A comparative study between WSCI, WS-CDL, and OWL-S*

Maria Emilia Cambronero, Gregorioiz, Enriqgue Maihez, and Valenih Valero
Escuela Polécnica Superior de Albacete. Universidad de Castilla-Lad¥ian
Departamento de Sistemas Infdticos
Campus Universitario s/n. 02071. Albacete, SPAIN
{MEmilia.Cambronero,Gregorio.Diaz,Valentin.Valé@uclm.es
{emartinez @dsi.uclm.es

Abstract Language, [1]) is the most adopted language for that pur-
pose.

Choreography languages allow us to describe Web Ser- On the other hand, the target of choreography languages
vices compositions from a global viewpoint in Service Ori- is the coordination of long-running interactions between
ented Architectures (SOA). However, none of the existingmultiple distributed parties, where each one of the parties
languages has achieved the status of de facto standard foruses Web Services to offer his externally accesible opera-
that purpose until now. In this paper we compare three ex- tions. Choreography languages depict the composition from
isting proposals to specify Web Services choreographies:a global viewpoint, showing the interchange of messages
WSCI, WS-CDL, and OWL-S. First, we describe the main between the involved parties. However, there is not an only
characteristics of each one of these languages, and afterstandard that has been widely adopted for that purpose until
that we compare the different structures of the three lan- now.
guages. Finally, we present some conclusions of our work. Our goal with this paper, then, is to present a compara-
tive study of three existing languages to specify Web Ser-
vices choreographies: Web Service Choreography Interface
(WSCI, [2]), Web Service Choreography Description Lan-
guage (WS-CDL, [4]), and Ontology Web Language for
Services (OWL-S, [5]).

The importance of Service-Oriented Architectures The rest of the paper is structured as follows: Section 2
(SOA) has grown in the last years because they allow theshows a general description of WSCI language. Section 3
integration of software applications between differefaer explains the main features of WS-CDL language. Section 4
nizations. In these architectures, applications are @gos provides a brief description of the DAML program and the

as services, and these services are interconnected througbwL-S language. Section 5 is devoted to the comparison
the use of a set of standards (SOAP, WSDL, UDDI, WS- of the different structures of these languages. Finally, in

Security,. .) This is the reason because standardizition Section 6, some conclusions are presented_
one of the main aspects of SOA. While a certain level of
maturity has been achieved in the adoption of standards to .
interconnect and describe Web Services, there are st cha <* Web Service Choreography Interface
lenges related to the business processes executed by Web (WSCI)

Services compositions.

The termsorchestrationand choreographyrefer to two The Web Service Choreography Interface (WSClI, [2]) is
different ways of describing Web Services compositions. an XML-based language to describe the interface of a Web
Orchestration languages always represent the compositiorService participating in a choreographed interaction with
from the viewpoint of the parties involved in this composi- other services. This interface shows the flow of messages
tion. WS-BPEL (Web Service Business Process Executionexchanged by the Web Service. The language has been de-

s mTS—— ; 4 by FEDER veloped by companies like Sun, SAP, BEA and Intalio.
e e e e A WSCI nteface describes the abservable behavior of
PEII09-0232-7745. The third author is supported by the Eeam Social ~ ONly one Web Service. This behavior is expressed by means
Fund and the Junta de Comunidades de Castilla-La Manchan|Spai of temporal and logical dependencies in the flow of mes-

1. Introduction

sages. For that purpose WSCI includes sequencing rules,

correlation, exception handling, and transactions. WSCI WSCE
Dynamic, Choreographed
Web Service Interface

also describes the collective message exchange among the
Web Services participating in the choreography, providing
a global view of the interactions. Therefore, a WSCI chore-
ography consists of a set of interfaces, one for each Web
Service taking par of it.

In Figure 1 we can see the architecture of WSCI chore-
ography, where we have a different interface for each Web
Service.

| lorsren] o]
1
wWSDL:

Static YWeb Service Interface

Figure 2. Relationship with WSDL

processeshat are defined inside a complex activity and can
be referenced only inside this activity.

Contexts are used to describe the environment within
which a set of activities is executed. These contexts ireclud
the set of declarations available to the activities, theo$et

Figure 1. WSCl architecture possible exceptions and the behavior related to these excep
tions, and the transactional properties associated wéh th
activities, including the compensations to undo theser-acti

The internal implementation of the services is not ad- jties.
dressed by WSCI, i.e., how they work and how the message WSCI uses a mechanism called correlation to associate
are interchanged. The goal of this language is describig th 3 message with a concrete conversation. Multiple conversa-
observable behavior of a set of services through interfacesions can be distinguished through the use of different cor-
depicting the flow of messages. relation instances. Properties of a concrete correlatien a

WSCl is able to work with other Web Services descrip- communicated as part of messages exchanges.
tion languages, specifically Web Services Description Lan- To sum up, WSCI allows us to specify the observable
guage (WSDL, [3]). In that way, WSDL describes the static behavior of a Web Service in a concrete interaction with
interfaces of the services while WSCI depicts the dynamic other services. To obtain a global model with WSCI, we
interfaces, that is, how the services interact with other se have to consider a set of interfaces (one for each service)

vices. In the most common scenario, a Web Service hasand the mapping between the operations existing in each
only one WSDL interface and multiple WSCI interfaces for interface.

multiple contexts. In Figure 2 we can see the relationship
between WSCI and WSDL. . —
WSCI depicts the behavior of the services by means of3' Web Service Choreography Description
choreographed activities. These activities can be atomic ~ Language (WS-CDL)
or complex. Atomic activities are, e.g., waiting a specific
amount of time or sending a message. Complex activities The Web Service Choreography Description Language
are composed of other activities, defining the choreography(WS-CDL, [4]) is an XML-based language to describe peer-
for this activities (sequential, parallel, conditional). to-peer collaborations of Web Services taking part in a
WSCI also allows the use of processes. A process inchoreography. This description defines, from a global view-
WSClI is a portion of behavior labeled with a name. We point, the common behavior of the services, and the ordered
can reuse these processes by referencing his name. We canessage interchanges make reaching a common business
define two kinds of processe$op-level processehat can goal possible.
be referenced from everywhere in the interface, aested The goal of specifying Web Services choreographies is

{ Implementation

composing peer-to-peer interactions between any kind of A variable contains information about the common ob-
services, regardless of the programming language or the en- jects in a collaboration. A token is an alias to reference
vironment that host the service. In Figure 3 we can see a part of a variable.

model of Web Services integration using WS-CDL.) .
e Choreographies A Choreography defines collabora-

: tions between participants using the following means:
Business
(Analysts) .
— Choreography Compositionlt allows the cre-
! ation of new choreographies by means of reusing
Choreography GU| already defined choreographies.

