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Abstract

Designers of large parallel computers and clusters are becoming increasingly concerned with the cost and
power consumption of the interconnection network. A simple way to reduce them consists of reducing the num-
ber of network components and increasing their utilization. However, doing so without a suitable congestion
management mechanism may lead to dramatic throughput degradation when the network enters saturation. Al-
though congestion management strategies for lossy networks (computer networks) are well known, relatively
little effort has been devoted to congestion management in lossless networks (parallel computers, clusters, and
on-chip networks). Additionally, congestion is much more difficult to solve in this context due to the formation
of congestion trees.

In this paper we study the dynamic evolution of congestion trees. We show that, contrary to the common
belief, trees not only grow from the root toward the leaves. There exist conditions under which trees either grow
from the leaves to the root, cases where several congestion trees grow independently and later merge, and even
cases where there exist congestion trees that completely overlap while being independent. This complex evo-
lution and its implications on switch architecture are analyzed, proposing enhancements to a recently proposed
congestion management mechanism and showing the impact on performance of different design decisions.

Keywords:
Interconnection Networks, Switch Architecture, Congestion, HOL Blocking.

1 Introduction

Designers of large parallel computers, clusters, and on-chip networks are becoming increasingly concerned with

the cost and power consumption of the interconnection network. Effectively, current interconnect technologies

(Myrinet 2000 [27], Quadrics [31], InfiniBand [18], etc.) are expensive compared to processors. Also, power

consumption is becoming increasingly important. As link speed increases, interconnects consume a greater fraction

of the total system power [34]. Moreover, power consumption in current high-speed links is almost independent of

link utilization. In order to reduce system power consumption, researchers have proposed using frequency/voltage

scaling techniques [34]. Unfortunately, these techniques are quite inefficient due to their slow response in the

presence of traffic variations and the suboptimal frequency/voltage settings during transitions [39].

As the interconnection network has traditionally been overdimensioned, a simple way to reduce cost and power

consumption is reducing the number of network components (i.e. switches and links) and increasing their uti-

lization. However, this solution will increase network contention that, as traffic is usually bursty, may lead to
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congestion situations. In general, congestion will quickly spread through the network due to flow control, forming

congestion trees. The main negative effect of these situations happens when packets blocked due to congestion

prevent the advance of other packets stored in the same queue, even if they are not going to cross the congested

area. This effect is referred to as head-of-line (HOL) blocking, and may produce a dramatic network throughput

degradation.

The behavior of congestion in networks depends on switch architecture. HOL blocking is one of the main

problems arising in networks based on switches with queues at their input ports (Input Queuing, IQ switches),

because blocked packets destined to congested output switch ports prevent the advance of packets destined to other

non-congested output switch ports. This problem can limit the throughput of the switch to about 58% of its peak

value [20]. So, from the point of view of switch architecture, HOL blocking will affect greatly to IQ switches and

also to switches with queues at their input and output ports (Combined Input and Output Queuing, CIOQ switches).

These architectures are different from that of traditional switches in communication networks, that uses queues only

at their output ports (Output Queuing, OQ switches). The OQ scheme has become infeasible because requires the

switch to operate at a much faster speed than the links in order to handle all the possible packets concurrently

arriving at the input ports1, and link speed in current high-speed interconnects is on the order of Gbps.

So, as the switch architecture used in most recent designs follows the IQ or CIOQ model, HOL blocking could

be a serious problem in modern interconnects. In CIOQ switches, HOL blocking can be reduced by increasing

switch speedup. A switch with a speedup of S can remove S packets from each input and deliver up to S packets

to each output within a time slot, where a time slot is the time between packet arrivals at input ports. Note that OQ

switches have a speedup of N while IQ switches have a speedup of 1. CIOQ switches have values of S between

1 and N . However, for larger values of S, switches become too expensive, and practical values are between 1.5

and 2. Therefore, the switch speedup increase is limited, and HOL blocking should be controlled by a suitable

congestion management mechanism.

It should be noted that although congestion management strategies for computer networks are well known,

congestion dynamics in networks (whether on-chip or off-chip) for parallel computers is completely different from

the one in computer networks because packets are not dropped when congestion arises. Moreover, congestion is

more difficult to be solved due to the quick growth of congestion trees. Additionally, as congestion has not been a

problem until recently (networks were overdimensioned), there are relatively few studies on congestion trees and

their dynamics [30]. In fact, despite the different queue architectures, it is common belief that congestion trees

always grow from the root to the leaves. This is true in networks with OQ switches, but this is not the case for

networks with CIOQ switches. In this case, as HOL blocking may occur throughout the network, congestion trees

may evolve in several ways.

