University of Castilla-La Mancha

A publication of the

Computing Systems Department

Hardware implementation study of several new egress
link scheduling algorithms

by
Rall Martinez, Francisco J. Alfaro, Jed.. Sanchez, Jas Manuel
Claver
Technical Report #DIAB-08-07-1 July 2008

COMPUTING SYSTEMS DEPARTMENT
COMPUTER SCIENCE SCHOOL
Campus Universitario s/n
Albacete - 02071 - Spain
Phone +34.967.599200, Fax +34.967.599224

Hardware implementation study of several new
egress link scheduling algorithms

R. Marfinez, F.J. Alfaro, J.L. &chez J.M. Claver
Dpto. de Sistemas Inforancos Dpto de Inforraica
Univ. Castilla-La Mancha Univ. Valencia
Albacete, SPAIN 02071 Valencia, SPAIN 46100
rmartinez,falfaro,jsanchez@dsi.uclm.es jclaver@uv.es

Abstract— The provision of Quality of Service (QoS) switches, memory, and processors, have increased
in computing and communication environments has been dramatically. Moreover, network topologies have
the focus of much discussion and research in academiapacome more flexible. and the efficiency of switch-

during the last decades. This interest in academia has been;, o\ ting and flow control techniques have been
renewed by the growing interest on this topic in industry improved

during the last years. A key component for networks . . .
with QoS support is the egress link scheduling algorithm. ~ The advent of high-speed networking has intro-
Apart from providing a good performance in terms of, for duced opportunities for new applications. Current
example, good end-to-end delay (also called latency) andpacket networks are required to carry not only traffic
fair bandwidth allocation, an ideal scheduling algorithm f applications, such as e-mail or file transfer, which
implemented in a high-performance network with Q0S y465 ot require pre-specified service guarantees
support should satisfy other important property which is to . . - P
have a low computational and implementation complexity. but also traffic of other appllcatlon_s that req_UIreS _dlf'

In this paper, we propose specific implementations ferent performance guarantees, like real-time video
(taking into account the characteristics of current high Or telecommunications [20]. The best-effort service
performance networks) of several fair-queuing scheduling model, though suitable for the first type of ap-
algorithms and compare their complexity in terms of p”cations’ is not so for app”cations of the other
silicon area and computation delay. In order to carry out type [23]. Even in the same application, different
this comparison, we have performed our own hardware . . ’
implementation for the different schedulers. We have kinds of traffic (e.g. /O 'req.uests, COherence, an-
modeled the schedulers using the Handel-C language and!fol messages, synchronization and communication
employed the DK design suite tool from Celoxica in messages, etc.) can be considered, and it would be
order to obtain hardware estimates on silicon area and very interesting that they were treated according to
arbitration time. their priority [10].

Index Terms— Scheduling algorithms, interconnection The provision of QoS in computing and commu-
networks, Quality of Service, Advanced Switching, Infini- nication environments has been the focus of much
Band, hardware implementation, complexity stimation. discussion and research in academia during the last

decades. This interest in academia has been renewed

. INTRODUCTION by the growing interest on this topic in industry

The evolution of the interconnection networlduring the last years. A sign of this growing interest
techn0|ogy has been constant a|0ng the previdﬁslndus.try is the II’_ICIUSIOH of mechanisms intended
decades. The speed and capacity of various cof@t pProviding QoS in some of the last network stan-

ponents in a communication system, such as lini@rds like Gigabit Ethernet [26], InfiniBand [15],
or Advanced Switching (AS) [1]. An interesting

European Comission FEDER funds under grants Consolider Ingent(é- hnoloai be f din 24

2010 CSD2006-00046 and TIN2006-15516-C04-0X and by Junta Hechnologies can be found in [24].

Comunidades de Castilla-La Mancha under grant PCC08-0078-9856. A common characteristic of the specifications of

these network technologies intended to provide Q¢&7] has been proposed. The main problem of this
are the use of a reduced set of Virtual Channedgorithm is that depending on the situation the
(VCs) and an egress link scheduler to arbitratetency can be very bad.

among the traffic transmitted in each VC. These On the other hand, table-based schedulers are
mechanisms permit us to aggregate traffic with sirmtended to provide a good latency performance
ilar characteristics in the same VC and to provideith a low computational complexity. This ap-
each VC with a different treatment according tproach is followed in [9] and in two of the last
its requirements, at the stile of the differentiateldigh-performance network interconnection propos-
services (DiffServ) QoS model [6], [5]. als: Advanced Switching (AS) [1] and InfiniBand

A key component for networks with QoS supportiBA) [15]. However, as we will see, these sched-
is the output (or egress link) scheduling algorithmlers do not work properly with variable packet
(also called service discipline) [11], [14], [37]. Insizes, as is usually the case in current network
a packet-switching network, packets from differeriechnologies. This is the reason because in [17] we
flows will interact with each other at each switchproposed a new table-based scheduler that works
Without proper control, these interactions may agroperly with variable packet sizes. Moreover, we
versely affect the network performance experiencedoposed a methodology to configure this scheduler
by clients. The scheduling algorithm, which selecta such a way that it permits us to decouple partially
the next packet to be transmitted and decides whetthé bounding between the bandwidth and latency
should be transmitted, determines how packets framsignments. We called this new scheduler Deficit
different flows interact with each other. Thereforelable scheduler, or just DTable scheduler.
the scheduling algorithm plays an important role to We can measure the complexity of a scheduler
perform the traffic differentiation that is necessaryased on two parameters: Silicon area required
to provide QoS. to implement the scheduling mechanism and time

Apart from providing a good performance irrequired to determine the next packet to be trans-
terms of, for example, good end-to-end delay (alsoitted. A short scheduling time is an efficiency
called latency) and fair bandwidth allocation, arequirement. The next packet to be transmitted
ideal scheduling algorithm implemented in a highshould be chosen during the transmission time of
performance network with QoS support should satie last packet which was selected by the scheduler.
isfy other important property which is to have &his is necessary in order to be able to send pack-
low computational and implementation complexitgts one after another without letting gaps between
[28]. This is because in order to achieve a goddem. This requirement takes more importance in
performance, the time required to select the nexigh-performance networks due to their high speed.
packet to be transmitted must be smaller than tMoreover, switches of high-performance intercon-
average packet transmission time. This means tingction technologies are usually implemented in a
the scheduler computation time must be very smadingle chip. Therefore, the silicon area required to
if we consider the high speed of high-performanamplement the various switch elements is a key de-
networks. Moreover, a low complexity is requiredign feature. Note, that a scheduling algorithm must
in order to be able to implement the scheduler ime implemented in each egress link and thus, the
a small silicon area (note that high-performancslicon area required to implement the scheduling
switches are usually implemented in a single chiplgorithm should be as small as possible.

The design of a traffic scheduling algorithm in- In this paper, we propose specific implemen-
volves an inevitable trade-off among the above profations (taking into account the characteristics of
erties. Many scheduling algorithms have been prodrrent high performance networks) of several fair-
posed for that. Among them, the “sorted-priorityueuing scheduling algorithms and compare their
family of algorithms are known to offer very goodcomplexity in terms of silicon area and computation
delay [31]. However, their computational complexdelay. The scheduling algorithms that we have cho-
ity is very high, making their implementation insen for this comparison are the Self-Clocked Fair
high-speed networks rather difficult. In order tQueuing (SCFQ) [13], the DRR, and the DTable.
avoid the complexity of the sorted-priority ap\We have chosen the SCFQ algorithm as an example
proach, the Deficit Round Robin (DRR) algorithnof “sorted-priority” algorithm, the DRR algorithm

because of its very small computational complexitthat many of these properties are tightly related to
and the DTable as an intermediate proposal. In ttlee QoS guarantees made for the end user. However,
case of the SCFQ and DRR schedulers, we usere are also some general desirable properties:
the credit aware versions of both algorithms that

we proposed in [18] for being used in networks 1) Good End-to-End Delay As stated before,

with a link-level flow control network, which is the end-to-end delay (also called latency) is
the case in most current high-performance network defined as the sum of the transmission delay,
technologies. the propagation delay, and the queuing delay

In [33] and [25] interesting implementations for experienced at each network node. The last
the SCFQ scheduler are proposed. However, these component is by far the most significant. In
implementations were designed for a high number some applications if a packet experiences a la-
of possible flows. Note that in our case there is tency higher than a certain value, the value of
going to be just a limited number of VCs. This the packet information may be greatly dimin-
allows to consider more efficient implementations. ished or even worthless. Moreover, a larger
Moreover, the case of the SCFQ implementation delay bound implies increased burstiness of
[25] was intended for fixed packet sizes, specifically, = the session at the output of the scheduler,
for an ATM environment. thus increasing the buffering needed at the

Therefore, we have performed our own hardware switches to avoid packet losses [31]. Thus, a
implementation for the different schedulers. We good scheduling algorithm should guarantee
have modeled the schedulers using the Handel-C acceptable queuing delay.
language [7] and employed the DK design suite tool 2) Flexibility . The scheduling discipline should
from Celoxica in order to obtain hardware estimates be able to accommodate applications with
on silicon area and arbitration time. varying traffic characteristics and performance

The structure of the paper is as follows: Section requirements rather than just optimize the
Il presents a summary of the general aspects about performance from a certain application’s point
scheduling algorithms, focusing on the fair queuing of view [37]. In future networks several ap-
schedulers family. Sections Ill, IV, and V present plications with diverse requirements will have
the DRR-CA, SCFQ-CA, and DTable scheduling to be supported making necessary for the
algorithms, respectively, and describe their hardware scheduling discipline to be flexible.
implementation. In Section VI a comparison study 3) Protection. Real network environment is not
on the implementation and computational complex- static. As a consequence, the scheduling disci-
ity of the different schedulers is provided. Finally, pline should be able to protect the well behav-
some conclusions are given. ing users from different sources of variability,
such as best-effort traffic, bad behaving users
and network load fluctuations [37]. Bad be-
having users refer, for example, to users who

Service discipline, also called packet scheduling, send more packets than their traffic profile al-
is an important mechanism to provide QoS guar- lows. Network load fluctuations, on the other
antees in computer networks, such as end-to-end hand, are caused by traffic bursts at a router.
delay bounds and fair bandwidth allocation [11], These bursts may accumulate even if the users
[14], [37]. During the last decades a vast amount meet their traffic constraints at the entrance of
of scheduling disciplines have been proposed in the network. Ideally, the scheduling discipline
the literature for different purposes. This section should be able to satisfy the performance
outlines some desirable properties of scheduling requirements of well behaving users even in
disciplines and presents possible ways to classify the presence of these factors.
scheduling disciplines. 4) Simplicity. Performance characteristics are