Q E Co.B — Choreography Life-Linelt defines the develop-

ment of a collaboration. A choreography starts
within a business process, then some work is per-

formed and, finally, it finishes normally or abnor-
mally.

Choreography between Co. . .
A&Co.B — Choreography Recoveryt consists ofexception
blocks that specify additional interactions that
WS-BPEL Java must be performed when an abnormal behavior
happens, andinilizer blocks that specify addi-
tional interactions which could modify or undo
Traditional

pE the effect of a previously executed choreography.

Generated
Workflow

e Channels A channel is a point of collaboration be-
tween participants specifying where and how informa-
tion is exchanged.

e WorkUnits A WorkUnit describes the constraints that
must be fulfilled to execute some interactions.

Company A Company B e Interactions An interaction is the base of a choreogra-
phy, describing message interchanges between partic-
ipants and any related synchronizations of states and
variables.

Figure 3. Integration of Web Services using
WS-CDL

e Activities and Ordering StructuresAn activity (in-
cluding interactions) is the lowest level element of a
choreography that performs some work. An ordering
structure combines activities and other ordering struc-
tures to build complex activities. Ordering structures
include sequence, choice, and parallel.

In WS-CDL the collaboration between Web Services
takes place within a set of agreements about the order-
ing and constraint rules, through which messages are ex-
changed between participants.

Choreography modeling with WS-CDL consists of the { semantics Semantics allow the creation of descrip-

following elements: tions with the semantic definitions of any component

. . . o of the model.
¢ Roles, Relationships and Participantsiformation is

always exchanged between participants within a chore- WS-CDL also includes support to reference WSDL def-
ography. A participant groups all the parts of the col- initions of Web Services.

laboration that must be implemented by the same en-
tity. A relationship identifies the mutual obligations
that must be fulfilled in a collaboration to succeed. A
role enumerates a potential behavior of a participant
within an interaction.

4. Ontology Web Language for Services
(OWL-S)

The Ontology Web Language for Services (OWL-S, [5])
e Types, Variables and Token& type defines the kind was originally known as DAML-S. The objective of the
of information corresponding to a variable or a token. DARPA Agent markup Language (DAML) program is the

development of a language and tools that facilitate the con-

cept of Semantic Web [6]. As part of this program, the Web P OWL-S E
Services ontology OWL-S has been developed. The aimof /7 Y
this ontology is to automate the discovery, invocation, €com i Process Model DL-based Types }
position, interoperation and monitoring of Web Services.
This ontology has been developed by Carnegie Mellon Uni- | S T— - = — T i
versity, Nokia, Stanford University, SRI Internationabgl¥ . Atomic Process inputeOutputs: §
University,. . . [:

In Figure 4 we can see the ontology for Web Services | I I
proposed by OWL-S. This ontology is based on providing o i ;
three essential kinds of information about the services: RECRIOn Message A

|_ Binding to SOAP, HTTP, etc },’

{hows:JepZZ::ssit} @ T —“E‘USDLJ -7
Figure 5. Relationship to WSDL
To sum up, the objective of OWL-S is to provide a base

Figure 4. Web Services ontology ontology for the description of Web Services within the
DAML program. This ontology will be the starting point to
automate the discovery, invocation, composition and moni-
toring of Web Services.

Service

Fag
C‘.P',."é
=] gfﬁ

W7
% W{J"ﬁ's 9]

e What does the service provide™his information is

given by theService Profile

. . . o 5 Comparison
e How is the service usedPhis information is given by

the Service Process Model 5.1 Basic Structures

e How to access the servicePhis information is pro-

vided by theService Grounding WSCI In WSCI the basic activities are calletiomic ac-
tivitiesand theactionelement is the main one. This element
describes the way in which Web Services use an elementary
operation within a context, e.g., the exchange of a message
with another Web Service. The syntax of an action is:

Briefly, the Service Profile provides the information that
agents need to discover the service, while the Service Pro
cess Model and the Service Grounding give the information
that agents need to use the service.

Although OWL-S defines an ontology for each one of —4ction
these three areas, it also allows the definition of alterna- name = NCName
tive approaches. The default approaches are only basic ap- ©operation = QName/ NCNane
proaches but are useful in the majority of cases. _ Eglnj " ?r\?gﬁt 6 with non-VEQ namespace}>

In OWL-S each service is considered as a set of atomic content: (docunentation?, correl atex, cal | 2,
processes with inputs and outputs associated. In that way, {any el ement with non-WSCl nanespace}*)
when the mapping from abstract definition to concrete uti- </ action>
lization must be done, OWL-S is complemented with the
use of WSDL for the concrete definition of services. In
Figure 5 we can see the relationship between OWL-S and
WSDL.

Apart from the ontologies described before, OWL-S de-
fines another ontology for the required resources. This on-
tology covers the description of physical resources, tempo
ral resources and computational resources related toithe se e Solicit-response The service sends a message to an-
vices. other service and waits for a response.

Theoperationattribute can be used to reference a WSDL
operation that the action performs. An action can be associ-
ated with one of the following kinds of WSDL operations:

e Notification: The service sends a message to another
service.

e One-way. The service receives a message.

e Request-response The service receives a message
and sends a response.

Therole attribute is an optional attribute that associates
an action with a role name. It can be used to reference the
definition of a role given by some other specification.

Thecorrelateelement is used to relate an action to a cor-
relation definition. It serves to indicate in which particu-
lar execution context is performed the action, allowing us
to correlate a message with a particular conversation. The
syntax of this element is:

<correlate correlation = QNane
instantiation = (true|false):false />

The correlation attribute is mandatory and it references
a correlation specification, while thestantiationattribute
is optional, and can have valtreie (the correlation proper-
ties forming the correlation identity will be used to iden-
tify the current execution context in all subsequent mes-
sage exchanges) or vald@se (the correlation properties
are used to identify a previously established execution con

<participate relationshipType="Q\Nane"
fronRol eTypeRef =" QNane"
t oRol eTypeRef =" QNane"/ >

<exchange nane="NCNane"
faul t Nanme=" QNare" ?
i nformati onType="QNane" ?|
channel Type="QNane" ?
action="request"|"respond">
<send vari abl e=" XPat h- expr essi on"?
recordRef erence="1ist of NCNanme"?
causeExcepti on=" QNane" ?/ >
<receive vari abl e=" XPat h- expr essi on"?
recordRef erence="1ist of NCNane"?
causeExcepti on=" QNane" ?/ >
</ exchange>*

<tinmeout tine-to-conplete="XPath-expression"
fronmRol eTypeRecor dRef ="l i st of NCNane"?
t oRol eTypeRecor dRef ="1i st of NCNane"?/>?

