Laboratory of User Interaction
and Software Engineering

®UCLM

UNIVERSIDAD DE CASTILLA~LAMANCHA

University of Castilla-La Mancha

User-Centered
Reverse
Engineering

Francisco Montero, Victor Lopez-Jaquero, Pascual Gonzdlez
Laboratory of User Interaction and Software Engineering
University of Castilla-La Mancha

Campus, s/n

02071 — Albacete (SPAIN)

{ fmontero | victor | pgonzalez}@dsi.uclm.es

+34967 599200 "
Albacete, 15" March 2013

User-Centered Model-Based Rever se Engineering

Francisco Montero, Victor L6pez-Jaquero, Pascuaiz@lez

Laboratory of User Interaction and Software Engiimep
Computing Systems Department
University of Castilla-La Mancha
Albacete 02071 - Spain

{victor, enavarro, f ront er o, pgonzal ez} @lsi . ucl m es

Abstract. User interface development introduces many chgdienarising from
the different interaction styles, the diversitybafth users and platforms, and the
diverse contexts of use. Many of these challenges been discussed in differ-
ent papers, and they are supported by differert$ &iming at supporting the so
called forward engineering. The most prominent apphes proposed so far to
deal with these challenges fall into two designiggtuphies: model-based user
interface development environments (Mb-UIDE) ancericentered design
(UCD). Although many efforts have been devoted towéwd design under
these two philosophies, less effort has been spehe consideration of the de-
velopment of user interface backwards, that imygiséverse engineering. Using
a backward development path in user interface dewetnt introduces some
advantages, especially when dealing with legactesys, where the developer
has to migrate pre-existing systems where the &odet currently available or
where the system has to be ported to a differaatfqm or interaction style in
an agile manner. Although the widely-accepted ustgrface development
framework CAMELEON considers both forward and reeedevelopment, re-
verse one can be further refined to provide a begti@ance to the developers.
This paper is aimed at providing some extra guidaecthose user interface
developers interested in applying reverse engingeaind UCD by describing
the users, roles and task, identifying the speatifim constructs required, pro-
cesses, information requirements and modeling.

Keywords: model-based user interface development, userfaatedevelop-
ment, reverse engineering, user-centered design.

1 Introduction

Technology is continuously evolving at a very qukce. This evolution leverages
the many different computing platforms which appe@ad it fosters the development
of novel interaction approaches. This is actuallyyvexciting for the users of these
technologies, as they are getting more and betletiens to support their activities.

Nevertheless, it has also become a real challesrggefvelopment industry. Trying to
develop for the many platforms currently availaldad prepare their developments
for future platforms is a complex task. Also thentiouous evolution of programming
languages is another important issue that mustobsidered to provide valid solu-
tions to this issue.

One solution to tackle this problem is using fraroges that support a wide range
of platforms, such as UNITY [33]. Despite thesenfeavorks help in addressing the
issue, they are not driven or based on models, ngatkiem hard to be used in big
projects. Furthermore, they do not solve the prmobidé legacy systems already devel-
oped under different frameworks. On the other hamel support for future platforms
depends on the developers of the framework to egtat

Current software trends move towards model-drivermodel-based approaches
that use models as first level entities used teger the product, instead of just using
the models to document and guide the developmédnms. i$ a trend not just for gen-
eral software development, but also for user iatsrfdevelopment [20]. Most efforts
in the research in model-driven development hawnldecused on the so called for-
ward development, where an artifact is generatdadoba more abstract one. Less
effort has been devoted to the opposite path,shatar from the artifact to extract the
source models, code or documentation. Reverse esgirg [6], whose aim is to ana-
lyze a system in order to identify its current ceaments for creating a meaningful
abstract model of the system, is especially udefulegacy applications, since often
the original design, and sometimes the originakgadight not be available, the com-
pany that made had disappeared or we might negithgptihe code to a new platform.

Different uses have been identified for reverseiregging [6], including restruc-
turing, reengineering or design recovery. Thesmseran be adapted to user interface
development. Thus, an example of restructuring ser unterface development is
when some widgets in the user interface are regladéth some others. An example
of reengineering would be reverse engineering gliGgtion, and latter forward en-
gineering the application to generate the appbecafor a different target platform.
Finally, an example of design recovery would beeiirihg the task structure of an
application from the user interface.

