
A comparative study between WSCI, WS-CDL, and OWL-S∗

Maŕıa Emilia Cambronero, Gregorio Dı́az, Enrique Mart́ınez, and Valentı́n Valero
Escuela Polit́ecnica Superior de Albacete. Universidad de Castilla-La Mancha

Departamento de Sistemas Informáticos
Campus Universitario s/n. 02071. Albacete, SPAIN

{MEmilia.Cambronero,Gregorio.Diaz,Valentin.Valero}@uclm.es
{emartinez}@dsi.uclm.es

Abstract

Choreography languages allow us to describe Web Ser-
vices compositions from a global viewpoint in Service Ori-
ented Architectures (SOA). However, none of the existing
languages has achieved the status of de facto standard for
that purpose until now. In this paper we compare three ex-
isting proposals to specify Web Services choreographies:
WSCI, WS-CDL, and OWL-S. First, we describe the main
characteristics of each one of these languages, and after
that we compare the different structures of the three lan-
guages. Finally, we present some conclusions of our work.

1. Introduction

The importance of Service-Oriented Architectures
(SOA) has grown in the last years because they allow the
integration of software applications between different orga-
nizations. In these architectures, applications are exposed
as services, and these services are interconnected through
the use of a set of standards (SOAP, WSDL, UDDI, WS-
Security,. . .). This is the reason because standardizationis
one of the main aspects of SOA. While a certain level of
maturity has been achieved in the adoption of standards to
interconnect and describe Web Services, there are still chal-
lenges related to the business processes executed by Web
Services compositions.

The termsorchestrationandchoreographyrefer to two
different ways of describing Web Services compositions.
Orchestration languages always represent the composition
from the viewpoint of the parties involved in this composi-
tion. WS-BPEL (Web Service Business Process Execution

∗Supported by the Spanish government (cofinanced by FEDER founds)
with the project TIN2006-15578-C02-02, and the JCCLM regional project
PEII09-0232-7745. The third author is supported by the European Social
Fund and the Junta de Comunidades de Castilla-La Mancha (Spain).

Language, [1]) is the most adopted language for that pur-
pose.

On the other hand, the target of choreography languages
is the coordination of long-running interactions between
multiple distributed parties, where each one of the parties
uses Web Services to offer his externally accesible opera-
tions. Choreography languages depict the composition from
a global viewpoint, showing the interchange of messages
between the involved parties. However, there is not an only
standard that has been widely adopted for that purpose until
now.

Our goal with this paper, then, is to present a compara-
tive study of three existing languages to specify Web Ser-
vices choreographies: Web Service Choreography Interface
(WSCI, [2]), Web Service Choreography Description Lan-
guage (WS-CDL, [4]), and Ontology Web Language for
Services (OWL-S, [5]).

The rest of the paper is structured as follows: Section 2
shows a general description of WSCI language. Section 3
explains the main features of WS-CDL language. Section 4
provides a brief description of the DAML program and the
OWL-S language. Section 5 is devoted to the comparison
of the different structures of these languages. Finally, in
Section 6, some conclusions are presented.

2. Web Service Choreography Interface
(WSCI)

The Web Service Choreography Interface (WSCI, [2]) is
an XML-based language to describe the interface of a Web
Service participating in a choreographed interaction with
other services. This interface shows the flow of messages
exchanged by the Web Service. The language has been de-
veloped by companies like Sun, SAP, BEA and Intalio.

A WSCI interface describes the observable behavior of
only one Web Service. This behavior is expressed by means
of temporal and logical dependencies in the flow of mes-

sages. For that purpose WSCI includes sequencing rules,
correlation, exception handling, and transactions. WSCI
also describes the collective message exchange among the
Web Services participating in the choreography, providing
a global view of the interactions. Therefore, a WSCI chore-
ography consists of a set of interfaces, one for each Web
Service taking par of it.

In Figure 1 we can see the architecture of WSCI chore-
ography, where we have a different interface for each Web
Service.

Figure 1. WSCI architecture

The internal implementation of the services is not ad-
dressed by WSCI, i.e., how they work and how the message
are interchanged. The goal of this language is describing the
observable behavior of a set of services through interfaces
depicting the flow of messages.

WSCI is able to work with other Web Services descrip-
tion languages, specifically Web Services Description Lan-
guage (WSDL, [3]). In that way, WSDL describes the static
interfaces of the services while WSCI depicts the dynamic
interfaces, that is, how the services interact with other ser-
vices. In the most common scenario, a Web Service has
only one WSDL interface and multiple WSCI interfaces for
multiple contexts. In Figure 2 we can see the relationship
between WSCI and WSDL.

WSCI depicts the behavior of the services by means of
choreographed activities. These activities can be atomic
or complex. Atomic activities are, e.g., waiting a specific
amount of time or sending a message. Complex activities
are composed of other activities, defining the choreography
for this activities (sequential, parallel, conditional,.. .).

WSCI also allows the use of processes. A process in
WSCI is a portion of behavior labeled with a name. We
can reuse these processes by referencing his name. We can
define two kinds of processes:Top-level processesthat can
be referenced from everywhere in the interface, andnested

Figure 2. Relationship with WSDL

processesthat are defined inside a complex activity and can
be referenced only inside this activity.

Contexts are used to describe the environment within
which a set of activities is executed. These contexts include
the set of declarations available to the activities, the setof
possible exceptions and the behavior related to these excep-
tions, and the transactional properties associated with the
activities, including the compensations to undo these activ-
ities.

WSCI uses a mechanism called correlation to associate
a message with a concrete conversation. Multiple conversa-
tions can be distinguished through the use of different cor-
relation instances. Properties of a concrete correlation are
communicated as part of messages exchanges.

To sum up, WSCI allows us to specify the observable
behavior of a Web Service in a concrete interaction with
other services. To obtain a global model with WSCI, we
have to consider a set of interfaces (one for each service)
and the mapping between the operations existing in each
interface.

