
University of Castilla-La Mancha

A publication of the

Computing Systems Department

Simulation of Buffer Management Policies in
Networks for Grids

by

Agust́ın Caminero, Anthony Sulistio, Blanca Caminero,
Carmen Carrión, Rajkumar Buyya

Technical Report #DIAB-07-10-1 October, 2007

This work has also been issued as Technical Report GRIDS-TR-2007-20, Grid Computing

and Distributed Systems Laboratory, The University of Melbourne, Australia, October

31, 2007.

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS

ESCUELA POLITÉCNICA SUPERIOR

UNIVERSIDAD DE CASTILLA-LA MANCHA

Campus Universitario s/n

Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224

Simulation of Buffer Management Policies in

Networks for Grids

Agust́ın Caminero 1 ∗, Anthony Sulistio 2, Blanca Caminero 1,

Carmen Carrión 1, Rajkumar Buyya 2

1Departamento de Sistemas Informáticos

Universidad de Castilla La Mancha

Campus Universitario s/n. 02071, Albacete. Spain

{agustin, blanca, carmen}@dsi.uclm.es

2Grid Computing and Distributed Systems Laboratory

Dept. of Computer Science and Software Engineering

The University of Melbourne

111 Barry St, Carlton VIC 3053 Australia

{anthony, raj}@csse.unimelb.edu.au

Abstract

Grid technologies are emerging as the next generation of distributed com-

puting, allowing the aggregation of resources that are geographically distributed

across different locations. The network remains an important requirement for any

Grid application, as entities involved in a Grid system (such as users, services,

and data) need to communicate with each other over a network. The perfor-

mance of the network must therefore be considered when carrying out tasks such

as scheduling, migration or monitoring of jobs. Network buffers management

policies affect the network performance, as they can lead to poor latencies (if

buffers become too large), but also leading to a lot of packet droppings and low

utilization of links, when trying to keep a low buffer size. Therefore, network

buffers management policies should be considered when simulating a real Grid

system. In this paper, we introduce network buffers management policies into

∗Corresponding author. Tel.: +34 967 59 92 00 ext. 2693; fax: +34 967 59 93 43

1

the GridSim simulation toolkit. Our framework allows new policies to be imple-

mented easily, thus enabling researchers to create more realistic network models.

Fields which will harness our work are scheduling, or QoS provision. We present

a comprehensive description of the overall design and a use case scenario demon-

strating the conditions of links varied over time.

1 Introduction

Grid computing has emerged as the next-generation parallel and distributed comput-

ing methodology that aggregates dispersed heterogeneous resources for solving various

kinds of large-scale parallel applications in science, engineering and commerce [11].

Grid systems are highly variable environments, made of a series of independent organi-

zations that share their resources [12]. Some application domains that take advantage

of the Grids are collaborative visualization [21] and medical applications [5].

The network remains an important requirement for Grid applications, as entities

involved in a Grid (e.g. users, services, and data) need to communicate with each other

over a network [24]. Floyd et al. demonstrated in [9] that the utilization level of the

network links is heavily affected when the buffer management policy is not efficiently

tuned. Thus, since the performance of the network is affected by them, network buffers

policies also affect the performance of Grids.

A number of policies have been developed to manage network buffers [10, 9, 17, 3].

According to Floyd et al. [10], Random Early Detection (RED) algorithm is useful to

detect incipient network congestion in packet-switched networks, which is similar to

computational Grids since the Grid infrastructure is built on existing public network.

However, RED algorithm might not be efficient under varying traffic conditions, as it

requires constant tuning of its parameters to be able to work efficiently. This makes

RED not suitable to be used when providing network Quality of Service (QoS), as a

misconfiguration of RED parameters would seriously affect the performance received

by users [9]. Therefore, Floyd et al. [9] suggest using Adaptive RED (ARED) algorithm

to overcome this drawback.

Kumar et al. [17] present a buffer management framework for achieving end-to-

end proportional loss differentiation in networks, which is also based on RED. Aweya

2

et al. [3] present a technique for enhancing the effectiveness of RED by dynamically

changing the threshold settings as the number of connections and system load changes.