There are several approaches aiming at reversaesrgig software applications,
but we can classify them into two main approackegic and dynamic. The static one
is focused on the analysis of the source code gooder the static structure of the
application and extract some specific models. Gndther hand, the dynamic ap-
proach examines the system at run time, simuldtiagctions of a user and obtaining
information about its behavior. Also, as Canforalef5] point out, we can find two
others approaches: the hybrid and the historicas ofihe first one combines the static
and dynamic approaches gathering information atfmutstatic structure and the be-
havior. The second one includes historic infornratio see the evolution of the soft-
ware system.

Although these proposals were previously used thegainformation about the
business logic aspects of the system, there are stiners that try to apply the same
strategies to extract information from the useeiiface. Thus, plenty of studies can be
found on static reverse engineering by using défféstrategies [29,31,32]. Moreover,

some of them use a model-based approach basedeocBAMELEON framework
[1,2,3,34], the same one that we use in our woflerfanalyzing all these proposals
based on the static strategy, we found that athein are tied to a specific program-
ming language, like C++, Java, HTML, Oracle Forms @o on, being this fact an
important limitation that constraints the use ofgh solutions. Although other au-
thors, like Silva et al. [29], try to overcome tisisortcoming by including the genera-
tion of an Abstract Syntax Tree (AST) that can balyed independently of the lan-
guage of the source code. Nevertheless, the ipitiate that creates the AST model is
language-dependent.

On the other hand, there are also some approaeisesl lon dynamic reverse engi-
neering of user interfaces [7,12,14]. The vastomityj of such proposals are aimed at
testing purposes and often they include some tygeatic analysis.

Thus, as we have shown, in recent years user actereverse engineering has at-
tracted a growing interest [2], but all the progsso far include the analysis of the
source code, so their applicability is constrait@dhe specific languages supported
by each approach. However, we can find some systdmse the source code is un-
structured or some solutions like SOA where the@®gode could not be available.
Also the knowledge of the real functionality of tegstems is very difficult to gather
only by using the source code, so other approasiadd be used.

In this paper we present and approach aimed aatixtg the functionality and the
structure of the system by analyzing the behavigh® system in real time, but also
by applying user centered design techniques asnglementary source of infor-
mation. The final goal is not to obtain just thgueements of the system, but also to
gather design knowledge at different abstractimeliethat can be used in latter de-
velopments or updates of the application beingrsevengineered. Therefore, in this
work we are aimed at contributing to improve theerse engineering of user inter-
faces by providing a process to guide it.

This paper is structured as follows. First, therapphes to user interface design
used as the foundations of this work are preseniegt, our method for user-centered
reverse engineering is introduced. Lastly, someclesions drawn and future work
are included.

2 Approachesto user interface development

There are many different user interface developmegthods. Nevertheless, most of
them take inspiration from two trends or philos@hiOn the one hand, there are
some methods inspired on the model-based apprddibHJ(DE). The foundations,
metamodels, evolution and challenges for Mb-UIDE discussed in [20,25,27,28].
In more recent times, these model-based approaafgegvolving towards model-
driven user interface development (MDUI) [16,35,anatural evolution from mod-
el-based to model-driven. These approaches aredatienproving the industrializa-
tion in the development of user interfaces. Thathisy pursue a more systematic user
interface development with automatic or semi-autiisrgeneration of the user inter-
face. A user interface description language (UI[13,30] is used as the underlying

foundation to represent the models. These modelgransformed to generate the user
interface.

On the other hand, user interface development bas keveraged by approaches
where the user in considered. Unfortunately, theyehnot been always used jointly
with the model-based or model-driven approachegs&happroaches are grouped
under the Usability Engineering umbrella [21] ancarticular User-Centered Design
[22].

While the first group of approaches pursues indalation in the development,
this second group aims at improving the usabitityality in use and user experience
of the user interfaces created.

Both groups of approaches have been focused mmstthe forward path of user
interface development. That is, they start fromunemments until they are accom-
plished in their realization.

In the next section we have included a short revdéthese two design strategies
in which our proposal is based on.

21 User-Centered Design

To design user interfaces which are usable in aiipese situation, active involve-
ment of representatives of the user populatiorsgemtial. Therefore User-Centered
Design (UCD) [22] is a must for designing usablstegns. User-centered design is
an approach for improving usability, quality in used user experience. UCD is a
structured development methodology that involvesrsighroughout all stages of
software development in order to create a softvmmoeluct that meets user’ needs.
This approach considers an organization's busiobgsctives and the user's needs,
limitations, and preferences and not especiallgiothiteria like productivity or reuti-
lization

Nowadays, the view on user-centered design of asadftware is based on I1SO in-
ternational standard on human-centered design gsofte interactive systems [17].
But previous works, such as [11] established tlecpples for designing for usability,
and these principles were: (1) early focus on uaadstasks, (2) empirical measure-
ment, and (3) iterative design.