<record nane="NCNane"
when="before"|"after"|"ti neout"
causeExcepti on="QNane"? >
<source vari abl e="XPat h- expressi on"? |
expr essi on="XPat h- expr essi on" ?/ >
<target vari abl e="XPat h- expressi on"/>
</ record>*

text in which the action should be performed). </interaction>

The call element is used to indicate the activities that

will happen while an action that handles a request-response First, we take a look at the fifth initial attributes:

operation is performed by a Web Service. The syntax of this
element is the following:

<cal |
process = NCName>
Content: (docunentation?)
</call>

This element is forbidden for all WSDL operations apart
from request-response.

Finally, the extensibility of the action element allows us
to refer to operations defined in a specification other than
WSDL. This can be done by using extension attributes pro-
vided by WSCI.

WS-CDL In WS-CDL the basic building block of a
choreography is thiteractionelement. It indicates infor-
mation exchanges between participants, possibly inctudin
the synchronization of some information values. These in-

teractions are performed when one participant sends a mes-

e The nameattribute specifies the name of the interac-
tion.

e The channelVariableattribute specifies the channel
variable used to do the communication during the in-
teraction. It contains information about the partici-
pants in the interaction.

e Theoperationattribute specifies the name of operation
that is associated with the interaction.

e The align attribute, if true, indicates that after the
interaction both participants act on the basis of their
shared understanding for the messages exchanged and
the information recorded.

e Theinitiate attribute, iftrue, indicates that the interac-
tion is a choreography initiator.

The participate element specifies the relationship type

sage to another participant in the choreography. When theye interaction participates in, and the requesting and ac-
message exchanges complete successfully, the mteractloeepting participants.

completes normally. The syntax of the interaction is the

The exchangeslement is used to exchange information

following: during the interaction. It includes the following attribst

<interaction name="NCNanme"
channel Vari abl e=" QNane"
oper at i on="NCNane"
align="true"|"fal se"?
initiate="true"|"fal se"?>

e Thenameattribute specifies the name of the exchange.

e ThefaultNameattribute, if specified, indicates the ex-
change as a fault exchange with the given name.

e TheinformationTypeattribute and thehannelTypet- Atomic processeare executed in a single step and never
tribute specify the information type or the channel type have subprocesses. They just receive an input message, do
of the information exchanged between the two partici- some work, and finally send an output message. There are
pants. always only two participants for that kind of process, the

]) -~ o client and theserver.
e The action attribute specifies the direction of the ex-
changed information, i.etequestor respond <ow : Class rdf:|D="Atom cProcess">
<ow : subCd assOf rdf:resource="#Process"/>
. L </ oW : >
The sendelement and theeceiveelement inside the ex- fowl: G ass

change element indicate that information is sent from a par-<ow : d ass rdf : about =" #At oni cPr ocess" >

ticipant or information is received at a participant respec <rdfs:subd assOf >
tively. These elements can also specify the variables ex- <owl : Restriction> . S
changed, and if an exception must be thrown <ow-onProperty rdf: resource=#hasdient”/>
9 o p) :) <ow : hasVal ue rdf:resource="#TheCient"/>
Thetimeoutelement allows us to specify the maximum </ ow : Restriction>

amount of time to complete an interaction, by means of the </rdfs:subd assOf >

time-to-completattribute. When this time is exceeded, a <rdfs:subd assCr>
<ow : Restriction>

timeout occurs. This element also allows us to modify some <owl : onProperty rdf:resource="#perf or medBy"/ >
records in both participants when the timeout occurs. <ow : hasVal ue rdf:resource="#TheServer"/>
Finally, therecord element is used to create or change </ow : Restriction>

</rdfs:subd assOf >

the value of one or more variables. This element includes_, | " 4 ,c<2

the following attributes:

. -~ Simple processdsave also a single step execution. They
e Thenameattribute specifies the name of the record. 4re ysed as abstractions, providing a view of some atomic

e Thewhenattribute specifies when the recording hap- gigfnﬁispr(l)ggzlss case, the simple proceseaizedBy the

pens (before an exchange, after an exchange, or when

a timeout happens). <owl : O ass rdf: | D="Si npl eProcess" >
<rdfs:subC assOf rdf:resource="#Process"/>
e The causeExceptiorattribute, if specified, indicates <ow : di sj oi ntWth rdf: resource="#At oni cProcess"/ >
that an exception may be caused and the value of the</ oW : O ass>

attribute identifies the exception that may be caused. _;; . o ect Property rdf:1D="real i zedBy" >

o) <rdf s: domai n rdf:resource="#Si npl eProcess"/>
Thesourceandtargetelements within the record specify <rdfs:range rdf:resource="#At oni cProcess"/>
the recordings of information happening in the interaction /<\(/)\AN- ZO'DT‘VGVEGG rdf:resource="#realizes"/>
The target is always a variable, while the source can be a~ oW * <) ect Property>
variable or an expression. <owl : Obj ect Property rdf:ID="real i zes">
<rdf s: domai n rdf:resource="#Atom cProcess"/>
. <rdf s: range rdf:resource="#Si npl eProcess"/ >
OWL-S In OWL-S services are modeled as processes. <o :| nve?seof rdf:resource:--g‘:em i zedBy"/ >
These processes are specifications of the ways clients may/ ow : Obj ect Property>
interact with services. For that purpose, OWL-S includes a

subclass of the Service Model callBdocess This class is In Figure 6 we can see the relation between the simple
defined as follows: processes and the atomic processes.

<ow : O ass rdf: | D="Process">
<ow : uni onOf rdf: parseType="Col | ection">
<ow : O ass rdf: about ="#At oni cProcess"/>
<ow : d ass rdf: about ="#Si npl eProcess"/ >
<ow : O ass rdf: about ="#Conposit eProcess"/ >

</ owl : uni onCf > S

</ ow : Cl ass> _ disjointWith

We can distinguish three different kinds of processes: Figure 6. Relationship between processes
atomic processes, simple processes, and composite pro-
cesses.Composite processerrespond to activities that
require multiple service interactions, so we only talk abou Finally, we must take into account that processes can
atomic and simple processes in this section. have two different goals:

1. They can return some new information based on somel
given information. These processes are basethon
puts andoutputs.

distinguish this activity from any other activity in the sam
context.

Next, we are going to see in more detail each one of the
complex activities that are used to determine the order in

2. They can produce a change in their environment. \which a set of activities is performed:

These processes are basedpoeconditions and ef-
fects

There are several classes defined in the OWL-S model

related to these four elements (inputs, outputs, precondi-
tions, and effects).