Kesselman et al. [16] introduce a novel general non-preemptive buffer management

scheme, which considers the queues ordered by their size. Gazi et al. [14] propose

a threshold-based dynamic buffer management policy, decay function threshold, to

regulate the lengths of very active queues and avoid performance degradations.

The contribution of this paper is as follows. We design and implement buffer

policies, such as FIFO, RED and ARED on GridSim [26], an open-source Grid simula-

tion tool, since it can simulate both computational and data Grids. Moreover, several

researchers have been using this simulator (such as [7, 23, 25]). More importantly,

GridSim allows the flexibility and extensibility to incorporate new components into

its existing infrastructure. We decided to implement these two versions of RED be-

cause RED (or policies based on it) is a widely used buffer management policy, as we

showed above. Hence, our work benefits researchers for evaluating and improving their

scheduling works against volatile network conditions.

This paper is organized as follows: Section 2 provides a overview on several Grid

and network simulation tools. Section 3 provides a brief explanation of the buffer man-

agement policies implemented in this work. Section 4 describes the implementations on

GridSim, which are supported by the results depicted in Section 5. Section 6 concludes

the paper and suggests some guidelines for future work.

2 Related Work

As we mentioned previously, simulations are essential for carrying out research experi-

ments in Grid systems. Thus, a number of simulation tools have been developed, such

as GridSim [26], OptorSim [4], SimGrid [13], and MicroGrid [20]. Sulistio et al. [26]

provide a detailed comparison of these simulation tools in terms of their network func-

tionalities and features. The simulation tool we use for our work is GridSim. Moreover,

[26] also provides an in-depth explanation of its network components. In this paper,

we are interested in the simulation of network buffer management policies, and none

of these tools provide the mentioned functionality.

Simulations are also widely used in the networking research area. Examples of

3

such simulators are NS-2 [1], DaSSF [19], OMNET++ [27] and J-Sim [22]. Although

their support for network protocols is extensive, they are not targeted at studying Grid

computing. This is because simulating Grids requires modeling the effects of scheduling

algorithms on Grid resources and investigating user’s QoS requirements for application

processes. In addition, we believe simulating TCP and UDP connections are sufficient

to model a real world behavior, because Grid users are mostly interested in finding

out round trip time and available bandwidth of a host. Therefore, these network

simulators perform other complex functionalities which are not needed in simulating a

Grid computing environment [26].

As a result, we decided to extend GridSim with a better network model rather

than integrating an existing simulator tool into it. We decided it because GridSim is a

very versatile tool that can be extended in an easy and efficient way. Also, integrating

a network simulator would be more complicated and time-consuming than extending

GridSim, and such integration would not be so interesting for the purposes of Grid

researchers.

3 Buffer Management Policies

The aim of our work is the extension of the GridSim Toolkit with network buffer man-

agement policies. Thus, in this section, we provide an overview on the policies we have

implemented, namely RED, Adaptative RED, and FIFO. FIFO is an straightforward

policy, which just enqueues packets into buffers, and packets get dropped when buffers

are full. The other two policies will be explained the next.

3.1 Random Early Detection

One of the most widely used policies is Random Early Detection (RED) [10]. RED

routers detect incipient congestion by computing the average queue size. The router

could notify congestion to connections either by dropping packets arriving at the router

or by setting a bit in packet headers. When the average queue size exceeds a preset

threshold, the router drops or marks each arriving packet with a certain probability,

where the exact probability is a function of the average queue size. RED routers keep

4

Algorithm 1: Calculation of average queue size.

1: if queue is non-empty then

2: avg ← old avg + wq(q − old avg)
3: else

4: avg ← (1− wq)
(time−q time)/s × old avg

5: end if

the average queue size low while allowing occasional bursts of packets in the queue [10].

During congestion, the probability that the router notifies a particular connec-

tion to reduce its window is roughly proportional to that connection’s share of the

bandwidth through the router. RED routers are designed to accompany a transport-

layer congestion control protocol such as TCP. The RED router has no bias against

bursty traffic and avoids the global synchronization of many connections decreasing

their transmission window at the same time [10].