In order to be able to design new scheduling not the only parameters that must be taken
disciplines and to compare the existing ones with into account when deciding which is the
each other, it is important to define the desirable best scheduler in networks with QoS support.
properties of a scheduling discipline. It is obvious Other important property, specially in high-

Il. SCHEDULING ALGORITHMS

performance networks, is simplicity [28]. ThisQueuing (WFQ) [11], packet-by-packet GPS [22],
is because in order to achieve a good pegelf-Clock Fair Queueing SCFQ [13], Worst Case
formance, the processing overheads must Wéeighted Fair Queuing (WF2Q) [3], frame-based
some orders of magnitude smaller than tHair queuing [30], Hierarchical Packet Fair Queuing
average packet transmission time. This meaf#g, Weighted Round Robin (WRR), Deficit Round

that the time needed to decide the next packebbin (DRR) [27], and List-based WRR [9]. These
to be transmitted must be very small, if wescheduling algorithms can be divided in two big
consider the high speed of high-performanagoups: Sorted-priority algorithms and frame-based
networks. Moreover, a low complexity is re-algorithms.

quired in order to be able to implement the

scheduler in a small silicon area (note tha{ Sorted-priority fair queuing algorithms

high-performance switches are usually imple- . :
mented in a single chip). A real-world packet-by-packet GPS service dis-

Scheduling disciplines can be categorized ﬁ.ipline typically consists of the following two func-

many ways. Traditionally they have been dividefons:

into work-conserving and non-work-conserving dis- 1) Tracking GPS time: This function tracks
ciplines [37]. Another possible classification is the progress of GPS virtual time (described
based on their internal structure, according to two later) with respect to the real time. Its main
main architectures: Sorted-priority and frame-based ~ ©bjective is to estimate the GPS virtual start

[29].
A

and finish times of a packet, which are the
well-known and very important kind of times that a paCket should have started and

scheduling algorithms are the fair queuing algo- finished to be served, respectively, if served
rithms. This kind of algorithms allocate bandwidth Py @ GPS scheduler.
to the different flows in proportion to a specified 2) Scheduling according to GPS clock:This
set of weights. The perfect fair queuing scheduling ~ function schedules the packets based on the
a|gorithm is the General Processor Sharing (GPS) estimation of their GPS virtual finish/start
scheduler [11], [22]. times. For example, WFQ selects the packet
GPS is considered to be an attractive scheduling With the lowest GPS virtual finish time among
discipline since it has many desirable properties. the packets currently in queue to be served.
First, it provides fairness for the flows by servicing The algorithms that follow this approach are
each flow with a rate equal to or greater than thecluded in the “Sorted-priority” family of algo-
flows’s guaranteed rate. Second, if the incominghms. This kind of scheduling algorithms assign
traffic is leaky-bucket constrained [32], it has beesach packet a tag and scheduling is made based
proved that strict bounds for worst-case netwoxkn the ordering of these tags. “Sorted-priority”
gueuing delay exist [22]. Third, the classes can ladgorithms are known to offer good delay bounds
treated in different ways by varying the weightd31]. However, this family of algorithms suffers
For instance, if there are two classes with weight®om two major problems. The first problem is that
¢1 = 1 and ¢, = 0, GPS reduces to strict prioritythese algorithms require processing at line speeds
scheduling. On the other hand, if all classes afer tag calculation and tag sorting. In other words,
assigned equal weights, GPS behaves as a unif@ath time a packet arrives at a node, its time tag is
processor sharing system. calculated and the packet is inserted at the appro-
However, despite these advantages, GPS is nqtraate position in the ordered list of packets waiting
realistic service discipline since in a packet netwofkr transmission. This means that these algorithms
service it is performed packet-by-packet, rather thaequire at least the complexity of a search algorithm
“pit-by-bit” and thus, it cannot be implemented irin the list of queued packet®(log(N)), where N
practice. Different packet-by-packet approximations the maximum number of packets at the queue,
of GPS have been proposed, which try to emulate if the buffers are not share@(log(.J)), where
the GPS system as accurately and simply as pdsis the number of active flows. The complexity of
sible while still treating packets as entities. Exancomputing the GPS virtual finish time of the packets
ples of fair queueing algorithms are Weighted Faliras long been believed to l6%.J) [22], [30], [31],

[8]. In [38] and [36] a deeper discussion on thipacket is transmitted, the quantum is reduced by
topic can be found. the packet size. The unused quantum is saved in the
The second problem that may happen in thdeficit counter, representing the amount of quantum
sorted-priority approach is that the virtual clockhat the scheduler owes the flow. At the next round,
cannot be reinitialized to zero until the system ihe scheduler will add the previously saved quantum
completely empty and all the sessions are idle. Thethe current quantum. The main advantage of the
reason is that the time tag is an increasing functi@RR scheduler is its computational simplicity. Due
of the time and depends on a common-referent®this, recent research in the Differentiated Services
virtual clock, which in turns reflects the value ofirea proposes the DRR as a feasible solution for
the time tag of previously served packets. In oth@nplementing the Expedited Forwarding Per-hop
words, it is impossible to reinitialize the virtualBehavior [12]. However, the main problem of this
clock during the busy period, which, although stalgorithm is that its delay depends on the frame
tistically finite (if the traffic is constrained), canlength. Depending on the situation, the frame can
be extremely long, especially given that most conbe very long, and thus, the latency could be very
munication traffic has been shown to exhibit selbad.
similar patterns which lead to heavily tailed buffer Two recent network technology standards, AS
occupancy distributions. and IBA, incorporate table-based schedulers, which
Therefore, for a practical implementation o#re intended to provide a good latency performance
sorted-priority algorithms, very high-speed hardwvith a small computational complexity. In order to
ware needs to be designed to perform the sortiqyovide a good latency performance, the table-based
and floating-point units must be involved in thechedulers instead of serving packets of a flow in
computation of the time tags. a single visit per frame, the service is distributed
throughout the entire frame. AS and IBA use Virtual
Channels (VCs) to aggregate flows with similar
characteristics and the arbitration is made at a VC
Frame-based fair queuing algorithms try to adevel. In both cases, the maximum number of unicast
dress the excesive complexity of sorted-priorityCs that a port can implement is 16. The AS table-
algorithms. The simplest frame-based schedulibgsed scheduler employs an arbitration table that
discipline that provides a way to emulate the GR&®nsists in a register array with fixed-size entries of
system is the Weighted Round Robin (WRR). I8 bits. Each entry contains a field of 5 bits with a VC
the WRR approach, a list of flow weights is visitedtentifier value and a reserved field of 3 bits. When
sequentially, each weight indicating the number afrbitration is needed, the table is cycled through
packets from the flow that can be transmitted. Tlsequentially and a packet is transmitted from the
WRR algorithm faces a problem if the averag¥C indicated in the current table entry regardless
packet size of the different flows is different. Irof the packet size. If the current entry points to an
that case, the bandwidth that the flows obtain mampty VC, that entry is skipped. The number of
not be proportional to the assigned weights. Therentries may be 32, 64, 128, 256, 512, or 1024.
fore, the WRR algorithm does not work properly InfiniBand defines a scheduler that uses two ta-
with variable packet sizes. However, today netwotdes, one for scheduling packets from high-priority
technologies usually use variable packet sizes. VCs and another one for low-priority VCs. The
The Deficit Round Robin (DRR) algorithm [27]Jmaximum amount of data that can be transmitted
is a variation of the WRR algorithm that works orfrom high-priority VCs before transmitting a packet
a proper way with variable packet sizes. In ordérom the low-priority VCs can be configured. Each
to handle properly variable packet sizes, the DRgble has up to 64 entries. Each entry contains a
algorithm associates each queue witluantumand VC identifier and a weight, which is the number of
a deficit counter The quantum assigned to a flownits of 64 bytes to be transmitted from that VC.
is proportional to the bandwidth assigned to thdtis weight must be in the range of 0 to 255, and
flow. The sum of all the quantums is called thes always rounded up as a whole packet.
frame length. For each flow, the scheduler transmitsOn the other hand, Chaskar and Madhow [9]
as many packets as the quantum allows. Wherp@pose a category of scheduler called list-based

B. Frame-based fair queuing algorithms

Weighted Round Robin for being used in networks before, is the common trend in the last inter-
with fixed packet sizes. Chaskar and Madhow pro- connection network proposals.

pose three of these list-based WRR schedulers. All. A VC queue is considered active only if it has
of these schedulers can actually be implemented at least one packet to transmit and if there are
with the AS table-based scheduler. In all the cases enough credits to transmit the packet at the
the proportion of table entries associated with each head of the VC.

flow indicates the bandwidth assigned to each flow.. When a packet is transmitted, the next active
Therefore, the difference among the three schedulers VC is selected when any of the following
is in the way of distributing the flow identifiers conditions occurs:

among the table entries. These different forms of _ There are no more packets from the cur-
interleaving the flow identifiers result in different rent VC or there are not enough flow
latency characteristics for the three schedulers. In control credits for transmitting the packet

their tests, the variant that provides the best latency that is at the head of the VC. In any of
performance tries to emulate the behavior of the these two cases. the current VC becomes
WF2Q algorithm. inactive, and its deficit counter becomes
zero.
1. THE DRR-CA SCHEDULER — The remaining quantum is less than the

size of the packet at the head of the

current VC. In this case, its deficit counter

becomes equal to the accumulated weight
in that instant.

