8	�
�	���������
� �
�MPD we will need to identify the different maximal prime subgraphs
of GM

�
- �
����
��	�
�
2�����	�
����
�	
 � �
���	������
�MPD is what [Olesen and Madsen 1999]
described. It consists basically in aggregating the cliques in the JT whose separators are not
complete. A more concrete explanation will be presented in the next section.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

62

3. Procedure.

9����
�������
� �
���������
	�
� �
�MPD and explained a little bit about how to obatin it,
we go on describing the algorithm of this method.

 The idea is that the MPD junction tree produced can be stored as an intermediate data
structure that fits in between the moral graph and the triangulated graph. And the method
proposed in [Olesen and Madsen 1999] to identify these maximal prime subgraphs inside a
Bayesian network uses the junction tree. For that we presented Figure 4-2.

Until now, the style used to describe a process has been a bit informal, trying to give a
detailed explanation, but using natural language. However, in this part we will use an algorithmic
form due to the significance of this new method in the development of this project. We really
think that precision is required to show how it works exactly.

To reach the maximal prime subgraph decomposition tree �MPD, we are going to construct
it by aggregation of cliques connected by separators that are incomplete in the moralised graph.

[Algorithm 1] Construction of a MPD Junction Tree

- �����:
,
2�����	�
����
� obtained from a minimal triangulation Tmin of a Bayesian
network BN= (G, P)

- 4�����:
�
.+0
;�����	�
����
�MPD

Step 1.- T’ � T
Step 2.- Repeat

(a) Take a separator S of T’ connecting C’ and C’’.
(b) If GM(S) is not complete then aggregate C’ and C’’ in T´.

Until no separators S of T’ such that GM(S) is incomplete exists.

Step3.- Return T’

In the article there are some properties of this new structure with their demonstration. We
are not going to reproduce them, but if we use any of these properties the associated point will be
referred.

As we mentioned before, a precondition to use this method is a minimal triangulation of
GM. There are several methods for finding minimal triangulation, for example the LEX-M
Algorithm. Following the method of the aforementioned article we will use the recursive thinning
method to assure minimal triangulation when, as in our case, the triangulation algorithm is not
guaranteed to produce minimal triangulations.

First of all we describe:

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

63

[Algorithm 2] Recursive Thinning:

- Input: An undirected graph G =(V,E) and a triangulation T of him.

- Output: A minimal triangulation Tmin of G.

Step 1.- G� (V,EM ∪ T), R � T

Step 2.- R’ � {e1 ��T|��e2���R s.t. e1 ∩ e2 <
Ø}

Step 3.- T’ � {{X,Y}���R’| G(adj(X) ∩ adj(Y)) is complete in G}

Step 4.- If T’ = Ø then return T else

(a) T � T \ T’

(b) G � (V, E ∪ T).

(c) R � T’

(d) Goto Step 2.

(So, the technique is to keep only fill-ins whose variables adjacency sets have a non-
complete intersection.)

And now, we will write the final algorithm to follow:

[Algorithm 3] Constructing the Maximal Prime Subgraph Decomposition Junction Tree.

- Input: A Bayesian network BN= (G, P)
- 4�����:
,
��/����
�����
������
���	��	����	�
2�����	�
����
�MPD

Step 1.- Moralise G to obtain GM.
Step 2.- Triangulate GM to obtain GT.
Step 3.- Thin out redundant fill-in edges with Recursive Thinning
Step 4.- Organise the clique decomposition induced by GT as a junction tree �.
Step 5.- Construct the MPD junction tree �MPD

..

To see better the problem we are going to show an example. And to pursue the same line
along all this project Asia is the best choice. First, we are going to construct its maximal prime
subgraph decomposition junction tree. Let us take the algorithm step by step.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

64

Asia Example

Figure 4- 4. Bayesian network Asia.

� Steps 1 and 2 are already done in Compilation Chapter

Figure 4- 5. Asia moralised and triangulated.

� Step 3 � Recursive thinning. We had the fill-in set {L,B}

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

65

It seems quite visible that this triangulation was already minimal, due to the small
size of the graph, but anyway we wanted to show it.

To see that this algorithm would eliminate unnecessary fill-ins we could invent a
non-minimal triangulation. For example we could add {A,L} and {A,Sm}. In fact, we
do not have an elimination ordering to obtain these fill-ins, but the question is to see
that the algorithm works. So, let see this example:

Figure 4- 6. Invented triangulation of Asia for an example of Recursive Thinning algorithm.

Step Action
[1] -- R = {L,B}
[2] -- R’ = Ø (because there is no other e1)
[3] -- T’ = Ø
[4] -- Like T is Ø we return the initial and only fill-in {L,B}.

T = {{A,L},{A,Sm},{L,B}}

Step Action
[1] -- R = {{A,L},{A,Sm},{L,B}}

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

66

[2] -- R’ = {A,L} ({A,L} ��T and ��{A,Sm}���R s.t. {A,L} ∩ {A,Sm}=A ��Ø)
+
{A,Sm} ({A,Sm} ��T and ��{A,L} ��R s.t. {A,Sm} ∩ {A,L}=A ��Ø)
+
{L,B} ({L,B} ��T and ��{A,L} ��R s.t. {L,B} ∩ {A,L}=L ��Ø)

= {{A,L},{A,Sm},{L,B}}

[3] -- T’ =
	 {A,L} � adj(A) ∩ adj(L) = {T,L,Sm} ∩ {T,A,Sm,ToC,B} = {T,Sm}

Is it complete in G? No

	 {A,Sm} � adj(A) ∩ adj(Sm) = {T,L,Sm} ∩ {A,L,B} = L
Is it complete in G? Yes

	 {L,B} � adj(L) ∩ adj(B) = {T,A,Sm,B,ToC} ∩ {Sm,L,ToC,D} = {Sm,ToC}
Is it complete in G? No

=
{A,Sm}

[4] -- T’ <
Ø �
(a) T = T / T’ = {{A,L},{L,B}}
(b) G = (V, E ∪ T)
(c) R = T’ = {{A,L},{L,B}}
(d) Goto Step 2 �

R = {{A,L},{L,B}}
[2] -- R’ = {A,L} ({A,L} ��T and ��{A,Sm}���R s.t. {A,L} ∩ {L,B}=L ��Ø)

+
{L,B} ({L,B} ��T and ��{A,L} ��R s.t. {L,B} ∩ {A,L}=L ��Ø)

= {{A,L},{L,B}}

[3] -- T’ =
	 {A,L} � adj(A) ∩ adj(L) = {T,L} ∩ {T,A,Sm,ToC,B} = T

Is it complete in G? Yes

	 {L,B} � adj(L) ∩ adj(B) = {T,A,Sm,B,ToC} ∩ {Sm,L,ToC,D} = {Sm,ToC}
Is it complete in G? No

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

67

� Step 4 � Already done too.

Figure 4- 7. Junction Tree for Asia.