The RED congestion control mechanisms monitor the average queue size for each

output queue, and, using randomization, choose connections to notify of that conges-

tion. Transient congestion is accommodated by a temporary increase in the queue.

Longer-lived congestion is reflected by an increase in the computed average queue size,

and results in randomized feedback to some of the connections to decrease their win-

dows [10].

The RED algorithm can be graphically seen in Figure 1. The parameters are listed

here: avg: current average queue size; old avg: previous average queue size; wq: queue

weight, the significance of the current queue size when calculating the average queue

size; q: current queue size; q time: the time when the queue got empty for the last time;

time: current time; s: typical transmission time. maxth: maximum threshold, upper

limit for the average queue size; minth: minimum threshold, lower limit for the average

queue size; maxp: the maximum probability for an incoming packet to get dropped; For

each incoming packet, the average queue size is calculated. If it is below the minimum

threshold, the packet is enqueued. If it is above the maximum threshold, the packet is

dropped. Otherwise, the packet is dropped with some probability. The average queue

size calculation is explained by Algorithm 1. This algorithm works as follows: if the

queue is not empty, the average queue size is calculated based on old avg, q, and wq

(line 1). Otherwise, the it is calculated based on old avg, wq, time, and q time (line 1).

5

Figure 1: Random Early Detection (RED) algorithm.

Algorithm 2: The Adaptative RED algorithm.

1: repeat

2: Every interval seconds
3: if (avg > target and maxp <= high limit) then

4: maxp ← maxp + α {increase maxp}
5: else

6: if (avg < target and maxp >= low limit) then

7: maxp ← maxp × β {decrease maxp}
8: end if

9: end if

10: until end of simulation

RED algorithm has been used as a basis for the development of other algorithms.

Among the algorithms developed based on RED we can find Adaptive RED [8] [9].

3.2 Adaptive RED

Adaptive RED [8] [9] is based on the assumption that the resulting average queue

length is quite sensitive to the level of congestion and to the RED parameter settings,

and is therefore not predictable in advance. Authors claim that adaptive RED removes

the sensitivity to parameters that affect RED’s performance and can reliably achieve

a specified target average queue length in a wide variety of traffic scenarios. Thus,

6

Adaptative RED is similar to RED, but it updates the maxp parameter with a given

frequency, so that the average queue length is kept at a reasonable level at all times.

The update procedure is shown in Algorithm 2, and its parameters are the following:

interval: a period of time; high limit: a top limit for the maximum dropping prob-

ability (max p); α: increment; low limit: : a low limit for max p; β: decrease factor

(β < 1); target: the desired average queue length. Also, ARED calculates wq and

minth based on the speed of the link, thus choosing their values more accurately than

just choosing them by hand. The equations used for that are wq = 1− exp(−1/C) and

minth = max
[

5, delaytarget×C
2

]

[9]. In these equations, we can see two new parameters,

namely C, which is the link capacity in packets per second, and delaytarget, which is

the target average queuing delay.

The Algorithm 2 works as follows: every interval seconds, the average queue size

is checked (it is calculated as Algorithm 1 says), and it is compared with the target.

Also, the max p is compared with the high limit (line 2). If the queue size is too large,

and the dropping probability is smaller than the high limit, then increase the dropping

probability (line 2). Otherwise, if the queue is too small, and the dropping probability

is higher than the low limit (line 2), then decrease the dropping probability (line 2).

These three algorithms (FIFO, RED, and ARED) have been implemented in

GridSim, and the implementation will be explained in the next section.

4 Implementation of Buffers Management Policies

in GridSim

In this section we will first explain the classes architecture developed to implement the

network buffers management policies, followed by an explanation on the interactions

between entities.

4.1 Architecture

We have implemented FIFO, RED and ARED as management algorithms for finite

buffers in routers, and implementations have been carried out on GridSim. In order

7

Figure 2: Classes created for the network finite buffers functionality.

to provide GridSim with this new functionality, several classes have been developed.