3. Web Service Choreography Description
Language (WS-CDL)

The Web Service Choreography Description Language
(WS-CDL, [4]) is an XML-based language to describe peer-
to-peer collaborations of Web Services taking part in a
choreography. This description defines, from a global view-
point, the common behavior of the services, and the ordered
message interchanges make reaching a common business
goal possible.

The goal of specifying Web Services choreographies is

composing peer-to-peer interactions between any kind of
services, regardless of the programming language or the en-
vironment that host the service. In Figure 3 we can see a
model of Web Services integration using WS-CDL.

Figure 3. Integration of Web Services using
WS-CDL

In WS-CDL the collaboration between Web Services
takes place within a set of agreements about the order-
ing and constraint rules, through which messages are ex-
changed between participants.

Choreography modeling with WS-CDL consists of the
following elements:

• Roles, Relationships and Participants: Information is
always exchanged between participants within a chore-
ography. A participant groups all the parts of the col-
laboration that must be implemented by the same en-
tity. A relationship identifies the mutual obligations
that must be fulfilled in a collaboration to succeed. A
role enumerates a potential behavior of a participant
within an interaction.

• Types, Variables and Tokens: A type defines the kind
of information corresponding to a variable or a token.

A variable contains information about the common ob-
jects in a collaboration. A token is an alias to reference
part of a variable.

• Choreographies: A Choreography defines collabora-
tions between participants using the following means:

– Choreography Composition: It allows the cre-
ation of new choreographies by means of reusing
already defined choreographies.

– Choreography Life-Line: It defines the develop-
ment of a collaboration. A choreography starts
within a business process, then some work is per-
formed and, finally, it finishes normally or abnor-
mally.

– Choreography Recovery: It consists ofexception
blocks, that specify additional interactions that
must be performed when an abnormal behavior
happens, andfinilizer blocks, that specify addi-
tional interactions which could modify or undo
the effect of a previously executed choreography.

• Channels: A channel is a point of collaboration be-
tween participants specifying where and how informa-
tion is exchanged.

• WorkUnits: A WorkUnit describes the constraints that
must be fulfilled to execute some interactions.

• Interactions: An interaction is the base of a choreogra-
phy, describing message interchanges between partic-
ipants and any related synchronizations of states and
variables.

• Activities and Ordering Structures: An activity (in-
cluding interactions) is the lowest level element of a
choreography that performs some work. An ordering
structure combines activities and other ordering struc-
tures to build complex activities. Ordering structures
include sequence, choice, and parallel.

• Semantics: Semantics allow the creation of descrip-
tions with the semantic definitions of any component
of the model.

WS-CDL also includes support to reference WSDL def-
initions of Web Services.

4. Ontology Web Language for Services
(OWL-S)

The Ontology Web Language for Services (OWL-S, [5])
was originally known as DAML-S. The objective of the
DARPA Agent markup Language (DAML) program is the

development of a language and tools that facilitate the con-
cept of Semantic Web [6]. As part of this program, the Web
Services ontology OWL-S has been developed. The aim of
this ontology is to automate the discovery, invocation, com-
position, interoperation and monitoring of Web Services.
This ontology has been developed by Carnegie Mellon Uni-
versity, Nokia, Stanford University, SRI International, Yale
University,. . .

In Figure 4 we can see the ontology for Web Services
proposed by OWL-S. This ontology is based on providing
three essential kinds of information about the services:

Figure 4. Web Services ontology

• What does the service provide?This information is
given by theService Profile.

• How is the service used?This information is given by
theService Process Model.

• How to access the service?This information is pro-
vided by theService Grounding.

Briefly, the Service Profile provides the information that
agents need to discover the service, while the Service Pro-
cess Model and the Service Grounding give the information
that agents need to use the service.

Although OWL-S defines an ontology for each one of
these three areas, it also allows the definition of alterna-
tive approaches. The default approaches are only basic ap-
proaches but are useful in the majority of cases.

In OWL-S each service is considered as a set of atomic
processes with inputs and outputs associated. In that way,
when the mapping from abstract definition to concrete uti-
lization must be done, OWL-S is complemented with the
use of WSDL for the concrete definition of services. In
Figure 5 we can see the relationship between OWL-S and
WSDL.

Apart from the ontologies described before, OWL-S de-
fines another ontology for the required resources. This on-
tology covers the description of physical resources, tempo-
ral resources and computational resources related to the ser-
vices.

Figure 5. Relationship to WSDL

To sum up, the objective of OWL-S is to provide a base
ontology for the description of Web Services within the
DAML program. This ontology will be the starting point to
automate the discovery, invocation, composition and moni-
toring of Web Services.

5 Comparison

5.1 Basic Structures

WSCI In WSCI the basic activities are calledatomic ac-
tivitiesand theactionelement is the main one. This element
describes the way in which Web Services use an elementary
operation within a context, e.g., the exchange of a message
with another Web Service. The syntax of an action is:

<action
name = NCName
operation = QName/NCName
role = QName
{any attribute with non-WSCI namespace}>
Content: (documentation?,correlate*,call?,

{any element with non-WSCI namespace}*)
</action>

Theoperationattribute can be used to reference a WSDL
operation that the action performs. An action can be associ-
ated with one of the following kinds of WSDL operations:

• Notification: The service sends a message to another
service.

• Solicit-response: The service sends a message to an-
other service and waits for a response.

• One-way: The service receives a message.

• Request-response: The service receives a message
and sends a response.

The role attribute is an optional attribute that associates
an action with a role name. It can be used to reference the
definition of a role given by some other specification.

Thecorrelateelement is used to relate an action to a cor-
relation definition. It serves to indicate in which particu-
lar execution context is performed the action, allowing us
to correlate a message with a particular conversation. The
syntax of this element is:

<correlate correlation = QName
instantiation = (true|false):false />

Thecorrelationattribute is mandatory and it references
a correlation specification, while theinstantiationattribute
is optional, and can have valuetrue (the correlation proper-
ties forming the correlation identity will be used to iden-
tify the current execution context in all subsequent mes-
sage exchanges) or valuefalse (the correlation properties
are used to identify a previously established execution con-
text in which the action should be performed).