=
{A,L}

[4] -- T’ <
Ø �
(e) T = T / T’ = {L,B}
(f) G = (V, E ∪ T)
(g) R = T’ = {L,B}
(h) Goto Step 2 �

[2] -- R’ = {L,B}
[3] -- T’ =
	 {L,B} � adj(L) ∩ adj(B) = {T,Sm,B,ToC} ∩ {Sm,L,ToC,D} = {T,Sm,ToC}

Is it complete in G? No

[4] -- T’=Ø � return T(={L,B}) (Which is the only necessary fill-in in this case)

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

68

� Step 5 � The only separator S which has a GM(S) not complete is {L,B}, since
this link was added in triangulation. So the MPSD junction tree will be:

Figure 4- 8. MPSD for Asia. {L,B} is not complete in GM.

Figure 4- 9� �MPD. Result of
combining {L,ToC,B} and

{L,B,Sm}into a prime
subgraph.

4. When and how we can apply it in incremental compilation.

In the chapter 3 there were some cases we could not find a way to treat, and we advanced
that maybe MPSD could be useful. So, in this point we are going to consider the modifications
related to a Bayesian network where a link has been deleted.

Just after looking at how construction of MPSD tree works. How can we use it for our
purpose. We are going to outline the method to follow:

� Construct the Maximal Prime Decomposition tree [Alg. 3]

 � Identify the relevant Maximal Prime Subgraphs in the MPSD tree and the corresponding
part of the junction tree.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

69

 � Redo triangulation of this(these) MPS and reconstruct the junction tree for that(those)
parts.

 � Replace the old junction tree part by the new one obtained.

 � Connect old separators to the new JT part (check if cliques are already included in
existing ones).

Examples in Asia

Example �. We will now illustrate the method in a “failed” example on the previous
chapter. We will go through Example 4.2.2.. of chapter 3. So, it deals with deleting the edge
from Sm to B.

1� Construct MPD tree:

It is already done, see Figure 4-9 in this chapter.

2� Identify the relevant Maximal Prime Subgraphs in the MPD tree and the
corresponding part of the junction tree.

Well, here the first complication is to determine which are the relevant MPS. After
examining the problem we arrive to the conclusion that these relevant MPS are those containing
both variables. It is only in these subgraphs where the deletion of the edge can affect. This
deletion will provoke different cliques and prime subgraphs, but in the rest of them, it has no
influence, since this edge does not participate in this union of variables.

In this case, both Sm and B. Besides, if both variables are included in the same separator
� ��
� ��
��
�	
�	��
�
�	������
���
��
=
���
�MPD should be modified. It is important to remark
that completeness of S is checked in GM. This implies that this completeness should be checked
in the modified moral graph. For that, we realise that when a link is removed it could easily (and
locally) be determined what changes are implied in GM. For example, deleting {B,D} would
provoke the elimination of the moral link from B to ToC. How can we see that? Well, we know
the parents of D and we can keep track of the moral links that have been introduced by this child.
So, deleting {B,D} can automatically take to remove the moral links from B to the parents of D.

 3� Redo triangulation of this MPS and construct the junction tree for that part.

4��
 	�
 � �
 ��	�������
 ��	��
 �MPD demonstrated in [Olesen and Madsen 1999] (in its
section 5) is that it can identify a partial triangulation of GM. And it is possible to triangulate the
��������
	�
�MPD independently. So, we are going to take advantage of this result.

The affected part that has to be retriangulated is then the original maximal prime subgraph
	�

�MPD {L,ToC,B,Sm}.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

70

Figure 4- 10. The part of BN’ (in BN it was a MPS) to retriangulate in the new network.

The retriangulation of this part does not give any fill-in, because it is already triangulated.
Now, the JT for this part is quite easy to see:

Figure 4- 11. Junction tree for the affected part.

 4� Replace the old junction tree part by the new one obtained.

Figure 4- 12. Original JT with the affeced part removed.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

71

Figure 4- 13. Replacing the new JT for the affected part inside the original one.

 5� Connect old separators to the new JT part.

For achieving this connection we are going to describe a systematic way to do it:

for each separator S connected to the deleted part in the old MPSD JT do
1.- Find a clique C in the new part such as S ⊆ C (It is sure to find one
because S is complete in GM)
2.- if S = C then

a. Delete C and S.
b. Connect other separators of C to the clique that S was connected

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

72

So, we are going to follow this:

Going through separators:

• {ToC,B}

1.- old separator {ToC,B} ⊆ new clique {ToC,B}.

2.- {ToC,B} = {ToC,B}

- Delete old separator and new clique.

- Connect other separators of C ({ToC}) to the clique that S was
connected to ({ToC,B,D}).

Figure 4- 14. Situation in process of connection between the old JT and the replaced part
after treating separtor {ToC,B}.

• {L,ToC}

1.- old separator {L,ToC} ⊆ new clique {L,ToC}.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

73

2.- {L,ToC} = {L,ToC}

- Delete old separator and new clique.

- Connect other separators of C ({L}) to the clique that S was
connected to ({T,L,ToC}).

Figure 4- 15. Situation in process of connection between the old JT and the replaced part

after treating separtor {ToC,B}.

So, the final junction tree turns to be the one shown in Figure 4-16.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

74

Figure 4- 16. New junction tree obtained after step 5.

We can observe it coincides to the one we reached in chapter 3. (Figure 3-46). Then, we
have reached the same tree from two different ways. The first one implied a total recompilation
of the network, and this one avoids most of the steps we used in that recompilation. Using this
intermediate structure, MPSD, the work to do is maybe not easier but more effective.

In addition, with point 2 of step 5 we have already checked if there were some cliques
included in existing ones.

And, then, the process has finished.

But, in this example, there is only one MPSD node containing both extremes of the
deleted edge. So, we can wonder: What happens if there are more? In this case the two implicated
variables will also be present in a separator between them. But this separator is no more
complete, since the edge joining them has disappeared.

Example �. So, to illustrate this case, we are going to follow the process in one example
commented previously as well, due to the fact that this also implies deletion of a moral link. The
example, deleting edge from B to D corresponds to 4.2.2.� in chapter 3.

1� Construct MPD tree:

Once more MPD tree for Asia is already seen (Figure 4-9).

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

75

2� Identify the relevant Maximal Prime Subgraphs in the MPD tree and the
corresponding part of the junction tree.

Here, as we mentioned we find one peculiarity. If B and D are no more connected, then
the moral link from ToC to B has no sense. For that, we have to be able to detect these situations.
So, before going on the process we need to modify our basis MPD tree. So, first of all, we take
separator {ToC,B} from original MPSD tree and delete it, since they are no more complete.
Afterwards, we merge the tree and we obtain the following one:

Figure 4- 17. MPSD tree for Asia after deleting edge from b to D (moral link {ToC,B} disappears as well).

Now, we are able to see what are the relevant MPS and this is {L,ToC,B,Sm,D}, the only
one which contains B and D (and ToC and B, the moral link consequence of the first one).

 3� Redo triangulation of this MPS and construct the junction tree for that part.