These classes are depicted in bold font Figure 2, and will be explained the next:

• FnbUser: This class implements the users of our Grid environment. Its function-

ality can be summarized as follows: (1) creation of jobs; (2) submission of jobs

to resources; (3) reception of succeeded jobs.

• FnbSCFQScheduler: This class is based in the SCFQScheduler GridSim class with

some variations to support finite buffers. This is an abstract class, and by extend-

ing it, new policies can be implemented. We have implemented three policies:

RED, ARED and FIFO. This class has an abstract function, the enque(Packet)

function, which is called everytime a new incoming packet arrives at the router.

• RED, ARED, and FIFO: These are three buffer management policies. They imple-

ment the

enque(Packet) function, which calls the buffer management algorithm every

time a new incoming packet arrives at the router. These classes behave as was

explained in Section 3. As ARED policy is based on RED, ARED class extends

RED. This way, new policies based on RED can be easily implemented, just by

extending RED. These four classes (including FnbSCFQScheduler) are the most

important classes of our model, as they implement the policies to manage network

buffers.

Apart from that, when a packet gets dropped, we have to inform the user involved

in that transmission. We do it after a certain delay, thus emulating the expiration

of a time-out. This is essential as the simulator does not deal well with entities

waiting for an event that never arrives. In other words, if a packet gets dropped,

the user should be informed, because the job to which that packet belongs is

failed. Thus, that job will not arrive back to the user after completion. In real

UDP transmissions, users just inject packets into the network, and do not care if

8

there are lost packets. Work on implementing TCP on GridSim will be considered

as future work.

• NetIO: It is an interface class, providing some functions to deal with IO ports.

• FnbInput: This class implements NetIO, and it is based on the Input Grid-

Sim class. The differences between FnbInput and Input are mainly in the

getDataFromLink() function. As packets may get dropped, input ports must

check if all the packets belonging to a transmission have arrived properly. Hence,

the transmission is successfull only if all the packets have arrived. Therefore,

if any packet belonging to a job’s transmission gets dropped, the job will get

filtered at the input port of the receiver, not reaching the receiver itself. We do

that because we are considering only UDP transmissions, so no detection of lost

packets is performed. As mentioned before, implementing TCP on GridSim is

part of the future work.

• FnbOutput: This class implements NetIO, and it is based on the Output GridSim

class. The difference between FnbOutput and Output is the way how it receives

notifications from routers when a packet is dropped. In this case, if the output

port belongs to a user, the port will inform the user about that. Another strategy

would be retransmitting the lost packet, and this is considered as a part of the

future work. When a packet is dropped, and the output port of the user is

informed about that, the port has to match the packet ID to the job it belongs

to. Then, the port tells the user which job has suffered the dropping. This way

a user can deem a job as failed if any of its packets got dropped. This has been

done in order to avoid the fact that users keep waiting for a job that never arrives.

In real world with UDP transmissions, output ports only have to send packets to

the other end of transmissions.

• FnbRouter and FnbRIPRouter: based on GridSim classes Router and RIPRouter,

these classes were modified to include some statistics, such as dropped packets

counters.

• FirstLastPacketsGridlet: An array of objects of this class is used to keep the

number of packets each job (gridlet using the terminology of the simulator) is

made of. This is necessary for the output port to be able to match a packet ID

to the gridlet it belongs to.

• Source pktNum: This class is used in the input ports of users/resources, to make

sure that all the packets of a job arrive at the user/resource. If any of the packets

9

of a job do not arrive, that job will be considered as failed. In this case, the input

port will filter that job, hence the user/resource will not receive it.

• GridResource: An original GridSim class, used to execute users’ jobs.

4.2 Functionality

The process of creating an experiment in GridSim requires the following steps:

• Initialize the GridSim package by calling GridSim.init() and

GridSim.initNetworkType(GridSimTags.NET BUFFER PACKET LEVEL) methods.

This way we decide we want to use the finite buffer functionality.

