
University of Castilla-La Mancha

A publication of the

Department of Computer Science

Automatic Translation from WS-CDL to

Prioritized-Timed Colored Petri Nets by using WST

Tool.

by

Maŕıa Dı́az Valent́ın Valero Hermenegilda Macià Juan José Pardo

Maŕıa Emilia Cambronero Gregorio Dı́az.

Technical Report #DIAB-01-01-14 November 2011

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS

ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA
UNIVERSIDAD DE CASTILLA-LA MANCHA

Campus Universitario s/n
Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224

Abstract

Web Services Translation (WST) Tool is an integrated environment for the development
of composite web services, which is based on several translations.
Firstly, the user may introduce the system requirements by means of KAOS elicitation tech-
nique. Then, the design of the composite web service is done by UML 2.0 sequence diagrams,
which are automatically translated into Web Services Choreography Description Language
(WS-CDL) specification documents. These WS-CDL specifications are translated into a net-
work of timed automata, now as a novelty in the tool, and we have in turn incorporated the
translation from a WS-CDL specification to prioritized timed-colored Petri nets (PTCPN).
The final step that can be made through this tool is the validation and verification of the
system design, by using the interface that it provides to the UPPAAL tool.

1 Introduction

WST Tool [41] was initially developed to implement the transformation from UML into WS-CDL
[38] and after that, the WS-CDL document was translated into timed automata. In this new
extension of WST Tool, we have added the transformation from WS-CDL to PTCPN. Thus, we
may use both formalisms, prioritized timed-colored Petri nets or timed automata, in order to
analyse the system behaviour, so we can profit from the specific features of each of these formal
models in order to have a better knowledge of the system under study.

Let us first introduce the main principles of composite web services and the main techniques
and technologies involved in their development. A Web Service [8] can be defined as a self-
describing, self-contained modular application that can be published, located and invoked over
a network, usually the Internet. Web Services are therefore applications that provide services
obtainable through the Internet. Web Services composition has arisen as a natural and elegant
way of providing new value-added services in a combination of already established services. The
different suppliers can then act together to provide a new service; they can be written in different
languages and they can be executed on different platforms. In this work, we have only taken into
account the choreographic view of the composition, modeled by using WS-CDL.

WS-CDL [39] is a W3C [37] standard for the description of composite Web services, which
allows us to describe peer-to-peer collaborations regardless of the supporting platform or pro-
gramming model. WS-CDL describes the collaborations among the parties involved by means of
choreographies and activities. However, the WS-CDL standard does not include any comments
about priorities among interactions, so that we have also proposed an extension of the standard
to add this capability. Specifically, we associate priorities with interactions, taking into account
that in a composite Web service it can be interesting to favor some interactions against others.

We use a prioritized-timed model of colored Petri nets [21] to capture the main WS-CDL
elements, providing thus a formal framework to describe precisely the behavior of the parties
involved in the choreography. This specific model is supported by the CPN Tools [17], which
allow us to make simulations, verification and analysis of properties.

In this work we describe the translation from WS-CDL to PTCPNS, and the implementation
of this translation in WST Tool. With this translation we can get two main benefits. On the
one hand, we obtain a graphical representation in terms of prioritized-timed colored Petri nets,
which can help the software designer to get a complete view of the composed Web Services and
the interactions among the different participants. On the other hand, Petri nets are also a formal
tool, in the sense that they describe not only a static vision of a system, but also its dynamic

2

<interaction name="ncname"

channelVariable="qname"

...>

<participate relationshipType="qname"/>

<exchange name="ncname"...>

<send .../>

<receive .../>

<exchange/>*

<priority value="P1">

<timeout time-to-complete....>

</priority>

.....

</record>*

</interaction>

Figure 1: Priority syntax

behavior. We can then use the Petri net representation to verify and validate the composed Web
Services.

We have structured this report as follows: in Section 2 we show how to introduce priorities in
WS-CDL; in Section 3 we introduce the particular model of prioritized-timed colored Petri net,
and the translation is presented in Section 4; In Section 5 we show how this translation has been
implemented in WST tool, in particular, the XSLT architecture. A case study that illustrates the
translation is shown in Section 6, and finally, in Section 7 the conclusions and some indications
about our future work are formulated.

2 WS-CDL with Priorities

In many cases it is desirable to favor some interactions against others, i.e., in the composition of
Web Services some parties can express their interest in the prioritization of certain interactions.
We can think in a Web Service for selling or reserving items of some different sorts. Clients
interact with the Web Server to buy or reserve items, but these interactions may have different
levels of priority associated, depending on the kind of item or even depending on the client that
makes the request.

We therefore introduce an extension of WS-CDL with priorities, by adding a ”priority at-
tribute”to each interaction (in Fig. 1 we show the extension of WS-CDL with priorities). Priori-
ties are established as natural numbers, with the same interpretation as in CPN Tools, the greater
number, the lower activity priority in the system. Then, the interpretation of this attribute is
the following: in the event of conflict only those interactions with the maximum priority (lowest
value) are allowed.

3 Prioritized-Timed Colored Petri Nets

In this section we introduce the specific model of Prioritized-Timed Colored Petri Nets (PTCPN)
that we consider for the translation.

We use a well-known model supported by the CPN Tools, prioritized-timed colored Petri nets
[20], which are a prioritized-timed extension of colored Petri nets. In this model, places have
associated a color set (with a related data type). Then, each token has an attached data value

3

(token color), which belongs to the color to which the token is associated.

There is also a discrete global clock that represents the total time elapsed in the system model.
Arcs have also an inscription associated, which are called arc expressions, and are constructed
using variables, constants, operators and functions. To evaluate an arc expression we need to
bind the variables, which consist in assigning a value to the variables that appear in the arc
inscription. These values are then used to select the token colors that must be removed or added
when firing the corresponding transition.

Arc expressions can also have a time information associated, both for place-transition and
transition-place arcs. Actually, we only need time inscriptions in output arcs, and even, when all
the output arcs of a transition have the same time inscription, there is a shorthand notation in
CPN Tools by which this time information is associated to the transition instead of the output
arcs, so this is the specific model that we use in our WS-CDL semantics, we will only consider
these time inscriptions in the transitions. We will not use, therefore, any time inscription in the
arcs.

Thus, the time inscription that a transition has associated is used to specify the delay that
must be added to the current value of the global clock for every token generated by the firing of
the transition. Furthermore, transitions can have guards associated, which are Boolean expres-
sions that may prevent their firing. Thus, when a transition has a guard, it must evaluate to true
for the binding to be enabled, otherwise the binding is disabled and the transition cannot be fired.

Definition 1 (Notation)
The following notation will be used henceforth:

• IN will denote the set of natural numbers, IN = {0, 1, 2, . . .} and Σ = IN× IN.

• Multisets are defined as functions C : X → IN, providing us with the number of instances
of each element x ∈ X. As usual, we will enumerate the elements of a multiset C as follows:
C = {r1.x1, . . . , rn.xn}, meaning that C(xi) = ri, for all i = 1, . . . , n, and C(x) = 0, for all
x 6= xi, i = 1, . . . , n.

The set of multisets over a set X will be denoted by B(X). For any x ∈ X and C ∈ B(X)
we say that x ∈ C if and only if C(x) > 0.

• For any C1, C2 ∈ B(X), we define:

– C1 + C2 ∈ B(X), where ∀x ∈ X : (C1 + C2)(x) = C1(x) + C2(x).

– C1 ⊆ C2 if and only if ∀x ∈ X : C1(x) ≤ C2(x).

– If C2 ⊆ C1 we can define the subtraction C1 − C2 ∈ B(X), where ∀x ∈ X : (C1 −
C2)(x) = C1(x)− C2(x).

• For any C ∈ B(Σ), we define the first projection Π1(C) ∈ B(IN), as follows: ∀n ∈
IN, Π1(C)(n) =

∑
m∈INC(n,m).

• For any C ∈ B(Σ) and n ∈ IN we define the second projection Π2(C, n) as the ordered
list that consists of the elements (m1,m2, . . . ,mΠ1(C)(n)), such that (n,mi) ∈ C, ∀i =
1, . . . ,Π1(C)(n) and mi ≤ mi+1, ∀i = 1, . . . ,Π1(C)(n)− 1.

4

• For any C1, C2 ∈ B(Σ), we say that C1 � C2 if and only if the following conditions hold:

– Π1(C1) ⊆ Π1(C2).

– ∀n ∈ IN, taking Π2(C1, n) = (m1
1, . . . ,m

1
Π1(C1)(n)

) and Π2(C2, n) = (m2
1, . . . ,m

2
Π1(C2)(n)

),

we must have m1
i ≥ m2

i , ∀i = 1, . . . ,Π1(C1)(n).

These conditions state that for every n the total number of elements (n,m) (movingm) must
be lesser in C1 than in C2, and for every element (n,m) in C1 there must be a corresponding
(distinct element) (n,m′) in C2, with m ≥ m′.

• For any C1, C2 ∈ B(Σ), with C1 � C2, we define C2 ⊖ C1 in the following (recursive) way:

– For C1 = ∅ we take C2 ⊖ C1 = C2.

– For C1 6= ∅, let us consider that

C2 = {r11.(n1,m
1
1), . . . , r

1
in1

.(n1,m
1
in1

), . . . , rk1 .(nk,m
k
1), . . . , r

k
ink

.(nk,m
k
ink

)}, where nl 6=

nj , ∀l 6= j, and ml
j < ml

j+1, ∀l = 1, . . . , k and ∀j = 1, . . . , inl
.

Since C1 � C2, we can take one element (nl,m) ∈ C1, for some l ∈ {1, . . . , k}, as well
as the largest index j for which ml

j ≤ m. We then define recursively:

C2 ⊖ C1 = ({r11.(n1,m
1
1), . . . , r

1
in1

.(n1,m
1
in1

), . . . , rl1.(nl,m
l
1), . . . , (r

l
j − 1).(nl,m

l
j),

. . . , rlinl

.(nl,m
l
inl

), . . . , rk1 .(nk,m
k
1), . . . , r

k
ink

.(nk,m
k
ink

)})⊖ (C1 − {1.(nl,m)}).

Thus, C2 ⊖ C1 is obtained by removing from C2 elements (n,m) that correspond to
elements (n,m′) of C1, such that m is the largest value with m ≤ m′.

For instance, taking C1 = {1.(2, 3), 1.(2, 5), 1.(1, 4), 1.(7, 6)},
and C2 = {1.(2, 0), 1.(2, 1), 1.(2, 2), 1.(1, 3), 2.(7, 6), 3.(3, 3)} it follows that C1 � C2.
Then, C2 ⊖ C1 = {1.(2, 0), 1.(7, 6), 3.(3, 3)}.

✷

Definition 2 (Prioritized-Timed Colored Petri Nets)
We define a prioritized-timed colored Petri net (PTCPN) as a tuple
(P, T,A, V,G,E, λ,D, π), where1:

• P is a finite set of places, with colors in the set Σ. Thus, in our case, colors will be pairs
(n, x) ∈ IN× IN, where n is the token value and x its timestamp.

• T is a finite set of transitions (P ∩ T = ∅).

• A ⊆ (P × T) ∪ (T × P) is a set of directed arcs.