We must remember that now our GM is:

Figure 4- 18. GM for Asia in the MPSD process after deleting edge from B to D.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

76

Then we are going to retriangulate the part of {L,ToC,B,Sm,D}:

Figure 4- 19. Part to retriangulate ({L,ToC,B,SmD}.

But this is already triangulated. So, the corresponding JT is immediate:

Figure 4- 20. JT from the new part after deleting edge from B to D.

 4� Replace the old junction tree part by the new one obtained.

Figure 4- 21. Deleting affected part (L,ToC,B,Sm,D} in the MPSD.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

77

Figure 4- 22. Replacing new part to the previous MPSD.

 5� Connect old separators to the new JT part.

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

78

Going through separators: Now there is only one, {L,ToC}. It is equal to one clique in the
new JT part. So, both of them disappear (step 2a). And later we have to join the separators
connected to {ToC,L} to the clique the old separator was connected before (step 2b):

Figure 4- 23. Disappearance of both clique and separator {L,ToC} an we connect other separators of C (Toc
and L) to the clique it was connected to ({T,L,ToC}) .

Chapter 4. USE OF MPSD IN INCREMENTAL COMPILATION OF BAYESIAN NETWORKS

79

To see it properly, the final result is then:

Figure 4- 24. Resulting junction tree after the process.

This tree is the same we obtained with the conventional way, that is, redoing all the
compilation process. (See Figure3-43).

5. Discussion.

To conclude this chapter, we should point out the results obtained from this new method
using MPSD. As we have shown we have been able to reduce the task of recompilation for
problems we could not solve in the previous chapter.

Taking one of the cases, deletion of an edge, we think we have presented a quite
interesting algorithm to solve it. A justification of each of the necessary steps has been done, and
the application of this method in two examples over the network used in all the project helps us to
show the positive results. We are convinced that this idea (the MPSD) could be used in many
more cases and its importance will grow with the size of the network to recompile. The larger the
network the more time we will save.

Chapter 5. IMPLEMENTATION

81

Chapter 5. IMPLEMENTATION

1. r-Hugin tool.
r-Hugin (research Hugin) is a programming environment based on Hugin code [r-Hugin

1998]. Its main reason is to provide a set of classes and methods about Bayesian networks. All
this code makes use of Hugin one, but it has one advantage: the simplicity. r-Hugin presents a
code much clearer to follow than the Hugin one. The latter searches optimal efficiency that
makes it quite confused to understand easily.

Therefore, r-Hugin has been conceived for research purposes, and this work has an
investigation side. So, we thought it could be interesting to use this existing tool.

2. Programming with Visual C++.
r-Hugin was available for Unix systems. In the department network (cs.auc.dk) it can be

found from /user/raistlin/RHugin directory. Inside it there are some documentation and figures,
we can see one Specs folder with includes some net-files, they have the same format as
specification files for Hugin.

In the first phase of the development of this work, I tried to divide my time. On one hand
it was necessary to study and attack directly Bayesian networks and especially their compilation
process. And on the other hand, I had to make the existing r-Hugin code for Unix work in the
Windows environment. This task was not so obvious, because of the known differences between
both Operating Systems. The programming environment in Windows system had to be Visual
C++ due to University available software. Although C++ is a standard language, this kind of
environments usually present their particular features. This fact made my task a little more
difficult. But finally, after working on it and having made some small changes, the whole set of
header and source files was correctly combined with the hugin header (hugin.h) and its api
(hugin.api). Fortunately, we had a program (project or workspace) that could be finally compiled
and linked.

The technical problem was then solved. Later, for being able to work on this chapter, we
needed to know about the hierarchy model (see Appendix A), classes, methods and some
knowledge about their implementation. Once I have assumed these points, it was time to
implement some examples in order to illustrate some of the ideas introduced in this work.

So, in the following section we will try to show programs based on some of the examples
in chapter 3.

3. Implemented examples.

Once r-Hugin seemed to work in Windows environment and after having outlined the
analysis part, it was time to start the real programming. Obviously, this task has had to be done at
the end of the development of this work.

Chapter 5. IMPLEMENTATION

82

Implementing the proposed solutions turned to be a complicated work. The most difficult
part is to understand the whole mechanism between classes and methods, and how they match
with the theoretical ones. For example, how a tree is represented, how to introduce potentials, the
interactions between elements (variables, cliques, separators, probabilities)…

We started programming from the easiest case and with the intention of arriving as far as
possible. But, finally, we could not do too much. In those cases where we have to modify
variables, or delete certain structures like cliques, we have found many problems, and unexpected
errors. Most of them are due to the interactions we talked about. Most of the elements are linked
in lists and they are referred and also make references to elements of other nature. For example,
variables refer cliques, cliques refer separators, nodes refer variables, etc. We have to bear in
mind many factors every time we modify, insert or remove a structure. For example, modifying a
variable needs to modify every reference to it, and all these references are not clear to find.
Probably with some more time this task could be accomplished, but at least we are going to show
a couple of examples.

• Compilation program

The first program we have done is one that makes the compilation of a network. This
program takes a Bayesian network from a Hugin net specification file and compiles it, the main
program is compilation.cpp (see Appendix A.3.1).

• Changing potentials in a variable of the Bayesian network

For this first example we thought about showing two different programs:

1.- The conventional form, with recompilation. It means that first we will take the
Bayesian network BN and we will compile it. Afterwards, we will do the corresponding
modification to transform it to BN’. Finally BN’ will be compiled giving the resulting JT’.

2.- Our proposed solution. We compile BN and obtain JT. From this JT we are going to
reach JT’, without recompiling BN’. We have to remember that the proposed solution was
multiply by the new potential value and divide by the old one in the corresponding clique
potential.

These two programs have been done for a concrete case, the one showed in chapter 3,
example 3.�., that is, changing A probability from (0.01, 0.99) to (0.20, 0.80). For the first case
we can see ChangingPotRecompilate.cpp (see Appendix A.3.2.a) and for the second one
ChangingPotProposedSol.cpp (see Appendix A.3.2.b)

For the following examples we decided not to take both possibilities because the first one
is not so interesting, that is what we actually do. If we change a network for example in Hugin, to
compile it we will need to do a complete compilation again. But, for further studies in larger
networks it will be interested to have both programs and compare times.

Chapter 5. IMPLEMENTATION

83

So, for the rest we will write programs that take the original Bayesian network BN and
compiles it giving the resulting JT. Later we will make the modifications commented on chapter
3, depending on the case, to obtain JT’ from JT. Using compilation.cpp or Hugin tool over the
modified Bayesian network (in a net specification file) we will be able to see if the results are the
good ones.

• Deleting a variable child of only other one

As we saw (example 4.1.2.� in chapter 3), this was the easiest case in deleting variables.
It meant that we had to remove the corresponding branch in the junction tree and no potentials
(apart from the deleted variable that has already disappeared) have to be touched.

So we have implemented the mentioned example 4.1.2.�, deleting variable X from Asia
network. The program deletingX.cpp can be seen in Appendix A.3.3.