The DRR algorithm [27] is a variation of the
WRR algorithm that works on a proper way with
variable packet sizes. In order to handle properly
variable packet sizes, the DRR algorithm associates
each queue with guantumand adeficit counter The resulting algorithm is expressed in the pseu-
The quantum assigned to a queue is proportionaldecode shown in Figure 2.
the bandwidth assigned to that queue. The deficitlf we compare the complexity of the DRR and
counter is set to O at the beginning. The scheduBRR-CA algorithms, the main difference is that in
visits sequentially each queue and transmits as mahg case of the DRR-CA algorithm the number of
packets as the quantum allows. When a packetgseues is equal to the number of VCs instead of the
transmitted, the quantum is reduced by the packeimber of flows, and thus the complexity is even
size. The unused quantum is saved in the defisthaller. The only added complexity is to take into
counter, representing the amount of quantum thextcount the flow control status in order to consider
the scheduler owes the queue. At the next round, thetive or inactive a VC.

scheduler will add the previously saved quantum to o well-known problem of the WRR and DRR
the current quantum. When the queue has no pad@%ﬂthms’ that is also shared by the DRR-CA
to transmit, the quantum is discarded, since thBgyorithm, is that the latency and fairness depend
flow has wasted its opportunity to transmit packetsn the frame length. The frame length in these
Figure 1 shows the pseudocode for this algorithmy|gorithms is defined as the sum of all the weights
The problem of the DRR scheduler, which it the WRR algorithm or the quantums in the DRR
common in current high-peformance networks, iggorithm. The longer the frame is, the higher the
that it interacts with the link-level flow Contr0||atency and the worse the fairness. In order for
mechanism. When we do not allow the selectiqpRR to exhibit lower latency and better fairness,
of a flow, because of lack of flow control creditsthe frame length should therefore be kept as small
if we still continue accumulating quantum for thigs possible. Unfortunately, given a set of flows, it
flow in each round, then the blocked flow is going t not possible to select the frame length arbitrarily.
take advantage of the time that has been b|OCked.Aﬁcording to the implementation proposed in [27],
order to solve this problem, the DRR-CA algorithnbRR exhibitsO(1) complexity provided that each
that we have proposed works in the same way as iy is allocated a quantum no smaller than the
DRR algorithm, except in the following aspects: Maximum Transfer Unit (MTU). This ensures that
« We are going to consider VCs instead of flowthe algorithm can cycle through the list knowing that
in the DRR-CA algorithm because, as statatlis always possible to transmit at least one packet

while (There is at least one packet to be transmitted)
if ((There are no packets in the queuesetected Flow) or
(selected Flowg;epirst > total Quantum))
de ficitCounterseectedrion < totalQuantum
selected F'low <+ Next active flow
totalQuantum «— deficitCounter sjectedFiow + qUANTUM selected Flow
totalQuantum = total Quantum — selected Flows;,epirst
Transmit packet from selectedFlow
if (There are no more packets in the queues@kcted F'low)
totalQuantum «— 0

Fig. 1. Pseudocode of the DRR scheduler.

while (There is at least one active VC)

if ((selectedV C' is not active) or felectedV Cy;,epirst > totalQuantum))
selectedV Cie ficitCounter < totalQuantum
selectedV C' +— Next active VC
totalQuantum « selectedV CyeficitCounter + selectedV Coyantum

totalQuantum = total Quantum — selectedV Cl;epirst

Transmit packet from selectedVC

if ((There are no packets in the queuesetectedV C') or
(The flow control does not allow transmitting frogalectedV C'))
totalQuantum «— 0

Fig. 2. Pseudocode of the DRR-CA scheduler.

from each flow. This means that there will nevevC until that VC becomes inactive or there is no
be a need to cycle through the entire table seveemough quantum to transmit more packets from that
times in order to gather enough weight for th¥C.
transmission of a single packet. As observed in [16], A possible way of implementing the mechanism
removing this hypothesis would entail operatinthat selects the next active VC would be to check
at a complexity which can be as large @N). sequentially all the VCs in the list starting from
Note that this restriction affects not only the weighthe contiguous position of the last selected VC (see
assigned to the smallest flow, but to the rest of thgure 3). However, in order to make this search
flows in order to keep the proportions among therin an efficient way, we have implemented it with a
barrel shifter connected to amrder based bitonic
etwork The barrel shifter rearranges the list in
1e correct order of search and the bitonic network
finds the first active VC in a logarithmic number
When a packet arrives at the head of a V©f cycles. The structure for this selector function is
queue the scheduler receives a notification froatso shown in Figure 3.
the buffers. The DRR-CA scheduler just takes note
of the packet size and actives the VC if there are
enough flow control credits to transmit that packet. IV. THE SCFQ-CASCHEDULER
In order to select the next VC that can transmit The Self-Clocked Weighted Fair Queuing (SCFQ)
packets, the scheduler must select the next actalgorithm [13] is a variant of the Weighted Fair
VC from the last selected VC in a list with all theQueuing (WFQ) mechanism [11] which has a lower
VCs. The scheduler transmits packets from the saw@mputational complexity. It defines fair queueing

A. Hardware implementation of the DRR-CA sche
uler

Last selected VC

r

vCo|vC1|VvC2| VC3|VC4 VC5|VC6|VC7

\ J\. J
Y Y
A A
'd N/ A\

VC3|VC4|VC5|VC6|VC7 VCO|VC1 VC2

Search order >
VC 1 VCVC_N
VCID Active oo VCID Active
Last VC ID»‘ Barrel shifter
00

Order based Bitonic Network

lVCID

Fig. 3. Structure of the module that selects the next VC to transmit in the DRReheduler.

in a self-contained manner and avoids using a hyptxe tag calculation. Therefore, the computational
thetical queueing system as reference to determoewmplexity of the SCFQ algorithm is lower than
the fair order of services like in the WFQ. Thighe complexity of the WFQ algorithm. However, the
objective is accomplished by adopting a differemomputational simplification does not come without
notion of the virtual time. Instead of linking thea cost: In some situations SCFQ behaves worse than
virtual time to the work progress in the GPS systerdyFQ and WF2Q. Figure 4 shows the pseudocode
the SCFQ algorithm uses a virtual time functiofor the SCFQ algorithm.

which depends on the progress of the work in the

actual packet-based queuing system. This approact:].he SCFQ-CA scheduler we have proposed

offers th_e advant_age of removing t_he Computat'oa{giapts the original SCFQ algorithm to be used with
complexity associated to the evaluation of the thug link-level flow control mechanism with a limited

}:\T;ég?;&%nm;ﬁr\g; Sieu;feas'ble in high Sloeefﬂjm_ber of flows or VCs. Note thaﬁcwem IS the_
service tag of the packet currently being transmitted
Therefore, when a packet arrives, SCFQ uses thed thus, the service tag of the packets that have
service tag of the packet currently in service as thgready been transmitted is equal to or lower than
virtual time to calculate the new packet tag. Thus, ... Moreover, the service tag of the packets
in this case the service tag of t#€" packet of the that have not already been transmitted are equal to
i'* flow SF, let L} be its length andb; the weight or bigger thanS,,,...;. Therefore, if thek™ packet

assigned to its flow, is computed as of the i** VC arrives at an empty queue, the service
Ik tag is computed as:
Szk = max{Sf_l, Scu'r'remt} + = Lk
‘ Sf = Scurrent + L
o

As stated before, the SCFQ algorithm avoids the
emulation of a GPS system to maintain tigual On the other hand, if thé'* packet of the VCi
time This reduces the computational complexity drrives at a queue with more packets, the service

PACKET ARRIVAL (newPacket, flow):
newPacketservicerag < max(currentServiceT'ag, flowigsiServiceTag) + o
flowlastServiceTag — newPaCketserviceTag

newPacket; e

WreservedBandwidth

ARBITRATION:

while (There is at least one packet to transmit)
selected Packet «+— Packet with the minimungerviceT ag
currentServiceT'ag <+ selected Packetservicerag
Transmitselected Packet
if (There are no more packets to transmit)

‘v’flow flOwlastServiceTag —0
currentServiceTag <« 0

Fig. 4. Pseudocode of the SCFQ scheduler.

tag is computed as: « Each active VC has associated a service tag.
I « When a new packet arrives at a VC queue, a

Sk =gkt % service tag is assigned only if the arrived packet
Pi is at the head of the VC and there are enough

This means that once that there is at least one credits to transmit it.
packet in a VC queue, the value of the service« When a packet is transmitted, if there are
tags of the packets that arrive after this first packet enough credits to transmit the next packet, the
depends only on the value of the precedent service VC service tag is recalculated.
tags and not on the value &f.,.,.,; at the arrival « When a VC is inactive due to a lack of credits
time. Therefore, we can wait to stamp a packet and receives enough credits to transmit again,
with its service time until the packet that is before a new service tag is assigned to the VC.
it in the VC queuep! ™, is being transmitted. Note
that at this time theSe,, .. is equal toSF*,

This allows us to simplify in a high degree th
original SCFQ algorithm by storing not a service tag
per packet, but a service tag per flow or VC. This
service tag represents the service tag of the packet o)
of the VC queue. Note that this makes much easé'r Symplifying the SCFQ-CA scheduler
and simpler to modify this algorithm to take into The SCFQ-CA algorithm, as the original SCFQ
account a link-level flow control mechanism. Eachigorithm and most shorted-priority algorithms, has

The resulting scheduling algorithm is represented in
ethe pseudocode shown in Figure 5.

VC service tag is then computed as: the problem of the increasing tag values and the
1 first possible overflow of the registers used to store these

Si = Seurrent + — ' values. Therefore, we propose a modification to
2 the SCFQ-CA scheduler that makes impossible this

whereL/*" is the size of the packet at the head afverflow. This modification consists in subtracting
the i VC. the service tag of the packet currently being trans-

The SCFQ-CA algorithm that we propose worksiitted to the rest of service tags. If we consider only
in the same way as the SCFQ algorithm, except éntag per VC, this means to subtract the service tag
the following aspects: of the VC to which the packet being transmitted

 We are going to consider VCs instead of flowgelongs to the rest of VCs service tags.
in the SCFQ-CA algorithm because, as statedThis limits the maximum value of the service
before, is the common trend in the last intetags while still maintaining the absolute differences
connection network proposals. among their values. This also means tBaf.,.,.: IS

10

PACKET ARRIVAL(newPacket, VC):
if (newPacket is at the head in the queue BfC) and
(The flow control allows transmitting frony C'))

Ve .. — currentServiceT a VsizePirat
servzceTag g + VCrese'r’UedBandwidth

ARBITRATION:
while (There is at least one active VC)
selectedV C' «+— Active VC with the minimumserviceT ag
currentServiceTag < selectedV CyeryiceTag
Transmit a packet fromelectedV C
if ((There are more packets in the queuesefectedV (') and
(The flow control allows transmitting froreelectedV C))
| selectedV Cyeryicerag < currentServiceTag + selecjggﬁ%f::gi;;mZ_dth
else
selectedV Ciservicerag < 0
if (There are no active VCs)
currentServicelag «— 0