• V is a finite set of typed variables in Σ, i.e. Type(v) ∈ Σ, for all v ∈ V .

• G : T −→ EXPRV is the guard function, which assigns a Boolean expression to each
transition, i.e. Type(G(t)) = Bool .

• E : A −→ EXPRV is the arc expression function, which assigns an expression to each
arc, such that Type(E(a)) = B(IN × {0}), which corresponds to untimed arcs, since, as
mentioned above, we only attach time delays to transitions.

1We use the classical notation on Petri nets to denote the precondition and postcondition of both places and
transitions:

∀x ∈ P ∪ T : •

x = {y | (y, x) ∈ A} x
• = {y | (x, y) ∈ A}

5

• λ is the labeling function, defined both on places and transitions.

– Places are labeled as entry places, exit places, error places, internal places and variable
places, which, respectively, correspond to the following labels: {in, ok , er , i , rv}. In our
specific model, a PTCPN will have an only entry place pin , such that •pin = ∅, which
will be initially marked with a single token of color (0, 0). There is also an only exit
place pok , such that p•

ok
= ∅, which will be marked with one token when the system

finishes correctly. Each PTCPN has also a single error place per , such that p•er = ∅,
which will become marked with one token in the event of a failure. Variable places
are denoted by prv , to mean that they capture the value of variable v in role r. We
will assume that a special value e is used to denote that the variable has not yet been
assigned. Finally, all the remaining places are considered as internal.

– Transitions are labeled as follows: λ(t) ∈ L ∪ {∅} ∪ {fail}, where L is the set of basic
activities, defined as follows:

L = {time out , silent ,noaction(r), assign(r, v, n), inter(r1, r2, v1, v2)}

• D : T −→ IN × IN, which is the delay function, which associates a time interval to each
transition. For D(t) = [d1, d2], this means that a uniform probability function will be used
when t is fired to select the specific discrete delay in that time interval.

• π : T −→ IN is the priority function, which assigns a priority level to each transition.

In this definition, EXPRV denotes the expressions constructed using the variables in V , with
the same syntax admitted by CPN Tools.

✷

Definition 3 (Markings)
Given a PTCPN N = (P, T,A, V,G,E, λ,D, π), a marking M is defined as a function M : P −→
B(Σ), which assigns a multiset of colors to each place (which can be empty).

A timed marking of a PTCPN N is a pair (M,x), where M is a marking of N and x is the
current system time instant. A marked prioritized-timed colored Petri net (MPTCPN) is then
defined as a triple (N,M, x), where N is a PTCPN, and (M,x) a timed marking of it.

✷

We define the semantics for MPTCPNs in a similar way as in [21], now taking into account that
transitions have associated priorities. We first introduce the notion of binding, then the enabling
condition and finally the firing rule for MPTCPNs.

Definition 4 (Bindings)
Let N = (P, T,A, V,G,E, λ,D, π) be a PTCPN. A binding of a transition t ∈ T is a function b

that maps each variable v ∈ Var(t) into a value b(v) ∈ Σ, where Var(t) is defined as the set of
variables that appear both in the guard of t and in the arc expressions of the arcs connected to
t. We will denote by B(t) the set of all possible bindings for t ∈ T .

Given an expression e ∈ EXPRV , we will denote by e〈b〉 the evaluation of e for the binding b.
A binding element is then defined as a pair (t, b), where t ∈ T and b ∈ B(t). The set of all

binding elements is denoted by BE .
✷

Definition 5 (Enabling condition)
Let N = (P, T,A, V,G,E, λ,D, π) be a PTCPN, and (M,x) a timed marking of it. We say that
a binding element (t, b) ∈ BE is enabled at the time instant x′ in the timed marking (M,x) if and
only if the following conditions are fulfilled:

6

v+1z

1

0

v

v

x1+1

x1

@+discrete(1,3)[v>5]

P_LOW

t2

@+discrete(0,0)[v<5]

P_HIGH

t1

@+discrete(1,3)[x1<7]

P_LOW

rv

1`5@0

NO

Pok

NO

Per

NO

Pi

NO

Pin

1`3@0+++2`5@0

NO

t3

Figure 2: Graphical view of a PTCPN.

1. x′ ≥ x.

2. G(t)〈b〉 = true.

3. For all p ∈•t, E(p, t)〈b〉x′ � M(p), where E(p, t)〈b〉x′ consists of the same colors as E(p, t)〈b〉,
but replacing their timestamp (which was 0) by x′.

4. There is no other binding element (t′, b′) ∈ BE fulfilling the previous conditions such that
π(t′) < π(t).

5. x′ is the smallest time value for which there exists a binding element (t, b) fulfilling these
conditions.

✷

Definition 6 (Firing rule)
Let N = (P, T,A, V,G,E, λ,D, π) be a PTCPN, (M,x) a timed marking of N , and an enabled
binding element (t, b) ∈ BE at instant x′ in the timed marking (M,x).

The firing of (t, b) at instant x′ is non-deterministic, depending on the chosen delay d ∈ IN
for the transition. This delay is randomly selected in the interval given by D(t). Thus, the new
timed marking (M ′, x′) is:

∀p ∈ P : M ′(p) = M(p)⊖ E(p, t)〈b〉x′ + E(t, p)〈b〉d+x′

✷

Example 1 Let us consider the marked PTCPN depicted in Figure 2, obtained from CPN Tools.
Observe that timed color tokens in CPN Tools are drawn using the notation n‘v@x, meaning that
we have n instances of a timed color token with color value v and timestamp x, which correspond
to n.(v, x) according to our formal notation. Besides, the symbol ‘+++’ is there used to represent
the union of timed multisets.

7

Thus, pin is initially marked with one token of color (3, 0), and two tokens of color (5, 0), and
the place rv has one token with color (5, 0). Transitions are labeled with their associated guard,
time interval and priority information. Arcs are labeled with the corresponding expressions, in
which no time delays appear, as we are considering that only transitions have associated time
delays.

From the initial marking we can see that only transition t1 can be fired (at instant 0), and any
token of those in pin can be used for that purpose. Taking (5, 0) we get the binding x = 5, which
fulfills the transition guard. The firing of t1 with this binding removes one instance of (5, 0) from
pin , and produces a new token on pi. The timestamp of this new token is a discrete value in the
interval [1, 3] (let us say 3). Thus, considering the output arc inscription we get a token (6, 3) on
pi.

Now, transition t1 must fire again twice (until pin becomes empty), due to the time constraints
of this model. As a result we may obtain in pi the following marking {1.(4, 3), 1.(6, 1), 1.(6, 3)}
(the timestamp values depend on the values chosen from the interval [1, 3]). The only transition
that can be fired at this marking is t3, because due to the time constraints we must first use the
token (6, 1) and t2 cannot be fired using this token. The firing of t3 produces a new token on pok ,
whose color value must be 1, and the timestamp depends again on the chosen delay in the time
interval [1, 3]. For instance, we could obtain the color token (1, 4).

Only two tokens now remain on pi, with colors (4, 3) and (6, 3), and t2 becomes the only
transition enabled (due to condition (4) of Def. 5). Its firing removes the token (4, 3) from pi,
the token on the place rv changes to 1.(5, 3), and creates a new token on per , with color (0, 3).
Finally, the remaining token (6, 3) on pi only allows us to fire t3, generating a new token on pok ,
with value 1 and a timestamp depending on the delay chosen for its firing.

✷

4 PTCPN Semantics for WS-CDL

In this section we provide a PTCPN semantics for the considered WS-CDL subset. Our goal is
to obtain a PTCPN representation capturing the main aspects of Web service composition, and
specially those related to data, time and priorities. This representation will then capture the
visible behavior of the participants in a web service composition and their interactions.

The obtained PTCPNs will be 1-safe [34], which means that only one token can be at any
place in any reachable marking. Moreover, when one of the initial or final places is marked, no
other place can be marked at the same time, except places associated with variables or the dead
tokens that remain in some places when the error place has been marked. Furthermore, all of the
generated PTCPNs will have one initial place2, which activates the PTCPN when it is marked,
and two exit places, which do not have any postconditions and cannot be marked simultaneously.
These exit places correspond to the correct or erroneous termination of the system represented
by the PTCPN.

The starting point is a WS-CDL document with the syntax of interactions extended consider-
ing priorities. We assume that all the priority values in the WS-CDL document are greater than
or equal to one, with the purpose of reserving the maximum priority value (0), which will be used
in the translation of some WS-CDL structural elements.

2This does not mean that this is the only initially marked place.

8

We consider that we have only the root choreography, i.e. there is only one choreography in
the document. The different elements of the document are thus translated as follows3:

• RoleTypes : These are used to enumerate the observable behavior of each party. Transitions
can be given a label indicating the roletype involved in their execution.

• RelationShipTypes and Channels : Both elements are used in interactions, so they are
(implicitly) considered in the translation provided for interaction activities.

• Information types and Variables : For simplicity, we only consider two variable types:
date/time variables and integer variables. Date and time variables are used to establish
the time constraints under which some activities can (or must) be performed. Their use is
therefore restricted, in the sense that will be explained when we describe the translation of
the WS-CDL structural elements in which they can appear. Integer variables are used to
represent the commonly observable information in collaborations. These are translated by
using the colored places labeled by rv, whose colored marking indicates the current value
of the variable.

Data variables can be assigned a value using the assign activity; they can be used in
interaction activities, and also in the guards of the workunits.

• Choreography : This is, of course, the main element of the WS-CDL document. It describes
the activities to be performed by the different participants, and may contain an exception
block. Compositionally translating each one of these elements, we then have:

Na = (Pa, Ta, Aa, Va, Ga, Ea, λa, Da, πa) (PTCPN for the main activities)
Ne = (Pe, Te, Ae, Ve, Ge, Ee, λe, De, πe) (PTCPN for the exception block)

pcin
= pain

Na

Ne

pcok
= paok

paer
= pein

pcer
= peok

= peer

Figure 3: Choreography Translation

3We omit the specific syntax of each element, which can be found in the WS-CDL description document [38],
and we also omit the formal definitions of the PTCPNs obtained for each case, which can be easily deduced from
the figures.

9

Let pain and pein be the initial places of Na and Ne respectively; paok and peok their correct
exit places, and paer , peer their erroneous exit places. The PTCPN for the choreography is
then constructed as indicated in Figure 3, where we are joining the following places:

pcin = pain
pcer = peok = peer
pcok = paok
paer = pein

and the remaining places, transitions and edges are the same as in Na and Ne. The PTCPN
is then activated by putting one token (0, 0) on pcin . The other places, pcok , paer and pcer
in this figure, as well as all the internal places, are initially unmarked. Notice, however,
that we can have other marked places, specifically those associated with integer variables,
whose initial marking is 1.(e, 0), where e ∈ IN is a natural value reserved to represent that
the variable has not yet been assigned.

• Activities : We may have basic activities, workunits and ordering activities. The translation
for each one is shown in the following subsections.

4.1 Basic activities

As we are considering only a choreography (root), we do not need to consider either the basic
activities perform or finalize (see [38] for a description of the different WS-CDL activities). For
the remainder the translation works as follows:

• Assign, Silent and Noaction activities. These are translated as indicated in Fig. 4, by means
of a single transition with the lowest priority (we call it P0, obtained by taking the highest
priority numeric value used in the WS-CDL document plus one) labeled with the name of
the corresponding activity.