1Theoretically, a N × N OQ switch must work N times faster than the link speed
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2 Related Work

Thus, we believe that an in-depth study of congestion trees and their dynamic evolution will help in finding bet-

ter solutions for congestion management in interconnection networks with CIOQ switches. In this paper we take on

such challenge. We show that congestion trees not only grow from the root toward the leaves. There exist relatively

frequent conditions under which trees grow from the leaves to the root, cases where several congestion trees grow

independently and later merge, and even cases where a congestion tree grows in such a way that completely over-

laps with a subset of another congestion tree while being independent from it. This complex evolution has some

implications on the way congestion management strategies should be designed. Moreover, some design decisions

(e.g., where congestion detection should be performed) also depend on switch architecture, as a consequence of the

way congestion trees evolve.

So, in addition to study the evolution of congestion trees, we present some enhancements to a recently proposed

congestion management mechanism [13]. These enhancements will provide support for efficiently handling the

situations described in the analysis of congestion dynamics.

To sum up, the main contributions of this paper are: 1) a detailed analysis of the dynamic evolution of conges-

tion trees when using CIOQ switches, showing that their evolution can be very complex, 2) the proposal of several

enhancements to a previously proposed congestion management mechanism so that it will efficiently handle the

complex situations (we also show the relationship between those enhancements and switch architecture), and 3)

performance evaluation showing the significant impact on performance of the enhancements.

The rest of the paper is organized as follows. In Section 2, related work is presented. In Section 3, the dynamic

evolution of congestion trees is analyzed in deep. Then, in Section 4, the proposed enhancements, based on the

analysis of the dynamic evolution of congestion trees is presented. Evaluation results are presented in Section 5.

Finally, in Section 6, some conclusions are drawn.

2 Related Work

The formation of congestion (or saturation) trees on multistage interconnection networks (MINs) under certain traf-

fic conditions has deserved the attention of researchers for many years [30]. A large number of strategies have been

proposed for controlling the formation of congestion trees and for eliminating or reducing their negative effects.

Many of them consider congestion in multiprocessor systems, where saturation trees appear due to concurrent re-

quests to the same shared memory module. In [10], a taxonomy of the different hot-spot management strategies is

proposed, dividing them into three categories: avoidance-based, prevention-based and detection-based strategies.

Although different taxonomies are possible for other environments [45], the former classification is roughly valid

also for non multiprocessor-oriented congestion management techniques.

Avoidance-based strategies require a previous planning in order to guarantee that congestion trees will not
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appear. Some of these techniques are software-based [46, 5], while others are hardware-oriented [44]. In general,

these strategies are related to quality of service requirements.

Prevention-based strategies control the traffic in such a way that congestion trees should not happen. In general,

decisions are made “on the fly”, based on limiting or modifying routes or memory accesses. These techniques can

be software-based [16] or hardware-oriented [1, 32].

When detection-based strategies are used, congestion trees may form, but they can be detected in order to

activate some control mechanism that should solve the problem. Usually, this kind of mechanism requires some

feedback information. For instance, it is possible to measure the switch buffer occupancy [43, 25] or the amount

of memory access requests [32] in order to detect congestion. Later, a notification is sent to the sources injecting

traffic or to the processors requesting memory accesses, in order to cease or reduce their activity. Notifications

could be sent to all the sources [41] or just to those that cause the congestion [22]. Other mechanisms [9, 26, 3, 4]

notify congestion just to the endpoints attached to the switch where congestion is detected.

Recently, a new mechanism have been proposed for networks with CIOQ switches [13]. It is based on dynam-

ically separating the traffic belonging to different congestion trees, eliminating so the HOL blocking introduced by

congestion. Additionally, many proposals minimize or eliminate HOL blocking regardless of its cause. Some of

them focus on HOL blocking formed at the switch level [2, 40, 36, 8, 24] while others at the entire network [7, 21].

The use of non-blocking topologies [12] also eliminates HOL blocking. Finally, other strategies like fully adaptive

routing [11, 23, 15, 42, 35] or load balancing techniques [14, 35] may help to delay the appearance of congestion.

It is not in the scope of the present paper to discuss the advantages and drawbacks of all these strategies. How-

ever, we must remark that, as far as we know, none of them take into account the formation process of congestion

trees. This paper is focused on analyzing this important subject.

3 Dynamic Evolution of Congestion Trees

In this section we will analyze the different scenarios that may arise in the formation of congestion trees for

networks with CIOQ switches. In particular, we will focus on two key aspects that greatly influence how congestion

trees are formed. The first one is the architecture of the switch whereas the second one is the traffic pattern. As we

will show later, the scenarios analyzed in this section must be properly handled by a congestion control mechanism

in order to be effective.

For the analysis, we will use different traffic patterns. Each traffic pattern defines a set of source nodes in-

jecting packets through a network to one or several destinations. For all the cases, we assume the use of a MIN,

deterministic routing, and CIOQ switches.
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Figure 1: Different dynamic formations of trees. Speedup is two. (a) Traditional view about the formation of a
congestion tree, (b) Different locations (ingress and egress) where congestion is detected for one tree, and (c) the
root switch moves downstream.