The call element is used to indicate the activities that
will happen while an action that handles a request-response
operation is performed by a Web Service. The syntax of this
element is the following:

<call
process = NCName>
Content: (documentation?)

</call>

This element is forbidden for all WSDL operations apart
from request-response.

Finally, the extensibility of the action element allows us
to refer to operations defined in a specification other than
WSDL. This can be done by using extension attributes pro-
vided by WSCI.

WS-CDL In WS-CDL the basic building block of a
choreography is theinteractionelement. It indicates infor-
mation exchanges between participants, possibly including
the synchronization of some information values. These in-
teractions are performed when one participant sends a mes-
sage to another participant in the choreography. When the
message exchanges complete successfully, the interaction
completes normally. The syntax of the interaction is the
following:

<interaction name="NCName"
channelVariable="QName"
operation="NCName"
align="true"|"false"?
initiate="true"|"false"?>

<participate relationshipType="QName"
fromRoleTypeRef="QName"
toRoleTypeRef="QName"/>

<exchange name="NCName"
faultName="QName"?
informationType="QName"?|

channelType="QName"?
action="request"|"respond">

<send variable="XPath-expression"?
recordReference="list of NCName"?
causeException="QName"?/>

<receive variable="XPath-expression"?
recordReference="list of NCName"?
causeException="QName"?/>

</exchange>*

<timeout time-to-complete="XPath-expression"
fromRoleTypeRecordRef="list of NCName"?
toRoleTypeRecordRef="list of NCName"?/>?

<record name="NCName"
when="before"|"after"|"timeout"
causeException="QName"? >

<source variable="XPath-expression"? |
expression="XPath-expression"?/>

<target variable="XPath-expression"/>
</record>*

</interaction>

First, we take a look at the fifth initial attributes:

• The nameattribute specifies the name of the interac-
tion.

• The channelVariableattribute specifies the channel
variable used to do the communication during the in-
teraction. It contains information about the partici-
pants in the interaction.

• Theoperationattribute specifies the name of operation
that is associated with the interaction.

• The align attribute, if true, indicates that after the
interaction both participants act on the basis of their
shared understanding for the messages exchanged and
the information recorded.

• Theinitiate attribute, iftrue, indicates that the interac-
tion is a choreography initiator.

The participate element specifies the relationship type
the interaction participates in, and the requesting and ac-
cepting participants.

The exchangeelement is used to exchange information
during the interaction. It includes the following attributes:

• Thenameattribute specifies the name of the exchange.

• The faultNameattribute, if specified, indicates the ex-
change as a fault exchange with the given name.

• The informationTypeattribute and thechannelTypeat-
tribute specify the information type or the channel type
of the information exchanged between the two partici-
pants.

• The action attribute specifies the direction of the ex-
changed information, i.e.,requestor respond.

Thesendelement and thereceiveelement inside the ex-
change element indicate that information is sent from a par-
ticipant or information is received at a participant respec-
tively. These elements can also specify the variables ex-
changed, and if an exception must be thrown.

The timeoutelement allows us to specify the maximum
amount of time to complete an interaction, by means of the
time-to-completeattribute. When this time is exceeded, a
timeout occurs. This element also allows us to modify some
records in both participants when the timeout occurs.

Finally, therecord element is used to create or change
the value of one or more variables. This element includes
the following attributes:

• Thenameattribute specifies the name of the record.

• The whenattribute specifies when the recording hap-
pens (before an exchange, after an exchange, or when
a timeout happens).

• The causeExceptionattribute, if specified, indicates
that an exception may be caused and the value of the
attribute identifies the exception that may be caused.

Thesourceandtargetelements within the record specify
the recordings of information happening in the interaction.
The target is always a variable, while the source can be a
variable or an expression.

OWL-S In OWL-S services are modeled as processes.
These processes are specifications of the ways clients may
interact with services. For that purpose, OWL-S includes a
subclass of the Service Model calledProcess. This class is
defined as follows:

<owl:Class rdf:ID="Process">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AtomicProcess"/>
<owl:Class rdf:about="#SimpleProcess"/>
<owl:Class rdf:about="#CompositeProcess"/>

</owl:unionOf>
</owl:Class>

We can distinguish three different kinds of processes:
atomic processes, simple processes, and composite pro-
cesses.Composite processescorrespond to activities that
require multiple service interactions, so we only talk about
atomic and simple processes in this section.

Atomic processesare executed in a single step and never
have subprocesses. They just receive an input message, do
some work, and finally send an output message. There are
always only two participants for that kind of process, the
client and theserver:

<owl:Class rdf:ID="AtomicProcess">
<owl:subClassOf rdf:resource="#Process"/>

</owl:Class>

<owl:Class rdf:about="#AtomicProcess">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasClient"/>
<owl:hasValue rdf:resource="#TheClient"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#performedBy"/>
<owl:hasValue rdf:resource="#TheServer"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Simple processeshave also a single step execution. They
are used as abstractions, providing a view of some atomic
process. In this case, the simple process isrealizedBy the
atomic process:

<owl:Class rdf:ID="SimpleProcess">
<rdfs:subClassOf rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#AtomicProcess"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="realizedBy">
<rdfs:domain rdf:resource="#SimpleProcess"/>
<rdfs:range rdf:resource="#AtomicProcess"/>
<owl:inverseOf rdf:resource="#realizes"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="realizes">
<rdfs:domain rdf:resource="#AtomicProcess"/>
<rdfs:range rdf:resource="#SimpleProcess"/>
<owl:inverseOf rdf:resource="#realizedBy"/>

</owl:ObjectProperty>

In Figure 6 we can see the relation between the simple
processes and the atomic processes.