As we consider that the time required to execute assign and noaction is negligible, the
corresponding transitions have a null delay associated, which means that they are immedi-
ately executed, once they become enabled, because their guard is true. Notice that for the
assign activity translation we use a self loop between the transition and the place associated
with the variable (rv) in order to replace its previous value by n.

We associate a time argument x to the silent activity, which captures the time required for
its execution. The corresponding transition is then labeled with this delay (interval [x, x])
to enforce its execution after x units of time, once it becomes enabled, because the guard of
this transition is true. We also consider that these basic activities cannot finish abnormally.

• Interaction activities.

We only consider one message exchange within each interaction activity, which takes a value
from a source variable and assigns a target variable with that value. However, if the source
variable has not yet been assigned an error occurs, and the interaction finishes abnormally.

Interaction activities may also have an associated time-out (x). In this case, if the time-out
expires and the interaction has not been performed, it finishes abnormally. In addition,
a priority attribute (l) may have been indicated, and this value is used as the priority of
the corresponding transition in the PTCPN representation, otherwise it has the minimum
priority (P0).

10

Assign activity:

Noaction activity:

Silent activity:

v

n

00

00

00

assign(r,v,n)

@+0

P0

noaction(r)

@+0

P0

silent(r)

@+x

P0

Per_a

NO

rv

NO

Pok_a

NO

Pin_a

NO

Per_n

NO

Pok_n

NO

Pin_n

NO

Per_s

NO

Pok_s

NO

Pin_s

NO

Figure 4: Basic Activity Translation

0

v1

v1

0

0

v2

v1

v1 v1

0

fail1

@+0[v1=e]

PM

inter(r1,v1,r2,v2)

@+discrete(0,MaxInt)[v1<>e]

Pl

Per

NO

Pok

NO

r2v2

NO
r1v1

NO

Pin

NO

Figure 5: Translation of an interaction without time-out.

Figure 5 illustrates the translation of an interaction without an associated time-out. Tran-
sition fail1 has been introduced to capture the abnormal termination that occurs when the
source variable (v1) in the interaction is unassigned. Transition fail1 is labeled with the fail
action, it has the guard condition v = e and maximum priority (PM is 0), so it is imme-
diately fired when the source variable has not been assigned4. The firing of the transition
inter corresponds to the execution of the interaction, it takes the value of v1 from the token
color on place r1v1 , and changes the token color on r2v2 with this value. This transition

4The value e means that the variable remains unassigned.

11

can be fired at any moment, so its associated time interval is [0,MaxInt], where MaxInt
represents the maximum integer value supported by the tool.

The translation for an interaction with an associated time-out is depicted in Fig. 6, in which
two additional transitions are included, time out and fail2, with λ(time out) = time out ,
and λ(fail2) = fail . The firing of transition time out represents the passage of x + 1 time
units without performing the interaction. In this case, once time out has been fired and x+1
time units have elapsed, we must immediately fire the transition fail2, which corresponds
to the abnormal termination due to the expiration of the time-out. Transition fail2 has
again the maximum priority (PM), since exception conditions are immediately executed
when they occur. We could have, for instance, an error condition in one branch of a parallel
activity, the other branch must then be immediately aborted, and the whole parallel activity
terminates abnormally.

Notice that the token generated by the transition time out on its postcondition place Pd
will only be available after x + 1 time units. In the meanwhile other simultaneous actions
can take place. For instance, if we have an activity running in parallel, it can perform inner
activities until this time-out expires and throws the exception (which occurs once the token
on place Pd can be used for firing fail2).

v1

v1

0

0

0

0

0

v1

v1

0

0

v2

v1

v1
v1

0

time_out

@+(x+1)[v1<>e]

Pl

fail2

@+0

PM

fail1

@+0
[v1=e]

PM

inter(r1,v1,r2,v2)

@+discrete(0,x)[v1<>e]

Pl

Pd

NO

Per

NO

Pok

NO

r2v2

NO

r1v1

NO

Pin

NO

Figure 6: Translation of interaction with time-out.

4.2 Workunits

Figure 7 shows the syntax of workunits, where the main elements are the activity inside the
workunit, the guard that allows the activation of the workunit, the guard that captures the
repetition condition, and the Boolean attribute block, which specifies whether the workunit
must wait until the activation condition becomes true or not. As stated above, we allow the
use of date and time variables in WS-CDL to establish a time constraint for the execution
of a workunit, although we restrict the use of these variables to simplify the translation.
They can only be used in the workunit activation guards, and for this purpose only, i.e. to

12

<workunit name="ncname"

guard="xsd:boolean XPath-expression"?

repeat="xsd:boolean XPath-expression"?

block="true|false"? >

...

Activity-Notation

...

</workunit>

Figure 7: Workunit syntax

<assign roleType="tns:T2">

<copy name="MinDurationInfo">

<source duration="2:00" />

<target variable="cdl:getVariable

(’min’,’’,’’,’tns:T2’)" />

</copy>

</assign>

<assign roleType="tns:T2">

<copy name="MaxDurationInfo">

<source duration="5:00" />

<target variable="cdl:getVariable

(’max’,’’,’’,’tns:T2’)" />

</copy>

</assign>

<workunit name="WhileDeadlineAvailable"

guard="hasDurationPassed(’min’,xsd:T2) and not(hasDurationPassed(’max’, xsd:T2))"

repeat="cdl:getVariable(’v2’,’’,’’,’tns:T2’) = 2"

block="true">

<interaction name="acceptReservation" ... >

<participate relationshipType="tns:T1-T2"

fromRoleTypeRef="tns:T1" toRoleTypeRef="tns:T2"/>

<exchange name="response"

informationType="tns:SeatsInfoType" action="request">

<send variable="cdl:getVariable(’v1’,’’,’’,’tns:T1’)" />

<receive variable="cdl:getVariable(’v2’,’’,’’,’tns:T2’)"/>

</exchange>

<priority value="2">

<timeout time-to-complete="4:00"

</interaction>

</workunit>

Figure 8: Delayed workunit example

establish time intervals for the workunit execution. No other variable can appear in the
guards in this case, and the workunit block attribute must be true to enforce the delay.

A workunit may have other activation guards, in which some (integer) data variables from
the different role types can be checked. For both cases we provide the corresponding trans-
lation.

– Delayed Workunit. A delayed workunit is a particular case of a workunit in which
time variables are used in order to establish a time interval for the workunit execution.
Notice that in order to enforce the delay the block attribute of a delayed workunit
must always be true.

Figure 8 shows the WS-CDL syntax that can be used to specify a delayed workunit. In this
case we use the function hasDurationPassed and two time variables, min and max, in order
to establish the time interval in which the workunit can be executed. The same effect could
also be obtained by using a time variable and the function getCurrentDateTime.

13

The corresponding translation is shown in Figure 9, in which A1 is the activity inside the
workunit and NA1

its corresponding PTCPN. There is a new transition tt connecting pin
with pinA1

, with λ(tt) = ∅ and time interval [x, y], where x, y are, respectively, the values
of the variables min, max in the WS-CDL specification.

In addition, we replicate every initial transition of NA1
, i.e. for every t1 ∈ p•

inA1

we consider

a new transition, t1r , with the same interval, label and priority as t1, and its guard is
obtained as a conjunction of the guard of t1 (gt1 in the Figure) and the repetition condition
of the workunit (g′). Then, t1r is connected as follows: •t1r = {pokA1

} ∪ (•t1 \ {pinA1
}) ∪

{privi | vi appears in g′}, and t1r• = t1• ∪ {privi | vi appears in g′}. For any variable vi
appearing in g′, if there is already a self-loop arc connecting t1r with privi , we keep the
existing label in both arcs. Otherwise, both arc expressions are vi. The purpose of these
transitions t1r is therefore to perform A1 again when it has been correctly terminated and
g′ is evaluated to true.

There is also a new transition t, with λ(t) = ∅ and maximum priority, whose guard is the
negation of the workunit repetition condition and puts one token on pok when g′ is false.

– Data Workunit.

We now consider the case of a workunit with an activation guard in which we may
check the value of some data variables. We now distinguish two cases, according to
the block attribute value:

Figure 9: Delayed Workunit Translation

– Block = true (Figure 10).

In this case every initial transition t1 ∈ p•inA1

of NA1
(the PTCPN corresponding to the

activity inside the workunit) is replaced by two new transitions, t′1 and t′′1, connected as
follows:

•t′1 =
•t1 ∪ {privi | vi appears in g}

•t′′1 = {pokA1
} ∪ (•t1 \ {pinA1

}) ∪ {privi | vi appears in g′},

t′•1 = t•1 ∪ {privi | vi appears in g}
t′′•1 = t•1 ∪ {privi | vi appears in g′},

For any variable vi appearing in g (resp. g′), if there was already a self-loop arc connecting
t1 ′ (resp. t′′1) with privi , we keep the existing label in both arcs. Otherwise, both arc
expressions are vi.

These transitions have the same interval, label and priority as t1, and their guards are
obtained as follows:

14

- For t′1 we take the conjunction of the guard of t1 (gt1) with the activation guard (g)
of the workunit.

- For t′′1 we take the conjunction of the guard of t1 (gt1) with the repetition guard (g′)
of the workunit.

We also have a new transition t with maximum priority, λ(t) = ∅, and its guard is the
negation of the repetition condition of the workunit. This transition will be fired when the
repetition condition is false, thus generating one token on pok.

Figure 10: Data Workunit Translation for block = true.

• Block = false (Figure 11).

The only difference with the previous case is the new transition tb with maximum priority,
λ(tb) = ∅ and guard ¬g (activation guard). Thus, when the guard condition is false,
transition tb is immediately fired and the workunit is skipped.

Figure 11: Data Workunit Translation for block = false.

15

4.3 Ordering structures

These are used to combine activities in a nested structure that uses the sequence, parallel and
choice constructs. For all these cases we provide the translation by only considering two activities.
However, the generalization to a greater number of activities is straightforward in all of them.

• Sequence: A sequence of two activities (with PTCPNs NA1
and NA2

, respectively) is trans-
lated in a simple way (Figure 12), by just collapsing in a single place (this will be an internal
place of the new PTCPN) the correct exit place of the NA1

and the entry place of NA2
. The

entry place of the new PTCPN will be the entry place of NA1
. The correct exit place of the

new PTCPN will be the correct exit place of NA2
, and we also join the error places.

pin = pinA1

NA1

pokA1
= pinA2

NA2

pok = pokA2

per = perA1
= perA2

Figure 12: Sequence Translation

• Parallel: The translation for a parallel activity is depicted in Figure 13, which includes two
new transitions t1 and t2. The first to fork both parallel activities and the second to join
them when correctly terminated. Both transitions have label ∅ and maximum priority to
avoid other transitions being delayed (or not executed) due to their presence. We could
have, for instance, an initial transition in NA1

with high priority, but as its activation
depends on the execution of t1, another transition of another parallel activity (with lower
priority) could be executed first if t1 is not executed immediately (as an action with the
maximum priority in the model).