Discussion The three languages have basic structures to

describe the message exchange between parties in a com-

position, but there are several differences between the ele
ments used for that purpose. While ihéeractionelement

in WS-CDL allows us to exchange multiple messages be-
tween two parties (in both directions), thetionelement in
WSCI and theatomic processn OWL-S refer to a single
exchange.

Theinteractionelement in WS-CDL pays special atten-
tion to the variables exchange between the different par-
ties in eachexchangeelement, while thection element in
WSCI only specifies the operation performed by the mes-
sage. In OWL-S there is a list of inputs and outputs related
to eachatomic process

Finally, eachactionelement in WSCI only specifies one
of the roles participating in the exchange, the sender or the
receiver. Theconnectelement is used in the global model

to relate a send message to a receive message from different

interfaces. Thenteractionelement in WS-CDL specifies
both roles, indicating which one is the requesting partici-
pant and which one is the accepting participant. In OWL-S
theatomic processesiways have two properties to indicate
which role is the client of the service and which role is the
server. In this aspect, WS-CDL and OWL-S are more pow-

erful than WSCI, in the sense that they need less code to

express a collaboration between two parties.
5.2 Complex Structures

WSCI In WSCI complex activitiegontain a set of activ-
ities and define the order in which these activities are per-
formed. A complex activity can contain one or multiple
activity sets. All the complex activities are based on a com-
mon definition with the following syntax:

<{activity type}

name NCNarne>

Content: (docunentation?)
</{activity type}>

Activities are always performed in some context and the
attributenameis an optional attribute that can be used to

e Theall activity performs the whole set of activities that
contains in any order, possibly in parallel. It has the
following syntax:

<al
name = NCNane>
Content: (docunentation?, context?
{any activity}=*)
</all>

e The sequencectivity performs all the activity set in

seqguential order. It has the following syntax:

<sequence
nane = NCNane>
Content: (docunentation?, context?

{any activity}+)
</ sequence>

Thechoiceactivity performs only one activity set from
the collection of multiple activity sets within this com-
plex activity. The decision is made based on events.
The event can be the reception of a message, the expi-
ration of a timeout, or the throwing of a fault. When
multiple events overlap, there is no way to know which
one of the possible activity sets is executed. The choice
activity has the following syntax:

<choi ce
nanme = NCNane>
Content: (docunentation?
(onMessage| onTi neout | onFaul t) {2, n})
</ choi ce>
<onMessage>
Content: (docunentation?, action

context?, {any activity}+)
</ onMessage>

<onTi neout
property = QNane
type = (duration|dateTinme)
reference = QNanme>
Content: (docunentation?, context?
{any activity}+)
</ onTi neout >

duration

<onFaul t
code = QNane>
Content: (docunentation?, context?

{any activity}+)
</ onFaul t >

The foreachactivity executes the activity sets within
repeatedly. It has the following syntax:

<f oreach
nanme = NCNane
sel ect = expressi on>
Content: (documentation?, context?,

{any activity}+)
</ foreach>

The selectattribute is an XPATH expression that eval-
uates to a list of items. The activity set is repeated once
for each item in this list. If the list is empty, the activity
set is not performed.

Theswitchactivity selects one activity set from the col-
lection of multiple activity sets within this complex ac-
tivity based on the evaluation of conditions. It has the
following syntax:

<swi tch
nane = NCNane>
Content: (documentation?, case+, defaul t?)
</sw tch>
<case>
Content: (docunentation?, condition,
context?, {any activity}+)
</ case>
<def aul t >
Content: (docunentation?, context?,

{any activity}+)
</ def aul t >

<condition
{extension attribute}>
Content: {expression}
</condition>

All the caseelements are mutually exclusive, selecting
the corresponding activity set if the value of the con-
dition is true for that case. Only one case can be exe-
cuted, so if multiple case elements can be performed,
the first one in the definition has the biggest priority.
If no other condition is fulfilled, the activity set within
thedefaultelement is performed.

The condition element is an XPATH expression that
evaluates to a Boolean value. This condition is evalu-
ated in the context of the switch activity.

Theuntil activity performs the activity set that contains
repeatedly based on a Boolean condition. The until ac-
tivity is repeated one or more times because the con-
dition is evaluated after each iteration of the activity
set. If false the activity set is repeated, otherwise the
activity ends. It has the following syntax:

<until

nane = NCNane>

Content: (docunentation?,condition,
context?, {any activity}+)

</until>

e The while activity performs the activity set that con-
tains repeatedly based on a Boolean condition. The
while activity is repeated zero or more times because
the condition is evaluated before each iteration of the
activity set. If true the activity set is executed, other-
wise the activity ends. It has the following syntax:

<whi |l e

nanme = NCNane>

Content: (docunentation?, condition,
context?, {any activity}+)

</ whi | e>

WS-CDL In WS-CDL we can distinguish two differ-
ent kinds ofcomplex activitiesnside a choreography: the
workunit element and the ordering structures.

Theworkunitelement specifies a condition that must be
fulfilled in order to perform some work and/or the repetition
of some work. It completes successfully when the set of
activities inside completes successfully. This elemeist ha
the following syntax:

<wor kunit nane="NCNane"
guar d="xsd: bool ean XPat h- expressi on"?
repeat =" xsd: bool ean XPat h- expressi on"?
bl ock="true|fal se"? >

Activity-Notation

</ wor kuni t >

The Activity-Notationrefers to the set of activities per-
formed within the workunit.

The optional attributeguard is an XPATH expression
that specifies the condition that must be fulfilled to perform
the workunit.

The optional attributdlock with false value as default,
indicates whether the element have to block waiting for the
“true” evaluation of the guard condition or it skips the ac-
tivities inside when the guard condition evaluates to Hals

The optional attributeepeatis also an XPATH expres-
sion that specifies the repetition condition of the workunit
It is always not blocking.

In this way, when there is not guard condition specified
then it is considered to be always true while when there is
not repetition condition specified then the workunit is not
considered to be executed again after one execution.