Figure 6. Relationship between processes

Finally, we must take into account that processes can
have two different goals:

1. They can return some new information based on some
given information. These processes are based onin-
puts andoutputs.

2. They can produce a change in their environment.
These processes are based onpreconditions and ef-
fects.

There are several classes defined in the OWL-S model
related to these four elements (inputs, outputs, precondi-
tions, and effects).

Discussion The three languages have basic structures to
describe the message exchange between parties in a com-
position, but there are several differences between the ele-
ments used for that purpose. While theinteractionelement
in WS-CDL allows us to exchange multiple messages be-
tween two parties (in both directions), theactionelement in
WSCI and theatomic processin OWL-S refer to a single
exchange.

The interactionelement in WS-CDL pays special atten-
tion to the variables exchange between the different par-
ties in eachexchangeelement, while theactionelement in
WSCI only specifies the operation performed by the mes-
sage. In OWL-S there is a list of inputs and outputs related
to eachatomic process.

Finally, eachactionelement in WSCI only specifies one
of the roles participating in the exchange, the sender or the
receiver. Theconnectelement is used in the global model
to relate a send message to a receive message from different
interfaces. Theinteractionelement in WS-CDL specifies
both roles, indicating which one is the requesting partici-
pant and which one is the accepting participant. In OWL-S
theatomic processesalways have two properties to indicate
which role is the client of the service and which role is the
server. In this aspect, WS-CDL and OWL-S are more pow-
erful than WSCI, in the sense that they need less code to
express a collaboration between two parties.

5.2 Complex Structures

WSCI In WSCI complex activitiescontain a set of activ-
ities and define the order in which these activities are per-
formed. A complex activity can contain one or multiple
activity sets. All the complex activities are based on a com-
mon definition with the following syntax:

<{activity type}
name = NCName>
Content: (documentation?)

</{activity type}>

Activities are always performed in some context and the
attributenameis an optional attribute that can be used to

distinguish this activity from any other activity in the same
context.

Next, we are going to see in more detail each one of the
complex activities that are used to determine the order in
which a set of activities is performed:

• Theall activity performs the whole set of activities that
contains in any order, possibly in parallel. It has the
following syntax:

<all
name = NCName>
Content: (documentation?,context?,

{any activity}*)
</all>

• The sequenceactivity performs all the activity set in
sequential order. It has the following syntax:

<sequence
name = NCName>
Content: (documentation?,context?,

{any activity}+)
</sequence>

• Thechoiceactivity performs only one activity set from
the collection of multiple activity sets within this com-
plex activity. The decision is made based on events.
The event can be the reception of a message, the expi-
ration of a timeout, or the throwing of a fault. When
multiple events overlap, there is no way to know which
one of the possible activity sets is executed. The choice
activity has the following syntax:

<choice
name = NCName>
Content: (documentation?,

(onMessage|onTimeout|onFault){2,n})
</choice>

<onMessage>
Content: (documentation?,action,

context?,{any activity}+)
</onMessage>

<onTimeout
property = QName
type = (duration|dateTime) : duration
reference = QName>
Content: (documentation?,context?,

{any activity}+)
</onTimeout>

<onFault
code = QName>
Content: (documentation?,context?,

{any activity}+)
</onFault>

• The foreachactivity executes the activity sets within
repeatedly. It has the following syntax:

<foreach
name = NCName
select = expression>
Content: (documentation?,context?,

{any activity}+)
</foreach>

Theselectattribute is an XPATH expression that eval-
uates to a list of items. The activity set is repeated once
for each item in this list. If the list is empty, the activity
set is not performed.

• Theswitchactivity selects one activity set from the col-
lection of multiple activity sets within this complex ac-
tivity based on the evaluation of conditions. It has the
following syntax:

<switch
name = NCName>
Content: (documentation?,case+,default?)

</switch>

<case>
Content: (documentation?,condition,

context?,{any activity}+)
</case>

<default>
Content: (documentation?,context?,

{any activity}+)
</default>

<condition
{extension attribute}>
Content: {expression}

</condition>

All the caseelements are mutually exclusive, selecting
the corresponding activity set if the value of the con-
dition is true for that case. Only one case can be exe-
cuted, so if multiple case elements can be performed,
the first one in the definition has the biggest priority.
If no other condition is fulfilled, the activity set within
thedefaultelement is performed.

The condition element is an XPATH expression that
evaluates to a Boolean value. This condition is evalu-
ated in the context of the switch activity.

• Theuntil activity performs the activity set that contains
repeatedly based on a Boolean condition. The until ac-
tivity is repeated one or more times because the con-
dition is evaluated after each iteration of the activity
set. If false the activity set is repeated, otherwise the
activity ends. It has the following syntax:

<until
name = NCName>
Content: (documentation?,condition,

context?,{any activity}+)
</until>

• The while activity performs the activity set that con-
tains repeatedly based on a Boolean condition. The
while activity is repeated zero or more times because
the condition is evaluated before each iteration of the
activity set. If true the activity set is executed, other-
wise the activity ends. It has the following syntax:

<while
name = NCName>
Content: (documentation?,condition,

context?,{any activity}+)
</while>

WS-CDL In WS-CDL we can distinguish two differ-
ent kinds ofcomplex activitiesinside a choreography: the
workunit element and the ordering structures.

Theworkunitelement specifies a condition that must be
fulfilled in order to perform some work and/or the repetition
of some work. It completes successfully when the set of
activities inside completes successfully. This element has
the following syntax:

<workunit name="NCName"
guard="xsd:boolean XPath-expression"?
repeat="xsd:boolean XPath-expression"?
block="true|false"? >

Activity-Notation

</workunit>

The Activity-Notationrefers to the set of activities per-
formed within the workunit.

The optional attributeguard is an XPATH expression
that specifies the condition that must be fulfilled to perform
the workunit.

The optional attributeblock, with false value as default,
indicates whether the element have to block waiting for the
“true” evaluation of the guard condition or it skips the ac-
tivities inside when the guard condition evaluates to “false”.