3.1 Traditional View

Traditionally, it has been thought that congestion trees form as follows: the root of the congestion tree (e.g., an

output port at some switch) becomes congested and, due to the use of flow control, congestion spreads from the

root to the leaves. However, this situation happens only in a particular scenario that rarely occurs: when the different

traffic flows that form the tree join only at the root. Figure 1.a shows an example: five flows form a congestion tree

by meeting at the root switch. The sum of the injection rate of all the flows is higher than the link bandwidth, thus

a congestion tree is formed. Before congestion occurs, all the queues used along the path followed by the flows are

nearly empty because there is enough bandwidth. However, when flows meet at the root switch, the rate at which

packets arrive is higher than the rate at which packets can be transmitted through the output port. Thus, queues will

start to fill at the root switch (assuming an appropriate crossbar speedup, egress queues fill first, and later ingress

queues), and thus, congestion will begin. This situation will last until the queues at the root switch fill up and, at

this time, queues at the previous switches of the root switch will start to queue packets (again, first at the egress

queues and then at the ingress queues). This is because the available bandwidth at the output port of the root switch

will be divided among the different flows and will be lower than the bandwidth required by each flow. At the end,

the congestion tree will grow from the root to the leaves.

Traditionally (and so in the former example), it has also been assumed that when using a CIOQ switch with
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Figure 2: HOL blocking within a switch with different speedups and different flows.

speedup, packets will start queuing at the egress ports when congestion forms. However, as will be seen in the next

section, this may not always be true.

3.2 Effect of Switch Architecture on the Dynamics

As mentioned above, the switch architecture, specifically the speedup, can alleviate the possible HOL blocking at

the input ports. However, it is not completely eliminated. In particular, depending on the number of flows and

the rate at which they arrive at a switch, the formation of a congestion tree will be different. Figure 2.a shows

an example where two flows, injected at the full rate and headed to the same destination join at a switch with no

speedup. As the total reception is higher than the rate at which packets are forwarded to the egress side, packets

are queued at the ingress side. Thus, congestion will occur at the ingress side of the switch. However, if speedup

is used (Figure 2.b, speedup of 2 ) congestion occurs at the egress side. As the number of flows arriving at the root

switch is equal to or less than the speedup, the switch is able to forward the two flows to the egress side at the same

rate they are arriving. However, as the output port bandwidth is half the internal switch bandwidth, packets start to

queue at the egress side.

It should be noted that this situation depends on the number of incoming flows, the rate at which they arrive,

and the switch speedup. Although the speedup can be increased, it drastically increases the switch cost. So, limited

speedups are often used (i.e. not higher than 2). As an example, Figure 2.c shows a case where three flows headed

to the same destination arrive at a switch with speedup of 2. The rate at which packets arrive is higher than the rate

at which they are forwarded to the egress side. Thus, congestion arises at the ingress side, contrary to the common

belief.
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This effect may also occur at several points along a congestion tree. In Figure 1.b we can observe a congestion

tree formed by eight flows heading to the same destination. Switch speedup is 2. Three flows merge at sw1,

and other flows merge at different points, finally meeting all together at the root switch. In this situation, at sw1

and sw2, congestion first occurs at the ingress side. Once all the flows arrive at the root switch they merge and

congestion occurs again. However, in this case, congestion first occurs at the egress side, and so happens at sw3

and sw4.

Therefore, the speedup affects the way congestion trees form. In particular, congestion may first occur at

ingress or egress side and, at the same time, different local congestion spots may arise during the formation of the

congestion tree. Although the different local congestion spots can be initially viewed as independent congestion

trees, they end up being part of a single and larger congestion tree. Whether only the complete congestion tree

or each local congestion spot should be treated by a congestion control mechanism will be discussed in section 4.

This decision will significantly affect the effectiveness of the congestion control mechanism.

3.3 Impact of Traffic Patterns on the Dynamics

In the previous scenario it was assumed that all the flows were injecting packets at the same rate and started

at the same time. This could be the case when executing a barrier synchronization among different processes

in a multiprocessor system. However, other scenarios may arise where different flows contributing to the same

congestion tree start at different times and inject at different rates. This will lead to more sophisticated dynamics

in the formation of congestion trees. As an example, consider Figure 1.c where a first congestion tree made up of

three flows is created. These flows, headed to the same destination, join together at the first stage of the network.

Thus, the root switch is at the first stage (as speedup of 2 is assumed, congestion first occurs at the ingress side).

Later, an additional flow headed to the same destination is injected. However, contrary to the other flows, it merges

with them at the second stage. Assuming that all the flows are injecting at the full injection rate, the bandwidth at

the egress port of sw1 must be shared among the four flows. Thus, a new congestion is formed at the egress side of

sw1. In fact, two congestion trees have been created at different instants, but the first one later becomes a subtree

of a larger tree. This situation can be viewed as if the root of the congestion tree had moved downstream in the

network.