Ordering structuresare used to combine basic activities
and other complex activities in a nested way, expressing the
order in which actions are performed within the choreogra-
phy. There are three ordering structures:

e Thesequencerdering structure expresses that the set
of activities inside must be executed sequentially. It
has the following syntax:

<sequence>
Activity-Notation+
</ sequence>

e The parallel ordering structure indicates that the set
of activities inside must be executed concurrently. It
completes successfully when all the concurrent activi-
ties complete successfully. The syntax of this ordering
structure is:

<paral | el >
Activity-Notation+
</ parallel>

e The choiceordering structure specifies that only one o
of multiple activities can be executed. If the choice
have workunits inside, only the first one in lexical or-
der with a “true” guard condition is selected. If there
are other activities, there is no way to know which one
is selected,; it is considered as a non-observable deci-
sion. The choice has the following syntax:

<choi ce>
Activity-Notation+
</ choi ce>

OWL-S As we have seen in Section 5.1, Web Services in

OWL-S are modeled as processes and there are three differ-

ent kinds: atomic processes, simple processes, and compos-

ite processesComposite processesntain other processes

of any kind in a nested way. They also specify the way

in which their contents are executed, such as sequence or

choice. .
Composite processes are specified as follows:

<ow : O ass rdf: | D="ConpositeProcess">
<rdf s: subd assOf rdf:resource="#Process"/>
<ow : di sjointWth rdf:resource="#At om cProcess"/>
<ow : disjointWth rdf:resource="#Si npl eProcess"/>
<ow :intersecti onOf rdf:parseType="Collection">
<owl : O ass rdf: about ="#Process"/ >
<ow : Restriction>
<ow : onProperty rdf:resource="#conposedO"/>
<ow :cardinality rdf:datatype="...">
1</ ow : cardinality>
</ ow : Restriction>
</ow :intersectionCf >
</ow : C ass>

ThecomposedOfproperty is used to specify the control
construct corresponding to the composite process, ie., th
way in which their contents are executed. It is also used to
associate a composite process with its nested processes.

Next, we are going to see the different control constructs
provided by OWL-S: °

e The Sequenceontrol construct specifies a list of sub-
processes to be executed in a row. It has the following
definition:

<ow : d ass rdf: | D="Sequence">
<rdfs:subC assCf
rdf : resource="#Control Construct"/>
<rdfs:subC assCf >
<owl : Restriction>
<ow : onProperty
rdf : resour ce="#conponents"/ >
<ow : al | Val uesFrom
rdf : resource="#Control ConstructList"/>
</ow : Restriction>
</rdfs: subd assCf >
</ ow : d ass>

The ControlConstructListtontains the list of subpro-
cesses to be executed in sequence.

The Split control construct specifies a set of subpro-
cesses to be executed concurrently. This process com-
pletes as soon as all his subprocesses has begun their
execution. Split has the following definition:

<owW :C ass rdf:I1D="Split">
<rdfs:subCl assCOf
rdf : resource="#Control Construct"/>
<rdfs: subCd assCf >
<owl : Restriction>
<ow : onProperty
rdf : resour ce="#conponent s"/ >
<owl : al | Val uesFrom
rdf : resour ce="#Contr ol Construct Bag"/ >
</ow : Restriction>
</rdfs:subd assCf >
</ ow : d ass>

The ControlConstructBageontains the set of subpro-
cesses to be executed in parallel.

The Split+Join control construct also specifies a set of
subprocesses to be executed concurrently, but in this
case the process completes when all its subprocesses
have finished. This control construct has the following
definition:

<ow :d ass rdf:1D="Split-Join">
<rdf s: subd assOf
rdf : resource="#Control Construct"/>
<rdfs: subd assOf >
<ow : Restriction>
<owl : onProperty
rdf : resour ce="#conponent s"/ >
<ow : al | Val uesFrom
rdf : resour ce="#Cont r ol Const ruct Bag"/ >
</ow : Restriction>
</rdfs: subd assOf >
</ ow : d ass>

Again, the ControlConstructBagcontains the set of
subprocesses to be executed in parallel.

TheAny-Ordercontrol construct specifies a set of sub-
processes to be executed in any order but not concur-
rently. The process completes when all its subpro-
cesses have finished. Any-Order has the following def-
inition:

<ow : C ass rdf: | D="Any-Order">
<rdfs:subCl assOf
rdf : resource="#Control Construct"/>
<rdfs:subC assCf >
<owl : Restriction>
<ow : onProperty
rdf : resour ce="#conmponents"/>
<ow : al | Val uesFrom
rdf : resour ce="#Control Construct Bag"/>
</ owl : Restriction>
</rdfs: subd assCf >
</ ow : O ass>

This control construct also uses t@entrolConstruct-
Bagto specify the subprocesses that contains.

The Choicecontrol construct specifies a set of subpro-
cesses and only one of them is executed. The selection
criteria are is non-observable, so any of the subpro-
cesses can be chosen. Choice has the following defini-
tion:

<owl : O ass rdf: | D="Choi ce">
<rdfs:subCl assCf
rdf : resource="#Control Construct"/>
<rdfs:subC assCf >
<owl : Restriction>
<ow : onProperty
rdf : resour ce="#conmponents"/>
<ow : al | Val uesFrom
rdf : resour ce="#Contr ol Construct Bag"/>
</owl : Restriction>
</rdfs: subd assCf >
</ow : O ass>

This kind of composite process also uses @uatrol-
ConstructBago specifiy all the posible subprocesses.

The If-Then-Elsecontrol construct executes different
subprocesses depending on the value of a condition. It
has the following definition:

<ow : O ass rdf:1D="1f-Then-El se">
<rdf s: subd assOf
rdf : resource="#Control Construct"/>
<rdfs:subC assCf >
<owl : Restriction>
<ow : onProperty
rdf : resour ce="#conmponents"/ >
<ow : al | Val uesFrom
rdf : resour ce="#Cont rol Construct Bag"/ >
</ow : Restriction>
</ rdfs: subd assOf >
</ ow : C ass>

<ow : Obj ect Property rdf:ID="ifCondition">
<rdf s: domai n rdf:resource="#If-Then-El se"/>
<rdf s: range rdf:resource="&expr; #Conditi on"/>
</ owl : Obj ect Property>

<ow : Obj ect Property rdf:ID="then">
<rdf s: domai n rdf:resource="#If-Then-El se"/>
<rdf s: range rdf:resource="#Control Construct"/>

</ ow : Obj ect Property>

<ow : Obj ect Property rdf: | D="el se">
<rdf s: domai n rdf:resource="#|f-Then-El se"/>
<rdfs:range rdf:resource="#Control Construct"/>
</ ow : Obj ect Property>

The ifCondition property specifies the condition we
have to test. The¢hen property specifies the subpro-
cess we execute if the condition is “true”, whereas the
elseproperty specifies the subprocess we execute when
the condition is “false”.