The optional attributerepeatis also an XPATH expres-
sion that specifies the repetition condition of the workunit.
It is always not blocking.

In this way, when there is not guard condition specified
then it is considered to be always true while when there is
not repetition condition specified then the workunit is not
considered to be executed again after one execution.

Ordering structuresare used to combine basic activities
and other complex activities in a nested way, expressing the
order in which actions are performed within the choreogra-
phy. There are three ordering structures:

• Thesequenceordering structure expresses that the set
of activities inside must be executed sequentially. It
has the following syntax:

<sequence>
Activity-Notation+

</sequence>

• The parallel ordering structure indicates that the set
of activities inside must be executed concurrently. It
completes successfully when all the concurrent activi-
ties complete successfully. The syntax of this ordering
structure is:

<parallel>
Activity-Notation+

</parallel>

• The choiceordering structure specifies that only one
of multiple activities can be executed. If the choice
have workunits inside, only the first one in lexical or-
der with a “true” guard condition is selected. If there
are other activities, there is no way to know which one
is selected; it is considered as a non-observable deci-
sion. The choice has the following syntax:

<choice>
Activity-Notation+

</choice>

OWL-S As we have seen in Section 5.1, Web Services in
OWL-S are modeled as processes and there are three differ-
ent kinds: atomic processes, simple processes, and compos-
ite processes.Composite processescontain other processes
of any kind in a nested way. They also specify the way
in which their contents are executed, such as sequence or
choice.

Composite processes are specified as follows:

<owl:Class rdf:ID="CompositeProcess">
<rdfs:subClassOf rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#AtomicProcess"/>
<owl:disjointWith rdf:resource="#SimpleProcess"/>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Process"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#composedOf"/>
<owl:cardinality rdf:datatype="...">

1</owl:cardinality>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

ThecomposedOfproperty is used to specify the control
construct corresponding to the composite process, i.e., the
way in which their contents are executed. It is also used to
associate a composite process with its nested processes.

Next, we are going to see the different control constructs
provided by OWL-S:

• TheSequencecontrol construct specifies a list of sub-
processes to be executed in a row. It has the following
definition:

<owl:Class rdf:ID="Sequence">
<rdfs:subClassOf
rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="#components"/>
<owl:allValuesFrom
rdf:resource="#ControlConstructList"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The ControlConstructListcontains the list of subpro-
cesses to be executed in sequence.

• The Split control construct specifies a set of subpro-
cesses to be executed concurrently. This process com-
pletes as soon as all his subprocesses has begun their
execution. Split has the following definition:

<owl:Class rdf:ID="Split">
<rdfs:subClassOf
rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="#components"/>
<owl:allValuesFrom
rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The ControlConstructBagcontains the set of subpro-
cesses to be executed in parallel.

• TheSplit+Joincontrol construct also specifies a set of
subprocesses to be executed concurrently, but in this
case the process completes when all its subprocesses
have finished. This control construct has the following
definition:

<owl:Class rdf:ID="Split-Join">
<rdfs:subClassOf
rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="#components"/>
<owl:allValuesFrom
rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Again, theControlConstructBagcontains the set of
subprocesses to be executed in parallel.

• TheAny-Ordercontrol construct specifies a set of sub-
processes to be executed in any order but not concur-
rently. The process completes when all its subpro-
cesses have finished. Any-Order has the following def-
inition:

<owl:Class rdf:ID="Any-Order">
<rdfs:subClassOf
rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="#components"/>
<owl:allValuesFrom
rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

This control construct also uses theControlConstruct-
Bagto specify the subprocesses that contains.

• TheChoicecontrol construct specifies a set of subpro-
cesses and only one of them is executed. The selection
criteria are is non-observable, so any of the subpro-
cesses can be chosen. Choice has the following defini-
tion:

<owl:Class rdf:ID="Choice">
<rdfs:subClassOf
rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="#components"/>
<owl:allValuesFrom
rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

This kind of composite process also uses theControl-
ConstructBagto specifiy all the posible subprocesses.

• The If-Then-Elsecontrol construct executes different
subprocesses depending on the value of a condition. It
has the following definition:

<owl:Class rdf:ID="If-Then-Else">
<rdfs:subClassOf
rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="#components"/>
<owl:allValuesFrom
rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="ifCondition">
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range rdf:resource="&expr;#Condition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="then">
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="else">
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

The ifCondition property specifies the condition we
have to test. Thethen property specifies the subpro-
cess we execute if the condition is “true”, whereas the
elseproperty specifies the subprocess we execute when
the condition is “false”.

• The Iterate control construct repeats the execution of
its components an undetermined number of times. It is
only used as a superclass of Repeat-While and Repeat-
Until constructs. Iterate has the following definition:

<owl:Class rdf:ID="Iterate">
<rdfs:subClassOf
rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="#components"/>
<owl:allValuesFrom
rdf:resource="#ControlConstructBag"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

• TheRepeat-Whilecontrol construct iterates the execu-
tion of a subprocess while a condition evaluates to true.
This condition is always evaluated before the execu-
tion. This control construct has the following defini-
tion:

<owl:Class rdf:ID="Repeat-While">
<rdfs:subClassOf rdf:resource="#Iterate"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="whileCondition">
<rdfs:domain rdf:resource="#Repeat-While"/>
<rdfs:range rdf:resource="&expr;#Condition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="whileProcess">
<rdfs:domain rdf:resource="#Repeat-While"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

The whileCondition property specifies the condition
we test, and thewhileProcessproperty specifies the
subprocess we execute repeatedly.

• TheRepeat-Untilcontrol construct iterates the execu-
tion of a subprocess as long as a condition evaluates to
true. This condition is always evaluated after the exe-
cution, so at least one execution is done. This control
construct has the following definition:

<owl:Class rdf:ID="Repeat-Until">
<rdfs:subClassOf rdf:resource="#Iterate"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="untilCondition">
<rdfs:domain rdf:resource="#Repeat-Until"/>
<rdfs:range rdf:resource="&expr;#Condition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="untilProcess">
<rdfs:domain rdf:resource="#Repeat-Until"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

The untilCondition property specifies the condition
we test after each execution, and theuntilProcess
property specifies the subprocess we execute repeat-
edly.