Transition t1 thus puts one token on the initial places of both PTCPNs, NA1
and NA2

, in
order to activate them, and also puts one token on a new place, pc, which is used to stop the
execution of one branch when the other has failed. This place is therefore a precondition of
every transition in both PTCPNs, and it is also a postcondition of the non-failing transitions.
However, in the event of a failure, the corresponding fail transition will not put the token
back on pc, thus arresting the other parallel activity.

Notice also that the error places of NA1
and NA2

have been joined in a single error place
(per), which becomes marked with one token on the firing of one fail transition. In this case,
the other activity cannot execute any more actions (pc is empty), so some useless tokens
would remain permanently on some places in the PTCPN. However, it should be noticed
that these tokens cannot cause any damage, since the control flow has been transferred to
the exception block PTCPN, once the place per has become marked.

• Choice: We now impose a syntactical restriction: no parallel operator can appear at the
first level of the arguments of a choice. This restriction is introduced for technical reasons:
the translation of a parallel activity creates an immediate initial transition with maximum
priority, so if we allow a parallel activity as argument of a choice, according to the translation
depicted in Figure 14 this transition would be fired immediately, due to its maximum
priority, i.e. we would not actually have a choice.

16

pA1in

pin

pc

pA2in

pA2ok
pA1ok pA1er

pA2er
per

fail i fail j

PM

NA1
NA2

pok

NO

0

0
0

0

0

0

tj

0

0

0

0

ti

t2

= =

0 0

0

t1
PM

@+0

[gti]

Pti

@+discrete(xi,yi)

0

PM

@+0

0

Ptj

[gtj] @+0@+discrete(xj,yj)

PM

@+0

0

NO NO

NO

NO

NO

NO

NO

Figure 13: Parallel Activity Translation.

We can see in Figure 14 that the translation of a choice of two activities (with PTCPNs
NA1

and NA2
) is made by joining the entry, error and correct termination places of both

PTCPNs. The structure of both PTCPNs is maintained, except for the following cases:

– When at most one of the arguments (let us say A1) has one initial fail transition
(t ∈ p•inA1

, λ(t) = fail), then, we remove this initial fail transition of NA1
, as well

as the arcs connected with it. Observe that as a consequence of the compositional
construction there cannot be any other initial fail transitions in NA1

. The choice
therefore cannot fail when only one of the argument activities can fail.

– In the event of both PTCPNs having initial fail transitions, these are joined in a single
fail transition, with maximum priority, delay 0, and its guard is the conjunction of the
guards of both fail transitions. Thus, the choice can only fail when both activities are
able to fail.

17

pin pA
in1

pA
in2==

fail1

[gt1,gt2] @+0

PM

per pA
er1

pA
er2==

pok pA
ok1

pA
ok2==

NO

NO

N*
A 2N*

A 1

0

0

NO

Figure 14: Choice Activity Translation.

<parallel>

<sequence>

<assign roleType="tns:T2">

<copy name="MinDurationInfo">

<source duration="2:00" />

<target variable="cdl:getVariable

(’min’,’’,’’,’tns:r2’)" />

</copy>

</assign>

<assign roleType="tns:T2">

<copy name="MaxDurationInfo">

<source time="5:00" />

<target variable="cdl:getVariable

(’max’,’’,’’,’tns:r2’)" />

</copy>

</assign>

<workunit name="WhileDeadlineAvailable"

guard="hasDurationPassed(’min’,xsd:r2)

and not(hasDurationPassed(’max’, xsd:r2))"

repeat="cdl:getVariable(’v2’,’’,’’,’tns:r2’) = 2"

block="true">

<interaction name="acceptReservation" ... >

<participate relationshipType="tns:r1-r2"

fromRoleTypeRef="tns:r1" toRoleTypeRef="tns:r2"/>

<exchange name="response"

informationType="tns:SeatsInfoType" action="request">

<send variable="cdl:getVariable(’v1’,’’,’’,’tns:r1’)" />

<receive variable="cdl:getVariable(’v2’,’’,’’,’tns:r2’)"/>

</exchange>

<priority value="2"/>

</interaction>

</workunit>

</sequence>

<choice>

<assign roleType="tns:r2">

<copy name="v2">

<source value="2" />

<target variable="cdl:getVariable

(’v2’,’’,’’,’tns:r2’)" />

</copy>

</assign>

<noAction roleType="tns:r2" />

</choice>

</parallel>

Figure 15: Illustration of the WS-CDL ordering structures

18

0

0
0

0
0

00

0

0

00

00

00

00

0
0

0

0

0

0

0

0

v2

2

00

0

v2v2

0

0

0

v2
v2

0
v1v1

v1 v1

0
0

v2
v1

v1v1
v2 v1

v1
v1

0

0

0

y

5

0

y
y

x

x

0

0

0

0

x 2

0

00

0

t2

@+0

PM

noaction(r2)

@+0

P0

assign3(r2,v2,2)

@+0

P0

t

@+0[v2<>2]

PM

fail1r

@+0[v1=e,v2=2]

PM

fail1

@+0[v1=e]

PM

inter2(r1,v1,r2,v2)

@+discrete(0,MaxInt)[v1<>e,v2=2]

P2

inter1(r1,v1,r2,v2)

@+discrete(0,MaxInt)[v1<>e]

P2

tt

@+discrete(x,y)[x<>e,y<>e]

PM

assign2(r2,max,5)

@+0

P0

assign1(r2,min,2)

@+0

P0

t1

@+0

PM

Pc

NO

Pok

NO

P22

NO

P16

NO

Per

NO

r2v2

0

NO

r1v1

5

NO

P15

NO

P14

NO

P13

NO

r2max

0

NO

P12

NO

r2min

0

NO

P21

NO

P11

NO

Pin

0

NO

Figure 16: PTCPN corresponding to Example 2.

Notice that the initial time out transitions of both PTCPNs are preserved by this construc-
tion, which means that the highest priority time out transition whose guard is true will fix
the time-out associated with the choice.

Example 2 Figure 15 shows part of a WS-CDL document illustrating the use of the ordering
structures and a delayed workunit. Its corresponding PTCPN is depicted in Figure 16.

✷

4.4 Exception Blocks

Choreographies may have one exception block. The exception block consists of some (possibly
guarded) workunits, only one of which can be finally executed (the first one whose guard eval-
uates to true). For simplicity we can assume that only one non-guarded workunit is defined in
the exception block (the so-called default exception workunit). Exception workunits cannot be
repetitive and their block attribute must be false, so that the translation of the default exception
workunit is that of the activity inside it.

5 WST Tool

5.1 Previous work and new additions

WST Tool is an integrated environment for the development of composite web services, in which
we have added a new function, which is the automatic translation from WS-CDL specifications

19

Figure 17: WST Tools

to PTCPNs. As WS-CDL is an XML-based language, and PTCPNs are supported by CPNTools
and are also represented by XML files, we have used XSLT stylesheets to transform the WS-CDL
document to obtain another XML document representing the PTCPN in a format supported
by CPNTools. These XSL stylesheets are created using the XSLT editor. The obtained XML
document can be visualized, simulated and verified with CPNTools.

WST Tool is available for Windows/Linux systems under virtual machine Java,
at http://www.dsi.uclm.es/retics/WST/ .

WST Tool has a very simple and intuitive interface, in which the different translations sup-
ported are clearly visible by their corresponding tabs. Thus, the user only needs to click on the
appropriate tab in order to perform a specific translation. Thus, we now have a new tab, called
“WS-CDL2CPNTools”, which is used to transform the WS-CDL specification into a PTCPN.
Figure 17 shows a picture of the WST Tool and the transformation from a WS-CDL document
to a PTCPN.

Let us now see a brief description of the new elements that have been added:

• In the WS-CDL Textbox, we can find the corresponding WS-CDL specification that
can be introduced by hand or by using the automatic transformation from UML. This
specification will be loaded by using the option “Open WS-CDL File” in the File menu. A
dialog window will be shown to the user asking him to select the document to be opened.
If the file is not valid, an error message will be displayed on the screen.

• In the CPNTools Textbox, after clicking on the button “Transform”, the corresponding
Petri Net XML specification is shown. To save this specification, the user must click on
the “Save Colored Petri Net File” option in the CPN Tools menu. A dialog window will be
shown to the user to choose the destination folder.

In brief, we have two new buttons on the screen:

20

• The Transform button allows the user to generate the corresponding PTCPN. The result
will be automatically displayed in the CPN Tools Textbox after a few seconds. If the WS-
CDL Textbox is empty, pressing the Transform button will have no effect.

• The Clear button allows the user to clean the contents of both text boxes, the WS-CDL
Textbox and the PTCPN Textbox. If both text boxes are empty, pressing on this button
will have no effect.

5.2 XSLT Architecture

The XSLT transformation sheets (eXtensible Stylesheets Language/Transform) are a W3C declar-
ative language to transform XML documents into other XML documents or to some other kind of
documents. The XSLT stylesheets are widely used, as an easy way to apply transformation rules
to a source document in order to obtain the corresponding output documents. Nowadays, XSLT
is widely recommended in web edition area, due to its ability to generate HTML or XHTML
sheets.

For making the transformation of XML documents, we have used XSLT stylesheets, which
allow the programmer to convert the original one in two ways: On the one hand, the programmer
can manipulate the contents of the document to organize them without changing the document
format, whereas, on the other hand, the programmer can use XSLT sheets to transform the
contents into other different formats (see Figure 18).

Figure 18: XML transformation by using XSLT

We have then defined a number of rules to extract the PTCPN elements from the choreo-
graphy defined in the well-known choreography language, WS-CDL. Thus, our tool, WST, is used
to carry out this transformation in an automatic way, presenting to the user a .cpn file, which
can be opened with CPNTools. After doing this, the user can analyze and verify the model by
using the features of the CPNTools (see Figure 19).

In Figure 20, we can see the Java code that we have used to transform the input XML
document into the corresponding XML output document, by using four XSLT templates called
cpn1, cpn2, cpn3 and cpn4, and the output document is a file called “final.xml”.

21

Figure 19: Application of XSL rules to obtain the cpn file

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer transformer1 =

tFactory.newTransformer(new StreamSource(

"XSLFiles/cpn1.xsl"));

transformer1.transform(new StreamSource(fichero),

new StreamResult(new FileOutputStream(

"XSLFiles/salida1.xml")));

TransformerFactory t2Factory = TransformerFactory.newInstance();

Transformer transformer2 =

t2Factory.newTransformer(new StreamSource(

"XSLFiles/cpn2.xsl"));

transformer2.transform(new StreamSource("XSLFiles/salida1.xml"),

new StreamResult(new

FileOutputStream("XSLFiles/salida2.xml")));

TransformerFactory t3Factory = TransformerFactory.newInstance();

Transformer transformer3 =

t3Factory.newTransformer(new StreamSource(

"XSLFiles/cpn3.xsl"));

transformer3.transform(new StreamSource("XSLFiles/salida2.xml"),

new StreamResult(new

FileOutputStream("XSLFiles/final.xml")));

FileInputStream fr = new FileInputStream("XSLFiles/final.xml");

Figure 20: Example of the XSLT template

5.3 Rules

From a Document Type Definition (DTD) file, one can describe the XML document structure:
labels, data types, and so on. The XML document must be validated to check if it satisfies
the DTD structure defined previously. Besides, the systems that exchange XML documents must
agree in this DTD structure and validate DTD received documents based on the agreed structure.