There are many examples we have not implemented, we have already presented the
reason. These two cases are maybe the easiest ones to implement because they do not have many
dependencies when we do changes. For example, changing the number of states of a variable
(example 4.1.�. and 4.1.�.) can seem simple, but after trying it we can conclude it is not, since
this change means changing almost all the structure.

4. Discussion.
With this chapter we had two immediate objectives. Firstly, using the r-Hugin tool, a

programming environment for working with Bayesian networks. This tool wants to imitate most
of the Hugin functionalities. r-Hugin presents a less optimal code, but this is also the point which
makes it easier to understand and work with. This feature is especially important for research
purposes.

And secondly, we wanted to prove that the proposed solutions given in chapter 3, and also
in chapter 4 were possible. In fact, we have already shown it, with the different examples done
“by hand”, but using the implementation we can see that these modifications are practicable.

At last, we have fulfilled the first goal. This is the first time that r-Hugin tool has been
used for someone different from its programmers. And we have also been able to port the code to
a Windows machine.

Unfortunately, all examples of chapter 3 are not implemented, for time limitations. And
the same for the method based on MPSD used in chapter 4. Anyhow, we are satisfied because we
have been able to show a couple of them and how the global structure is. Besides we find it quite
interesting if in a future the rest can be done.

Chapter 6. CONCLUSION

From the introduction of this project the goal to achieve was very clear: how to do a
partial recompilation of a Bayesian network. The reason for undertaking this subject was
basically the great computation time that the compilation process of a Bayesian network can take.
This drawback becomes especially relevant in large models. So, it seems quite attractive looking
for alternative ways to a full recompilation.

This idea rises from the fact that once a Bayesian network is already compiled,
modifications can be made on it. But, it is probable that these modifications will not be so
serious, since the network is still almost the same.

For this study we have chosen an example Bayesian network to inspect. This network,
Asia, is one of the most referenced in the literature. In spite of its small number of nodes and
edges, it is quite descriptive because we can find several cases in its structure.

Firstly, we have described in an informal way, but also a detailed one, how compilation is
accomplished. And it is in this chapter where we start applying the process of compilation on the
Asia network in order to see what is really done.

Secondly, we go on analysing directly the problem. For that, the method has been
searching the possible modifications that can be made in a Bayesian network. As always, we have
used the Asia network as an example, and we have tried to show the different possible
modifications in a network. We have explained how these modifications will imply problems of
distinct nature in obtaining the final junction tree, and we proposed a set of solutions for most of
the presented cases. In addition, we leave an open door to future research on this subject, since
the number of possibilities is large.

After this, we have tried to take advantage of an intermediate structure between a
Bayesian network and its associated junction tree. The process of compilation takes us from one
Bayesian network to its associated tree and this intermediate point could somehow take us to a
faster way than the full recompilation. This structure is called a Maximal Prime Subgraph
Decomposition (MPSD) tree and it was described in [Olesen and Madsen 1999]. One of its
properties, the possibility of triangulate each maximal prime subgraph independently from the
rest, has allowed us to only execute a partial recompilation. Even more, we have written an
��	��� �
 � ��
 ����
 � ��
 ����
 ��	��
 �MPD, and we have applied it on Asia obtaining the same
results as we obtained by completely recompiling the network.

The last part tries to give a real view of all these analysis and studies. Taking as a basis
the C++ code of RHugin, we have implemented a couple of the mentioned cases in order to show
in more detailed how our solutions can be used.

Chapter 6. CONCLUSION

86

To finish, I would only like to say that I have found quite interesting the development of
this project, and since there has been limitations of time and work, I trust this report could at least
show an investigation line with possible solutions with reference to the viability of an
incremental compilation of a Bayesian network.

87

Bibliography

� [Jensen 1996] Finn V. Jensen. An Introduction to Bayesian
networks. UCL Press, London 1996.

� [Kjærluff 1993] Uffe Kjærulff. Aspects of efficiency improvement in
Bayesian networks. PhD Thesis. Department of Computer Science. Aalborg
University. Aalborg 1993.

� [Olesen and Madsen 1999] Kristian G. Olesen and Anders L. Madsen.
Maximal Prime Subgraph Decomposition of Bayesian Networks. Department
of Computer Science. Aalborg University. Aalborg 1999.

� [r-Hugin 1998] r-Hugin Functionalities. Unpublished document.

88

89

Appendix A. r-Hugin details

1. Introduction to r-Hugin for Visual C++.

In this work we do not want to give an exhaustive explanation about this subject, since it
is not the main point. But for following the code a little bit, it would be convenient to present the
main ideas.

As we told in chapter 5 about Implementation, the r-Hugin code has been taken from a
Unix environment to a Windows one. In the latter Operating System we have used the Microsft
Visual C++ 6.0 tool. To do our programs we have taken the source and header files from r-Hugin
in Unix. Some small modifications were necessary, because the compiler of Visual C++ was
stricter than the Unix one. These files are:

bn.hpp and bn.cpp

bn2jt_hugin.hpp and .cpp

graph.hpp and .cpp

hugin2rhugin.hpp and .cpp

hugin_stuff.hpp and .cpp

jt.hpp and .cpp

potential.hpp and .cpp

status.cpp

variable.hpp and .cpp

types.hpp and .cpp

yapc.hpp

And the support files linkedlist.hpp and array.hpp used to organise structures.The header
file hugin.h (from Hugin) is also quite important, since it allows the interaction with Hugin and
we also need to link hugin.api for making it work.

We do not include the code all of them because we consider it is not necessary, the most
important is to follow the main ideas. For further detail this code could be provided.

So, we have programmed with Visual C++ workspaces, like projects, where all these files
were contained and also a main .cpp one, which we have written for each case. It is this main
program that we will include in A.3 section.

2. Class hierarchy.

Before attacking directly the programs, a global view of r-Hugin structure can help. The
class structure will be shown and commented in order to understand it better. Figure A-1 shows
the hierarchy class of r-Hugin. We must say it is not complete. First, the root class should be
Model that is divided into Bayesian network and Influence Diagram. Furthermore, we cannot see
the Utility and Decision nodes, variables and potentials, they these classes are present. There is
something missed about edges. In r-Hugin there are different classes for directed edges (utility,
informational or causal) and the same happens with the undirected ones (fill-in and moral). And

Appendix A

90

finally, a class configuration in relation to variable. But these missing elements are not relevant
for our programming task, since they do not influence on it.

Figure A- 1. Class Hierarchy in r-Hugin.

Appendix A

91

Looking at Figure A-1 we see the relations considered in r-Hugin. A Bayesian Network is
divided into a Graph, Potentials, (remember BN = {G, P}) and Variables. Here we start seeing
one of the dependencies we talked about: nodes (in graph) and variables are quite related. Node
presents methods both to obtain and to set the associated variable.