Discussion In Table 1 we show the equivalences between
the different complex structures we have described corre-
sponding to each language.

Thesequenceconstruction exists in the three languages
with the same meaning, the sequential execution of the ac-
tivities or processes within the construction.

Thechoiceconstruction also exists in the three languages
but there are some differences. While in WSCI the selec-
tion is based on the triggering of an event, in WS-CDL
and OWL-S the selection criteria for the activities inside are
non-observable. WS-CDL also allows us to use workunits
within the choice, restricting the possible selections to the
workunits that match their guard condition.

A construction to indicate the concurrent execution of
several activities also exists in the three languages, but with
different names. Theall construction in WSCI indicates
that the activities are executed in parallel or in any order (but
not concurrently). Theparallel construction in WS-CDL
indicates that the activities are executed concurrently (the
specification says nothing about a possible execution in any
order but not concurrently). Last, in OWL-S we have three
different constructions for that purpose: TheSplit process
indicates the concurrent execution of all its subprocesses
without waiting for the completion of these subprocesses,
theSplit+Join process also indicates the concurrent execu-
tion of all its subprocesses but it waits for the completion of
them, and theAny-Orderprocess indicates the execution in
an undefined order of the subprocesses but not concurrently.

Theswitchconstruction, that selects one activity from a
collection, only exists in WSCI, but it can be emulated in
WS-CDL and OWL-S by using some other construction. In
WS-CDL we can use multiple non-blockingworkunitswith
the guard condition specified, while in OWL-S we have the
If-Then-Elseprocess and with several of these processes
nested we can achieve the same behavior.

Both, theuntil construction in WSCI and theRepeat-
Until process in OWL-S, indicate the repetition of the con-

tents based on the truth value of a condition, where the con-
dition is evaluated at the end of each iteration. This behav-
ior can be emulated in WS-CDL by using aworkunitwith a
repeat condition specified.

We also have thewhile construction in WSCI and the
Repeat-Whileprocess in OWL-S indicating the repetition of
the contents based on the truth value of a condition, but with
the condition evaluated before each iteration. In this case,
an emulation in WS-CDL can be done by using aworkunit
with a guard and a repeat condition specified (both evaluat-
ing the same condition).

Finally, theforeachconstruction only exists in WSCI and
there is not any equivalent construction in the other two lan-
guages.

5.3 Exception handling and compensation

WSCI In WSCI we can specify exceptional behavior that
can be reached from any point of the Web Service choreog-
raphy. The declaration of this behavior is part of the context
definition and it includes the activities that the Web Service
performs in response to each exception.

WSCI allows us to declare three kinds of exception:

• The reception of a message considered as exceptional.

• The occurrence of a fault.

• The expiration of a timeout.

After the exceptional activities have been performed,
the current context terminates and the parent context is re-
sumed. In this way, WSCI allows us to treat exceptions that
do not cause the termination of the overall choreography
(such as the throw/catch in Java programs). If there is not
any treatment for an exception in the current context, this
context terminates and the exception is raised to the parent
context for treatment (such as the propagation of exceptions
to parent classes in Java programs).

The fault activity is used to trigger a fault in the current
context. It has the following syntax:

<fault
name = NCName
code = QName>
Content: (documentation?)

</fault>

The nameattribute specifies the name of the fault and
the codeattribute is used to specify the code correspond-
ing to the fault. The exception element which onFault event
handler matches the name attribute of this fault will be trig-
gered when the fault occurs. If the fault is not handled by
any exception handler, in the current context or in any par-
ent context, the process terminates with the fault code.

WSCI WS-CDL OWL-S
sequence sequence Sequence

choice(events) choice(non-observable) Choice(non-observable)
all (concurrent or unspecified order) parallel (concurrent) Split, Split+Join, andAny-Order

switch Multiple workunitswith guard conditions If-Then-Else
Until workunitwith repeat condition Repeat-Until
While workunitwith guard and repeat conditions Repeat-While

foreach – –

Table 1. Equivalences between complex structures

Theexceptionelement is used to handle exceptional be-
havior. This element must specify one or more event han-
dlers, each one of them defining the event handled and the
activity set to perform when this event occurs. It has the
following syntax:

<exception>
Content: ((onMessage | onTimeout | onFault){+})

</exception>

We can distinguish three different kinds of event han-
dlers:

• The onMessageevent handler is triggered by an in-
coming message and its initial action indicates the
event that triggers this event handler.

• TheonTimeoutevent handler is triggered when a time-
out expires.

• TheonFaultevent handler is triggered when a fault oc-
curs. It has an optional attributecodespecifying the
fault code. If absent, the event handler will be trig-
gered by all faults for which no other event handler
has been specified.

When an exception has occurred, WSCI allows us to
undo some work by using thecompensationelement in a
transaction. It has the following syntax:

<compensation>
Content: (documentation?, context?,

{any activity}+)
</compensation>

The compensateelement is used inside the exception
handler to reference the compensation we want to execute.
This element is defined as follows:

<compensate
name = NCName
transaction = NCName>
Content: (documentation?)

</compensate>

The transactionattribute is used to indicate the name of
the transaction whose compensation we want to execute.

WS-CDL Different types of exceptions are considered in
WS-CDL. The exceptions considered include the following
categories:

• Interaction failures : E.g. the sending of a message
fails.

• Protocol based exchange failures: E.g. no acknowl-
edgement is received as part of the behavior of a pro-
tocol.

• Security failures: E.g. a message is rejected because
it has not valid digital signature.

• Timeout errors: E.g. an interaction is not completed
in the specified amount of time.

• Validation errors : E.g. an XML message is not well
formed.