Another different scenario occurs when two congestion trees overlap in the network. This situation may happen

quite frequently in server systems with different disks placed close to each other. As each accessed disk may

produce a congestion tree, several trees may overlap.

When two congestion trees overlap, new dynamic behaviors appear. Figure 3.a shows two congestion trees.

The one plotted in solid lines (ct1) is formed first, whereas the one plotted in dashed lines (ct2) appears later. Based

on this situation, ct1 has its root switch at sw1 and ct2 at sw2. However, when ct2 appears, a new congestion point
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Figure 3: Different dynamic formations of trees. Speedup is two. (a) two trees overlap and merge, (b) two trees
overlap but do not merge, and (c) the root switch moves upstream.

is located at sw3. This new congestion point can be viewed as a new congestion root for both trees, that will

finally merge into one. However, taking into account that the congestion point has been formed by flows headed to

different destinations, it could be considered as two different overlapping congestion trees. Therefore, if congestion

control mechanisms allocate resources depending on packet destination, separate resources will be needed for each

congestion tree. On the other hand, if congestion within the network is going to be treated, this case should be

considered as two trees merging into one, thus saving some resources.

Another interesting situation occurs when two congestion trees overlap but do not merge. For instance, once

the congestion tree plotted in solid lines (ct1) in figure 3.b is formed, a second one (ct2, plotted in dots) forms. A

ct2 branch shares a set of network resources with ct1. Thus, point X can be viewed as belonging to both trees. In

this situation, it could happen that a congestion control mechanism would consider traffic addressed to ct2 passing

trough X as traffic belonging to ct1. As we will show later, a correct differentiation of both trees will improve

performance.

Finally, another case occurs when one or several branches of an already formed tree disappear (sources injecting

to the congested destination no longer send packets). This case is shown in Figure 3.c. The flow plotted in dashed
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line disappears and the root switch (sw2) no longer experiences congestion. This situation can be viewed as if the

root moves upstream the network to sw1. However, it should be noticed that while the three flows arriving at sw1

keep injecting at the full rate, the queues used at sw2 will remain full although it receives packets only from one

input port.

To sum up, the root of a congestion tree may move downstream (by the addition of new flows) or upstream (by

the collapse of some branches). At the same time, congestion trees may overlap at several network points without

merging. And finally, a congestion tree may be formed from local and transient congestion trees that will later

merge (due to the limited speedup used). Therefore, for all of these cases some kind of architectural support is

needed in order to separate each congestion tree and to follow the complex dynamics they may exhibit. As we

will see in the evaluation section, keeping track of their dynamics will ensure decisive benefits in terms of network

performance.

4 Implications on the Design of Congestion Control Techniques

One of the main objectives of the paper is to develop new mechanisms able to keep track of the complex dynamics

of congestion trees in networks with CIOQ switches. For this purpose, we present two enhancements to a previously

proposed congestion control mechanism referred to as RECN [13]. RECN focuses on eliminating the HOL blocking

induced by congestion trees. As we will see in the evaluation, the two new enhancements will be key to achieve

maximum performance and will allow RECN to completely eliminate the HOL blocking induced by congestion

trees. For the sake of completeness we will first briefly describe RECN and later the two new enhancements.

4.1 RECN (Regional Explicit Congestion Notification)

RECN is based on the assumption that packets from non-congested flows can be mixed in the same queue without

significant interference among them. Therefore, RECN focuses on eliminating the HOL blocking introduced by

congestion trees. This is accomplished by detecting congestion and dynamically allocating separate buffers for

each congestion tree. By completely eliminating HOL blocking, maximum performance is achieved even in the

presence of congestion trees.

RECN has been designed for PCI Express Advanced Switching2 (AS) [28, 29]. Although it could work under

different technologies, RECN benefits from the routing mechanisms found in AS. In particular, AS uses source

deterministic routing. The AS header includes a turn pool made up of 31 bits that contains all the turns (offset from

the incoming port to the outgoing port) for every switch along the path. An advantage of this routing method is that

it allows to address a particular network point from any other point in the network. Thus, a switch, by inspecting

2AS is an open standard for fabric-interconnection technologies developed by the ASI Special Interest Group. It is based on PCI Express
technology, extending it to include other features. ASI is supported by many leader enterprises.
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the appropriate turnpool bits of a packet, can know in advance if it will pass through a particular network point.

RECN adds a set of additional queues at every input and output port of a switch. These queues (referred to as

Set Aside Queues or SAQs) are dynamically allocated and used to store packets passing through a congested point

(root of a congestion tree). To do this, RECN associates a CAM memory to each set of queues. The CAM contains

all the control info required to identify the congested point and to manage the corresponding SAQ. Additionally,

one queue (referred to as normal queue) is used to store non congested packets.

RECN detects congestion only at switch egress ports. When a normal egress queue receives a packet and fills

over a given threshold, a notification is sent to the sender ingress port indicating that the output port is congested.