The technology used in this work is Documents Object Model (DOM). This specification is
a W3C standard independent of programming language. This technology allows us to manip-
ulate multiple sections of a document at the same time, and it is not necessary to read all the
document again to work on a particular area of the document. This technology also transforms
XML documents in a hierarchical tree. Thus, DOM allows us to manipulate the XML document,

22

for instance, to add items, to delete items, etc. The library that we have used in this work is
org.w3c.dom.*;

As mentioned in Section 5.2, the templates used to generate the output XML document have
been XSLT. A stylesheet XSLT must be a well-formed XML document stored with the extension
.xsl.

5.3.1 The structure of the stylesheet

The document starts with the instruction 〈 ?xml versión = ‘1.0‘?〉 . The element root is a
stylesheet, which contains all other elements. In an XSLT stylesheet, the name of reserved
elements by the specification comes from the same namespace, so they must be written preceded
by the appropriate alias that must point to the URL: http://www.w3c.org/1999/XSL/Transform.
In Figure 21 we show the structure of the XSLT document.
Once we have located the initial and final mark of the root element “xsl:stylesheet”, we define
the transformation rules:

• Each rule is defined by an “xsl:template”.

• In the rules, we indicate those elements of the XML document that will be transformed.

• The rules also indicate how each element must be transformed.

• Each rule is applied to all elements of the XML document.

• In the XSLT rules, between their initial and final marks, one can include:

– Text to be written literally in the output document.

– Marks that are added to the XML output document.

– Reserved elements to perform an action such as retrieving the value of an item, sorting
results, calling other rules of the stylesheet, etc.

In Figure 22, we depict what happens when we find a label whose name is “interaction” in an
XML input document.

23

<?xml version="1.0" ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output indent="yes" />

- <xsl:template match="/">

<workspaceElements>

<generator tool="CPN Tools" version="2.9.12" format="6" />

<cpnet>

...

<page id="ID6">

<template>

<xsl:for-each select="//choreography">

<xsl:for-each select="child::*">

<xsl:if test="(name()=’noAction’)">

<xsl:call-template name="noAct" />

</xsl:if>

<xsl:if test="(name()=’fail’)">

<xsl:call-template name="fail" />

</xsl:if>

<xsl:if test="(name()=’interaction’)">

<xsl:call-template name="int">

<xsl:with-param name="nombre_proceso">

<xsl:value-of select="$nombre_proceso"/>

</xsl:with-param>

</xsl:call-template>

</xsl:if>

<xsl:if test="(name()=’workunit’)">

<xsl:call-template name="work">

<xsl:with-param name="nombre_proceso">

<xsl:value-of select="$nombre_proceso" />

</xsl:with-param>

</xsl:call-template>

</xsl:if>

<xsl:for-each select="//choreography">

<xsl:for-each select="child::*">

<xsl:if test="(name()=’noAction’)">

<xsl:call-template name="noAct_trans" />

</xsl:if>

<xsl:if test="(name()=’fail’)">

<xsl:call-template name="fail_trans" />

</xsl:if>

<xsl:if test="(name()=’interaction’)">

<xsl:call-template name="inter_trans">

<xsl:with-param name="nombre_proceso">

<xsl:value-of select="$nombre_proceso" />

</xsl:with-param>

</xsl:call-template>

</xsl:if>

<xsl:if test="name()=’workunit’">

<xsl:call-template name="work_trans">

<xsl:with-param name="nombre_proceso">

<xsl:value-of select="$nombre_proceso" />

</xsl:with-param>

</xsl:call-template>

</xsl:if>

....

</xsl:for-each>

</template>

</page>

- <fin>

....

</fin>

....

</cpnet>

</workspaceElements>

Figure 21: Illustration of an XSLT template

24

<xsl:template name="int">

<xsl:if test="descendant::record">

<xsl:call-template name="assign">

<xsl:with-param name="nombre_assign">

<xsl:value-of select="record/target/@variable" />

</xsl:with-param>

<xsl:with-param name="num_assign">

<xsl:value-of select="count(preceding::assign)" />

</xsl:with-param>

</xsl:call-template>

</xsl:if>

<!--Add initial place-->

<xsl:element name="place">

</xsl:element>

<!-- If there is timeout-->

<xsl:if test="priority/timeout">

<xsl:call-template name="aux1" />

</xsl:if>

<xsl:if test="not(priority/timeout)">

<!--Add transition of interaction-->

<xsl:element name="trans">

</xsl:element>

</xsl:if>

<!--Add transition timeout-->

<xsl:element name="trans">

</xsl:element>

<!--Add transition fail-->

<xsl:element name="trans">

</xsl:element>

<!--Add place v1r1-->

<xsl:element name="place">

</xsl:element>

<!--Add place v2r2-->

<xsl:element name="place">

</xsl:element>

<!--Add error place-->

<xsl:element name="place">

</xsl:element>

<!-- Add final place-->

<xsl:element name="place">

</xsl:element>

</xsl:template>

Figure 22: Basic Interaction XSLT rule

5.3.2 Specific rules

Next, we define some specific rules we have developed in order to carry out the transformation
between WS-CDL and PTCPN, specifically for the activities: workunit, choice and parallel:

25

Figure 23: UML Diagram for a Workunit activity

var2var1

0

0

0
0

0

0

0

0

var1

var1

var1
var1

var1

var1

var1

mvar1

repeat1 repeat1
0

repeat2
repeat1

0

0

0

0

0

00

0

repeat1

repeat1

repeat1

repeat1

repeat1

mrepeat1

0

@+0[var1=e]

PM

timeoutMessage1_interaction

@+(5+1)

[var1<>e]

PM

failint2Message1_interaction

@+0

PM

@+discrete(0, 5)[var1<>e]

PM

Assign4

@+0

PO

@+0[repeat1=e]

PM

timeoutMessage_interaction

@+(3+1)[repeat1<>e]

PM @+0

PM

Message_interactionMessage_interaction

@+discrete(0, 3)[repeat1<>e]

PM

Assign5

@+0

PO

Lifeline1RoleTypeMessage1_interaction

e

NO

perintMessage1_interaction

NO

pdintMessage1_interaction

NO

InitInteractionMessage1_interaction

NO

Assing4

NO

NO

e

NO

NO

NO

NO

Assing5

e

NO

InitAssign5

0

NO

fail1Message_interaction

InitInteractionMessage_interaction

repeat1

repeat1

failint2Message_interactionpdintMessage_interaction

perintMessage_interaction

Lifeline1RoleTypeMessage_interaction

InitAssign4

0

e

Message1_interactionMessage1_interaction

fail1Message1_interaction

Figure 24: Workunit ParI

26

0

0

0

0

0

var6 var5

0

0

0

0

0

0

0

0

var5

var5

var5var5

var5

var5

var5

mvar5

var3

var3

0

0

var4

var3

0

0

0

0

0

00

0

0

var3

var3

var3

var3

var3

var3

var3

var3

var3

mvar3

0

0

@+0[var2<>5]

PM

tworkunit0

@+0[true,repeat2=1]

PM

fail1Message3_interaction

@+0[var5=e]

PM

timeoutMessage3_interaction

@+(9+1)[var5<>e,true]

PM

failint2Message3_interaction

@+0

PM

Message3_interactionMessage3_interaction

@+discrete(0, 9)[var5<>e,true]

PM

Assign7

@+0

PO

fail1Message2_interaction

@+0[var3=e]

PM

timeoutMessage2_interaction

@+(7+1)[var3<>e,true]

PM

failint2Message2_interaction

@+0

PM

Message2_interactionMessage2_interaction

@+discrete(0, 7)[var3<>e,true]

PM

Assign16

@+0[repeat2=1,true]

PO

Assign6

@+0[var2=5]

PO

EndWorkunit0

NO

EndInteractionMessage3_interaction

NO

Lifeline1RoleTypeMessage3_interaction

e

NO

perintMessage3_interaction

NO
pdintMessage3_interaction

NO

InitInteractionMessage3_interaction

NO

Assing7

e

NO

InitAssign7

NO

Lifeline1RoleTypeMessage2_interaction

e

NO

perintMessage2_interaction

NO

pdintMessage2_interaction

NO

InitInteractionMessage2_interaction

NO

Assing6

e

NO

InitWorkunit0

NO

tbworkunit0

Figure 25: Workunit PartII

5.3.3 workunit

• A “workunit” is essentially a conditional and looping constructor combined in one enclosing.
To design a “workunit” activity, we need at least two variables: the first variable, guard,
is used to check the access into the “workunit” activity, and the second variable, repeat, is
used to check the access of repetitions of the “workunit” activity. To assing a value to each
of these two variables we use an “assign” activity and an “interaction” activity.

• Once we know the value of the variables for the workunit’s entry, we are allowed to continue
with the internal workunit’s activities. The “workunit” is composed of two interactions
whose function is to exchange the value of the variables. As we can see, the value of the
varible “repeat” is false, and if the variable “repeat” is eve true the internal activity of the
workunit until be repeated (see Fig. 23, 24, 25))

27

Figure 26: UML Diagram for a Choice activity

0

var5

var6

0

0

0
0

0

var6var6

var6

var6

var6
var6

0

var2
var1

0

0

0

var1var1

var1

var1
var1var1

var1

mvar1

00

0

0
0

0

@+0[var6=e]

PM
@+(7+1)

[var6<>e]

PM

@+0

PM

@+discrete(0, 7)

@+0

PO

@+0[var1=e]

PM

@+(3+1)[var1<>e]

PM

@+0

PM

@+discrete(0, 3)[var1<>e]

PM

Assign5

@+0

PO

@+0[false]

PM

NO

e

NO

NO

NO

e

NO

NO

e

NO

NO

Assing5

e

NO

0

NO

NO

InitChoice0

failchoice0

Message_interactionMessage_interaction

Lifeline1RoleTypeMessage_interaction

EndInteractionMessage_interaction

fail1Message_interaction

PerChoice0

InitInteractionMessage_interaction

timeoutMessage_interaction

pdintMessage_interaction

0 mvar6var6

0

0

0

0 0

[var6<>e]

NO

PM

LifelineRoleTypeMessage2_interaction

EndInteractionMessage2_interaction

timeoutMessage2_interaction

Assign2

Assing2
InitInteractionMessage2_interaction

Message2_interactionMessage2_interaction

fail1Message2_interaction

failint2Message2_interaction

failint2Message_interaction

pdintMessage2_interaction

Figure 27: Choice Part I

28

0

0

var7 var8

0

0

0

0

0

0

var8
var8

var8

var8

var8

var8

var8

mvar8

var4
var3

0

0

0

0

0

0

var3

var3var3
var3

var3

var3

var3

mvar3

0

0

0

0

fail1Message3_interaction

@+0[var8=e]

PM

timeoutMessage3_interaction

@+(11+1)[var8<>e]

PM

failint2Message3_interaction

@+0

PM

Message3_interactionMessage3_interaction

@+discrete(0, 11)[var8<>e]

PM

Assign3

@+0

PO

fail1Message1_interaction

@+0[var3=e]

PM

timeoutMessage1_interaction

@+(5+1)[var3<>e]

PM

failint2Message1_interaction

@+0

PM

Message1_interactionMessage1_interaction

@+discrete(0, 5)[var3<>e]

PM

Assign6

@+0

PO

EndChoice0

NO

LifelineRoleTypeMessage3_interaction

e

NO

pdintMessage3_interaction

NO

InitInteractionMessage3_interaction

NO

Assing3

e

NO

Lifeline1RoleTypeMessage1_interaction
e

NO

pdintMessage1_interaction

NO

InitInteractionMessage1_interaction

NO

Assing6

e

NO

PerChoice0

NO

Figure 28: Choice Part II

5.3.4 choice

– The “choice” activity allows us to execute one of its descendants independently from
any situation.
In this example, we can see two options, both of them are composed of two “Interac-
tion” activities.