Afterwards a graph is constituted of Nodes and Edges (remember G=(V,E)), but also
connected to a Junction tree structure. This conexion illustrate even more the interaction between
structures. Later the Junction tree has a specialised class Hugin Junction tree which, at the same
time is made up of Cliques and Separators. The other specialisation of classes (Edges, Variables
and Potentials) are easy to understand from the Bayesian network theory.

3. Program examples

The way of presenting the programs will be the following one: main program (with grey
background), obtained output from this program (this is quite large, but we will mark the most
important results in bold and also the less important parts will be omitted), and the corresponding
output in Hugin, for both programs in section 3.2 this Hugin output is the same. For the last
example, we cannot give the variable marginal values, again due to references problems, but the
resulting junction tree is correct because we have contrasted it by the one compilation.cpp would
give.

3.1. Compilation.cpp

� Program

// -*- C++ -*-

//

// compilation.cpp - to prove compilation of a Bayesian network in order to use

// it in the project "Incremental compilation of Bayesian networks"

//

// Author : Julia Flores

//we will need to include the following headers from r-Hugin

#include "types.hpp"

#include "bn.hpp"

#include "jt.hpp"

#include "graph.hpp"

#include "potential.hpp"

#include "variable.hpp"

#include "bn2jt_hugin.hpp"

#include "hugin2rhugin.hpp"

Appendix A

92

main(int argc, char **argv)

{ char *pname = argv[0];

 //this program will need an argument, the name of a Hugin specification network

 //(these networks can be obtained from Hugin, for example, taking the option

 //File -> Save Net File

 if (argc!=2)

 {

 cerr << "usage : " << pname << " <hugin specfile>" << endl;

 exit(1);

 }

 cout << "starting...\n";

 //first of all we take the Bayesian network

 //This is in Hugin specification format

 BayesianNetwork *bn = (BayesianNetwork*)hugin2rhugin(argv[1]);

 //function hugin2rhugin is extern (files hugin2rhugin.hpp and hugin2rhugin.hpp)

 //now bn is a Bayesian ntework of RHugin hierarchy

 //We print it to see all her components

 cout << *bn << endl;

 // Afterwards we compile it obtaining the corresponding junction tree.

 //compile is a function defined on bn2jt_hugin.h and implemented on

 //bn2jt_hugin.cpp:

 // HuginJunctionTree* compile(Model* r_bn)

 // This uses Hugin functionality. The followed strategy to do it is

 // Start up Hugin

 // Convert rBN into hBN

 // Compile hBN into hJT

 // Convert hJT into rJT

 // Close down Hugin

 //In this fucntion we could indicate the triangulation heuristic we want to use.

 //Looking at chapter 2 (Compilation) it makes all the work described in step 1:

 //moralisation, triangualtion and tree construction.

 HuginJunctionTree *jt = compile(bn);

 //Once we have compiled the bayesian network. this junction tree must be inicialised.

Appendix A

93

 //For this, the class HuginJunctionTree his own function: initialize(). That would do

 //what we explained in step 2.1 of chapter 2.

 jt->initialize();

 //We print it as well, in order to show its components

 cout << *(HuginJunctionTree*)jt << endl;

 //And finally we propagate to make it consistent.

 //Propagation was the last point (step 2.2 and 2.3 in chapter 2). If we see

 //the code of this function it makes exactly that: first it calls

 //function collectEvidence(...) and tlater distributeEvidence(...)

 jt->propagate();

 //To finish we show the resulting tree after propagation. For example

 //for asia.net we have obtained its junction tree as the one of Figure 2-4.

 //The numerical results are also correct.

 cout << "After propagation the tree is" << endl;

 cout << *(HuginJunctionTree*)jt << endl;

 //To finish with, we will show every variable

 for (bn->variables()->to_first(); !bn->variables()->at_end();

 bn->variables()->next())

 {

 if (bn->variables()->get()->type()==rh_chance_variable)

{

 cout << *bn->variables()->get()->marginal(rh_equilibrium_sum)

 << endl;

 if (bn->variables()->get()->discrete())

 cout << *(DiscreteChanceVariable*)bn->variables()->get() << endl;

}

 else

if (bn->variables()->get()->type()==rh_decision_variable)

 {

 cout << *((DiscreteDecisionVariable*)bn->variables()->get())->marginal()

 << endl;

 cout << *(DiscreteDecisionVariable*)bn->variables()->get() << endl;

 }

 }

 // Like that we can see that the marginal belief of each variable coincides with

Appendix A

94

 //the result we expected. (This has been checked using Hugin output).

cout << "finishing...\n";

}

� Program Output

Output of compilation.cpp with asia.net (hugin net specification for Asia network):

starting...

Bayesian Network

Variable

-name : E

-identifier : 8

Variable

-name : B

-identifier : 2

Variable

-name : L

-identifier : 6

Variable

-name : S

-identifier : 5

………

Graph

-nodes :

Node

-index : 0

-variable : Variable

-name : D

-identifier : 3

Node

-index : 0

-variable : Variable

-name : A

-identifier : 4

………

-edges :

Edge

-head : Node

-index : 0

-variable : Variable

-name : X

-identifier : 1

-tail : Node

-index : 0

-variable : Variable

-name : E

-identifier : 8

Edge

-head : Node

-index : 0

-variable : Variable

-name : B

-identifier : 2

-tail : Node

-index : 0

-variable : Variable

-name : S

-identifier : 5

………

Hugin Clique

-identifier : -1

-potential :

Probability Potential

-identifier : 0

-size : 8

-heads : Variable

-name : B

-identifier : 2

Variable

-name : E

-identifier : 8

Variable

-name : D

-identifier : 3

-tails :

-numbers : 0.9 0.1 0.8 0.2
0.7 0.3 0.1 0.9

-potential :

UtilityPotential

-identifier : -1

-size : 8

-domain : Variable

-name : B

-identifier : 2

Variable

-name : E

-identifier : 8

Variable

-name : D

-identifier : 3

-numbers : 0 0 0 0 0 0 0 0

-variables :

Discrete Chance Variable

-identifier : 2

-name : B

-states : 2 0 yes 1 no

Discrete Chance Variable

-identifier : 8

-name : E

-states : 2 0 yes 1 no

Discrete Chance Variable

-identifier : 3

Appendix A

95

-name : D

-states : 2 0 yes 1 no

-separators :

Separator

-variables : Variable

-name : E

-identifier : 8

Variable

-name : B

-identifier : 2

………

Hugin Clique

-identifier : -1

-potential :

Probability Potential

-identifier : 0

-size : 4

-heads : Variable

-name : T

-identifier : 7

Variable

-name : A

-identifier : 4

-tails :

-numbers : 0.0005 0.0099
0.0095 0.9801

………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : E

-identifier : 8

-tails :

-numbers : 0.064828
0.935172

………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : B

-identifier : 2

-tails :

-numbers : 0.45 0.55

………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : L

-identifier : 6

-tails :

-numbers : 0.055 0.945

………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : S

-identifier : 5

-tails :

-numbers : 0.5 0.5

………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : X

-identifier : 1

-tails :

-numbers : 0.11029
0.88971

………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : T

-identifier : 7

-tails :

-numbers : 0.0104
0.9896

………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : A

-identifier : 4

-tails :

-numbers : 0.01 0.99

………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : D
-identifier : 3

-tails :

-numbers : 0.435971
0.564029

Discrete Chance Variable

-identifier : 3

-name : D

-states : 2 0 yes 1 no

finishing...