This notification includes the routing information (a turnpool and the corresponding mask bits) to reach the con-

gested output port from the notified ingress port (only a turn). Upon reception of a notification, each ingress port

allocates a new SAQ and fills the corresponding CAM line with the received turnpool and mask bits. From that

moment, every incoming packet that will pass through the congested point (easily detected from the packet turn-

pool) will be mapped to the newly allocated SAQ, thus eliminating the HOL blocking it may cause. If an ingress

SAQ becomes subsequently congested, a new notification will be sent upstream to some egress port that will react

in the same way, allocating an egress SAQ, and so on. As the notifications go upstream, the information indicating

the route to the congested point is updated accordingly, in such a way that growing sequences of turns (turnpools)

and mask bits are stored in the CAM lines. So, the congestion detection is propagated through all the branches of

the tree.

To guarantee in order delivery, whenever a new SAQ is allocated, forwarding packets from that queue is disabled

until the last packet of the normal queue (at the moment of the SAQ allocation) is forwarded. This is implemented

by a simple pointer associated to the last packet in the normal queue and pointing to the blocked SAQ.

Regarding flow control, RECN implements for each individual SAQ a special Xon/Xoff flow control, that

follows the Stop & Go model. This mechanism is different from the credit-based flow control used for normal

queues, that considers all the unused space of the port data memory available for each individual queue. If these

“global” credits scheme would be used for SAQs, a congested flow could fill the whole port memory very fast,

whereas the Xon/Xoff scheme guarantees that the number of packets in a SAQ will be always below a certain

threshold.

RECN keeps track (with a control bit on each CAM line) of the network points that are leaves of a congestion

tree. Whenever a SAQ with the leaf bit set to one empties, the queue is deallocated and a notification is sent

downstream, repeating the process until the root of the congestion tree is reached. For a detailed description of the

RECN mechanism, please refer to [13].
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4.2 Proposed Enhancements

In this section two enhancements to RECN are proposed. They will allow RECN to keep track of the dynamics of

congestion trees, and thus, to exhibit significantly better performance.

The first enhancement is allowing RECN to detect congestion at switch ingress ports. RECN defines SAQs

at ingress and egress ports, but it only detects congestion at egress ports (it is based on the belief that congestion

first occurs at egress side). Thus, ingress ports SAQs are allocated only when receiving notifications. We have

previously shown that congestion may first occur at ingress ports (for instance, in switches without speedup). In

these cases, RECN never detects congestion at the root. Instead, it detects congestion at the immediate upstream

switches, but only when the root ingress queues are full, preventing the packet injection from those switches. So,

RECN will not react quickly to eliminate HOL blocking at an important part of the tree.

In order to detect congestion at the ingress side, a different detection mechanism must be used. When detecting

congestion at the egress side, the congestion point is the output port by itself. However, when an ingress normal

queue fills over a threshold, it is because packets requesting a certain output port are being blocked. As packets

in the ingress queue can head to different output ports, it is not trivial to decide which one is the congested output

port. In response to this requirement, we propose to replace the normal queue at each ingress port by a set of small

buffers (referred to as detection queues). So, at ingress ports, the memory is now shared by detection queues and

SAQs. The detection queues are structured at the switch level: there are as many detection queues as output ports in

the switch, and packets heading to a particular output port are directed to the associated detection queue3. By doing

this, when a detection queue fills over a given threshold, congestion is detected, and the output port causing the

congestion is easily computed as the port associated with that detection queue4. Once congestion is detected at an

ingress port, a new SAQ is allocated at this port, and the turnpool identifying the output port causing congestion is

stored in the CAM line. The detection queue where congestion is detected and the SAQ allocated are swapped. As

the new SAQ can now be considered to be congested, a notification is sent upstream. Figure 4 shows the proposed

mechanism.

The second enhancement is related to the actions taken upon reception of notifications. RECN does not allocate

SAQs for all the notifications received. This is done in order to ensure that no out of order packet delivery is

introduced. Figure 5.a shows an example where RECN does not allocate a SAQ when receiving a notification.

First, sw1 is notified that point A is congested. Then, it allocates a new SAQ for that congested point and packets

going through A will be stored from that moment in that SAQ. Later, point B becomes congested at sw3 and

notifications are sent upstream, reaching sw1. This notification is referred to as being a more specific notification

3Note that, if there were no SAQs, the memory at ingress ports would follow a Virtual Output Queuing scheme at switch level. Of
course, SAQs make a difference.

4There are other ways of detecting, at ingress sides, the flows contributing to congestion. So, the use of detection queues is not mandatory.
We have selected this option in order to minimize congestion detection latency.
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Figure 4: Mechanism for detecting and handling congestion at the ingress side: (a) Queue status at the detection
moment (b) Queue status after detection.

(as B is further away than A). Notice that when the notification arrives to sw1 it may happen that packets going

through B are stored in the SAQ associated to A (as packets have to pass through A before reaching B). If sw1

allocates a new SAQ for B, it may happen that packets later stored in that SAQ could leave the switch before the

packets stored at the SAQ associated to A (out of order delivery).