• Create one or more Grid resource and Grid user entities. Each resource must

have number of processors, speed of processing and internal process scheduling

policy.

• Build a network topology by connecting Grid user and resource entities.

• Finally, run the experiment by calling GridSim.startGridSimulation() method.

Figure 3 depicts a use case in which a user sends a job to a resource, and all the

packets reach the resource. The same situation would be for the opposite direction, this

is, from the resource to the user. From left to right, we can see that an user submits

a job, hence his/her output port has to split that job into a number of packets. The

output port also creates a firstLastPacketGridlet object containing the ID of the

first and the last packet of that job, in this case, 0 and 2. Then, packets are transmitted

through the network to the router, which calls FnbSCFQScheduler for each incoming

packet. The FnbSCFQScheduler object runs the policy algorithm to determine whether

each packet is dropped or not, and this is done by the child class implementing the

chosen policy. In this case, no packet is dropped, hence they are forwarded to the

input port of the resource. As packets arrive at the input port of the resource, the port

counts them. When all the packets of the job have arrived, then the job has successfully

reached the resource, hence the input port sends the job to the GridResource entity

where it will be executed.

Figure 4 shows an scenario in which one of the packets is dropped. This happens

when the

10

Figure 3: Sequence diagram showing a transmission with no dropped packets.

Figure 4: Sequence diagram showing a transmission with one dropped packet.

FnbSCFQScheduler runs the policy algorithm. In this case, the SCFQ scheduler informs

the output port of the user about the dropping. In turn, the output port checks which

job this dropped packet belongs to, and informs the user. This way, the user knows

that this job will not get executed, so his/her will not wait for the output of that job

to come back. Also, the input port of the resource will discover the dropping when a

packet does not reach it. In this case, the port will filter that job, not sending it to the

resource. Next, we show the usefulness of our work with a use case scenario.

11

5 Use Case Scenario

The aim of this experiment is to show GridSim’s ability to simulate an adequate-

size Grid testbed. Therefore, we create a network scenario based on the on the EU

DataGRID Testbed 1, as shown in Figure 5 [15]. For this experiment, our main concern

is the network behavior in a Grid environment. Hence, we are trying to look at how

different buffer management policies affect the network performance.

In this scenario we will compare the RED and ARED, using a FIFO policy as a

base case. Table 1 summarizes the characteristics of simulated resources, which were

obtained from a real LCG testbed [18]. The parameter regarding to a CPU rating is

defined in the form of MIPS (Million Instructions Per Second) as per SPEC (Standard

Performance Evaluation Corporation) benchmark. Moreover, the number of nodes

for each resource have been scaled down by 10, because of memory limitation on the

computer we ran the experiments on, and also for time restrictions. The complete

experiments would require more than 2GB of memory, and would take several weeks

of processing. Finally, each resource node has four CPUs.

For this experiment, we create 100 users and distribute them among the locations,

as shown in Table 1. Each user has 10 jobs and the processing power of each job is

1400000 Million Instructions (MI), which means that each job takes about 2 seconds if

it is run on the CERN resource. Also, I/O files sizes are 24 MB. All jobs have the same

parameters that are taken from ATLAS online monitoring and calibration system [2].

Moreover, we set the job duration time to be small because it does not influence the

performance of the network buffer management policy.

In order to create congestion on a link, we have chosen 20% of the uses to submit

their jobs to the resource CERN. Thus, the link between this resource and Router0

(shaded in Figure 5) will be heavily used. So, all the statistics presented here are those

collected at the link between CERN and Router0.

To simplify the experiment set-up, some parameters are identical for all network

elements, such as the maximum transfer unit (MTU) of links is 1,500 bytes and the

latency is 10 milliseconds. Links will be scaled down by 1000, for the same reasons

mentioned above.

12

Figure 5: EU DataGRID Testbed 1.