Since, we understand the difficulty to follow this output for the next examples we will only
show the final part.

Appendix A

96

� Hugin Output for Asia

3.2. Changing potentials in A

3.2.a.ChangingPotRecompilate.cpp

� Program

// -*- C++ -*-

//

// changingPotRecompilate.cpp -

// After compilating we change potentials and recompilate all the network again

//

// Author : Julia Flores

#include "types.hpp"

#include "bn.hpp"

#include "jt.hpp"

Appendix A

97

#include "graph.hpp"

#include "potential.hpp"

#include "variable.hpp"

#include "bn2jt_hugin.hpp"

#include "hugin2rhugin.hpp"

//This program tries to see the Example 3.1 of chapter 3

//For this first example, we are going to see both pograms:

// -the one with recompilation (this one)

// -and the one with our proposed solution

//

// That is for showing the differemces between them. But later, we will use

//another method to compare results. We will take the net specification file

//to the modified Bayesian network (BN') and compile with compilation.cpp

//from which we started.

//

// And these results will be taken as a basis to check the good results for

//the proposed solutions.

// The next two functions do the same.

// They are more or less like the compilation.cpp program.

// And the action is to carry out the whole compilation process, from the

//graph and its moralisation and triangulation, for later constructing

//the jt structure. And finally initialise and propagate.

// The only difference between both of them is their arguments.

// - process_compilation takes a string that corresponds to the name of a

// net specification file, and compiles it.

//

// - process_compilation_jt takes a Bayesian network (and object of the r-Hugin

//class BayesianNetwork and returns a junction tree in the form of an object of

//r-Hugin class HuginJunctionTree)

void process_compilation(char *net_name);

//given the name of a spec hugin file, compiles it

HuginJunctionTree* process_compilation_jt(BayesianNetwork *bn);

//given a Bayesian network return its jt associated

main(int argc, char **argv)

{

 char *pname = argv[0];

 //this program will need an argument, the name of a Hugin specification network

Appendix A

98

 if (argc!=2)

 {

 cerr << "usage : " << pname << " <hugin specfile>" << endl;

 exit(1);

 }

 // First, we call the compilation process with the name of the network

 //in our case asia.net. That would do the same as if we execute compilation.exe

 process_compilation(argv[1]);

 // Now bn is correctly compilated. We are going to make the modifications on it.

 // In this program we are going to present the implementation of example 3.1

 //of chapter 3: Possible modifications in Bayesian networks. If we read it,

 //the change is the following one:

 // in original Bayesian network A probability is yes:0.99 no:0.01

 // After the modification its probabilty will be yes:0.80 no:0.20

 // So, it's that what we are going to do now, modify the Bayesian network:

 //We take the original network and change A potentials to the new values.

 BayesianNetwork *bn = (BayesianNetwork*)hugin2rhugin(argv[1]);

 //We need to have the Bayesian network in its structure, so we catch the

 //original one from the specification net file

 //For changing A probability we have thought of going through all the

 //variables of the network and look for it. We have not found a more direct

 //way of obtaining it.

 for (bn->variables()->to_first(); !bn->variables()->at_end();

 bn->variables()->next())

 { if (bn->variables()->get()->type()==rh_chance_variable)

 cout << "Name : "<< *bn->variables()->get()->name()<<endl;

 if (*bn->variables()->get()->name()=='A')

 { //Now we have A

 cout << "This is A" << endl;

 //According to the structure of classes to create a new PropbabilityPotential

 //we have to indicate the variables head and tail, that is, for one variable

 //the conditional probability is P(head|tail), where head and tail is a list

 //of variables. In this case head will be A and tail an empty set, since A has no

 //parents.

 Set<Variable*> *potAhead = new Set<Variable*>();

 potAhead->insert(bn->variables()->get());

 Set<Variable*> *potAtail = new Set<Variable*>();

Appendix A

99

 ProbabilityPotential *NewProbPot = new ProbabilityPotential(potAhead, potAtail);

 //Now we introduce the new values for the probability potential

 (*NewProbPot)[0] = 0.2;

 (*NewProbPot)[1] = 0.8;

 //And insert them in the corresponding variable A

 bn->variables()->get()->potential(NewProbPot);

 //Now A has the probability values we decided to change

 }

 }

 //So, it's time to recompilate, doing a second compilation for this new network.

 //The new network has been obtained from modifications of the initial one.

 //To compilate we use the second fucntion process_compilation_jt. This function gives

 //the tree already initialised and with evidence propagated.

 cout << "JUNCTION TREE IS " << *(HuginJunctionTree*)process_compilation_jt(bn) << endl;

 cout << "End of the program" <<endl;

 //The result is exactly the same as if we realise these modifications

 //in the network of Hugin and compile again.

 }

void process_compilation(char *net_name)

{ cout << "starting process_compilation... for " << net_name << "\n";

 //first of all we take the Bayesian network

 //This is in Hugin specification format

 BayesianNetwork *bn = (BayesianNetwork*)hugin2rhugin(net_name);

 //now bn is a Bayesian network of RHugin hierarchy

 //we print it to see all her components

 cout << " PRINTING BAYESIAN NETWORK" << endl;

 cout << *bn << endl;

 cout << "------------------- END OF BAYESIAN NETWORK-------------------" << endl;

 //afterwards we compile it obtaining the corresponding junction tree

 HuginJunctionTree *jt = compile(bn);

 //this junction tree must be inicialised

 jt->initialize();

 //We print it as well, in order to show its components

 cout << " PRINTING JUNCTION TREE" << endl;

 cout << *(HuginJunctionTree*)jt << endl;

 cout << "------------------- END OF JUNCTION TREE----------------------" << endl;

 //And finally we propagate to make it consistent

 jt->propagate();

Appendix A

100

 //To finish with, we will show every variable

 //We are only interested in Discrete Chance ones

 cout << "PRINTING VARIABLES" << endl;

 for (bn->variables()->to_first(); !bn->variables()->at_end();

 bn->variables()->next())

 if (bn->variables()->get()->type()==rh_chance_variable)

{

 cout << "PRINTING 'rh_chance_variable'" << endl;

 cout << "Name : "<< *bn->variables()->get()->name()

 << endl;

 cout << *bn->variables()->get()->marginal(rh_equilibrium_sum)

 << endl;

 if (bn->variables()->get()->discrete())

 { cout << *(DiscreteChanceVariable*)bn->variables()->get() << endl;

 }

}

cout << "finishing process compilation for " << net_name <<"\n";

}

HuginJunctionTree* process_compilation_jt(BayesianNetwork *bn)