The Iterate control construct repeats the execution of
its components an undetermined number of times. Itis
only used as a superclass of Repeat-While and Repeat-
Until constructs. Iterate has the following definition:

<ow :d ass rdf:ID="Iterate">
<rdf s: subd assOf
rdf : resource="#Control Construct"/>
<rdfs:subC assCf >
<owl : Restriction>
<ow : onProperty
rdf : resour ce="#conponents"/ >
<ow : al | Val uesFrom
rdf : resour ce="#Contr ol Construct Bag"/ >
</ow : Restriction>
</rdfs: subd assCOf >
</ ow : d ass>

TheRepeat-Whileontrol construct iterates the execu-
tion of a subprocess while a condition evaluates to true.
This condition is always evaluated before the execu-
tion. This control construct has the following defini-
tion:

<ow : d ass rdf: | D="Repeat-Wile">
<rdfs:subd assO rdf:resource="#lterate"/>
</ow : d ass>

<ow : Obj ect Property rdf: | D="whil eCondition">
<rdf s: domai n rdf:resource="#Repeat-Wile"/>
<rdf s: range rdf:resource="&expr; #Condi tion"/>
</ owl : Obj ect Property>

<ow : Obj ect Property rdf: | D="whil eProcess">
<rdfs: domai n rdf:resource="#Repeat-Wile"/>
<rdf s: range rdf:resource="#Control Construct"/>
</ owl : Obj ect Property>

The whileCondition property specifies the condition
we test, and thevhileProcessproperty specifies the
subprocess we execute repeatedly.

The Repeat-Untilcontrol construct iterates the execu-
tion of a subprocess as long as a condition evaluates to
true. This condition is always evaluated after the exe-
cution, so at least one execution is done. This control
construct has the following definition:

<ow : O ass rdf: | D="Repeat-Until"> tents based on the truth value of a condition, where the con-

<\fN|dei subd assCf rdf:resource="#lterate"/> dition is evaluated at the end of each iteration. This behav-
</ow: d ass> ior can be emulated in WS-CDL by usingv@rkunitwith a
<owl : Obj ect Property rdf:ID="until Condition"> repeat condition specified.

<rdfs: domai n rdf:resource="#Repeat-Until"/> We also have thevhile construction in WSCI and the

o ;\erf somr :Ztggr Lg;[;iour ce="&expr; #Condi tion"/> Repeat-Whilprocess in OWL-S indicating the repetition of
’ the contents based on the truth value of a condition, but with

<ow : Obj ect Property rdf:1D="until Process"> the condition evaluated before each iteration. In this case

<rdfs:domain rdf:resource="#Repeat-Until"/> an emulation in WS-CDL can be done by usingiarkunit

<rdfs:range rdf:resource="#Control Construct”/> \jth 3 guard and a repeat condition specified (both evaluat-
</ owl : Obj ect Property> . L.

ing the same condition).

Finally, theforeachconstruction only exists in WSCI and
there is not any equivalent construction in the other twe lan
guages.

The untilCondition property specifies the condition
we test after each execution, and thetilProcess
property specifies the subprocess we execute repeat

edly.
5.3 Exception handling and compensation

Discussion In Table 1 we show the equivalences between _ _ _
the different complex structures we have described corre-WSCI In WSCI we can specify exceptional behavior that
sponding to each language. can be reached from any point of the Web Service choreog-

The sequenceonstruction exists in the three languages "aPhy. The declaration of this behavior is part of the contex
with the same meaning, the sequential execution of the acdefinition gnd itincludes the activities that the Web Sesvic
tivities or processes within the construction. performs in response to each exception.

Thechoiceconstruction also exists in the three languages ~ WSCl allows us to declare three kinds of exception:
but there are some differences. While in WSCI the selec-)]]
tion is based on the triggering of an event, in WS-CDL ~ ® The reception of a message considered as exceptional.
and OWL-S the selection criteria for the activities inside ar
non-observable. WS-CDL also allows us to use workunits
within the choice, restricting the possible selectionshie t e The expiration of a timeout.
workunits that match their guard condition.

A construction to indicate the concurrent execution of After the exceptional activities have been performed,
several activities also exists in the three languages, iitw the current context terminates and the parent context is re-
different names. Thall construction in WSCI indicates sumed. In this way, WSCI allows us to treat exceptions that
that the activities are executed in parallel orinany ortiet (do not cause the termination of the overall choreography
not concurrently). Theparallel construction in WS-CDL (such as the throw/catch in Java programs). If there is not
indicates that the activities are executed concurrentig (t any treatment for an exception in the current context, this
specification says nothing about a possible execution in anycontext terminates and the exception is raised to the parent
order but not concurrently). Last, in OWL-S we have three context for treatment (such as the propagation of exception
different constructions for that purpose: T8glit process to parent classes in Java programs).
indicates the concurrent execution of all its subprocesses Thefault activity is used to trigger a fault in the current
without waiting for the completion of these subprocesses, context. It has the following syntax:
the Split+Join process also indicates the concurrent execu-
tion of all its subprocesses but it waits for the completibn o <faul t
them, and theAny-Orderprocess indicates the execution in name = NCNare

. code = QNane>
an undefined order of the subprocesses but not concurrently. ~y ent " (docunent at i on?)

The switchconstruction, that selects one activity froma </faul t >
collection, only exists in WSCI, but it can be emulated in
WS-CDL and OWL-S by using some other construction. In The nameattribute specifies the name of the fault and
WS-CDL we can use multiple non-blockimgprkunitswith the codeattribute is used to specify the code correspond-
the guard condition specified, while in OWL-S we have the ing to the fault. The exception element which onFault event
If-Then-Elseprocess and with several of these processeshandler matches the name attribute of this fault will be-trig
nested we can achieve the same behavior. gered when the fault occurs. If the fault is not handled by

Both, theuntil construction in WSCI and thRepeat- any exception handler, in the current context or in any par-
Until process in OWL-S, indicate the repetition of the con- ent context, the process terminates with the fault code.

e The occurrence of a fault.

WSCI

WS-CDL

OWL-S

sequence

sequence

Sequence

choice(events)

choice(non-observable)

Choice(non-observable)

all (concurrent or unspecified order) parallel (concurrent) Split, Split+Join, andAny-Order
switch Multiple workunitswith guard conditions If-Then-Else
Until workunitwith repeat condition Repeat-Until
While workunitwith guard and repeat conditions Repeat-While
foreach - -

Table 1. Equivalences between complex structures

Theexceptiorelement is used to handle exceptional be- WS-CDL Different types of exceptions are considered in
havior. This element must specify one or more event han-WS-CDL. The exceptions considered include the following
dlers, each one of them defining the event handled and thecategories:

activity set to perform when this event occurs. It has the
following syntax:
<excepti on>

Cont ent :
</ exception>

((onMessage | onTinmeout | onFault){+})

We can distinguish three different kinds of event han-
dlers:

e The onMessageevent handler is triggered by an in-
coming message and its initial action indicates the
event that triggers this event handler.