There are many user interface development propdésidsving user-centered de-
sign principles, for instance, [10] [15] [19] [2Hut all those proposals are not model-
based ones. However, in [8][9] there is a clearsm®ration of the concept of model
and user interface development process.

22 CAMELEON Framework

The CAMELEON Reference Framework [4] is probablg timost widely-accepted
user interface development framework. Actuallyjsitcurrently being used as the
reference framework for Model-Based standardizatioiV3C [36].

The CAMELEON Reference Framework promotes a foap-$brward engineering
development path starting with domain concepts @stt modeling. Although re-
search in Human-Computer Interaction (HCI) has mrimaeh the importance of task

modeling, practitioners often skip this stage, dirdctly produce concrete user inter-
faces (CUIs) using prototyping tools suchFéesh because of the lack of tools allow-
ing rapid prototyping from task models. This pregticorresponds to the last two
steps of the reification process recommended inréference framework. Nonethe-
less, the framework can be instantiated with theber of reification steps that fits
designer’s culture. In other words, designers darose the entry point in the reifica-
tion process that best fits their practice. If resaey, the higher missing abstractions
in the reification process can be retrieved throwgyerse engineering.

In this sense, reverse engineering is a composifi@bstractions and code reverse
engineering enabling a transformation of a low-lexiewpoint into a higher level
viewpoint. Following the CAMELEON's leveld={g. 1), several transformations can
be identified (T1, T2 and T3 iRig. 1).

seav page Task &
Concepts
K —s# o o
Input keywords Search Special search
- 1’
3 ianioti® @ idaio0s® B ideio07 @ Abstract User
@ idaios®) idaiot @ Interface g
m -
=} o
@ inputkeywords @) (@ _search @)@ speciaisearcn @) g >
% Search web page] Y g
A— a Concrete User
Window Interface
textinput button button

Google Search Fm Feeling Lucky

Fig. 1. CAMELEON abstraction levels.

Under reverse engineering, abstraction is an operattended to map a Ul repre-
sentation from one non-initial level of abstracttora higher level of abstraction. i.e.,
deriving an abstract user interface from a conanet interface.

In the context of legacy systems, the most amlstidevelopment path is retarget-
ing. Retargeting is useful in processes where #tieg system should be retargeted,
that is, migrated from one source computing platfte another one that poses differ-
ent constraints. Retargeting is a composition géree engineering, context adapta-
tion or redesign and forward engineering. The s®WFinal Ul code of the legacy
system is abstracted into a CUI (or an AUI). ThesvriCUI and/or AUI are redesigned
according to specific adaptation or design hewsshbr the target platform. From this
redesigned CUI and/or AUI specification a new ifgee code is created by using a
forward engineering process (the so called reeeging).

Probably the instantiations of CAMELEON frameworlosh salient are UsiXML
[18] and MARIA [23], where both forward and reverdevelopment paths are con-
sidered together with some related tools.

UsiXML (which stands for USer Interface eXtensibarkup Language) is a
XML-compliant markup language that describes thefddimultiple contexts of use
and modalities, including character user interfageaphical user interfaces, auditory
user interfaces, and multimodal user interfacesother words, interactive applica-
tions with different types of interaction techniguenodalities of use, and computing
platforms can be described in a way that presetivesdesign independently from
particular characteristics of the context of ussiXML is supported by several tools,
being most of them forward-oriented, although, &have mentioned before, there
are some proposal [3,34] that try to offer a soluf reverse engineering for the web
applications domain.

MARIA is both a framework and a tool; it suppotte tdescription of user interfac-
es at abstract and concrete levels. The abstragtidge is independent of the interac-
tion platform. A number of concrete languages aag pf MARIA and provide a
refinement of the abstract description for sevesjet platforms (graphical desktop,
graphical touch-based smartphone, graphical molileal and multimodal (combina-
tion of graphical and vocal). Again, MARIA is desgg for forward development, but
as in the case of UsiXML, in this environment thare some proposals [1, 2] that
include reverse engineering for the web applicatidomain.