Fig. 5. Pseudocode of the SCFQ-CA scheduler.

always equal to zero and thus, In order to decide which is the next packet to be
transmitted, the SCFQ-CA algorithm must choose
the packet from the active VC with the smallest
i service tag. In order to do this in an efficient way,
Moreover, the service tags are limited to a maximume have employed a bitonic network, which obtains
value mazg: mazs = YLV where MTU is the the selected VC in log(#VCs) cycles. The structure
maximum packet size an%u'% is the minimum of the selector module is shown in Figure 7.
possible weight that can be assigned to a VC.
The resulting SCFQ-CA scheduling algorithm is V. THE DEFICIT TABLE SCHEDULER
represented in the pseudocode shown in Figure 6\We have proposed a new table-based scheduling
Note that this last modification adds the Comp|eXitX|gorithm that works properly with variable packet
of subtracting to all the service tags a certain valggzes [17]. We have called this algorithm Deficit
each time a packet is scheduled. This makes thigble scheduler, or just DTable scheduler, since it is
modification feasible in hardware only when a fey mix between the previously proposed table-based
number of VCs is considered, which is the commasthedulers and the DRR algorithm. Our scheduler
trend in the last interconnection network proposakyorks in a similar way than the DRR algorithm but
)) instead of serving packets of a flow in a single visit
B. Hardware implementation of the SCFQ-CAer frame, the quantum associated to each flow is
scheduler distributed throughout the entire frame. Note that
When a new packet arrives at the SCFQ-C#e have also considered the possibility of a link-
scheduler, apart from taking note of the packétvel flow control mechanism when defining this
size and activating the VC if there are enougscheduler.
flow control credits to transmit that packet, this This new table-based scheduler defines an arbitra-
scheduler must calculate the packet service tag. #an table in which each table entry has associated a
stated before, we have solved the problem of tiflew identifier and arentry weightwhich is usually
possible overflow of the service tags. Moreover, thexpressed in flow control credits in networks with
modification entails a simplification of the servica credit-based link-level flow control (like AS and
tag computation. IBA). Moreover, each flow has assigneddaficit

Lfirst
Si = -2

11

PACKET ARRIVAL(newPacket, VC):
if (newPacket is at the head in the queue bfC) and
(The flow control does allow transmitting froiiC'))
VCserviceTag — Ve VEsizebirat

reservedBandwidth

ARBITRATION:
while (There is at least one active VC)
selectedV C' «+ Active VC with the minimumserviceT ag
currentServiceTag « selectedV CierviceTag
Transmit packet fromselectedV C'
v active VC
VCservicerag < V Cservicerag — currentServiceT ag
if ((There are more packets in the queuesefectedV C') and
(The flow control does allow transmitting frorelectedV C))

selectedV CsizeFirst
. «—
SeleCtedVCSETUZCETag SeleCtedVCrese'rvedBandwidth

Fig. 6. Pseudocode of the improved SCFQ-CA scheduler.

VC1 VCVC_N

_A _A
' @ Y ' & Y
VCID Active Service_tag VCID Active Service_tag

Y S N B

Minimum Bitonic Network

iVC ID

Fig. 7. Structure of the selector module for the SCFQ-CA scheduler.

rovo] w Jrwno] w Jrwmn| w Jrwn] w

through sequentially until an entry assigned to an
active flow is found. A flow is considered active

when it stores at least one packet and the flow
control allows that flow to transmit packets. When
a table entry is selected, treccumulated weight

is computed. The accumulated weight is equal to
the sum of the deficit counter for the selected
flow and the current entry weight. The scheduler
transmits as many packets from the active flow as
the accumulated weight allows. When a packet is
transmitted, the accumulated weight is reduced by

Fig. 8. Example of an arbitration table with 32 entries for the DTabhe packet size.
scheduler.

Flow_ID | w | Flow_ID | w | Flow_ID | w | Flow_ID | w

Fowmd | w [rowm| w Jrowm] w [rwn] w

FIow_ID| w |F|ow_ID| w |FIow_ID| w |FIow_ID| w

Flow7|D| w |Flow7ID| w |Flow7ID| w |FI0W7ID| w

Flow_ID | w | Flow_ID | w | Flow_ID | w | Flow_ID | w

)
)
)
Fowo [W Jrow] W Jrown] W Jrown] W
)
)
!

Flow_ID | w | Flow_ID | w | Flow_ID | w | Flow_ID | w

L7 L =77 L=—9 L=—93 L= L=737 L=77 =T

The next active table entry is selected if the
flow becomes inactive or the accumulated weight

) o) becomes smaller than the size of the packet at the
counterthat is set to 0 at the beginning. Figure Bead of the queue. In the first case, the remaining
shows an example of an arbitration table with 3gccumulated weight is discarded and the deficit
entries. counter is set to zero. In the second case, the unused

When scheduling is needed, the table is cycledtcumulated weight is saved in the deficit counter,

12

representing the weight that the scheduler owes theTherefore, in order to implement the DTable
queue. scheduler in IBA, it is only necessary to add the
This behavior, already considering VCs insteadkficit mechanism. This means to add a deficit
of flows, is represented in the pseudocode showaunter to each VC and the logic to store and load
in Figure 9. Note that when using the schedulintpe remaining weight. Note that these counters are
algorithm the bandwidth assigned to th& flow ¢; setto zero at the beginning and are modified dynam-

with an arbitration table ofV entries is: ically by the scheduler itself during the scheduling
J process, and thus they do not require any user
Z weight, configuration.
e 2) Advanced SwitchingAs stated before, the AS

¢ =3 arbitration table consists in a list of VC identifiers
Z weight, without any weight assigned to each entry as it is the
"o case in the DTable scheduler. Therefore, apart from

where J is the set of table entries assigned to thaeddlng the hardware to manage a deficit counter

it flow andweight is the entry weight assigned tP€" VG, We mustindicate in some way the weight
a table entry. assigned to each table entry.

in order to keep the computational complexity [T BITReS Way ©f TRETICRng Tae TUAAE
low, we set the minimum value that a table entré 9

can have associated to the MTU of the networ&Me fixed weight. However, this approach limits

This is the smallest value that ensures that there V\ﬂIIIOt the configuration posibilities of the DTable
heduler. Therefore, we have proposed three other

never be necessary to cycle through the entire tapfe'ecu'e :
. . . ssibilities to fully implement the DTable sched-
several times in order to gather enough weight fgg r in AS but modifying as little as possible the

the transmission of a single packet. This means t specification [19]
each time an entry from an active flow is selected, P) " . . .

) . : a) Using the 3-bit reserved fieldThis possi-
at least one packet is going to be transmitted fr?]Bri]Iit consists in employing the 3-bit reserved field
that flow. Note that this consideration is also mada . ploying

in the DRR algorithm definition [27]. Note also tha hgacrr(l)é?ebrlr(la ;qtg?;ti?nafj:ggn?aﬁghgg ttr?a(:?r?irs] ﬁg;[éy'
in the IBA table-based scheduler this issue is solved . P P

. .- only allows us to specify a weight between 0 and
by rounding up to a whole packet the remainin) ;
. . , and thus, several considerations must be made.
weight in a table entry.

First of all, as stated before, the entry weight must
represent at least the value of the MTU. Therefore,
A. Converting the AS and IBA table schedulers BWweight of 0 is not going to be used, and thus, we
a DTable scheduler propose to consider the weight 0 as 1, the weight 1

As stated before, AS and IBA employ table-basea$ 2, etc. This allows us to specify a weight between
schedulers in the egress links to provide QoS. Inand 8 with the 3-bit field.
this section, we show how to implement the DTable Moreover, in AS, the MTU can be up to 34 flow

scheduler in these technologies modifying as littRontrol credits (2176 bytes). Obviously, it is not
as possible their specifications. possible to represent directly a value of at least

1) InfiniBand: Each table entry of the IBA 34 with just 3 bits. Therefore, when using the 3-
scheduling mechanism specifies a VC identifier afdf reserved field to assign a weight to each entry,
a weight. Therefore, the difference between the IB@ach weight unit will represent a weight equivalent
table and the DTable arises when the size of th@ a certain number of flow control credits..
packet at the head of the selected VC is bigger th&herefore, when an entry is selected its weight must
the remaining amount of information to transmipe translated into its value in flow control credits:
from that VC. In the InfiniBand case, the pack%t
is transmitted exhausting the remaining weight, but
in the DTable case, other table entry is selected, and b) Modifying the arbitration table format:
the remaining weight is stored for future use in th@ther possibility is to modify the structure of the
VC deficit counter. arbitration table in order to dedicate a higher num-

ble Entry.weight «— (table Entry.value+1) xm

13

while (There is at least one active VC)
if ((selectedV C' is not active) or electedV Cl;.epivst > accumulatedW eight))
selectedV Coe ficitCounter < accumulatedW eight
table Entry < Next table entry assigned to an active VC
selectedV C < table Entryy crdentifier
accumulatedW eight < selectedV Cgeficitcounter + table Entryyeight
accumulatedW eight = accumulatedW eight — selectedV Cl;erirst
Transmit packet fromselectedV C
if ((There are no packets in the queuesetectedV C) or
(The flow control does not allow transmitting frogalectedV C'))
accumulatedW eight < 0

Fig. 9. Pseudocode of the DTable scheduler.

ber of bits to the entry weight. Specifically, wesimple computational units, in the worst case all the
propose to use two bytes per table entry, and usdle must be looked over in order to find the next
5 bits for the VC identifier and up to 11 for theactive entry.

entry weight. This number of bits is high enough to |n order to make the process faster, several entries
directly employ it for storing the entry weight: of the table can be read simultaneously at the ex-
pense of increasing the silicon area and probably the
cycle time. This algorithm also requires the memory

c) Using only one weight per VCThe third necessary to store the arbitration table. However,
possibility that we propose is to associate the santés algorithm has not the problem of the increasing
weight to all the entries assigned to a VC. Thereforag value and does not need mathematical division
we only need to specify a table weight per V@nits to calculate any packet tag of sorted priority
instead of per table entry. This requires, however, aigorithms.