– A situation we must deal with is that of places that are merged or joined in the trans-
lation process, according to the semantics described in Section 4.3. For instance, in the
choice operator, we have that both final places of the internal activities are collapsed
in a single one, so we just need one place for the final place of the choice. This aspect
must be considered in the XML output document, and therefore in the corresponding
XSLT rule.

– The error places of the different activities in a choice are also collapsed in a single error
place. This aspect is also considered in the XSLT rule (see Fig. ??(see Fig. 26, 27, 28))

5.3.5 parallel

– We must link the initial transition of a parallel activity with all the initial places of the
activities that are to be run in parallel. Likewise, the final places of these activities
are also connected with the final place of the parallel activity by means of a transition
representing the end of all of these activities.

29

Figure 29: UML Diagram for a Parallel activity

0

00

0

0

0

0

0

0
0

0

var6

var5

0

0

0

0
0

0

var5

var5

var5

var5

var5
var5

var5

mvar5

0

0

var2

var1

0

0

0
0

0

var1var1

var1

var1

var1var1

0

0

fail1Message2_interaction

@+0[var5=e]

PM

@+(7+1)[var5<>e]

PM

@+0

PM

Message2_interactionMessage2_interaction

@+discrete(0, 7)
[var5<>e]

PM

@+0

PO

@+0[var1=e]

PM

@+(3+1)[var1<>e]

PM

@+0

PM

@+discrete(0, 3)[var1<>e]

PM

Assign3

@+0

PO

t1par0

@+0

PM

NO

e

NO

pdintMessage2_interaction

NO

NO

e

NO

InitAssign5

NO

e

NO

NO

NO

e

NO

InitAssign3

NO

InitParallel0

0

NO

pdintMessage_interaction

failint2Message_interaction

pc0

Assign5

Assing5

NO

0

0

0

mvar1

0

var1
0

0
0

0

0

0

0

0

InitInteractionMessage_interaction
Assing3

timeoutMessage_interaction

Message_interactionMessage_interaction

fail1Message_interaction
Lifeline1RoleTypeMessage_interaction

perPar0

failint2Message2_interaction

InitInteractionMessage2_interaction

timeoutMessage2_interaction

LifelineRoleTypeMessage2_interaction

Figure 30: Parallel Part I

30

0

000

0
0

0

0

0

0

var4

var3

0

0

0

0

0

0

var3

var3

var3
var3 var3

var3

var3

mvar3

0

t2par0

@+0

PM

@+0[var3=e]

PM

timeoutMessage1_interaction

@+(5+1)
[var3<>e]

PM

failint2Message1_interaction

@+0

PM

Message1_interactionMessage1_interaction

@+discrete(0, 5)[var3<>e]

PM

@+0

PO

EndParallel0

NO

NO

EndInteractionMessage1_interaction

NO

Lifeline1RoleTypeMessage1_interaction

e

NO

pdintMessage1_interaction

NO

NO

Assing4

e

NO

NO

perPar0

InitInteractionMessage1_interaction

InitAssign4

Assign4

pc0

fail1Message1_interaction

0

0

0

0

NO

Figure 31: Parallel Part II

31

– For the error places of the activities inside a parallel, we collapse these error places into
a simple one, and we also include a new place, named Pc, which controls the parallel
execution, to arrest it in the case of a failure (see Fig. 29, 30, 31))

5.4 Working environment

WST tool has been developed on a Windows PC machine, but it also works in Unix/Linux
environments. We have checked it in some Ubuntu distributions.

6 Case Studies

In this section we consider two case studies that illustrate the benefits of our framework.

6.1 An Airline Ticket Reservation System

We consider an airline ticket reservation system (ATRS), which consists of three role types:
Traveler (T), Travel Agent (A) and Airline Reservation System (R). The system works as
follows: the Airline Reservation System receives requests from travelers and travel agents
to reserve seats. Travelers have higher priority, i.e. travelers’ requests are served first in the
event of a conflict. Thus, R receives a trip request for a specific date and flight, to which it
must respond with seat bookings (to simplify we assume there are free seats). We have the
following timed restrictions: 4 hours must elapse after getting the information on available
seats to make a reservation. Reservations are only valid for a period of 48 hours, which
means that if they have not been confirmed and paid for in two days they are canceled, and
the seats are released.

Figure 32 contains the relevant parts of a WS-CDL document describing this system, in
which there are three numbered sections, which correspond to a parallel structure (T and A
request the seat information in parallel), a sequence structure (the seat booking information
is set), and a delayed workunit structure to delay the execution for 4 hours. This workunit
(number 3 in the Figure) consists of a choice, whose first activities are the reservation
interactions from T and A, which have different priorities (travelers have higher priority).
The final part of both branches corresponds to the payment, for which an interaction activity
has been introduced with an associated time-out.

Using the WST tool we have obtained the corresponding PTCPN from this WS-CDL
document, depicted in Figures 33 (top) and 34 (bottom), which are connected by the com-
mon places P6 and Perror .

Looking at Fig. 33 we can see a transition T1 that forks both initial parallel activities,
which correspond to two assign activities and two interactions activities. Both parallel
activities join by means of transition T2. The firing of T2 activates the execution of the
three sequential assign activities, which can be seen as three assign transitions in a row
in Figure 34. After, at least their execution the delayed workunit starts, transition tt

captures the 4 hours delay, after which a token is generated on P10 . The choice inside
the workunit now appears. Notice that the initial transitions of both branches have been
replicated, although in this case the replicas can never be executed, because the workunit
is not repetitive. Finally, both parts terminate with the payment interactions, which have

32

</parallel>

<parallel>

<sequence> <sequence>

</sequence> </sequence>

<assign roleType="tns:T">
<copy name="Flight+NPassengersInfo">
<source expression="56810" />
<target variable="cdl:getVariable('flight','','','tns:T')" />

</copy>
</assign>
<interaction name="createReservation" ... >

<participate relationshipType="tns:T2ARSRelationship"
fromRoleTypeRef="tns:T" toRoleTypeRef="tns:ARS"/>

<exchange name="request"
informationType="tns:reservationType" action="request">

<send variable="cdl:getVariable('flight','','','tns:T')" />
<receive variable="cdl:getVariable('Tflight','','','tns:ARS')"/>

</exchange>
<priority value="1">

</interaction>
<assign roleType="tns:T">
<copy name="SeatsInfo">
<source expression="462" />
<target variable="cdl:getVariable('seats','','','tns:T')" />

</copy>
</assign>
<interaction name="createReservationSeatsInfo" ... >

<participate relationshipType="tns:T2ARSRelationship"
fromRoleTypeRef="tns:T" toRoleTypeRef="tns:ARS"/>

<exchange name="request"
informationType="tns:SeatsInfoType" action="request">

<send variable="cdl:getVariable('seats','','','tns:T')" />
<receive variable="cdl:getVariable('Tseats','','','tns:ARS')"/>

</exchange>
<priority value="1">

</interaction>

<assign roleType="tns:TA">
<copy name="Flight+NPassengersInfo">
<source expression="5681" />
<target variable="cdl:getVariable('flight','','','tns:TA')" />

</copy>
</assign>
<interaction name="createReservationSeatsInfo" ... >

<participate relationshipType="tns:TA2ARSRelationship"
fromRoleTypeRef="tns:TA" toRoleTypeRef="tns:ARS"/>

<exchange name="request"
informationType="tns:reservationType" action="request">

<send variable="cdl:getVariable('flight','','','tns:TA')" />
<receive variable="cdl:getVariable('TAflight','','','tns:ARS')"/>

</exchange>
<priority value="1">

</interaction>
<assign roleType="tns:TA">
<copy name="SeatsInfo">
<source expression="462" />
<target variable="cdl:getVariable('seats','','','tns:TA')" />

</copy>
</assign>
<interaction name="createReservationSeatsInfo" ... >

<participate relationshipType="tns:TA2ARSRelationship"
fromRoleTypeRef="tns:TA" toRoleTypeRef="tns:ARS"/>

<exchange name="request"
informationType="tns:SeatsInfoType" action="request">

<send variable="cdl:getVariable('seats','','','tns:TA')" />
<receive variable="cdl:getVariable('TAseats','','','tns:ARS')"/>

</exchange>
<priority value="1">

</interaction>

<sequence>

</sequence>

<assign roleType="tns:ARS">
<copy name="ReservationSeatsInfo">

<source expression="462" />
<target variable="cdl:getVariable

('Tresvseats','','','tns:T')" />
</copy>

</assign>

<assign roleType="tns:ARS">
<copy name="ReservationSeatsInfo">

<source expression="462" />
<target variable="cdl:getVariable

('TAresvseats','','','tns:TA')" />
</copy>

</assign>

</choice>

<choice>

<sequence> <sequence>

</sequence> </sequence>

<interaction name="acceptReservation" ... >
<participate relationshipType="tns:T2ARSRelationship"

fromRoleTypeRef="tns:ARS" toRoleTypeRef="tns:T"/>
<exchange name="response"

informationType="tns:SeatsInfoType" action="response">
<send variable="cdl:getVariable('Tresvseats','','','tns:ARS')" />
<receive variable="cdl:getVariable('seats','','','tns:T')"/>

</exchange>
<priority value="2">

</interaction>
<assign roleType="tns:T">
<copy name="PaymentInfo">
<source expression="0188236" />
<target variable="cdl:getVariable('paymentRef','','','tns:T')" />

</copy>
</assign>
<interaction name="createReservation" ... >

<participate relationshipType="tns:T2ARSRelationship"
fromRoleTypeRef="tns:T" toRoleTypeRef="tns:ARS"/>

<exchange name="request"
informationType="tns:paymentType" action="request">

<send variable="cdl:getVariable('paymentRef','','','tns:T')" />
<receive variable="cdl:getVariable('TPaymentRef','','','tns:ARS')"/>

</exchange>
<timeout time-to-complete="48:00"
<priority value="2">

</interaction>

<interaction name="acceptReservation" ... >
<participate relationshipType="tns:TA2ARSRelationship"

fromRoleTypeRef="tns:ARS" toRoleTypeRef="tns:TA"/>
<exchange name="response"

informationType="tns:SeatsInfoType" action="response">
<send variable="cdl:getVariable('TAresvseats','','','tns:ARS')" />
<receive variable="cdl:getVariable('seats','','','tns:TA')"/>

</exchange>
<priority value="4">

</interaction>
<assign roleType="tns:TA">
<copy name="PaymentInfo">
<source expression="963287908" />
<target variable="cdl:getVariable('paymentRef','','','tns:TA')" />

</copy>
</assign>
<interaction name="createReservation" ... >

<participate relationshipType="tns:TA2ARSRelationship"
fromRoleTypeRef="tns:TA" toRoleTypeRef="tns:ARS"/>

<exchange name="request"
informationType="tns:paymentType" action="request">

<send variable="cdl:getVariable('paymentRef','','','tns:TA')" />
<receive variable="cdl:getVariable('TAPaymentRef','','','tns:ARS')"/>

</exchange>

<priority value="4">
</interaction>

<timeout time-to-complete="48:00"

1

1.1 1.2

3<workunit name="WhileReservationAvailable" guard=not(hasDurationPassed(
'ReservationDuration', xsd:ARS)) block="true">

2
<assign roleType="tns:ARS">

<copy name="DurationInfo">
<source duration="4:00" />
<target variable="cdl:getVariable

('ReservationDuration','','','tns:TA')" />
</copy>

</assign>

</workunit>

3
3.1

3.1.1 3.1.2

Figure 32: WS-CDL description of the ATRS.