• Application failures : E.g. an Internet purchase ser-
vice is out of stock of a product offered.

Exception workunits can be defined to handle all these
exceptions. They may also be used as the mechanism to
recover from the exceptions. The exception workunits are
defined within theexceptionBlockelement of a choreogra-
phy. It has the following syntax:

<exceptionBlock name="NCName">
WorkUnit-Notation+

</exceptionBlock>?

At least one exception workunit must be defined. The
guard of the workunit can be used to specify the particu-
lar type of exception we want to handle through the use of
thehasExceptionOccurredfunction. The exception worku-
nit with no guard condition is called the default exception
workunit and only one is allowed within an exception block.

Only one exception workunit can match each exception.
If multiple exception workunits are defined, the order of
evaluating them is based on the order in which the worku-
nits have been defined. When the matching happens, the

actions of the matched workunit are executed. If no match-
ing happens and a default exception workunit exists, then
the actions of this workunit are executed. Otherwise, the
exception is raised in the parent choreography.

WS-CDL also allows us to define finalization actions
within a choreography that can confirm or cancel the ef-
fects of this choreography, so we can use this actions for
compensation. This finalization is done by means of the
finalizerBlockelement. It has the following syntax:

<finalizerBlock name="NCName">
Activity-Notation

</finalizerBlock>

Multiple finalizer blocks can be defined with different
nameattributes, but only one of them is executed when the
choreography completes successfully.

Finally, if an exception occurs, the choreography com-
pletes unsuccessfully and the actions within it are com-
pleted abnormally. Furthermore, the finalizer blocks of the
choreography are not executed.

OWL-S The OWL-S specification does not provide any
explicit support for exception handling. However, some
work about exception handling in Semantic Web Services
is being developed as part of the Darpa program. In [7]
an approach for the specification of exception handling and
recovery of Semantic Web Services based on OWL-S is pre-
sented. Here, we therefore describe this specification.

The following failure categories can be distinguished
when executing a Web Service composition, according to
[7]:

• Service invocation errors: Communication failures,
response timeout, . . .

• OWL-S processing errors: Problems with the syntax
or the structure of OWL-S files.

• Process level execution errors: Erroneous situations
caused by inconsistencies on the process model that
may occur during the execution.

• Application level errors: Erroneous states specific to
the application logic of a Web Service.

• Constraint violations: Violations of constrains estab-
lished in e-contracts between parties.

Several actions can be taken as a response to a failure.
We have the following action categories:

• Neutral actions: Actions that do not have any effect
on the state of a failed process.

• Recovery actions: Actions that provide means for
restoring the state of a failed process.

• Fault emitting actions: Actions that throw an excep-
tion as a response to a failure.

• Termination actions: Actions that can be used to ter-
minate a process.

• Adaptation actions: Actions that modify the execu-
tion flow of a service.

A list of fault handlersthat are used as responses to fail-
ures can be defined for each process. These handlers have
the following form, in a simple abstract syntax:

FaultHandler(FaultType [faultVariable])
{ actions }

Fault handlers are strictly local to the process for which
they are defined. Multiple handlers can be defined for a
process but only the first one that matches in top-down order
is executed. If there is not any fault handler that matches,
the fault is propagated to the parent process. The optional
faultVariablecan be used to access the fault occurrence and
its value.

A list of constraint violation handlers (CV-handlers)can
be defined in a process to detect hard constraint violations
considered as failures. A CV-handler has the following ab-
stract syntax:

CV-Handler(event-expression [eventVariable])
{ actions }

CV-handlers are active in their own process and in all
embedded processes. Triggering a CV-handler causes the
termination of the process corresponding to this CV-handler
and changes the state of this process to failed state. The op-
tional eventVariablecan be used to access the event occur-
rence and its value.

We can also define a list ofevent handlersfor each pro-
cess. These handlers can be used to express soft constraints,
i.e., constraints that do not necessarily lead to an erroneous
state, and to define the responses to these constraints. An
event handler has the following form:

EventHandler(event-expression [eventVariable])
{ actions }

Triggering an event handler does not lead to the termina-
tion of the process for which this event handler is defined.
Event handlers are also active for all the embedded pro-
cesses. When one event happens, all the event handlers that
match are executed in top-down order. The optionalevent-
Variablecan be used to access the event occurrence and its
value.

Finally, thecompensationconstruct is used in a process
to define the actions that can be executed for undoing the
effects of this process. It has the following abstract syntax:

Compensation { actions }

A compensation can be activated by calling thecompen-
sateaction or thecompensateProcessaction. It is only ex-
ecuted when the process has finished successfully, i.e., the
process is not in failed state. If there is not compensation
specified for a composite process, it is compensated by ex-
ecuting compensations of embedded processes finished in
the reverse chronological order of their original invocation.
If there is not compensation for an atomic process, it is
skipped during the compensation execution, but a specific
event calledNoCompensationForAProcessis thrown.

Discussion Exception handling and compensation are in-
cluded as part of WSCI and WS-CDL specifications, but
the latest version of OWL-S does not include any of these
aspects. We know that a specification about exception han-
dling and compensation is being developed as part of the
Darpa program, but this specification is still in its infancy.

These three languages propose an exception treatment
based on events and the bottom-up propagation of excep-
tions in nested structures. WS-CDL does not make any
distinction in the treatment of the different kinds of event
that can cause the exception, while WSCI differentiates be-
tween three kinds of event (message, timeout, and fault) and
the specification related to OWL-S differentiates between
another three kinds of event (faults, hard constraint viola-
tions, and soft constraint violations). However, the three
languages take into account the same types of exception
(timeout, abnormal behavior of a service, violation of a con-
straint, . . .).

Finally, the compensation process is very similar in the
three languages. The main difference is that compensation
in WS-CDL can only be defined at the choreography level,
whereas in WSCI we can define a compensation for each
transaction and the specification related to OWL-S allows
us to define a compensation for each process.