additional structure to configure a weight per VC. The arbitration table can be stored in specialized
When a new table entry is selected, the accumular,qz\@mory blocks, like the SRAM block that can be
weight is computed as: found in most FPGAs models, or in an array of
registers. A possible way to read several entries
simultaneously in an efficient way is to split the
register array or memory block in several subblocks
B. Hardware implementation of the DTable schednd read one entry of each of these subblocks in
uler the same cycle. We have called the number of
When a new packet is notified to the DTablgimultaneous table entries read in a single cycle the
scheduler, it just takes note of the packet size aRgrallelization grade
actives the VC if there are enough flow control Figure 10 shows the structure of the mechanism
packets to transmit that packet (it makes the samethat we have implemented to obtain the next active
the DRR-CA scheduler). As in the DRR-CA casdable entry. First of all we read a certain number of
this scheduler transmits from the same selected \¢Gnsecutive table entries from the last selected table
until the VC becomes inactive or the remainingntry equal to the parallelization grade. The next
weight entry is not enough to transmit the packeycle, we check if any of those entries refers to an
at the head of the VC queue. In order to selectagmtive VC. At the same time, the next ‘paralleliza-
new VC to transmit from, the arbitration table mugion grade’ entries are read. When the mechanism
be looked over sequentially searching for the nesealizes that at least one entry is active in the set of
active entry and skipping those entries that refer tdable entries, the process stops and a bitonic network
VC without packets or credits to transmit. Althouglis employed to calculate which is the first active
the checking of each entry can be made with vegntry in the subblock.

table Entry.weight <« table Entry.value

table Entry.weight «— weightseiecteavc

14

e0 el | O OO |el4|el5|e16|el7| O O O |e29|e30|e31

Is_Active
Block 0| €0 | e4 | e8 |el12 el16 e20|e24|e28 VCo
ooty } > o
Block 1| el | e5|e9 el3|el17|e21|e25|e29 ve2
| >] VC3
—» Is any active
Block 2 | €2 | e6 |e10|e14|e18|e22|e26|e30 O—l—’ OR | —»
VC4
| > ||
VC5 |
Block3| €3 | e7 |el1|e15|e19|e23 e27|e31
| VC6| L
P n
VC7
A YY

Order based Bitonic Network

‘Block ID

Fig. 10. Structure of the selector module for the parallel table scheduler.

TABLE |
ARBITRATION TIME IN CYCLES FOR SEQUENTIAL AND PARALLEL IMPLEMENTATIONS OF THEDTABLE SCHEDULER

| Scheduler \ Number of cycles |

Table (Sequential search) [1 — #Entries] + 2
#FEntries

N
Parallel Grade

Table (Parallel search)| |1 | + logs(Parallel_Grade) + 3

Table | shows the number of cycles required tchedulers using Handel-C language [7] and em-
make the arbitration decision in both cases, wh@toyed the DK design suite tool from Celoxica in
the table is cycle through sequentially or, wheorder to obtain hardware estimates on silicon area
various entries are processed at the same timed arbitration time. Note that the code that we
Note that in the DTable scheduler case, the numbave designed can actually be used to implement
of cycles required to complete the arbitration e DRR-CA and SCFQ-CA schedulers in a Field
variable and depends on how far from the lagtrogrammable Gate Array (FPGA) or, if the appro-
selected entry is the next selected entry. When thgate conversion is made, in an Application Specific
load of the network is low, more cycles will belntegrated Circuit (ASIC). However, this has not
probably required in average to find the next tableeen the objective of our work. Therefore, we have
entry. When the load of the network is high, mogtied to implement the schedulers in an efficient way,
VCs will be active anytime, and thus the averadaut they could have been probably implemented

number of cycles will be very small. more efficiently. Our objective has neither been to
obtain explicit values for the silicon area nor for
VI. HARDWARE ESTIMATES the arbitration time of each scheduler. In fact, these

values are very dependent on the specific FPGA or

In this section we analyze the implementation anfle implementation technology employed. We are
computational complexity of the DRR-CA, SCFQp5re interested in the relative differences on silicon
CA and DTable schedulers. We have modeled these

15

area and arbitration time for the different schedulels does not provide highly specialized hardware
and the effect of some design parameters like tfeatures and allows only the design of digital syn-

number of VCs or the MTU.

A. Handel-C and the DK design suite

chronous circuits. Instead of trying to cover all
potentially possible design particularities, its focus
is on fast prototyping and optimizing at the algorith-

As stated before, we have employed the Hand@nic level. The low-level problems are hidden com-
C language to model and obtain hardware estimafédgtely, all the gate-level decisions and optimization
for the different schedulers that we have consideredf€ done by the compiler so that the programmer can
Handel-C is essentially an extended subset of tfg€us his mind on the task he wants to implement.
standard ANSI-C language, specifically extendep & consequence, hardware design using Handel-C
for being used in hardware design (see Figure 11§sembles more to programming than to hardware

Paralelism — par {}

Preprocesor Macros
ie. #define Macro Procedures

ANSI-C Standard Library

ANSI-C Consti

ructs i i i
e for, while, f, switch Enhanced bit manipulation

Side Effects
ie. X=i++ * y++

Structures Arbitrary width variables

Handel-C

d Library

Recursion

Interfaces
Arithmetic Operators
e+, %L %

Floating Point

RAM & ROM
Arrays

Signals

Pointers
Channels

ANSI-C

Handel-C

Fig. 11. ANSI-C / Handel-C comparison.

engineering.

Handel-C closely corresponds with a typical soft-
ware flow and provides the essential extensions
required to describe hardware. These extensions
include flexible data widths, parallel processing and
communications between parallel threads. Sequen-
tial by default, Handel-C has@ar construct. When
a block of code is qualified bpar, statements are
executed concurrently and synchronized at the block
end. This simple construct allows for the expression
of mixed sequential and parallel flows in compact
and readable code.

The Handel-C compiler comes packaged with the
Handel-C’s level of design abstraction is aboveeloxica DK design suite. The DK design suite
Register Transfer Level (RTL) languages, likeupports several output targets:

VHDL [2] and Verilog [21], but below behavioral.
In Handel-C each assignment infers a register and
takes one clock cycle to complete, so it is not a

behavioral language in terms of timing. The source

code completely describes the execution sequence
and the most complex expression determines the
clock period.

A comparison of Handel-C with RTL languages
shows that the aims of these languages are quite
different. RTL languages are designed for hardware
engineers who want to create sophisticated circuits.
They provide all constructs necessary to craft com-
plex, tailor made hardware designs. By choosing the
right elements and language constructs in the right
order, the specialist can specify every single gate
or flip-flop built and manipulate the propagation
delays of signals throughout the system. On the
other hand, RTL languages expect that the developes
knows about low-level hardware and requires him
continuously thinking about the gate-level effects of
every single code sequence.

In contrast to that, Handel-C is not designed to
be a hardware description language, but a high-
level programming language with hardware output.

Debugger: The debugger provides in-depth fea-
tures normally found only in software develop-
ment. These features include breakpoints, sin-
gle stepping, variable watches, and the ability
to follow parallel threads of execution. The
hardware designer can step through the design
just like a software design system using this
approach.

EDIF: The second output target is the synthesis
of a netlist for input to place and route tools.
Place and route is the process of translating
a netlist into a hardware layout. This out-
put allows the design to be translated into
configuration data for particular chips. When
compiling the design for a hardware target,
Handel-C emits the design in Electronic Design
Interchange Format (EDIF).

RTL (VHDL and Verilog): The RTL output
preserves the hierarchy of the Handel-C source
code allowing experienced engineers to ver-
ify at the RTL level. The compiler generates
RTL with appropriate syntax and attributes
for leading third party synthesis tools, timing
simulators and ASIC design flows.

16

In order to obtain the hardware estimates in whiagress link queuing system that could be part of an

we are interested: endnode or switch. We have done this in order to be

1) We have modeled in Handel-C a full egresable to test the rightness of our implementation. Fig-

gueuing system, including the scheduler. ure 13 shows the different modules that compound

2) We have validated the schedulers employirige egress queuing system and their interactions.
the simulation and debugging functionality offhese modules are:

the DK design suite.

3) We have isolated the scheduler module in
order to obtain estimates without influence of
other modules.

4) We have obtained the EDIF output for a Virtex
4 FPGA from Xilinx [35].

A cycle count is available from the Handel-C source
code: Each statement in the Handel-C source code is
executed in a single cycle in the resulting hardware "’
design and thus, the number of cycles required to
perform a given function can be deduced directly
from the source code. Moreover, an estimate of
gate count and cycle time is generated by the
EDIF Handel-C compiler. The cycle time estimate
is totally dependent on the specific target FPGA, in)
this case the Virtex 4 [35], which is one of the last
FPGA models provided by Xilinx [34]. However,
as our objective is to obtain relative values instead
of absolute ones, we consider that this approach is
good enough to be able to compare the complexity
in terms of silicon area and scheduling time of the
different schedulers. Figure 12 reflects the design
flow that we have followed.

Complexity Estimation

DK Design Suite \
Cicle

—————— > count

2

Handel-C
Source Code

- T
-
-
|~
\\ -)/

~

Gate
W | estimation

=~ . | Cicletime

Place and route estimation

L

\ \

Traffic generator: We need a traffic load in
order to test the schedulers. We have developed
a Constant Bit Rate (CBR) traffic generator in
order to feed the VCs. We can assign each VC
with a different traffic generator configured to
produce packets at a different rate and with
different packet size.

Buffers: The buffers module is the responsible
of managing the packets stored in each VC
qgueue. It tracks the available space in each
gueue, notifies the scheduler the arrival of new
packets, and frees space in the queues when
packets are transmitted.

Transmitter: The transmitter module injects
into the egress link the packets that the sched-
uler indicates and deletes the information of
those packets in the buffers.

Scheduler: The scheduler module is the most
important part to our objective. Its main func-
tion is to decide the next packet to be trans-
mitted from an active VC. In order to do so, it
keeps track of the set of active VCs by monitor-
ing the packet at the head of each queue and
the available number of flow control credits.
Moreover, it consumes the flow control credits
required by each transmitted packet. When a
scheduling decision has finished it notifies that
fact to the transmitter.

Flow controller: The flow controller tracks the
number of available flow control credits of each
VC.

Credit generator: Only one egress queuing
system has been modeled, and thus in order to
keep the system transmitting packets we need
to renew the consumed flow control credits
with a flow control credit generator module.