Notice that this fact can lead to RECN to introduce HOL blocking. Indeed, flows not belonging to the first tree

(traffic adressed to point B) passing trough point A will be mapped to the same SAQ (the one associated to A) that

flows belonging to the congestion tree. Thus, RECN does not support the movement of the tree downstream. Also

the situation where the congestion tree forms from the leaves to the root will not be correctly treated.

Figure 5.b shows another situation. In this case sw1, having a SAQ allocated for point B, receives a less specific

notification (being point A congested). This can be related to the formation of an overlapping congestion tree. In

this case, RECN accepts the notification and allocates a new SAQ for point A. In this situation, an arriving packet

will be stored in the SAQ whose associated turnpool matches in more turns the packet turnpool. Thus, incoming

packets passing trough A and B will be mapped to the SAQ allocated for B, and packets passing through A but

not through B will be mapped to the SAQ allocated for A. Notice that in this situation no out of order may be

introduced as already stored packets passing through A but not trough B are not mapped to the SAQ asociated to B

(they were stored on the normal queue).

Thus, the proposal is to accept all the notifications regardless whether they are more or less specific. In order to

deal with out of order issues, when a new SAQ is allocated due to a more specific notification, it must be blocked

(must not send packets) until all the packets stored in the SAQ associated to the less specific notification (when the

new SAQ is allocated) leave the queue. This can be accomplished by placing in the “old” SAQ a pointer to the new
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Figure 5: Basic RECN treatment for (a) more specific notifications, and (b) less specific notifications.

allocated SAQ .

In order to foresee the potential of the proposed enhancements, Figures 6.a and 6.b show how the original

(or “basic”) RECN and the enhanced RECN mechanisms detect congestion trees. These figures reflect simulation

results when a congestion tree is formed by eight sources injecting packets to the same destination (hot-spot) at the

full rate of the link. All the sources start sending packets at the same time. Switch speedup has been set to 1.5. In

both figures, dots indicate the points (ingress or egress) considered by the mechanism as congestion roots after the

tree is formed. The thick arrows indicate the paths followed by congestion notifications (RECN messages) from

congestion points, thus indicating where SAQs are allocated for a particular congestion point.

As can be observed, with the basic RECN mechanism, one “real” congestion tree is viewed as several subtrees.

In particular, seven subtrees are formed, all of them with their roots at egress sides of switches. However, the

enhanced RECN mechanism correctly identifies the congestion tree. At the end, only one tree is detected and the

root is located at the egress side of switch 8, matching so the real congestion tree.

Although both schemes end up detecting the same congestion (through one tree or several ones), detecting the

correct one has powerful benefits. In particular, for the basic RECN mechanism, HOL blocking is not correctly

eliminated. As an example, imagine traffic not belonging to the congestion tree that arrives at switch 5 and is

passing through some of the detected intermediate congestion points. Those packets will be mapped to the same

SAQ used to hold packets addressed to the congested destination, thus introducing massive HOL blocking. As the

congestion tree grows in the number of stages, the number of intermediate detected congestion points will increase

and, then, more HOL blocking will be introduced. On the other hand, the enhanced mechanism will use a SAQ

in all the switches (on every attached port) to store packets exactly destined to the congestion root. Thus the rest
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Figure 6: Congestion tree detection with different RECN versions.

of flows will be mapped to the detection queues, and so HOL blocking at the congestion tree will be completely

eliminated.

Also, it has to be noted that enabling congestion detection at switch ingress sides has benefits in the mechanism

response. In the basic RECN, intermediate output ports (detected as congested) start to congest only when the

ingress queue at the downstream switch totally fills up with congested packets. Thus, at the time congestion is

detected some ingress side queues are totally full.

5 Performance Evaluation

In this section we will evaluate the impact of the proposed enhancements over RECN on the overall network

performance in different scenarios of traffic load and switch architecture. For this purpose we have developed

a detailed event-driven simulator that allows us to model the network at the register transfer level. Firstly, we

will describe the main simulation parameters and the modeling considerations we have used in all the evaluations.

Secondly, we will analyze the evaluation results.

5.1 Simulation Model

The simulator models a MIN with switches, end nodes, and links. To evaluate the different congestion manegement

techniques, we have used several bidirectional MINs (BMINs) shown in Table 1. 8-port switches are used and the

interconnection pattern is the perfect shuffle pattern.