3 SECREM: User-Centered reverse engineering in model-
based user interface design

The method SECREM (uSEr Centered Reverse Engimektathod) supports reverse
engineering activities of systems, even no souneds available. It features two
main contributions with regard to the other revezagineering proposals previously
discussed. First, SECREM makes extensive use oflifferent models used in the
model-based or model-driven user interface appremaind it does not limit to some
of them. For instance, in other tools such as w=X¥&fL[3] or ReverseAll[1] they
start from HTML code, and they just consider sonoelets at the concrete user inter-
face level. However, SECREM considers specific siparforming specific tasks by
using some screenshots from the running systembyding prototyping techniques
applied to the snapshots and tagging the elemaatdified in the prototypes. Second,
SECREM involves the user of the application beiexerse engineered. To do so, the
following user-centred techniques have been intedranto SECREM:

» Field or ethnographic studies can help in the ifieation of complex or critical
design challenges. An expert is required duringatheervation of the target audi-
ence in a real-life environment. In user-centresigte ethnography contributes to
understand better the design problem. For instahae,e-commerce system is be-
ing created for home appliances, an ethnographidystould be conducted in a

physical home appliances shop to gather informadioout, for instance, how the
customers choose between appliances.

» Personagmethod [10] aims to identify and communicate ussds efficiently and
effectively. InPersonasarchetypal users are created out of the user rgstered
from real users. Thus, designers focus in desigthiegapplications for thegzer-
sonas rather than for single specific users.

» Prototyping is a method used by designers to aedeiedback from users about
future designs. Prototypes are similar to mock-bps they are usually not as low-
fidelity as mock-ups and appear slightly laterlia tlesign process.

In Fig. 2 an overview of SECREM framework is depicted.

Users Roles Screenshots (grouping Tags
by activities) (abstract, domain and tasks)
container
=
userl [‘,7 class
input
. =

rolel screens screnshoots .
p attribute

Q output action
user2 g method
-~ — dependency
- — control =

[l

l

role2 screen screnshoot collection
8

navigation

group of ' N .
users ' |depende 4|

St Identification of tasks and
role description "
capturing of screenshots

view domain
model model
acthty Pacehity2 | scturys

Fig. 2. SECREM framework for user-centred reverse engingeri

This figure illustrates the roles, screenshots taigd used to identify the different
elements and their relationships in the prototyglaborated starting from the screen-
shots. In the bottom of the figure the differentdals derived during prototype tag-
ging activities in SECREM are gathered. SECREM sugpthe generation of con-
ceptual models associated to the view, the businggsand the domain model. Next,
how these models are automatically generated mgusirr tool will be explained in
depth.

3.1 SECREM: the method

The input of SECREM is the system that the desigvents to apply reverse engi-
neering. The motivation to apply reverse engingetim a system can result from
many different reasons. For instance, the systeghtmequire some maintenance or
updating and it is not directly possible becaustheflack of documentation or source

code of the system. Sometimes the system doesxistyet, but the target users of
the system are available to the designers. ThuER&EM could be used to gather
information about the system-to-be by using prqity.

As a result of applying SECREM some conceptual rsodél be produced auto-
matically from the information provided during theototyping and tagging activities
carried out by the designer. These models correspodifferent views of a software
system. Next, these models are described:

« The view modelrepresents all those entities and relationshipsngmhem of the
interactors the users use to interact with theiegjgbn. The view model is a con-
ceptual model of the usual presentation modedsdrete and abstract user inter-
facein CAMELEON framework) used in the model-basedrusterface develop-
ment approach.

* The domain models related to the real world entities and the tieteships be-
tween them. This domain model is manipulated byuser through the user inter-
face provided by the system. The domain modelasety related to the domain
model Conceptsn CAMELEON framework) found in the model-base@umter-
face development approach.

« The information usually stored in ti@sk modeln the model-based user interface
development approach is scattered in differentgddn our approach. The order
that the user can follow to use the interactorshzaspecified in the prototype. On
the other hand, the navigation map between scre&nshn be also specified. This
navigation can be between screenshots for the sathgty (intra-activity) or not
(inter-activity).

Moreover, SECREM includes some user-centred teclesigas aforementioned.
These techniques are used in the first stageseadpproach to know the users of the
system SECREM is being applied to. Both the usétheosystem and the roles they
play will be gathered by using both ethnographicists andPersonasnethod [10].