An advantage of using Handel-C to model the
Fig. 12. Design flow with DK employing Handel-C. egress queuing system and the schedulers is that
it allows parameterizing the design in an easy
_ _ way. Through the use of constants and compiler
B. Modelling the egress queuing system commands we can generate outputs (for simulation,
As stated before, in order to model the diffefeDIF, or RTL targets) with, for example, variable
ent schedulers, we have previously modeled a fulbmber of VCs and packet MTU considered. In

17

witePacket(vc, size, time, difference) | | SEEEEvE >
Traffic L~ Egress
bufferAvailable(vc) transmittin .
Generator ~ 9 > Link
|
Buffers Transmitter
readPacket(vc, size, time, difference)
writePacket(vc, size, time, difference) . -
Traffic
Generator bufferAvailable(vc) deletePacket(vc)
N-1 - -
‘ schedulingRead f
newPacket(vc,size) selectedvC
schedulingReady
packetTransmitted(vc) scheduler
readPacket(vc, size, time, difference)| startTransmittingNewPacket
enoughCredits(vc,size) consumeCredits(vc,size)
newCredits(vc)
Latl
CredltGenerator incomingCredits(vc) Al il E H
> gress queuing
system

Fig. 13. Egress link queuing system modules.

order to simplify the design, we have considered The advantage of the atomic SCFQ-CA is that
power of two values for the number of VCs and calculates the time tag in only one cycle, and
MTU. Moreover, we have considered packets to libus it takes for processing a new packet, the same
of an integer number of flow control credits. time than the DRR-CA scheduler, and as we will
see, also than the table scheduler. This makes very
: asy to compare both schedulers, because it is only
gA Hsi\rr]dev(\j/ilrgrzstlmates for the DRR-CA and SCF _'ecessary to cor!front the silicon area and arbitration
time. However, in the segmented SCFQ-CA case
Note that, in order to calculate the packet SeI'Vi(Fﬁocessing a new packet takes much more time, and
tag a division operation is required, which is not @ithout a full model of a switch the effect over
simple arithmetical unit. Handel-C offers a divisothe overall performance of this longer time is not
operand that calculates the result in one cycle (ggsy to be measured. We include this option in this
all the Handel-C statements). This operand makesidy because it is a possibility that must be taken
the division very short in terms of number of cyclefto account, but the comparison with the rest of

but, it makes the cycle time very long, and thuschedulers is not so clear like in the atomic SCFQ-
it makes the arbitration time quite long. ThereforesA case.

we have also implemented a version of the SCFQ-
CA scheduler that employs a mathematical divisi nAS stqted hefore, once that. the .schedulers have
unit that performs the division in several cycle -een_vahd_ated through S|ml_J|at|on_W|th the debu_gger
Specifically, it takes a number of cycles equal to t gnctlonallty of the DK deS|gn suite, we haye 1S0-
length of the operators plus one. This second versi ed the scheduler m_odule in order to compllc_e it for
reduces the cycle time and thus, the arbitration timae EDIF ogtput. In this way the hardware _est|mates
However, the division requires much more cycle tained, like the cycle time, are not going to be
to be performed. It even requires more time to Bﬁ‘eluenced by the rest of quules. Table 1l shows
performed because the cycle time is not reduc number of cycles required by the DRR'C.:A
in the same proportion as the number of cycles%d SCFQ-CA schedulers to perform the arbitration.

[

increased. We have called the SCFQ-CA versi erefore, the arbitration time deper)ds on the cycle
that performs the division in one cycleatomic me and on the number of VCs (VR in the table).
SCFQ-CA On the other hand, we have called the Figure 14 shows how the increment in the number
SCFQ-CA version that performs the division iof VCs and the MTU affects the silicon area and
several cyclessegmented SCFQ-CA the arbitration time of the DRR-CA and SCFQ-CA

18

TABLE I
ARBITRATION TIME IN CYCLES FOR THEDRR-CAAND SCFQ-CASCHEDULERS

| Scheduler | Number of cycles|
DRR-CA logo(VC_N) + 3
Atomic SCFQ-CA | log:(VC_N) + 2
Segmented SCFQ-CA log(VC_N) + 2

schedulers (atomic and segmented). Specificallysithedulers for different design parameters.
shows the increment in these complexity indices Figure 15 shows, as expected, that the DRR-CA
respect the simplest case for each scheduler (2 V&&heduler is the simplest scheduler in terms of sili-
and a MTU of 2). When varying the number of VCsgon area and arbitration time. On the other hand, the
we have used a MTU of 32 and when varying thatomic version of the SCFQ-CA scheduler requires
MTU we have considered 8 VCs. much more silicon area and arbitration time than the
Regarding the effect of the number of VCIDRR-CA or the segmented SCFQ-CA schedulers.
Figure 14 shows that this number influences dram&igure 15 also shows that the segmented SCFQ-CA
ically the silicon area and arbitration time requiredcheduler requires also much more silicon area than
by the DRR-CA and SCFQ-CA schedulers. Notthe DRR-CA scheduler. However, the difference in
that in the case of the arbitration time, the incremeatbitration time is not so big. Finally, this figure
is due to both, the increase in the cycle time arghows that the difference among the atomic SCFQ-
the increase in the number of cycles required ©A scheduler and the other two scheduler increases
compute the arbitration. Note that the X axis is iwith the MTU.
logarithmic scale, thus a linear growth in data plot
actually means a logarithmic data growth, and .
exponential growth in data plot actually meansaé]' Hardware estimates for the DTable scheduler
linear data growth. In order to obtain hardware estimates of the
On the other hand, regarding the effect of th@Table scheduler we have considered, apart from
MTU, Figure 14 shows that the increase in silicothe number of VCs and the MTU, the number of
area and time when increasing the MTU is ndable entries and the parallelization grade as design
so important if compared with the effect of thgparameters. Moreover, we have also calculated hard-
number of VCs. The atomic variant of the SCFQware estimates to compare the original AS table
CA scheduler is the most affected by this paramet&ith the possible implementations of the DTable
Increasing the MTU from 2 to 64 increases thecheduler shown in Section V-A.2.
silicon area required by this scheduler 70% and Figure 16 shows the difference in silicon area and
the arbitration time 37%. The reason of this iarbitration time of the different table possibilities.
that the value of the MTU affects the size of th&lote that the increment in time refers to both, the
division operation required to calculate the SCF@rinimum and maximum arbitration time required
CA service tag and thus, it affects in a higher degréy the scheduler. Specifically, the figure shows
the atomic version of the SCFQ, which requires the increment in silicon area and time respect the
lot of silicon area and increases in a high degresiginal AS table scheduler. In all the cases, a table
the cycle time in order to perform the division in @f 128 entries with a parallelization grade of 16, 8
single cycle. VCs, and a MTU of 32 is considered. Figure 16
Figure 15 shows the same results than Figure $dows that employing a fixed weight for all the
except that in this case, the increment is relative table entries KixedW), which solves the problem
the silicon area and arbitration time required by thaf the original table scheduler with variable packet
DRR-CA scheduler with 2 VCs (when varying theize, only requires 10% more silicon area than the
number of VCs) and a MTU of 2 (when varying theriginal AS table scheduleQfiginal).
MTU). This allows us to compare the silicon area However, in order to have a greater flexibility
and the arbitration time required by the differenwhen configuring the DTable scheduler, we can

19

1600/ DRR-CAZZH ‘] 500 | " DRR-CAZZH
SCFQ-CA-At < SCFQ-CA-At
g 1400 scro-ca-segi < SCFQ-CA-Seg i
= 1200 5 400 f
qc) £ '31
£ 1000 £ 300 =
- = S
g 800 c §§:
g 600 | E 200 ¢ 5
< 400} = :
200 | < 1007 %
0 RREEE 0 B i S
2 4 2 4 8 16 32
VCs
‘ ‘ 40 ‘ ‘
70t DRR-CA &S DRR-CA KX
SCFQ-CA-At S 35} SCFQCA-At
$ 60 | SCFQ-CA-Segi " < 30l SCFQ-CA-Seg i
£ 50| £
g s 25}
g 40 £t
(&)
30 S5l
(o] —
o 5
&' 20 r E 10 F
10 | ' 1 <
0 B ‘ | R R 3
2 4 8 16 32 64 2 4 8 16
MTU MTU

Fig. 14. Effect of the number of VCs and MTU over the silicon area atitration time required by the DRR-CA and the SCFQ-CA
schedulers.

choose between using a weight per each W& (number of VCs is very high, a little the arbitration
VC), using the three reserved bits of each table entigne. However, the effect is not so dramatic as in the
(3-bitg), or using two bytes to store the VC identifieDRR-CA and SCFQ-CA cases. Note that from 2 to
and the table entry (2-bytes). 8 VCs the arbitration time is the same, and thus the
Figure 16 shows that the 2-bytes option is tHacrement is 0%. The reason because the n_umber_ of
most demanding one. This option requires go¥Cs does not affect as m_uch thg complexity as in
more silicon area than the original AS table coni® DRR or SCFQ cases is that in the DTable case
pared with the 35% of the 3-bit option. Moreovert,he scheduling is made over the_ arbitration table
the arbitration time is slightly higher (0.85%) than itnd not over a list of VCs, like in the DRR-CA
the rest of the cases, which have the same arbitratfipe Where we search for the next active VC, or the
time, and thus the increment is 0%. In the rest of thRcFQ-CA, where we search for the VC with the
work we will show statistics of the 2-bytes DTablgMNimum service tag.
option because is the worst case for all the tableFigure 18 shows the effect of the MTU value
implementations. Moreover, this is the possibilitpver the complexity of a DTable with 128 entries, a
that provides the best flexibility and granularity. parallelization grade of 16, and 8 VCs. Specifically,

Figure 17 shows the effect of the number of vt shows the increment in silicon area and arbitration
over the complexity of a DTable with 128 entried/Me required respect the 2-MTU case. This figure
a parallelization grade of 16, and a MTU of 32§_h_ows that the MTU_ is _almc_)st |rrelev_ant for th_e
Specifically, it shows the increment in silicon aredilicon area and arbitration time required by this
and arbitration time required respect the 2-VC caseneduler.