33

a 462

a
5681

y462

flight

65810

0

0

0
0

0

0

00

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0 00

0

0

flight

flight

TAseats

seats0

seats

TAseats
seats

seats 0

0

0

0

TAflight

flight

0

flight

flight

0

0

0

0

0

Tseats

seats

seats

seats

seats

seats

0

0

0

0

flight

flight

flight

flight

Tflight

flight

0

0

0

0

T2

@+0

PM

T1

@+0

PM

interNseatTA(TA,NseatTA,ARS,NseatsARS)

@+discrete(0,MaxInt)[seats<>e]

P1

failSeatTA

@+0[seats=e]

PM

assignNseatTA(TA,Nseats,462)

@+0

P0

interTA(TA,NflightTA,ARS,NflightTAARS)

@+discrete(0,MaxInt)[flight<>e]

P1

fail2

@+0[flight=e]

PM

assignNflightTA(TA, flight,5681)

@+0

P0

interNseatT(T,NseatsT,ARS,NseatsARS)

@+discrete(0,MaxInt)[seats<>e]

P1

failSeatT

@+0

[seats=e]

PM

assignNSeatT(T,Nseats,462)

@+0

P0

interT(T,NflightT,ARS,NFlightTARS)

@+discrete(0,MaxInt)
[flight<>e]

P1

failFlightT

@+0[flight=e]

PM

assignNflgihtT(T, flight, 56810)

@+0

P0

Perror

NO

pc

NO

P6

NO

Pin

0

NO

NseatsTAARS

e

NO

Pb5

NO

NseatsTA

e

NO

Pb4

NO

NflightTAARS

e

NO

Pb3

NO

NFlightTA

e

NO

Pb2

NO

Pb1

NO

NseatsT

e

NO

NseatsTARS

e

NO

Pa5

NO

Pa4

NO

NflightTARS

e

NO

NflightT

e

NO

Pa3

NO

Pa2

NO

Pa1

NO

Figure 33: PTCPN corresponding to the airline reservation system (Part I)

34

0

0

pay

1188236 pay

983287908

x 462

x 462
resdurresdur

0

0

0

0

0
0

0
0

0

0

0

seats

TAresvseats

seats
seats

0

0

TAresvseats seats

seatsseats

0

seatsseats

seats

Tresvseats

0

0

0

0
0

0

0

0

0

0

pay TApay

paypay

TApay

TApay

TApay

TApay

0

0

0
0

0

0

0

0

0 0

0

Trefpay

Trefpay

pay

pay

Trefpay

Trefpay

Trefpay pay

0

0

0

0

0

0

0

seats

seats

Tresvseatsseats
0

y

4
0000

0

fail5r

@+0

[seats=e]

PM

t3

@+0[true]

PM

interTAsR

@+discrete(0,MaxInt)[TAresvseats<>e,false]

Pme

@+discrete(0,MaxInt)[TAresvseats<>e]

Pme

InterTsR

@+discrete(0,MaxInt)[Tresvseats<>e,false]

Pg

tt

@+discrete(resdur,MaxInt)[resdur<>e]

PM

interTap2(TA,pay,ARS,pay)

@+discrete(0,48)[TApay<>e]

Pme

timeout2

@+49[TApay<>e]

Pme

Fail8

@+0[pay=e]

PM

fail7

@+0

PM

AssignTAp(Ta, payinf ,983287908)

P0

@+0[seats=e]

PM

failT

@+0

PM

FailInter

@+0

[pay=e]

PM

interTs2(T,payref,ARS,Tpayref)

@+discrete(0,48)[Trefpay<>e]

Pg

timeout

@+49[Trefpay<>e]

Pg

AssignTp(T,paymentref,1188236)

P0

interTs(ARS,rseats,T,Trseats)

@+discrete(0,MaxInt)[Tresvseats<>e]

Pg

AssignA2(ARS ResDur,4)

P0

AssignTA(ARS, seatresTA,462)

P0

AssignT(ARS,seatResT,462)

P0

Pok

NO

P9

NO

ARSpay

e

NO

TApay

e

NO

p16

NO

p14

NO

seatresTAARS

e

NO

e

NO

P13

NO

NO

Tpay2

e

NO

ARSTpayref

e

NO

P18

NO

P17

NO

P12

NO

seatresTARS

e

NO

Tseats

e

NO

P11

NO

NO

ARSResDur

e

NO

P8

NO

P7

NO

NO

P6

Perror

P10

fail5

interTAs(TA,,seats,ARS,TAresvseats)

TAseats3

Figure 34: PTCPN corresponding to the airline reservation system (Part II)

35

an associated time-out, and transition T3 is the final transition of the enclosing delayed
workunit.

6.1.1 Verification and Validation

The obtained PTCPN can be verified and validated using CPN Tools. Validation was
performed by means of the CPN simulator engine. We concluded that the system always
terminates correctly (Pok marked) or incorrectly when the payment information has not
been received in time (Perror marked). We also concluded from simulations that the travel
agent’s requests could not be served, due to their lower priority, since both requests were
made in parallel in this specific choreography.

CPN Tools can also be used to verify the system, by constructing the state space graph
(see Figure: 35), and obtaining the corresponding state space report. From this report we
can deduce the following properties:

Figure 35: Parcial Diagram

– The PTCPN is 1-safe, i.e. no place can have more than one token at any reachable
marking. There are also some places that are never marked, namely, P13, P14 and
P16, which correspond to the part of the travel agent’s request confirmation and
payment, which is never executed, due to its lower priority.

– As expected, the initial marking is not a home state, because we have no way to return
to it.

36

– From the dead markings that we obtain we conclude that the system execution always
terminates in a final marking in which either Pok or Perror is marked. This can be
interpreted in the sense that the reservation process either terminates correctly or the
reservation is canceled in the event of a failure.

– There are no infinite occurrence sequences, which is a consequence of this system not
having any iterative behavior.

– There are some dead transitions, some of which are fail transitions that cannot be
executed because they correspond to failures that cannot occur. There are also some
other dead transitions, corresponding to the travel agent’s request confirmation and
payment, which cannot be executed due to their lower priority.

– There is a non-dead fail transition, failT, which corresponds to the time-out of the
traveler’s request confirmation. This transition can then be fired when this time-out
has elapsed.

6.1.2 An Aero-electric Management System

The system consists of three parts: wind turbine management system, productivity man-
agement system, and demand management system. The productivity management system
receives reports from the turbine management system and the demand management sys-
tem. It then analyzes these reports and decides how many turbines should be working. The
demand management system controls the power requirements for the area drawing up a re-
port, which it sends to the productivity management system. To illustrate the translation
we focus our attention on one event in the system, namely, sharp increase in power demand.
The demand management system periodically checks the need to increase the production
of electric power. In all, the increase of demand must be attended to within 3 minutes. The
demand management system calculates how much power is necessary, and sends a message
to the productivity management system to increase the production. Then the productivity
system analyzes the need, sending a message to the turbine system to request how many
turbines are available to turn on. The turbine system get the number of idle turbines. Then
it sends a reply to the productivity system with the number of available turbines and when
the answer is received the system decides if it is possible to satisfy the demand. If there are
enough turbines it sends a message to the turbine system for them to be turned on or else
it sends a message to the demand system to indicate that it is not possible to satisfy the
new demand.

37

Figure 36: WS-CDL description of the AMS.

Figure 36 contains the relevant parts of a WS-CDL document describing the system, the
first part corresponds to a sequence structure and the second one is a workunit structure
containing a sequence structure as well.
Using the WST Tool, we have obtained the corresponding PTCPN from this WS-CDL
document (see Figures 37, 38, 39)

38

0

numrequestProductivity

mnumrequestProductivity

numstockDemand

numstockDemand

0

0

numstockProductivity

numstockDemand

0

0

0

0

0

0
0

0

numstockDemand

numstockDemand

numstockDemand

numstockDemand

numstockDemandnumstockDemand

numstockDemand

mnumstockDemand

0

Assign4

@+0

PO

fail1IncreaseDemand_interaction

@+0
[numstockDemand=e]

PM

timeoutIncreaseDemand_interaction

@+(15+1)[numstockDemand<>e]

PM failint2IncreaseDemand_interaction

@+0

PM

IncreaseDemand_interactionIncreaseDemand_interaction

@+discrete(0, 15)
[numstockDemand<>e]

PM

Assign0

@+0

PO

Init_InteractionRequestTurbines_interaction

NO

_Assing4

e

NO

Init_Assign4

NO

ProductivityRoleTypeIncreaseDemand_interaction

e

NO

perintIncreaseDemand_interaction

NO

pdintIncreaseDemand_interaction

NO

Init_InteractionIncreaseDemand_interaction

NO

_Assing0

e

NO

Init_Assign0

0

NO

Figure 37: PTCPN corresponding to the aero-electric management system (Part I)

0

numrequestWindTurbine

numrequestProductivity

0

0

0

0

0
0 0

fail1RequestTurbines_interaction

@+0[numrequestProductivity=e]

PM

timeoutRequestTurbines_interaction

@+(22+1)
[numrequestProductivity<>e]

PM

failint2RequestTurbines_interaction

@+0

PM

RequestTurbines_interactionRequestTurbines_interaction

@+discrete(0, 22)[numrequestProductivity<>e]

PM

Init_Choice0

NO

WindTurbineRoleTypeRequestTurbines_interaction

e

NO

perintRequestTurbines_interaction

NO

pdintRequestTurbines_interaction

NO

Init_InteractionRequestTurbines_interaction

NO

Figure 38: PTCPN corresponding to the aero-electric management system (Part II)

39

0

0

0

0

0

0

0

nookDemand

nookProductivity

nookProductivity

nookProductivity

0

0

0

0

0

0

nookProductivity

nookProductivity

nookProductivity

nookProductivity

nookProductivity

nookProductivity

nookProductivity

mnookProductivity

nookProductivity

nookProductivity

0

0

0

okDemand

okProductivity

0

0

0

0

0

okProductivity

okProductivityokProductivity
okProductivity

okProductivity

mokProductivity

numrespondProductivity

numrespondProductivity

0

0
numrespondWindTurbine

numrespondProductivity

numrespondProductivity

numrespondProductivity

0

0

0

0

0

0

numrespondProductivity

numrespondProductivity

numrespondProductivity
numrespondProductivity

numrespondProductivity

numrespondProductivity

numrespondProductivitymnumrespondProductivity

numrespondProductivity

numrespondProductivity

0

0

0

0

0

0

00

0

tbworkunit1

@+0
[numstockProductivity<>mnumrequestWindTurbine]