Resource Name (Location) # Nodes CPU Rating Policy Users

RAL (UK) 41 49,000 Space-Shared 12

Imp. College (UK) 52 62,000 Space-Shared 16

NorduGrid (Norway) 17 20,000 Space-Shared 4

NIKHEF (Netherlands) 18 21,000 Space-Shared 8

Lyon (France) 12 14,000 Space-Shared 12

CERN (Switzerland) 59 70,000 Space-Shared 24

Milano (Italy) 5 70,000 Space-Shared 4

Torino (Italy) 2 3,000 Time-Shared 2

Rome (Italy) 5 6,000 Space-Shared 4

Padova (Italy) 1 1,000 Time-Shared 2

Bologna (Italy) 67 80,000 Space-Shared 12

Table 1: Resource specifications.

Table 2 specifies the values for the parameters of the simulations running RED

algorithm. In order to calculate the thresholds, we have considered the rule maxth =

3×minth, as suggested in [10]. The value for wq has been chosen too small, so that we

can appreciate the improvement achieved by ARED, which calculates that parameter

based on the speed of the link. Table 3 specifies the values for the parameters of the

simulations running Adaptative RED algorithm, and these values are those used in [9].

The value for maxth follows the same rule as for RED. The maximum buffer size for all

the simulations is 200 packets, and this is the only parameter for the base case running

FIFO.

13

Parameter Value

maxth 150 packets

minth 50 packets

maxp 0.02

wq 0.0001

Table 2: Values of RED parameters.

Parameter Value

interval 0.5 seconds

α min(0.001, maxp/4)

β 0.9

target [minth + 0.4 × (maxth − minth),

minth + 0.6 × (maxth − minth)]

delaytarget 0.005 seconds

low limit 0.01

high limit 0.5

Table 3: Values of Adaptative RED parameters.

Figure 6 shows the first performance results that are collected at the beginning

of our simulations. Figure 6 (a) shows variations on the buffer occupation. We can

see that around time 250, buffer occupations suffer an increase, and this is because

users start submitting their jobs to the resource. Thus, the buffer of that link receives

a lot of incoming packets. When FIFO is running, the buffer gets saturated, as FIFO

imposes no restrictions on the buffer occupations. As opposed to it, both RED and

ARED can keep buffer occupations at reasonable levels, far away from saturation. In

order to achieve that, ARED increases the max p, and this can be seen in Figure 6 (b).

Regarding RED, the buffer occupation has several spikes, and this is because the wq

has been chosen to a non-optimal parameter and RED cannot detect congestion effi-

ciently. As opposed to it, ARED chooses wq based on the link features, thus the buffer

occupation remains more stable.

Figure 7 shows average buffer occupation for RED and ARED. We do not present

this statistic for FIFO, as we can see in Figure 6 (a) that the buffer occupation

reaches the full buffer capacity (200 packets) and does not change. As we mentioned

above, ARED can keep the average buffer occupation quite stable, as opposed to

RED, which shows some spikes. Both of them can keep the average buffer size be-

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 300 400 500 600 700 800 900 1000

m
ax

_p

Simulation Time (sec.)

Low_limit

High_limit

RED
ARED

(a) Buffer occupation. (b) maxp.

Figure 6: Timelines showing the progress of buffer occupations and maxp.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 b
uf

fe
r

oc
cu

pa
tio

n
(#

 p
kt

s.
)

Simulation Time (sec.)

Min_threshold

Max_threshold

ARED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 b
uf

fe
r

oc
cu

pa
tio

n
(#

 p
kt

s.
)

Simulation Time (sec.)

Min_threshold

Max_threshold

RED

(a) Average buffer occupation for ARED. (b) Average buffer occupation for RED.

Figure 7: Timelines showing the progress of average buffer occupations for RED and
ARED.

tween the thresholds. Recall that thresholds are different for RED and ARED, since

they are automatically calculated (in the case of ARED), and chosen by hand (in the

case of RED). Because of this, ARED’s thresholds are lower (minth = 5 packets and

maxth = 15 packets) than RED’s (minth = 50 packets and maxth = 150 packets).

This way, the difference in average buffer occupation between both policies showed in

Figure 6 (a) is explained.