{

 //now we have the structure of BN for rHugin, so

 //we can work directly over it

 //we print it to see all her components to see the network

 cout << "PRINTING BAYESIAN NETWORK" << endl;

 cout << *bn << endl;

 cout << "------------------- END OF BAYESIAN NETWORK-------------------" << endl;

 //afterwards we compile it obtaining the corresponding junction tree

 HuginJunctionTree *jt = compile(bn);

 //this junction tree must be inicialised

 jt->initialize();

 //We print it as well, in order to show its components

 cout << "PRINTING JUNCTION TREE" << endl;

 cout << *(HuginJunctionTree*)jt << endl;

 cout << "------------------- END OF JUNCTION TREE----------------------" << endl;

 //And finally we propagate to make it consistent

 jt->propagate();

 //To finish with, we will show every variable again

 cout << "PRINTING VARIABLES" << endl;

 for (bn->variables()->to_first(); !bn->variables()->at_end();

Appendix A

101

 bn->variables()->next())

 if (bn->variables()->get()->type()==rh_chance_variable)

{

 cout << " PRINTING 'rh_chance_variable'?" << endl;

 cout << "Name : "<< *bn->variables()->get()->name()

 << endl;

 cout << *bn->variables()->get()->marginal(rh_equilibrium_sum)

 << endl;

 if (bn->variables()->get()->discrete())

 { cout << *(DiscreteChanceVariable*)bn->variables()->get() << endl;

 }

}

 //Finally, we return the resulting tree

 return jt;

}

� Program Output

starting
process_compilation... for
..\..\asia.net

…………

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : E

-identifier : 8

-tails :

-numbers: 0.064828
0.935172

…………

-name : B

-numbers : 0.45 0.55

…………

-name : L

-numbers : 0.055 0.945

…………

-name : S

-numbers : 0.5 0.5

…………

-name : X

-numbers : 0.11029
0.88971

…………

-name : T

-numbers : 0.0104
0.9896

…………

-name : A

-numbers : 0.01 0.99

…………

-name : D

-numbers : 0.435971
0.564029

finishing process
compilation for ..\..\asia.net

…………

(recompilation)

Probability Potential

-name : E

-numbers : 0.07201
0.92799

…………

-name : B

-numbers : 0.45 0.55

…………

-name : L

-numbers : 0.055 0.945

…………

-name : S

-numbers : 0.5 0.5

…………

-name : X

-numbers : 0.116969
0.883031

…………

-name : T

Appendix A

102

-numbers : 0.018
0.982

…………

name : A

-numbers : 0.2 0.8

…………

-name : D

-numbers : 0.43869
0.56131

JUNCTION TREE IS

…………

End of the program

� Hugin Output for Asia changing A potentials from (0.01, 0.99) to (0.20,0.80)

3.2.b.ChangingPotProposedSolution.cpp

� Program

We will not show the body of the compilation functions, since they are always the same.

// -*- C++ -*-

//

// changingPotProposedSol.cpp -

// After compilating we change potentials and we want to avoid

// recompilation. In this case, the solution will be multiply

// by the new potential and dicide by the old one (Example 3.1.

// in chapter "Possible Modifications in a Bayesian network")

// Author : Julia Flores

Appendix A

103

//Necessary header files

#include "types.hpp"

#include "bn.hpp"

#include "jt.hpp"

#include "graph.hpp"

#include "potential.hpp"

#include "variable.hpp"

#include "bn2jt_hugin.hpp"

#include "hugin2rhugin.hpp"

//given a Bayesian network return its associated junction tree.

//This was alredy used in changingPotRecompilate.cpp. So, we omit

//further comments.

HuginJunctionTree* process_compilation_jt(BayesianNetwork *bn);

main(int argc, char **argv)

{

 char *pname = argv[0];

 //this program will need an argument, the name of a Hugin specification network

 if (argc!=2)

 {

 cerr << "usage : " << pname << " <hugin specfile>" << endl;

 exit(1);

 }

 //First, we call the initial compilation process.

 //For that we need to "read" the Bayesian network from the file.

 BayesianNetwork *bn = (BayesianNetwork*)hugin2rhugin(argv[1]);

 //And later to obatin the resulting junction tree, we compile it

 HuginJunctionTree *jt = (HuginJunctionTree*)process_compilation_jt(bn);

 //Showing tree on the screen.

 cout <<" JT for the original BN is "

 << *jt

 << endl;

 // Now we are going to modify the potential table of A,t directly.

 //AS we told in the analysis chapter our proposed solution is to

 //take the table and in each entry we have to multiply by the new value

 //and divide by the old one.

Appendix A

104

 //

 // As we mentioned if the old one is 0, this solution is not possible.

 //We will have to take it into account if we design a general program.

 //However for this program which reflects a specific case, we don't have

 //to check it. We actually introduce the exact values.

 // So, we declare a new variable which is a Discrete Chance one.

 DiscreteChanceVariable *MyVbleA;

 // In the network we lookmfor A, and in this auxiliar variable

 //we will store it so that we can use its values.

 for (bn->variables()->to_first(); !bn->variables()->at_end();

 bn->variables()->next())

 { if (bn->variables()->get()->type()==rh_chance_variable)

 cout << "Name : "<< *bn->variables()->get()->name()<<endl;

 if (*bn->variables()->get()->name()=='A')

 { cout << "Encontrada A" << endl;

 MyVbleA=(DiscreteChanceVariable*)bn->variables()->get();

 }

 }

 // Now we can take the old probabilty values of A and we have them

 //in OldProbPot

 ProbabilityPotential *OldProbPot=(ProbabilityPotential *)MyVbleA->potential()->copy();

 // Afterwards we introdue the new vaules we want to have. yes:0.80 no:0.20

 // For this purpose we will use the object NerwProbPot (ProbabilityPotential)

Set<Variable*> *potAhead = new Set<Variable*>();

potAhead->insert(MyVbleA);

Set<Variable*> *potAtail = new Set<Variable*>();

ProbabilityPotential *NewProbPot = new ProbabilityPotential(potAhead, potAtail);

(*NewProbPot)[0] = 0.2;

(*NewProbPot)[1] = 0.8;

 //Now we don't want to recompilate, we know that A potentials have change

 // It was (0.01, 0.99)

 // and now it is (0.2,0.8)

 // So, we have the data we wanted. It is only necessary to find the corresponding cliques

 //in the junction tree for the original BN. This is jt, the result of compilation. And

 //we will do the proposed changes on it to reach JT', the junction tree for the modified
network BN'.

 // We need to go through all cliques and to see which ones are affected by A

Appendix A

105

 //To start experimenting we only display them

 // We need to go through all cliques and to see which ones are affected by A

 //To start experimenting we only display them

 for (jt->cliques()->to_first(); !jt->cliques()->at_end();

 jt->cliques()->next())

 {

 cout << "--- " << endl;

 cout << " Clique is " << *(HuginClique*)(jt->cliques()->get()) << endl;

 if (jt->cliques()->get()->variables()->contains(MyVbleA))

 {

 //clique to be modified

 cout << "This clique contains A" << endl;

 //And we do these two operations

 // 1.- value' (potential of the clique) = value * "new potential"

 jt->cliques()->get()->probabilityPotential()->multiply_potential((Potential*)NewProbPot);

 // 2.- value'' (definitive potential of the clique) = value'' / "old potential"

 jt->cliques()->get()->probabilityPotential()->divide_potential((Potential*)OldProbPot);

 //The r-Hugin structure does the operations in the right way, so that each entry

 //would be multiplied by the corresponding value of A, depending on the state.