The second part when putting into practice SECREMSsists in working with
screenshots. Prototyping and tagging activities agglied to these screenshots to
generate the models previously discussed. Exabgyfollowing activities are applied
to the screenshots:

e Activity 1 (A1 - Working with usery At first, designers and users should work
together. Designer talk to representative usegatber information regarding both
the users and their tasks. They, both designersiseis, talk about the tasks that
users perform through the system and how they dmitiThe designers will cap-
ture and organize some screenshots for each task. &t of screenshots is linked
to a specific task the user can carry out in ttetesy, and meaningful for him. De-
signer can gather information about users; suablas preferences and needs. The
results of this activity are related to the infotima about the users and their activi-
ties.

« Activity 2 (A2 — Abstracting user interfage After those information and screen-
shots are organized, they are loaded into a tqmbating SECREM. An abstract
interaction object is associated to every interastmwn in the screenshot. This

specification is based on prototyping techniquespéhdencies between these in-
teractors are also specified. These dependenactessaful to specify the behav-

iours within the user interface. The results o$ thctivity are related with the view

model.

e Activity 3 (A3 - Abstracting domain modgl Latter, for each organized set of
screenshots the domain entities they manipulatéargified, together with the at-
tributes of those entities referred from the déferscreenshots. A domain model is
the main outcome of this activity.

« Activity 4 (A4 - Abstracting task modgl At the same time, it is also possible to
specify the intra-container order, that is, theeorthe user is supposed to interact
with the abstract interactors in each screenshptio@al abstract interactors and
dependencies between abstract interactors andiwergare also specified at this
stage. A task model is the more relevant outcontbisfactivity.

In SECREM method the conceptual models aforemeatiofview, domain and
tasks) will be generated while the previous agésitire carried out. Next, these activ-
ities will be explained in detail to show the betsedf using SECREM approach.

A1l. Working with users

The first activity considered in SECREM methodhs identification, selection and

knowledge of the users of the application curremtiailable, and that is going to

undergo the reverse engineering process. The kdgelabout those users will help
in finding out what their impression of the apptioa is and observe how they use the
application. Ethnographic studies contribute torsrshe following questions:

« Who are the users of the application?

* Which roles do they play in the application?

* What are the main activities the users perfornihéapplication?

* How do they carry out their activities in the applion?

* What are the common features of the users of thkcagion?

« What do they think about the way they currentlyrgaut their activities?

« Do the users exhibit some special requirementsstiatld be considered?
« What are the goals of the users or what do theyhesapplication for?

« What activities are more important for the users?

The information gathered in this stage is textbglusing templates to identify the
users and their activities.

For the designers is especially useful the informmagathered during this activity
to know particular or extra features of the appiaraand its usage. Moreover, this
activity will enable setting a priority in the sgfgzation of the activities and to detect
different user views of how an activity of the apation is carried out.

To gather the aforementioned information, besidesaing the users, the designer
should document the roles that those user plalg@rapplication. To document those
roles the metho®ersonaq10,26].

The template used to document the users and ksown inFig. 3. It takes in-
spiration from the one proposed by OrangeBus (hitprw.orangebus.co.uk/).

As a result of this activity the designer shouldrbady to capture snapshots for
each activity the user carries out. These snapsbifanized according to the activity
they are used in, are the input for the secondiacth SECREM method. Next, this
second activity will be described.

Picture Persona type

Name

Age

Location

Technical comfort

Job title
Back story
(tell us a bit about their lives)
Motivations

(What concerns do they have? Why do they need this website/service? How have they
found or heard about the website?)

Frustrations

(What’s stopping them from choosing the service/website or annoying)

Their ideal experience Quote

(Their story including features and content which (Sum up their experience with

will help them have a great experience) the website/ organization/
service. Positive or negative.)

Fig. 3. Identifying users and roles.

A2. Abstracting user interface

In this activity each activity starts with a setsafeenshots from the application being
reverse engineered. These screenshots are anaydednnotated by using a set of
tags related to abstract user interface modelingceptual domain model and task
model.

Table 1. The tags used to annotate the abstract useranéestreenshots in SECREM.

Icon Name Description

[]) Composition of one or several abstract elementsntaraction
container Container (input, output, control and navigation).

;"3’7 Inout Representation of an abstract element enabling ske to enter

input P data through the interface.

P Output Representation of an abstract element enabling ystem to
output P output data through the interface.
PR Representation of an abstract element enablingdbetao trigger
Control L .
control some behaviour in the interface.
e L Representation of an abstract element enabling ske to navi-
-~ Navigation .
navigation gate through the interface.