Figure 8 shows the dropped packets at the link between resource CERN and the

router it is directly connected to. We can see that the policy which drops more packets

at this link is FIFO, because it does nothing to control the buffer occupations. Thus,

too many packets reach this link, and fill the buffer. Then, all the packets reaching

this link when the buffer is full will get dropped. On the other hand, RED and ARED

does perform that kind of control, thus the amount of packets that reach this link is

15

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000

 200 300 400 500 600 700 800 900 1000

D
ro

pp
ed

 p
ac

ke
ts

Simulation Time (sec.)

FIFO
RED
ARED

Figure 8: Statistics on dropped packets.

lower. RED and ARED schedulers at each link in the topology filter packets when

the average queue size becomes too high, thus the amount of packets that reach this

link is lower. Recall that the current infrastructure does not provide retransmission of

dropped packets, and this improvement is considered as future work.

As for the users point of view, Figure 9 shows statistics regarding the moment

when users from the location CERN receive the first dropped packet for a job. In a

real environment, this means the retransmission of the lost packet, and if it is a TCP

connection, the decrease of the transmission window and the retransmission of all the

packets from the lost one onwards. As we explained in Section 3, avoiding global

synchronization is one of the aims of the policies based on RED. In this figure, we can

see that there are few users who receive a dropped packet at the same time (the vertical

lines in the figure show the moment when more than 1 user gets a dropped packet at

the same time, and number on them show how many users get synchronized) when

using RED or ARED policies. Figure 9 (a) shows that up to 4 users get a dropped

packet at the same time, and Figure 9 (b) and (c) show no more than 3. Also, this

happens less frequently when RED or ARED is being used, than with FIFO.

6 Conclusion and Future Work

Grid technologies are emerging as the next generation of distributed computing, al-

lowing the aggregation of resources that are geographically distributed across different

locations. Due to the large scale and distributed management of Grids, the use of

simulation tools is essential to carry out research efficiently. Thus, simulation tools

16

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

2 2 3 4 2

43

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

3

2

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

3

2 2

(a) FIFO. (b) ARED. (c) RED.

Figure 9: Timelines showing the moment when users from CERN receive a packet
dropped.

should cover the main features of a real Grid system, but this was not totally true for

the network of Grids.

In this paper we propose an extension to one of the most widely used simulation

tools to cover this gap. More precisely, we have introduced finite network buffers

and network buffers management policies into GridSim. Three management policies

have been implemented, namely FIFO, RED, and ARED, but more policies can be

implemented using the current framework. This way, researchers will be able to create

more realistic network models, thus improving their research in several key fields in

Grids, such as scheduling, or QoS provision.

As for future work, we are planning to use the improved simulation tool to carry

out research aimed at providing network QoS in Grids. This will be done by integrating

this functionality into the Grid network broker outlined in [6]. Moreover, the function-

ality explained in this paper can be extended to include retransmissions of dropped

packets. Furthermore, we are thinking on implementing TCP in GridSim as another

future step.

Acknowledgement

This work has been jointly supported by the Spanish MEC and European Com-

mission FEDER funds under grants “Consolider Ingenio-2010 CSD2006-00046” and

“TIN2006-15516-C04-02”; by JCCM under grants PBC-05-007-01, PBC-05-005-01 and

José Castillejo. This research is also partially funded by the Australian Research Coun-

17

cil and the Department of Education, Science and Training.

References

[1] The network simulator - ns-2. Web Page, 2007. http://www.isi.edu/nsnam/ns/.

[2] ATLAS online monitoring and calibration system. Web Page, 2007. http://

dissemination.interactive-grid.eu/applications/HEP.

[3] J. Aweya, M. Ouellette, D. Y. Montuno, and A. Chapman. Enhancing TCP

performance with a load-adaptive RED mechanism. Intl. Journal of Network

Management, 11(1):31–50, 2001.

[4] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, and F. Zini.

Simulation of dynamic grid replication strategies in OptorSim. In Proc. of the 3rd

Intl. Workshop on Grid Computing (GRID’02), London, UK, 2002.