 }

}

 cout << "==" << endl;

 //Later we have to propagate evidence to make the tree consistent

 jt->propagate();

 cout << "After changes the junction tree is " << *jt << endl;

 //And now we print variables to be able to compare the result with the

 //correct ones.

 cout << "PRINTING VARIABLES" << endl;

 for (bn->variables()->to_first(); !bn->variables()->at_end();

 bn->variables()->next())

 if (bn->variables()->get()->type()==rh_chance_variable)

{

 cout << "PRINTING 'rh_chance_variable'" << endl;

 cout << "Name : "<< *bn->variables()->get()->name()

 << endl;

 cout << *bn->variables()->get()->marginal(rh_equilibrium_sum)

 << endl;

 if (bn->variables()->get()->discrete())

Appendix A

106

 { cout << *(DiscreteChanceVariable*)bn->variables()->get() << endl;

 }

}

 //This output coincides with the one given by Hugin tool.

 cout << "End of program ChangingPotProposedSolution" <<endl;

}

� Program Output

………..

Probability Potential

-identifier : 0

-size : 2

-heads : Variable

-name : E

-identifier : 8

-tails :

-numbers : 0.07201
0.92799

………..

-name : B

-numbers : 0.45 0.55

………..

-name : L

-numbers : 0.055 0.945

………..

-name : S

-numbers : 0.5 0.5

………..

-name : X

-numbers : 0.116969
0.883031

………..

-name : T

-numbers : 0.018 0.982

………..

-name : A

-numbers : 0.2 0.8

………..

-name : D

-numbers : 0.43869
0.56131

End of program
ChangingPotProposedSolut
ion

� Hugin Output

The same as 3.2.a.

3.3. Deleting X

� Program

// -*- C++ -*-

//

// DeletingX.cpp

// Here we try to reproduce the example 4.1.2.1 in chapter 3

// This was the simplest case, since deletion of X does not

// affect in the potentials of other variable (it has no children)

// Author : Julia Flores

// include lines

#include "types.hpp"

#include "bn.hpp"

#include "jt.hpp"

Appendix A

107

#include "graph.hpp"

#include "potential.hpp"

#include "variable.hpp"

#include "bn2jt_hugin.hpp"

#include "hugin2rhugin.hpp"

//The next two function are the same we used in the other programs

//given the name of a spec hugin file, compiles it

void process_compilation(char *net_name);

//given a Bayesian network return its jt associated

HuginJunctionTree* process_compilation_jt(BayesianNetwork *bn);

main(int argc, char **argv)

{

 char *pname = argv[0];

 //this program will need an argument, the name of a Hugin specification network

 if (argc!=2)

 {

 cerr << "usage : " << pname << " <hugin specfile>" << endl;

 exit(1);

 }

 BayesianNetwork *bn = (BayesianNetwork*)hugin2rhugin(argv[1]);

 //First, we call the compilation process

 HuginJunctionTree *jt = process_compilation_jt(bn);

 //And now we are going to delete the corresponding clique (X,ToC) as we

 //saw in chapter 3.

 for (jt->cliques()->to_first(); !jt->cliques()->at_end();

 jt->cliques()->next())

 {

 //we print the cliques

 cout << "--- " << endl;

 cout << " Clique is " << *(HuginClique*)(jt->cliques()->get()) << endl;

 jt->cliques()->get()->variables()->to_first();

 if(*jt->cliques()->get()->variables()->get()->name()=='E')

 { //if clique X-ToC

 cout << "This is clique X,ToC" << endl;

 //We remove it

 jt->cliques()->remove();

 }//endif

 }//end for

Appendix A

108

// We will probably remove the separator, but that gave some problems. This has been

//commented in chapter 5, where we have presented the encountered problems at programmig

//time.

 //We peopagate the new "evidence". It's the same but without X whose values did not

 //affect on any child.

 jt->propagate();

 cout << "==" << endl;

 cout << "After changes the junction tree is " << *jt << endl;

 cout << "End of program DeletingX" <<endl;

}

� Program Output

After changes the junction tree is

Hugin Junction Tree

Hugin Clique

-identifier : -1

-potential :

Probability Potential

-identifier : 0

-size : 8

-heads : Variable

-name : B

-identifier : 2

Variable

-name : E

-identifier : 8

Variable

-name : D

-identifier : 3

-tails :

-numbers : 0.0322672 0.00358524
0.331318 0.0828295 0.0202829
0.00869268 0.0521024 0.468922

………..

Hugin Clique

-identifier : -1

-potential :

Probability Potential

-identifier : 0

-size : 4

-heads : Variable

-name : T

-identifier : 7

Variable

-name : A

-identifier : 4

-tails :

-numbers : 0.0005 0.0099 0.0095
0.9801

Hugin Clique

-identifier : -1

-potential :

Probability Potential

-identifier : 0

-size : 8

-heads : Variable

-name : L

-identifier : 6

Variable

-name : E

-identifier : 8

Variable

-name : T

-identifier : 7

-tails :

-numbers : 0.000572 0.054428 0 0
0.009828 0 0 0.935172

Hugin Clique

-identifier : -1

-potential :

Probability Potential

-identifier : 0

-size : 8

-heads : Variable

-name : L

-identifier : 6

Variable

Appendix A

109

-name : B

-identifier : 2

Variable

-name : E

-identifier : 8

-tails :

-numbers : 0.0315 0 0.0235 0
0.0043524 0.414148 0.0054756
0.521024

Hugin Clique

-identifier : -1

-potential :

Probability Potential

-identifier : 0

-size : 8

-heads : Variable

-name : S

-identifier : 5

Variable

-name : L

-identifier : 6

Variable

-name : B

-identifier : 2

-tails :

-numbers : 0.03 0.02 0.27 0.18
0.0015 0.0035 0.1485 0.3465

………..

End of program DeletingX

� Output using compilation.cpp to show the tree.

To do it easier we have compacted it.:

BDE

-numbers : 0.0322672 0.00358524 0.331318 0.0828295 0.0202829 0.00869268 0.0521024 0.468922

AT

-numbers : 0.0005 0.0099 0.0095 0.9801

LET

-numbers : 0.000572 0.054428 0 0 0.009828 0 0 0.935172

LBE

-numbers : 0.0315 0 0.0235 0 0.0043524 0.414148 0.0054756 0.521024

SLB

-numbers : 0.03 0.02 0.27 0.18 0.0015 0.0035 0.1485 0.3465

As we can see the values are the same.