TheonTimeouevent handler is triggered when a time-
out expires.

TheonFaultevent handler is triggered when a fault oc-
curs. It has an optional attributode specifying the
fault code. If absent, the event handler will be trig-
gered by all faults for which no other event handler
has been specified.

When an exception has occurred, WSCI allows us to
undo some work by using theompensatiorelement in a
transaction. It has the following syntax:

<conpensati on>
Content: (docunentation?,
{any activity}+)
</ conpensati on>

cont ext ?,

The compensateelement is used inside the exception
handler to reference the compensation we want to execute
This element is defined as follows:

<conpensat e
nanme = NCNane
transacti on = NCName>
Content: (docunentation?)
</ conpensat e>

Thetransactionattribute is used to indicate the name of
the transaction whose compensation we want to execute.

e Interaction failures: E.g. the sending of a message
fails.

Protocol based exchange failuresg.g. no acknowl-
edgement is received as part of the behavior of a pro-
tocol.

Security failures: E.g. a message is rejected because
it has not valid digital signature.

Timeout errors: E.g. an interaction is not completed
in the specified amount of time.

Validation errors: E.g. an XML message is not well
formed.

Application failures: E.g. an Internet purchase ser-
vice is out of stock of a product offered.

Exception workunits can be defined to handle all these
exceptions. They may also be used as the mechanism to
recover from the exceptions. The exception workunits are
defined within theexceptionBloclelement of a choreogra-
phy. It has the following syntax:

<exceptionBl ock name="NCNanme" >
Wor kUni t - Not at i on+
</ excepti onBl ock>?

At least one exception workunit must be defined. The
guard of the workunit can be used to specify the particu-
lar type of exception we want to handle through the use of
the hasExceptionOccurreflinction. The exception worku-
nit with no guard condition is called the default exception
workunit and only one is allowed within an exception block.

Only one exception workunit can match each exception.
If multiple exception workunits are defined, the order of
evaluating them is based on the order in which the worku-
nits have been defined. When the matching happens, the

actions of the matched workunit are executed. If no match- e Fault emitting actions: Actions that throw an excep-

ing happens and a default exception workunit exists, then tion as a response to a failure.

the actions of this workunit are executed. Otherwise, the o))

exception is raised in the parent choreography. ° Tgrm|nat|on actions: Actions that can be used to ter-
WS-CDL also allows us to define finalization actions minate a process.

within a choreography that can confirm or cancel the ef-

fects of this choreography, so we can use this actions for

compensation. This finalization is done by means of the

finalizerBlockelement. It has the following syntax:

e Adaptation actions: Actions that modify the execu-
tion flow of a service.

A list of fault handlerghat are used as responses to fail-
<finalizerBl ock nanme="NCNane"> ures can be defined for each process. These handlers have

Activity-Notation the following form, in a simple abstract syntax:
</finalizerBl ock>

Faul t Handl er (Faul t Type [faul t Vari abl e])
Multiple finalizer blocks can be defined with different { actions }

nameattributes, but only one of them is executed when the
choreography completes successfully. Fault handlers are strictly local to the process for which
Finally, if an exception occurs, the choreography com- they are defined. Multiple handlers can be defined for a
pletes unsuccessfully and the actions within it are com- process but only the first one that matches in top-down order
pleted abnormally. Furthermore, the finalizer blocks of the is executed. If there is not any fault handler that matches,
choreography are not executed. the fault is propagated to the parent process. The optional
faultVariablecan be used to access the fault occurrence and

OWL-S The OWL-S specification does not provide any IS value.

explicit support for exception handling. However, some A list of constraint violation handlers (CV-handlersan

work about exception handling in Semantic Web Services be dgfined ina process to detect hard constraint viplations
is being developed as part of the Darpa program. In [7] considered as failures. A CV-handler has the following ab-
an approach for the specification of exception handling and Stract syntax:
recovery of Semantic Web Services based on OWL-Sis pre- . -1 o (event - expr essi on [event Vari abl])
sented. Here, we therefore describe this specification. { actions }
The following failure categories can be distinguished
when executing a Web Service composition, according to CV-handlers are active in their own process and in all
[7]: embedded processes. Triggering a CV-handler causes the
o) o) termination of the process corresponding to this CV-handle
* Service invocation errors Communication failures, 41 changes the state of this process to failed state. The op-
response timeout, ... tional eventVariablecan be used to access the event occur-
« OWL-S processing errors Problems with the syntax ~ '€nce and its value. _
or the structure of OWL-S files. We can also define a list @vent handlergor each pro- _
cess. These handlers can be used to express soft constraints
e Process level execution errorsErroneous situations i.e., constraints that do not necessarily lead to an erumeo
caused by inconsistencies on the process model thastate, and to define the responses to these constraints. An

may occur during the execution. event handler has the following form:

e Application level errors: Erroneous states specific to Event Handl er (event - expr essi on [event Vari abl e])
the application logic of a Web Service. { actions }

¢ Constraint violations: Violations of constrains estab- Triggering an event handler does not lead to the termina-
lished in e-contracts between parties. tion of the process for which this event handler is defined.

) .. Event handlers are also active for all the embedded pro-

Several actions can b‘? taken as a response toa fa'lurecesses. When one event happens, all the event handlers that
We have the following action categories: match are executed in top-down order. The opti@vant-
Variable can be used to access the event occurrence and its
value.

Finally, thecompensatiortonstruct is used in a process
e Recovery actions Actions that provide means for to define the actions that can be executed for undoing the

restoring the state of a failed process. effects of this process. It has the following abstract synta

e Neutral actions: Actions that do not have any effect
on the state of a failed process.

Conpensation { actions } Oriented Architectures (SOA) has not gained enough ma-
turity until now. They think that some issues have to be

A compensation can be activated by calling toenpen- solved before we reach the adoption of a SOA infrastructure
sateaction or thecompensateProcesgtion. Itis only ex- that integrates choreography (the identification of patter
ecuted when the process has finished successfully, i.e., theor service interactions, the definition of a service intera
process is not in failed state. If there is not compensationtion meta-model, ...). However, the current choreography
specified for a composite process, it is compensated by exianguages can be seen as a starting point to reach these
ecuting compensations of embedded processes finished igoals. For example, the elements of a service interaction
the reverse chronological order of their original invooati meta-model will be very similar to the elements we have in
If there is not compensation for an atomic process, it is WS-CDL.
skipped during the compensation execution, but a specific Timing restrictions are used very often in the composi-
event calledNoCompensationForAProcesssthrown. tion of Web Services, being a critical issue in real-time-sys

tems. For example, we want to indicate the amount of time
Discussion Exception handling and compensation are in- we wait for the confirmation of a purchase order. In WS-
cluded as part of WSCI and WS-CDL specifications, but CDL and WSCI time constraints can be specified by us-
the latest version of OWL-S does not include any of these ing the timeout element and the timeout event, respectively
aspects. We know that a specification about exception han-but the specification of OWL-S says nothing about these re-
dling and compensation is being developed as part of thestrictions. Nevertheless, several efforts have been ddvot
Darpa program, but this specification is still in its infancy ~ to extend OWL-S with a time ontology [9, 10].