This figure shows that this parameter affects in aFigure 19 shows the effect of the number of

high degree the silicon area required and, when ttadble entries over the complexity of a DTable with

20

16000 DRR-CATZ 1600 - DRR-CA R
__ 14000} Si('::F(_Q-C,_A-At | 8 1400| SCRQCAM
€ 12000/ Q-CA-Seg i S oo SCFQ-CA-Seg i
< k=
= i
: :
g 6000 £ e00
& 4000t S 400
2000 | < 200}
0 N 0 = B 5
2 4 8 2 4 8
VCs VCs
1600 DRR-CAZ 400 DRR-CAZZ
- 0] SITPA g0 serocem
§ g = 300 | SCFQ-CA-Seg i
= 12001 g
© 1000} o 207
§ 800 | g 200 ¢
© 600| 5 0/
< 400 5 1001
200 < 5o}
0 0 = e o S NN RN
2 2 4 8 16 32 64
MTU MTU

Fig. 15. Comparison of the silicon area and arbitration time required by RiR-DA and the SCFQ-CA schedulers.

100 1
~ S
e 80 =~ 08¢
= 5}
c £
g 60 o 06
o £
S =
£ 40} S 04}
g 8
< I 5 I
20 . 0.2
. e . L
Original FixedW W-VC 3-bits 2-bytes Original FixedW W-VC 3-bits 2-bytes
Table implementation Table implementation

Fig. 16. Complexity comparison of the different possible implementatidrteeo DTable scheduler (8 VCs, 128 entries, a paralelization
grade of 16, and a MTU of 32).

a parallelization grade of 16, when the MTU isrea is due to the increment in the space required
32 and there are 8 VCs. Specifically, this figurtm store the arbitration table and the extra logic to
shows the increment in silicon area, cycle time, ardndle it. The increment in the arbitration time is
minimum and maximum time required to perforntdue to the increment in the cycle time, but also
the arbitration respect the silicon area and minimuta the extra number of cycles required to process
time required in the 32-entry case. This parametarbigger table. Specifically, the increment in the
affects in a high degree both the silicon area amgicle time determines the increment in the minimum
the arbitration time. The increment in the silicotime required to make the arbitration. Note that we

21

200 20
_ S

S I RETH

< 150 5 15
qc) =
= £

g 100 | = 10 |
c c
£ 9
g g

< 50 g 57
vvvvvv <

2 4 8 16 32 2 4 8 16
VCs VCs

Fig. 17. Effect of the number of VCs over the silicon area and arbitrditioa required by the DTable scheduler (128 entries, a paralelization
grade of 16, and a MTU of 32).

6 1
=51 S
S < 08}
hurt =}
%47 £
L3 =
Q =
£ o 04+
$27 E
< s I

11 = 0.2

0 0

2 4 8 16 32 64 2 4 8 16 32 64
MTU MTU

Fig. 18. Effect of the number of the MTU over the silicon area and atiwtraime required by the DTable scheduler (8 VCs, 128 entries,
and a paralelization grade of 16).

use the same parallelization grade in all the casee increase the value of this parameter a lot, the
and thus, the same minimum number of cycles $flicon area increases much faster. Given a certain
required to perform the arbitration (see Table I). Omumber of entries (128 in this case), the effect of
the other hand, the maximum number of requiredcreasing the parallelization grade is to reduce the
cycles increases with the table size and thus, thmaximum number of cycles required to perform the
maximum required time increases dramatically. arbitration at the cost of increasing the minimum
A way to reduce the arbitration time is to infiumber of cycles required (see Table I). This effect
crease the parallelization grade. Figure 20 shoisshown in Figure 20. However, this figure shows
the effect of this parameter over a DTable of 12®at increasing too much the parallelization grade
entries, 8 VCs, and a MTU of 32. Specifically, thigffects in a negative way both the minimum and
figure shows the increment in silicon area, cycl®aximum arbitration time because of the increment
time, and minimum and maximum time requiredn the cycle time.
to perform the arbitration, respect the silicon area Until now we have shown the individual effects of
and minimum time required when the parallelizatiomarying the value of the different design parameters
grade is 1 (sequential search). This figure shows tlueter a basic configuration of a 2-bytes DTable with
increasing the parallelization grade also increasié®28 entries, a parallelization grade of 16, a MTU
in a high degree the silicon area required. Thif 32, and 8 VCs. Figure 21 shows a more general
extra area is not so exacerbate when we incregseture in which we observe the effect of varying the
only a bit the parallelization grade. However, ihumber of VCs for every table size. At the same

22

sool ‘ ‘ ‘ ‘ ‘ —] 800
= < 700
S 500 >
= . 600
S 400 | 5
CIE.) .E 500
S 300 E 400 ¢
= [0} L
8 200 g 300
< O 200
100 100 |
0 L XXXA Eiggggg 0 L L RN
32 64 128 256 512 1024 32 64 128 256 512 1024
Table entries Table entries
‘ ‘ < 1000 — w
8000 [Minimum > Minimum
< Maximum @ Maximum &
S 7000t g 800
o (@]
2 6000 r N
é 5000 | 2 600}
= 4000t £
£ 3000} S 400
s S
5 2000f g 2000
< 1000} s
w0 | ; < |]
32 64 128 256 512 1024 32 64 128 256 512 1024
Table entries Table entries

Fig. 19. Effect of the number of table entries over the silicon area abitration time required by the DTable scheduler (8 VCs, a
paralelization grade of 16, and a MTU of 32).

time we vary the parallelization grade in order taumber of VCs does not affect the cycle time and
keep constant and equal to 16 the number of cyckbsis, the arbitration time.
required to process all the table entries (number of

entries / parallelization grade = 16). Note that even Comparing the DRR-CA and the SCFQ-CA
with this last consideration, the number of cycleghedulers with the DTable scheduler
is not the same in each combination of number of

entries and parallelization grade (see Table Ill). Th In the previous sections we have shown how the

increments shown are respect to DTable with ﬁterent dfes_llg_]n paramete;s akf)f_?ctt_the t_compll?>t<;]ty,
entries and 2 VCs. In terms of silicon area and arbitration time, of the

DRR-CA, SCFQ-CA, and DTable schedulers. In this

Figure 21 shows that when the number of tabkection we are going to compare the complexity of
entries grows, the silicon area required increasegese schedulers.
dramatically due to the accumulated effect of the Figures 22 and 23 show a comparison of the
increment on the table size and the parallelizati@ilicon area and arbitration time required with dif-
grade. However, even increasing the parallelizatiberent number of VCs for the different schedulers
grade the arbitration time also grows a lot due t@nd, in the case of the DTable scheduler, different
the increment on the cycle time. A smaller arbrumber of table entries (we have also kept number
tration time could be achieved increasing more tlod entries / parallelization grade = 16). Note that not
parallelization grade, however, this would increasdl the possible combinations of number of VCs and
even more the silicon area required. Figure 21 alsomber of table entries make sense. If we have a lot
shows that the number of VCs is only relevant fasf VCs, we will probably need more table entries to
the arbitration time for small arbitration table sizesaccommodate appropriately all those VCs. Note, for
When the arbitration table has lots of entries, thexample, that in an extreme case where we have 32

23

2]
o
o
N
o

= 500 ¢ _
S 15}
€ 400 5
o g
g 300 o 10
3] IS
£ =
© 200 3
< G 57
100 ¢
ol e B ol
1 4 8 16 32 64 1 4 8 16 32
Parallelization grade Parallelization grade
T T T T T ~ 500 T T
2500 Minimum > Minimum
< . Maximum = Maximum !
2000} S 400 ¢
g N
2 1500/ 2 300}
= m
= £
S 1000 | = 2007
T S
5 I < I
< 500 £ 100
< L
1 4 8 16 32 64 1 4 8 16 32 64
Parallelization grade Parallelization grade

Fig. 20. Effect of the parallelization grade over the silicon area and atibitr time required by the DTable scheduler (8 VCs, 128 entries,
and a MTU of 32).

TABLE 1l
COMBINATION OF VALUES FOR THE TABLE ENTRIES AND PARALLELIZATION GRADE AND ARBITRATION TIME IN CYCLES.

| Number of table entries | Parallelization grade | Arbitration time (cycles) |

32 4 6-13
64 8 7-14
128 16 8-15
256 32 9-16
512 64 10 - 17
1024 128 11 - 18

VCs and 32 entries, we should assign each VC taranimum and maximum arbitration time required
given table entry and we would not be able to makespect to the DRR-CA with 2 VCs.

any latency differentiation. On the other hand, if we Figure 22 shows the comparison of the schedulers
have very few VCs, it would be a waste of resourcggr a small number of VCs (2-8) and a small number
to employ a lot of table entries. Therefore, we haw§ table entries (32-128). This figure shows that,
only shown the combination of 2 and 4 VCs withys expected, the DRR-CA is the simplest scheduler
32, 64, and 128 table entries, and 16 and 32 V&Sterms of both, silicon area and arbitration time.
with 256, 512, and 1024 table entries. For the &he atomic version of the SCFQ-CA scheduler is
VC case we show the interaction with the possibiie most demanding implementation also in both
table sizes. Moreover, we have split the data in tw@pects. Regarding the DTable scheduler and the
separate figures in order to show them more clear§¢gmented version of the SCFQ-CA scheduler, Fig-
Both figures show the increment on silicon area angle 22 shows that in general the DTable scheduler

1200

| 2vCs &= 2 VCs &
120007 7 Vés 1000 4VCs
g:‘ 10000 | 8 VCs § 8 VCs
< 16VCs N 16VCs
é 8000 | 32 VCs i g 32 VCs &
[d] () L
S 6000 g o0
= [0}
g 4000 i E, 400 |
< ;)
2000 | 200 |
0 e N R o I, i E OB E 0 ; RERE D o i
32 64 128 256 512 1024 32 64 128 256 512 1024
Table entries Table entries
4000 —— : —~ 4000 — :
g 2 VCs &4 X 2 VCs &
< 3500 4VCs ~ 3500f 4VCs
5 8VCs i 3 8 VCs
£ 30001 16VvCs = 30001 16vCs
£ 2500 32VCsi £ 2500| 32VCs
§ 2000 | S 2000}
S 1500} £ 1500}
o 2
< 1000t & 1000}
£ 500} 3 500} i
= . 2 Bl ; = o Bl ,
0 - o K i %] 2 0 L 2o, % i %
32 64 128 256 512 1024 32 64 128 256 512 1024

Fig. 21.