PM

tworkunit1

@+0[true]

PM

timeoutMessage4_interaction

@+(60+1)
[nookProductivity<>e,true]

PM

failint2Message4_interaction

@+0

PM

Message4_interactionMessage4_interaction

@+discrete(0, 60)[nookProductivity<>e,true]

PM Assign17

@+0[true]

PO

Assign7

@+0

PO

tbworkunit0

@+0[numstockProductivity<>mnumrequestWindTurbine]

PM

tworkunit0

@+0[true]

PM

timeoutPerforms_interaction

@+(35+1)[okProductivity<>e,true]

PM

failint2Performs_interaction

@+0

PM

Performs_interactionPerforms_interaction

@+discrete(0, 35)[okProductivity<>e,true]

PM

Assign6

@+0

PO

timeoutTurbineOn_interaction

@+(35+1)[numrespondProductivity<>e,true]

PM

failint2TurbineOn_interaction

@+0

PM

TurbineOn_interactionTurbineOn_interaction

@+discrete(0, 35)[numrespondProductivity<>e,true]

PM

Assign15

@+0[true]

PO

Assign5

@+0[numstockProductivity>mnumrequestWindTurbine]

PO

failchoice0

@+0
[numrespondProductivity=e,nookProductivity=e,true]

PM

End_Choice0

NO

End_InteractionMessage4_interaction

NO

DemandRoleTypeMessage4_interaction

e

NO

pdintMessage4_interaction

NO

Init_InteractionMessage4_interaction

NO

_Assing7

e

NO

End_InteractionPerforms_interaction

NO

DemandRoleTypePerforms_interaction

e

NO

pdintPerforms_interaction

NO

Init_InteractionPerforms_interaction

NO

_Assing6

e

NO

Init_Assign6

NO

WindTurbineRoleTypeTurbineOn_interaction

e

NO

pdintTurbineOn_interaction

NO

Init_InteractionTurbineOn_interaction

NO

_Assing5

e

NO

Init_Choice0

NO

Per_Choice0

NO

Figure 39: PTCPN corresponding to the aero-electric management system (Part III)

6.2 Verification and Validation

The obtained PTCPN can be verified and validated using CPN Tools.

Observing the state graph obtained from the tool, we can deduce the following properties:

– As expected, the initial marking is not a home state, because we have no way to return
to it.

– From the dead markings that we have obtained, we conclude that the system execu-
tion always terminates concurretly, marking Pok. in a final marking Pok. This can be
interpreted in the following way, when an order is delivered, then the system is always
completes successfully.

40

Figure 40: Diagram

– There are no infinite occurrence sequences, which is a consequence of this system not
having any iterative behavior.

– There are two dead transition, which come respectively, from the variable munstock-
Demand, and the other one, from the time out corresponding to the interaction for
demanding the number of turbines available. Actually, these transition cannot be fired
because these condition will never occur (see Figure 40)

7 Conclusions and future work

We have extended the WST tool to support the translation from WS-CDL into PTCPNs,
so that we can use CPN Tools in order to have an immediate execution werification and
validation of the modelled system.

We have them presented a PTCPN semantics for a relevant subset of WS-CDL, in which
integer data variables, timed aspects and priorities have been considered. The introduction
of priorities allows the parties of a Web Composition to favor some interactions, which can
be useful in many situations, for instance, to distinguish clients or items, as we have seen in
the first case study. Timed restrictions have also been considered in the translation, both
in interactions(time-outs) and in workunits, to delay the execution. The obtained PTCPNs
are 1-safe and clean, which means that only one token can be at any place in any reachable
marking, and when one of the initial or final places is marked, no other place can also be
marked, excepting the places associated to variables or the dead tokens that could remain
on some places when the error place has become marked.

The main advantage of this translation is that the PTCPNs obtained are currently sup-
ported by CPN Tools, a well known tool that is widely used in the Petri Nets community
that allows us to simulate, analyze and verify the described system.

As future work, we plan to extend the translation to support a wider WS-CDL subset, e.g.
the inclusion of a hierarchy of choreographies and finalize blocks. Another aspect that can
be improved is that of abnormal terminations. In the translation presented here we have

41

only considered the interaction cases that use unassigned source variables and interactions
with a time-out. However, there are other abnormal termination situations (mainly related
to variables) that we can be consider to extend the present version of the translation.

42

References

[1] Samuele Carpineti and Cosimo Laneve. A Basic Contract Language for Web Services
ESOP, pp 197-213. 2006.

[2] Marco Carbone and Kohei Honda and Nobuko Yoshida. Structured Communication-
Centred Programming for Web Services ESOP, pp 2-17. 2007.

[3] Cosimo Laneve and Luca Padovani. Smooth Orchestrators. FoSSaCS, pp 32-46. 2006.

[4] Giuseppe Castagna and Nils Gesbert and Luca Padovani. A theory of contracts for web
services. POPL, pp 261-272. 2008.

[5] W.M.P. van der Aalst. Interval Timed Coloured Petri Nets and their Analysis. Lecture
Notes in Computer Science, vol. 691, pp. 451-472. 1993.

[6] W.M.P. van der Aalst and M.A. Odijk. Analysis of Railway Stations by Means of
Interval Timed Coloured Petri Nets. Real-Time Systems, vol. 9, pp. 241-263. 1995.

[7] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte and A. Cumani. On
Petri Nets with Stochastic Timing. Proc. of the International Workshop on Timed Petri
Nets, IEEE Computer Society Press, pp. 80-87. 1985.

[8] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer-Verlag,
2002.

[9] T. Andrews et. al. BPEL4WS – Business Process Execution Language for Web Services.
Version 1.1. May 2003.,
http://www.ibm.com/developerworks/library/specification/ws-bpel/.

[10] F. Bause. On the Analysis of Petri Nets with Static Priorities. Acta Informatica, vol.
33, no.7, pp. 669-686, 1986.

[11] E. Best and M. Koutny. Petri Net Semantics of Priority Systems. Theoretical Computer
Science, vol.96, pp. 175-215. 1992.

[12] T. Bolognesi, F. Lucidi and S. Trigila. From Timed Petri Nets to Timed LOTOS. Pro-
ceedings of the Tenth International IFIP WG6.1 Symposium on Protocol Specification,
Testing and Verification. North-Holland, 1990.

[13] Fred D.J. Bowden. Modelling time in Petri nets. Proc. Second Australia-Japan Work-
shop on Stochastic Models. 1996.

[14] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web Service Choreo-
graphy. In WS-FM’04. Electronic Notes in Theoretical Computer Science, 2004.

[15] G. Bucci, A. Fedeli, L. Sassoli and E. Vicario.Modeling Flexible Real Time Systems with
Preemptive Time Petri Nets. Proc. 15th Euromicro Conference on Real-Time Systems
(ECRTS’03), pp. 279-286, IEEE Computer Society Press, 2003.

[16] T. Bultan, X. Fu and J. Su. Analyzing Conversations of Web Services. In IEEE Internet
Computing, vol.10, no.1, pp. 18–25. 2006.

[17] CPN Tools homepage. www.cs.au.dk/CPNTools.

[18] Rachid Hamadi and Boualem Benatallah. A Petri Net-based Model for Web Service
Composition. In ADC ’03: Proceedings of the 14th Australasian database conference,
2003.

[19] Hongli Yang, Xiangpeng Zhao, Zongyan Qiu, Geguang Pu, and Shuling Wang. A
Formal Model for Web Service Choreography Description Language (WS-CDL). Inter-
national Conference on Web Services (ICWS’06), pp. 893-894, IEEE Computer Society
Press. 2006.

43

[20] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science, Springer-Verlag. 1997.

[21] K. Jensen and L. M. Kristensen. Coloured Petri Nets. Modelling and Validation of
Concurrent Systems. Springer, 2009.

[22] A. Martens. Analyzing web service based business processes. In Proc. of International
Conference on Fundamental Approaches to Software Engineering (FASE’05), Lecture
Notes in Computer Science, vol. 3442, pp. 19–33. 2005.

[23] P. Merlin. A Study of the Recoverability of Communication Protocols. PhD. Thesis,
Univ. of California. 1974.

[24] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[25] Srini Narayanan and Sheila A. Mcllraith. Simulation, Verification and Automated Com-
position of Web Services. Proc. 11th International Conference on World Wide Web
(WWW’02), pp. 77–88. 2002.

[26] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[27] C. Ramchandani. Performance Evaluation of Asynchronous Concurrent Systems by
Timed Petri Nets. PhD. Thesis, Massachusetts Institute of Technology, Cambridge.
1973.

[28] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, vol. 4, 1985.

[29] G. Salaun, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Services
Using Process Algebra. In Second International Conference on Web Services, IEEE
Computer Society Press. 2004.

[30] J. Sifakis. Use of Petri Nets for Performance Evaluation. Proc. of the Third Inter-
national Symposium IFIP W.G.7.3., Measuring, Modelling and Evaluating Computer
Systems. Elsevier Science Publishers, pp. 75-93. 1977.

[31] Zhangxi Tan and Chuang Lin and Hao Yin and Ye Hong and Guangxi Zhu. Ap-
proximate Performance Analysis of Web Services Flow Using Stochastic Petri Net.
Springer-Verlag, Lecture Notes in Computer Science, vol. 3251, pp. 193-200, 2004.

[32] Johnson P. Thomas, Mathews Thomas, and George Ghinea. Modeling of Web Services
Flow. In IEEE International Conference on E-Commerce, Newport Beach, California,
USA, pages 391–398, June 2003.

[33] H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using Petri
Nets. In Proceedings of the Second International Workshop on Applications of Petri
Nets to Coordination, Workflow and Business Process Management, pp. 59–78, 2005.

[34] V. Valero, H. Macià, J.J. Pardo, M.E. Cambronero and G. Dı́az. Transforming
Web Services Choreographies with priorities and time constraints into prioritized-
time colored Petri nets. Science of Computer Programming, Elsevier. In press, doi:
10.1016/j.scico.2011.05.002, June 2011.

[35] V. Valero, D. de Frutos, and F. Cuartero. Decidability of the Strict Reachability Problem
for TPN’s with Rational and Real Durations. Proc. 5th. International Workshop on
Petri Nets and Performance Models, pp. 56-65. 1993.

[36] J. Wang. Timed Petri Nets, Theory and Application. Kluwer. 1998.

[37] World Wide Web Consortium (W3C). http://www.w3.org/.

[38] Web Services Choreography Description Language Version 1.0 (WS-CDL).
http://www.w3.org/TR/ws-cdl-10/.

44

[39] W3C. Web Services Description Language (WSDL). Version 1.1.
http://www.w3.org/TR/wsdl/.

[40] Web Service Choreography Interface (WSCI) 1.0 http://www.w3.org/TR/wsci/.

[41] WST Tool http://www.dsi.uclm.es/retics/WST/.

45