These three languages propose an exception treatment The use of a formal language to describe a Web Service
based on events and the bottom-up propagation of excepchoreography facilitates the validation of compositiogs b
tions in nested structures. WS-CDL does not make anyapplying validation techniques already defined for this for
distinction in the treatment of the different kinds of event malism. Only WS-CDL of the three languages we are com-
that can cause the exception, while WSCI differentiates be-paring is based on a formal languagedalculus) [11], but
tween three kinds of event (message, timeout, and fault) andhere is not a clear translation from all the elements of WS-
the specification related to OWL-S differentiates between CDL into 7-calculus, so we cannot apply any validation
another three kinds of event (faults, hard constraint viola technique directly. The scientific community has developed
tions, and soft constraint violations). However, the three multiple translations of these three languages into difier
languages take into account the same types of exceptiorformal representations [12, 13, 14]. However, all these pro
(timeout, abnormal behavior of a service, violation of acon posals only take into account a subset of the elements of
straint, ...). each language, so they cannot guarantee full correctness of

Finally, the compensation process is very similar in the the given specifications.
three languages. The main difference is that compensation Concerning the relation with other standards, these three
in WS-CDL can only be defined at the choreography level, choreography languages are XML-based and can work to-
whereas in WSCI we can define a compensation for eachgether with the WSDL language, using this well-established
transaction and the specification related to OWL-S allows standard to describe the Web Services participating in the

us to define a compensation for each process. composition. WS-CDL and WSCI do not cover the descrip-
tion and execution of the workflow corresponding to each
6. Final Discussion service in the composition, so we are free to use different

mechanism for each one of these services, such as WSFL
(Web Services Flow Language, [15]) and WS-BPEL. On
Both, WSCI and WS-CDL, are W3C proposals, but the other hand, OWL-S intends to cover this work and ex-
WSC.I last update was released in 2002, so it has not gOttensions like OWL-WS (OWL for Workflow and Services,
received any attention in the last years. On the other hand,[16]) has been developed for that purpose. Finally, we also

\éVS'CDL ;18 the ong(;:ngbs';q?ﬂard|za}[t|onh|_n|t|aé|\$ fortVYeb Fave to take into account that OWL-S builds on OWL (On-
ervice choreography, but it has not achieved the status o ology Web Language, [17]), so it makes use of some of the

being accepted as thae factostandard for that purpose. : : -
Apart from these two proposals, we have the OWL-S lan- ontologies defined by this language-
guage as a part of the emerging Semantic Web, so its suc-
cess is closely related to the consolidation of this frantewo R€ferences
worldwide in the future, which is not clear now.

As we can see in [8], some people think that the rea- [1] T. Andrews et al. Business Process Execution Lan-
son because none of the choreography standardization ef- guage for Web Services (version 1.I)echnical re-
forts has been adopted by a wide user base is that Service- port, may 2003.

[2] A. Arkin et al. Web Service Choreography Interface [16] Stefano Beco, Barbara Cantalupo, Ludovico Gi-
(WSCI) 1.0.http://iwww.w3.org/TR/wscI/. ammarino, Mike Surridge, and Nikolaos Matskanis.
OWLWS: A Workflow Ontology for Dynamic Grid Ser-
vice Composition.In 1st IEEE InternationalConfer-
ence on e-Science and Grid Computin, Melbourne,
[4] N. Kavantzas et al. Web Service Choreog- December, 2005.
raphy Description Language (WSCDL) 1.0.
http://lwww.w3.0org/TR/ws-cdl-10/.

[3] E. Christensen et alWeb Services Description Lan-
guage (WSDL) 1.1http://mww.w3.org/TR/wsdl.

[17] S. Bechhofer et al. OWL Web Ontology Language.
http://www.w3.0rg/TR/owl-ref/.
[5] D. Martin et al. OWL-S: Semantic Markup for Web
Services http://www.w3.org/Submission/OWL-S/.

[6] T. Berners-Lee, J. Hendler, and O. Lassil@he Se-
mantic WebScientific American, 284(5):34-43, 2001.

[7] Roman Vacduin, Kevin Wiesner, and Katia Sycarax-
ception handling and recovery of semantic web ser-
vices.In Fourth International Conference on Network-
ing and Services. IEEE Computer Society Press, 2008.

[8] A.Barros, M. Dumas, and P. OakStandards for Web
Service Choreography and Orchestration: Status and
Perspectives.In Proceedings of the 1st International
Workshop on Web Service Choreography and Orches-
tration for Business Process Management at the BPM
2005, Nancy, France, 2005.

[9] F. Pan and J. R. Hobbs.Time Ontology in OWL.
http://lwww.w3.0rg/2001/sw/BestPractices/OEP/Time-
Ontology.

[10] F. Pan and J. R. Hobbgime in OWL-S.In Proceed-
ings of AAAI-04 Spring Symposium on SemanticWeb
Services, Stanford University, California, 2004.

[11] S. Ross-TalbotWeb Services Choreography and Pro-
cess AlgebraSWSL Committee: Working Materials,
2004.

[12] , G. Diaz, J. J. Pardo, M. E. Cambronero, V. Valero,
and F. Cuartero Automatic Translation of WS-CDL
Choreographies to Timed Automat#én Proceedings
of WS-FM, Versalles, September, 2005.

[13] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo.
Formalizing Web Service ChoreographiésProceed-
ings of First International Workshop on Web Services
and Formal Methods. Electronic Notes in Theoretical
Computer Science, Elsevier, 2004.

[14] JunFeng Wu and HuaiKou MiaocA Rewriting Logic
Approach to OWL-S Composite Process Formal Speci-
fication. APSCC,pp.343-348, 2008 IEEE Asia-Pacific
Services Computing Conference, 2008.

[15] Frank Leymann. Web Services Flow Language
(WSFL) Version 1.0. IBM Software Group, May,
2001.