6. Final Discussion

Both, WSCI and WS-CDL, are W3C proposals, but
WSCI last update was released in 2002, so it has not got
received any attention in the last years. On the other hand,
WS-CDL is the ongoing standardization initiative for Web
Service choreography, but it has not achieved the status of
being accepted as thede factostandard for that purpose.
Apart from these two proposals, we have the OWL-S lan-
guage as a part of the emerging Semantic Web, so its suc-
cess is closely related to the consolidation of this framework
worldwide in the future, which is not clear now.

As we can see in [8], some people think that the rea-
son because none of the choreography standardization ef-
forts has been adopted by a wide user base is that Service-

Oriented Architectures (SOA) has not gained enough ma-
turity until now. They think that some issues have to be
solved before we reach the adoption of a SOA infrastructure
that integrates choreography (the identification of patterns
for service interactions, the definition of a service interac-
tion meta-model, . . .). However, the current choreography
languages can be seen as a starting point to reach these
goals. For example, the elements of a service interaction
meta-model will be very similar to the elements we have in
WS-CDL.

Timing restrictions are used very often in the composi-
tion of Web Services, being a critical issue in real-time sys-
tems. For example, we want to indicate the amount of time
we wait for the confirmation of a purchase order. In WS-
CDL and WSCI time constraints can be specified by us-
ing the timeout element and the timeout event, respectively,
but the specification of OWL-S says nothing about these re-
strictions. Nevertheless, several efforts have been devoted
to extend OWL-S with a time ontology [9, 10].

The use of a formal language to describe a Web Service
choreography facilitates the validation of compositions by
applying validation techniques already defined for this for-
malism. Only WS-CDL of the three languages we are com-
paring is based on a formal language (π-calculus) [11], but
there is not a clear translation from all the elements of WS-
CDL into π-calculus, so we cannot apply any validation
technique directly. The scientific community has developed
multiple translations of these three languages into different
formal representations [12, 13, 14]. However, all these pro-
posals only take into account a subset of the elements of
each language, so they cannot guarantee full correctness of
the given specifications.

Concerning the relation with other standards, these three
choreography languages are XML-based and can work to-
gether with the WSDL language, using this well-established
standard to describe the Web Services participating in the
composition. WS-CDL and WSCI do not cover the descrip-
tion and execution of the workflow corresponding to each
service in the composition, so we are free to use different
mechanism for each one of these services, such as WSFL
(Web Services Flow Language, [15]) and WS-BPEL. On
the other hand, OWL-S intends to cover this work and ex-
tensions like OWL-WS (OWL for Workflow and Services,
[16]) has been developed for that purpose. Finally, we also
have to take into account that OWL-S builds on OWL (On-
tology Web Language, [17]), so it makes use of some of the
ontologies defined by this language.

References

[1] T. Andrews et al. Business Process Execution Lan-
guage for Web Services (version 1.1).Technical re-
port, may 2003.

[2] A. Arkin et al. Web Service Choreography Interface
(WSCI) 1.0.http://www.w3.org/TR/wsci/.

[3] E. Christensen et al.Web Services Description Lan-
guage (WSDL) 1.1.http://www.w3.org/TR/wsdl.

[4] N. Kavantzas et al. Web Service Choreog-
raphy Description Language (WSCDL) 1.0.
http://www.w3.org/TR/ws-cdl-10/.

[5] D. Martin et al. OWL-S: Semantic Markup for Web
Services.http://www.w3.org/Submission/OWL-S/.

[6] T. Berners-Lee, J. Hendler, and O. Lassila.The Se-
mantic Web.Scientific American, 284(5):34–43, 2001.

[7] Roman Vacuĺın, Kevin Wiesner, and Katia Sycara.Ex-
ception handling and recovery of semantic web ser-
vices.In Fourth International Conference on Network-
ing and Services. IEEE Computer Society Press, 2008.

[8] A. Barros, M. Dumas, and P. Oaks.Standards for Web
Service Choreography and Orchestration: Status and
Perspectives.In Proceedings of the 1st International
Workshop on Web Service Choreography and Orches-
tration for Business Process Management at the BPM
2005, Nancy, France, 2005.

[9] F. Pan and J. R. Hobbs.Time Ontology in OWL.
http://www.w3.org/2001/sw/BestPractices/OEP/Time-
Ontology.

[10] F. Pan and J. R. Hobbs.Time in OWL-S.In Proceed-
ings of AAAI-04 Spring Symposium on SemanticWeb
Services, Stanford University, California, 2004.

[11] S. Ross-Talbot.Web Services Choreography and Pro-
cess Algebra.SWSL Committee: Working Materials,
2004.

[12] , G. D́ıaz, J. J. Pardo, M. E. Cambronero, V. Valero,
and F. CuarteroAutomatic Translation of WS-CDL
Choreographies to Timed Automata.In Proceedings
of WS-FM, Versalles, September, 2005.

[13] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo.
Formalizing Web Service Choreographies.In Proceed-
ings of First International Workshop on Web Services
and Formal Methods. Electronic Notes in Theoretical
Computer Science, Elsevier, 2004.

[14] JunFeng Wu and HuaiKou Miao.A Rewriting Logic
Approach to OWL-S Composite Process Formal Speci-
fication.APSCC,pp.343-348, 2008 IEEE Asia-Pacific
Services Computing Conference, 2008.

[15] Frank Leymann. Web Services Flow Language
(WSFL) Version 1.0. IBM Software Group, May,
2001.

[16] Stefano Beco, Barbara Cantalupo, Ludovico Gi-
ammarino, Mike Surridge, and Nikolaos Matskanis.
OWLWS: A Workflow Ontology for Dynamic Grid Ser-
vice Composition. In 1st IEEE InternationalConfer-
ence on e-Science and Grid Computin, Melbourne,
December, 2005.

[17] S. Bechhofer et al.OWL Web Ontology Language.
http://www.w3.org/TR/owl-ref/.