[5] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal, and D. Abramson. Neu-

roscience instrumentation and distributed analysis of brain activity data: a case

for escience on global grids. Concurrency and Computation: Practice and Experi-

ence, 17(15):1783–1798, 2005.

[6] A. Caminero, C. Carrión, and B. Caminero. Designing an entity to provide network

QoS in a Grid system. In Proc. of the 1st Iberian Grid Infrastructure Conference

(IberGrid), Santiago de Compostela, Spain, 2007.

[7] E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized system for

grid-wide fairshare scheduling. In Proc. of the 1st Intl. Conference on e-Science

and Grid Computing (eScience), Melbourne, Australia, 2005.

[8] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin. A self-configuring RED

gateway. In Proc. of the INFOCOM Conference, New York, USA, 1999.

[9] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An algorithm for increas-

ing the robustness of RED’s active queue management. Technical report, AT &

T Center for Internet Research at ICSI, Aug. 2001.

[10] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid-

ance. Transactions on Networking, 1(4):397–413, 1993.

18

[11] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann, 2 edition, 2003.

[12] I. T. Foster. The anatomy of the Grid: Enabling scalable virtual organizations. In

Proc. of the 1st Intl. Symposium on Cluster Computing and the Grid (CCGrid),

Brisbane, Australia, 2001.

[13] K. Fujiwara and H. Casanova. Speed and accuracy of network simulation in the

simgrid framework. In Proc. of the 1st Intl. Workshop on Network Simulation

Tools (NSTools), Nantes, France, 2007.

[14] B. Gazi and Z. Ghassemlooy. Dynamic buffer management using per-queue thresh-

olds: Research articles. Intl. Journal Communications and Systems, 20(5):571–

587, 2007.

[15] W. Hoschek, F. J. Janez, A. Samar, H. Stockinger, and K. Stockinger. Data man-

agement in an international data grid project. In Proc. of the 1st Intl. Workshop

on Grid Computing, Bangalore, India, 2000.

[16] A. Kesselman and Y. Mansour. Harmonic buffer management policy for shared

memory switches. Theoretical Computer Science, 324(2-3):161–182, 2004.

[17] A. Kumar, J. Kaur, and H. Vin. End-to-end proportional loss differentiation.

Technical Report TR-01-33, University of Texas, USA, 2001.

[18] LCG Computing Fabric Area. Web Page, 2007. http://lcg-computing-fabric.

web.cern.ch.

[19] J. Liu and D. M. Nicol. DaSSF 3.1 User’s Manual. Dartmouth College, April

2001.

[20] X. Liu. Scalable Online Simulation for Modeling Grid Dynamics. PhD thesis,

Univ. of California at San Diego, 2004.

[21] F. T. Marchese and N. Brajkovska. Fostering asynchronous collaborative visu-

alization. In Proc. of the 11th Intl. Conference on Information Visualization,

Washington DC, USA, 2007.

[22] J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao. JSIM: A JAVA-based simulation

and animation environment. In 30th Annual Simulation Symposium (ANSS’97),

Atlanta, USA, 1997.

19

[23] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi,

K. Blackburn, D. Meyers, and M. Samidi. Scheduling data-intensive workflows

onto storage-constrained distributed resources. In Proc. of the 7th Intl. Sympo-

sium on Cluster Computing and the Grid (CCGrid), Rio, Brazil, 2007.

[24] A. Roy. End-to-End Quality of Service for High-End Applications. PhD thesis,

Dept. of Computer Science, University of Chicago, 2001.

[25] G. Singh, C. Kesselman, and E. Deelman. A provisioning model and its comparison

with best-effort for performance-cost optimization in grids. In Intl. Symposium

on High Performance Distributed Computing (HPDC), Monterey Bay, California,

USA, 2007.

[26] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On incorporating differenti-

ated levels of network service into GridSim. Future Generation Computer Systems,

23(4):606–615, May 2007.

[27] A. Varga. The omnet++ discrete event simulation system,. In Proc. of the Euro-

pean Simulation Multiconference (ESM), Prague, Czech Republic, 2001.

20