Table entries

Table entries

24

Silicon area and arbitration time increment for the combined teffiethe number of table entries and number of VCs for the

DTable scheduler (paralelization grade of 16, and a MTU of 32).

requires less silicon area than the segmented SCKE{icon area than the DTable with a size between
CA scheduler. On the other hand, the SCFQ-C266 and 1024 entries.

scheduler is faster than the DTable scheduler. How-

ever, as stated before, in this comparison we do \/||. CONCLUSIONS AND FUTURE WORK

not take into account the extra time required by

the segmented SCFQ-CA scheduler to compute thleIn this _work we have _proposed_ specific m-
service tag. plementations for three fair queueing scheduling

algorithms: the DRR-CA, SCFQ-CA, and DTable
Figure 23 shows the comparison of the schedulesshedulers. We have optimized their implementation
for a high number of VCs (8-32) and a high numben order to fullfill the complexity constrains in high-
of table entries (256-1024). This figure shows thaerformance networks. We have proposed imple-
the DTable scheduler is the most complex when theentation improvements over their basic definition
number of table entries is 1024. When the table htts the SCFQ and DTable schedulers. Moreover, we
512 entries, only if it has 32 VCs it requires lesbave performed a complexity comparison study of
silicon area than the atomic SCFQ-CA schedulghese three scheduling algorithms. In order to do so
When the DTable arbitration table has 256 entriege have implemented the schedulers in Handel-C
this scheduler requires less silicon area than thed obtained hardware statistics employing the DK
atomic SCFQ-CA case. The time required in thidesign suite tool.
case by the atomic SCFQ-CA case is in generalWe have studied the complexity in terms of sili-
higher than the minimum time required by theon area and time required to perform the schedul-
DTable scheduler but smaller than the maximumg. We have obtained hardware estimates for these
time. In almost all the cases the segmented SCH@dices taking into account different values for some
CA case and the DRR-CA schedulers require ledssign parameters. We have considered the number

4000

700

32 =@ DRRCA A 32 & DRR-CA 4
3500 64 SCFQ-CA-At X 600 | 64 SCFQ-CA-At X
< 128 = SCFQ-CA-Seg © < 128 o SCFQ-CA-Seg ©
c oY e
© 2500 5 s
= < 400 x
2 £ 300/
< 1500 @
() Q L
Z 1000} & 200
500 100 ¢
0 0
VCs VCs
900 T T ~ 900 " . .
g 32 == DRR-CA A S 32 =3 DRR-CA A
< 800 64 SCFQ-CA-At X ~ 800 64 SCFQ-CA-At X X
S 700 128 © SCFQ-CA-Seg © 8 700} 128 7 SCFQ-CA-Seg ©
I @ I
-g 600 g 600
‘é‘ 500 + = 500 +
.E 400 g 400 -
3 300 i 300 + §§§
< 200t < 200t o
. ; 106900
S 100 8 100 o
= s
0 0

Fig. 22. Silicon area and arbitration time comparison of the differentdidhes with a small number of VCs (DTable with a paralelization
grade of 16, and a MTU of 32).

of VCs and the MTU in all the cases. Moreover, fotan be a good option, at least in terms of silicon
the DTable scheduler we have also considered twea, when a small number of table entries is im-
size of the table in terms of table entries and th@emented (32-256) if compared with the SCFQ-CA
parallelization grade, which is the number of tablecheduler.
entries that we read each cycle. Furthermore, we

have also compared the complexity of the different
implementation options for the DTable scheduler.

The hardware estimates that we have obtainddl Advanced Switching Interconnect Special Interest GroAg-

e . - vanced Switching core architecture specification. Revision 1.0
have shown that the cost of modifying the original 5. crmber 2003.

AS table to handle in a proper way variable packep] p. J. Ashenden. The Designer's Guide to VHDL Morgan
sizes is very small (around 10% increment in silicon Kaufmann; 2nd edition, 2002.

: [3] J. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair
area). If we want to fully implement the DTable queuieing INFOCOM. 1996.

scheduler we only need to double the silicon are@) j. c. R. Bennett and H. Zhang. Hierarchical packet fair
required. This increment compared with the entailed queueing algorithmsIEEE/ACM Trans. Netw.5(5):675-689,

i ; _ 1997.
to _mcr_ease the r_lumb_er of table entries or the para[l5] Y. Bernet. A Framework for Differentiated Services. Internet
lelization grade is quite small.

draft 2275, Internet Engineering Task Force, May 1998.

The hardware estimates obtained also show thdf] S: Blake, D. Back, M. Carlson, E. Davies, Z. Wang, and
. . W. Weiss. An Architecture for Differentiated Services. Internet
as expected, the DRR-CA scheduler is the simplest gequest for Comment RFC 2475, Internet Engineering Task
one. The DTable scheduler is in general the most Force, December 1998.
complex option when implementing large arbitral’] gg(l)%xica- Handel-C Language Reference Manual for QK4
tion tables, which are required when there are a hi '

H. Chao and X. GuoQuality of Service Control in High-Speed
number of VCs. However, the DTable scheduler Networks Wiley, 2001.

REFERENCES

256 o DRR-CA = ‘
30000 £75 A
S Lo SCFQ-CA-Seg © =
& 25000] 024" gorn i
E —
g 20000 ¢ :
2 (O]
S 15000 :
Sauu . N :
© 10000 | g‘
< y :
5000 }
" it w > e
0 oy =
16
VCs
7000 256 = DRR-CA 4 ,
512 JDRRCA 4
6000 | 1024 & SCFQ-CA-Seg ©

5000 |
4000 |
3000
2000 |
1000}

Min. Arbitration time incr. (%)
Max. Arbitration time incr. (%)

26

1600 256 == DRR-CA A '

1400+ 512 SCFQ-CA-At X
SCFQ-Se

1200 - -

1000
800
400

200 B9

8 16 32
VCs
7000 SRR.CA - '
SCFQ'CA-At X
6000 SCFQ-CA-Seg ©
5000
4000
3000
2000 +
1000+ [7%
0

Fig. 23. Silicon area and arbitration time comparison of the differentdadbes with a high number of VCs (DTable with a paralelization
grade of 16, and a MTU of 32).

El

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

H. M. Chaskar and U. Madhow. Fair scheduling with tunabl§l9]
latency: A round-robin approacHEEE/ACM Transactions on
Networking 11(4):592-601, 2003.

L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian,
and J. B. Carter. Interconnect-aware coherence protocols for
chip multiprocessors. II5CA pages 339-351. IEEE Computer{20]
Society, 2006.

A. Demers, S. Keshav, and S. Shenker. Analysis and simulations
of a fair queuing algorithm. 'SIGCOMM 1989. [21]
A. Charny et al. Supplemental information for the new defif22]
nition of EF PHB (Expedited Forwarding Per-Hop-Behavior).
RFC 3247, March 2002.

S. J. Golestani. A self-clocked fair queueing scheme for
broadband applications. INFOCOM, 1994. [23]
A. G. Greenberg and N. Madras. How fair is fair queuidg. [24]

ACM, 39(3):568-598, 1992.

InfiniBand Trade AssociationInfiniBand architecture specifi-
cation volume 1. Release 1.0ctober 2000.

S. S. Kanhere, H. Sethu, and A. B. Parekh. Fair and efficiel25]
packet scheduling using elastic round rodlBEE Transactions

on Parallel and Distributed System2002.

R. Martnez, F. J. Alfaro, and J.L.#chez. Decoupling the [26]
bandwidth and latency bounding for table-based schedulers.
ternational Conference on Parallel Processing (ICPRugust
2006.

R. Martinez, F. J. Alfaro, and J.L.&chez. Implementing the
Advanced Switching minimum bandwidth egress link scheduld28]
IEEE International Symposium on Network Computing and
Applications (IEEE NCAO06)July 2006.

[27]

R. Marfinez, F. J. Alfaro, and J.L. &chez. Studying sev-
eral proposals for the adaptation of the DTable scheduler
to advanced switching.nternational Symposium on Parallel
and Distributed Processing and Applications (ISPBgcember
2006.

P. L. Montessoro and D. Pierattoni. Advanced research issues
for tomorrow’s multimedia networks. linternational Sympo-
sium on Information Technology (ITCC001.

S. Palnitkar.Verilog HDL. Prentice Hall PTR; 2 edition, 2003.
A. K. Parekh and R. G. Gallager. A generalized processor shar
ing approach to flow control in integrated services networks:
The single-node cas¢éEEE/ACM Transactions on Networking
1993.

K. | Park. QoS in Packet NetworksSpringer, 2005.

Sven-A. Reinemo, T. Skeie, T. Sgdring, O. Lysne, and
O. Tgrudbakken. An overview of QoS capabilities in Infini-
Band, Advanced Switching interconnect, and Ethern&EE
Communications Magaziné4(7):32—-38, 2006.

J. Rexford, A. G. Greenberg, and F. Bonomi. Hardware-
efficient fair queueing architectures for high-speed networks.
In INFOCOM (2) pages 638-646, 1996.

R. Seifert. Gigabit Ethernet: Technology and Applications for
High-Speed LANsAddison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1998.

M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round robin. INSIGCOMM pages 231-242, 1995.

V. Sivaraman. End-to-Ent delay service in high speed packet
networks using Erliest Deadline First SchedulinghD thesis,
University of California, 2000.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

D. Stiliadis. Traffic scheduling in packet-switched networks:
Analysis, design, and implementatioPhD thesis, University
of California, 1996.

D. Stiliadis and A. Varma. Design and analysis of frame-
based fair queueing: A new traffic scheduling algorithm for
packet-switched networksSIGMETRICS Perform. Eval. Rev.
24(1):104-115, 1996.

D. Stiliadis and A. Varma. Latency-rate servers: A general
model for analysis of traffic scheduling algorithmMEEE/ACM
Transactions on Networkind.998.

J. S. Turner. New directions in communications (or which way
to the information age)lEEE Communications24(10):8-15,
October 1986.

P. Vellore and R. Venkatesan. Performance analysis of sthedu
ing disciplines in hardware. IrCanadian Conference on
Electrical and Computer Engineering (CCEGHE)Jlay 2004.
Xilinx, Inc. http://wwmv. xi | i nx.com

Xilinx. Virtex-4 family overview. Fact sheet DS112 (v2.0),
June 2007.

Jun Xu and Richard J. Lipton. On fundamental tradeoffs
between delay bounds and computational complexity in packet
scheduling algorithmslEEE/ACM Trans. Netw.13(1):15-28,
2005.

H. Zhang. Service disciplines for guaranteed performance
service in packet-switching networks, 1995.

Q. Zhao and J. Xu. On the computational complexity of main-
taining gps clock in packet scheduling. IEEE INFOCOM
March 2004.

27