In all the experiments deterministic routing has been used. Memories of 32KB have been modeled for both
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normal traffic congestion tree
Traffic network # srcs dest injection # srcs dest injection start end congestion
case rate rate time time type
#1 64 × 64 75% rand 50% 25% 32 100% variable variable incremental
#2 64 × 64 75% rand 100% 25% 32 100% variable variable incremental
#3 64 × 64 75% rand 50% 25% 32 100% 800 µs 1100 µs sudden
#4 64 × 64 75% rand 100% 25% 32 100% 800 µs 1100 µs sudden

6.25% 32 100% 800 µs 1100 µs sudden
#5 512 × 512 75% rand 100% 6.25% 201 100% 800 µs 1100 µs sudden

6.25% 428 100% 800 µs 1100 µs sudden
6.25% 500 100% 800 µs 1100 µs sudden
6.25% 32 100% 800 µs 1100 µs sudden

#6 2048 × 2048 75% rand 100% 6.25% 515 100% 800 µs 1100 µs sudden
6.25% 1540 100% 800 µs 1100 µs sudden
6.25% 2000 100% 800 µs 1100 µs sudden

Table 1: Traffic corner cases evaluated.

input and output ports of every switch. At each port, the memory is shared by all the queues (normal or detection

queues and SAQs) defined at this port at a given time, in such a way that memory cells are dynamically allocated

(or deallocated) for any queue when necessary. For the basic RECN mechanism only one normal queue and a

maximum of eight SAQs are defined at ingress and egress ports. However, for the enhanced RECN (RECN with

the two proposed enhancements) the normal queue at ingress ports has been divided in eight detection queues.

At switches, packets are forwarded from any input queue to any output one through a multiplexed crossbar, that

has been modeled with two speedup options: no speedup (link and crossbar bandwidth is 8Gbps), or 1.5 speedup

(link bandwidth is 8Gbps, crossbar bandwidth is 12Gbps).

End nodes are connected to switches using Input Adapters (IAs). Every IA is modeled with a fixed number

of N message admitance queues (where N is the total number of end nodes), and a variable number of injection

queues, that follow a scheme similar to that of the output ports of a switch. When a message is generated, it is

stored in the admitance queue assigned to its destination, and is packetized before being transferred to an injection

queue. We have used 64-byte packets.

We have modeled in detail the different versions of the RECN mechanism: 1) Basic RECN: detection only at

egress side and more restrictive notifications discarded, and 2) Enhanced RECN: detection at ingress ports enabled

and more restrictive notifications accepted, preserving in-order delivery. For comparison purposes we also evaluate

the Virtual Output Queuing (VOQ) mechanism at the switch level [2]. This method will be referred to as VOQsw.

5.2 Traffic Load

In order to evaluate the RECN mechanisms, two different scenarios will be analyzed. First, well-defined synthetic

traffic patterns will be used. Table 1 shows the traffic parameters of each traffic case. For each case, there will

be 75% of sources injecting traffic to random destinations during all the simulation period. These nodes will

inject traffic at different rates of the link depending on the traffic case. In all the cases, the rest of sources (25%)
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will inject traffic at the full rate to the same destination (medium networks, traffic cases #1 to #4) or to four

different destinations (large networks, traffic cases #5 and #6). Thus, congestion trees will be formed. When

sudden congestion is used, all the congestion sources start injecting at the same time. In the case of incremental

congestion, congestion sources start to inject one after one at intervals of 20 µs. Congestion sources inject also

during 300 µs in the incremental configuration.

As a second scenario we will use traces. The I/O traces used in our evaluations were provided by Hewlett-

Packard Labs [38]. They include all the I/O activity generated from 1/14/1999 to 2/28/1999 at the disk interface of

the cello system. They provide information both for the requests generated by the hosts and the answers generated

by the disks. As the traces are six years old, and the technology grows quickly, allowing the use of faster devices

(hosts and storage devices) that generate higher injection rates, we have applied a time compression factor to the

traces.

5.3 Performance Comparison

Figure 7 shows results for basic RECN, enhanced RECN and VOQsw, for the traffic cases #1 and #2. Speedup of

1.5 is used. In these two cases, the congestion tree is formed by the addition of different flows in an incremental

way, and the basic RECN mechanism achieves roughly the same performance that enhanced RECN. However, there

are significant differences. First, the basic RECN mechanism exhibits an oscilation in the throughput achieved, due

to the fact that HOL blocking is not completely eliminated. The enhanced RECN mechanism achieves a smooth

performance. In the traffic case #1, sources injecting to random destinations are injecting at half the link rate. It can

be observed that when congestion tree is forming, no strong degradation is experienced. However, for traffic case

#2, sources injecting random traffic are injecting at the full injection rate. It can be noticed that the basic RECN

mechanism starts to degrade performance as throughput drops from 44 bytes/ns to 37 bytes/ns. However, when

congestion tree disapears, it recovers, although exhibiting a significant oscillation. On the other hand, the enhanced

RECN mechanism behaves optimal as it tolerates the congestion tree with no performance degradation.

Taking the throughput results of VOQsw as a reference, it can be deduced that both RECN versions handle

the congestion caused by traffic case #2 very well, whereas the performance achieved by VOQsw is quite poor

(throughput drops from 44 to 25 bytes/ns and does not recover even when the congestion tree disappears). There-

fore, we can consider that traffic case #2 can cause strong HOL blocking in the network. However, taking into

account the performance of basic and enhanced RECN, we can conclude that the use of any of them virtually

eliminates HOL blocking.

Figure 8 shows results for the SAN traces, when using no speedup (Figure 8.a) and when using 1.5 speedup

(Figure 8.b). As can be noticed, the basic RECN achieves worse performance when no speedup is used, whereas

the enhanced RECN works equally with or without speedup. This result shows that it completely eliminates HOL
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Figure 7: Network throughput for traffic cases #1 and #2. Speedup is 1.5.
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Figure 8: Network throughput for SAN traffic.

blocking at the ingress ports. When using speedup, most of the congestion is roughly moved to the egress queues

and, thus, the basic RECN behaves as the enhanced RECN. Thus, when no speedup is available, enhanced RECN

makes a difference.

From these two previous results (traffic cases #1 and #2 and SAN traffic) it can be deduced that basic RECN

behaves acceptably with moderated traffic and when switches with speedup are available. However, these two

conditions will not be always true. Figure 9 shows performance results when no speedup is available and a sudden

congestion tree forms. In Figure 9.a sources injecting random traffic inject at the half of the link rate (traffic case

#3) whereas in Figure 9.b they inject at the full link rate (traffic case #4). As can be observed, the basic RECN

suffers strong degradation in both cases. Network throughput drops from 25 bytes/ns to 10 bytes/ns (60% drop)
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Figure 9: Network Throughput for traffic cases #3 and #4. No speedup.

for traffic case #3 and from 44 bytes/ns to 10 bytes/ns (77% drop) for traffic case #4. It can be noticed also that

basic RECN recovery time is quite excesive for traffic case #4 (indeed, it does not fully recovers). On the other

hand, the enhanced RECN mechanism is able to filter the ineficiencies induced by the absence of speedup and by

the dynamics of congestion trees, achieving maximum performance. Thus, it eliminates virtually HOL blocking.

Figure 10 also shows performance results for a sudden congestion tree formation, when the speedup of the

switches is 1.5. Again, network troughput for traffic cases #3 and #4 are shown in Figure 10.a and Figure 10.b,

respectively. With both traffics, the behavior of the basic RECN mechanism is better than in the case of no-speedup

switches, due to the fact that congestion tends to appear at egress sides. However, the basic RECN mechanism still

exhibits worse performance than the enhanced one. Whereas the enhanced RECN version keeps almost constantly

network troughput at maximum, the basic RECN troughput drops significantly (33% for traffic case #3 and 45% for

traffic case #4) and exhibits strong oscillations. Moreover, when sources inject at full rate (traffic case #4), network

troughput does not completely recover from the drop. When the congestion tree disappears, the performance of

basic RECN is far better than the VOQsw one.

Figure 11 shows performance results for basic RECN and enhanced RECN when used on greater networks.

Figure 11.a corresponds to a 512 × 512 MIN network (512 hosts, 640 switches), whereas Figure 11.b corresponds

to a 2048 × 2048 MIN network (2048 hosts, 3072 switches). In both cases, switches with speedup of 1.5 have

been considered. Due to the big size of these networks, instead of producing just one tree, four congestion trees

are suddenly formed by sources injecting at the full link rate (traffic cases #5 and #6, respectively). It can be seen

in the figures that the differences on the performance of basic and enhanced RECN grow with network size. The

enhanced version keeps network throughput close to the maximum independently of network size, whereas the

basic RECN throughput drops dramatically and practically does not recover.
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Figure 10: Network Throughput for traffic cases #3 and #4. Speedup is 1.5.

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06

N
et

w
or

k 
th

ro
ug

hp
ut

 (
by

te
s 

pe
r 

na
no

se
co

nd
)

Nanoseconds

Enhanced RECN

Basic RECN

VOQsw

(a) Traffic case #5, 512 × 512 network
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Figure 11: Network Throughput for traffic cases #5 and #6. Speedup is 1.5.

6 Conclusions

We have analyzed the complex nature of the formation of congestion trees in networks with CIOQ switches. We

have presented examples showing that, contrary to the common belief, a congestion tree can grow in a variety of

ways, depending on switch architecture (crossbar speedup) and traffic load. Also, we have analyzed the importance

of considering such variety when designing congestion management strategies for lossless networks, specifically

those strategies focused on eliminate HOL blocking. Moreover, taking into account the previous analysis, we

have proposed two significant enhancements to a recently proposed congestion management mechanism (RECN)

in the aim of handling congestion trees regardless the way they form. The comparative results presented in the

paper show that network performance degrades dramatically in several scenarios when using basic RECN, whereas
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the enhanced RECN is able to keep almost maximum performance in all the cases. So, we can conclude that

the proposed enhancements allow RECN to eliminate correctly the HOL blocking produced by congestion trees

independently of the way they grow.
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