— Dependency Dependency is a relationship that means that desimga set of

abstract elements notifies to and listens to o#testract element
for their specification or implementation.

— Collection/ It represents a collection of abstract elements.
- repetition

The tags available in SECREM for the designer hoave in the left part oFig. 2.
These tags are further described able 1.

Another set of tags is used in SECREM to identifig apecify in the screenshots
the entities, attributes and methods manipulatethbyuser interface. These annota-
tions are used to derive the domain model of th@iegtion. Obviously, the entities
manipulated through the user interface cannot beeatéfrom a single screenshot or
set of screenshots, since it would offer a paxiielv. Therefore, SECREM tool sup-
ports the designer in the specification of adddioattributes or even new entities.
Furthermore, since the same entity could appearrasult of several screenshots an
integration process to merge different entitiesivéd&r from the screenshots is also
supported. The tags used in SECREM to annotatesdteenshots to derive the do-
main model are shown ihable 2.

Table 2. Tags and icons for the specification of domain et@d SECREM.

Icon Name Description
Entity representing a piece of data retrieved ftoenDomain Mod-
E Entity el. An entity is a description of the classes geots manipulated by

a user while interacting with a system.

E Attribute An attribute is a logical data value of an entity.

E Method A method is some behaviour of an entity.

In Table 3 illustrates the tag used to specified the ordat lielps in the abstracting
the task model in SECREM. This tag enables theifspation of the order among the
set of abstract user interface elements {s##e 1) included in a container. The task
model is also abstracted from the navigation betmamntainers derived from their
interdependencies.

Table 3. Entities and icons for the specification of thektanodel in SECREM.

Icon Name Description
The order of the abstract elements on a contaietermhines the
® sequence in which the focus will change. Usually tinder is
Order . .
from left to right within each row of an abstraderaent and

from top to bottom.

Dependency is a relationship used to denote aioedtip be-
—F Dependency tween abstract interactors or between abstractaictiers and
other screenshots.

Represents when some actions in the screenshobtareamda-

optional Optional .
P P tory or required to carry out the task.

The previous activities are applied to the screetsshathered in the first activity.
In the following sections an example will be usedléscribe the activities carried out
by the designer, which are more closely relatethéoidentification and specification
of the tags introduced in this section.

@ Hisplit for Javal v1.0

File Edit View Help

HJ-Sp

hitp:/iwwew.freebyte.commispit

File Split

Input File [Unknown

Spiit File Size [1400 KBytes | v
Spiit Join

Compare Checksum To split a file, please first open the
input file using the Input File’ button.
About Exit After pressing "Start’, the output

Created by Hakan Gustd i@ Open the file to spli ===
nttp:www lysatoriu.sel

Lookin: |3 2013 mTERACT IR R =

Start Close

) hispit_oJar
) imas-hispitppix
[purejar

File Name:

Files of Type: |All Files -

Open Cancel

Fig. 4. Final user interface for splitting a file in HJ4Bpool.

Fig. 5. Abstract prototype for splitting a file in HJ-Sytiool.

Forward model-based user interface developmentusesd some models out of
some others in an automatic or semi-automatic nratméhis sense, the abstract user
interface model in CAMELEON framework is generafeam the domain and the
task model. In SECREM this abstract model is ole@iby using prototyping based
on the screenshots grouped for each activity, ithetom what could be considered
the final and concrete user interface level in CAMBN. In SECREM the abstract

model is not automatically generated, but the ptatfindependent models are gener-
ated during the prototyping process. Let's see xample of the backward process
proposed in SECREM.

To illustrate our method for user-centred revenmsgireeering an activity to split a
file into several smaller parts by using HJ-Smiblt(http://www.hjsplit.org/) has been
chosen. This activity is carried out by interactimigh the three screenshots shown in
Fig. 4.

SECREM prescribes in this step using prototypirdhmégues to tag the snapshots
to identify the abstract interactors. To do so, dheas in the screenshot for each ab-
stract interactor and the tags that denote itsqa@@mre applied to the screenshot. The
output of this activity for the screenshotrig. 4 in shown inFig. 5.

|] mainWindow
[[] splitbialog
pimgg B pimage
A | I File]
T V.
* S & split 2. join
* =\ Ecompare | | i&chech * £ description @
a— =& about |-:::—¢xir *
I Sdescription

[[] openFiledialog

C Fdcm—]
1

I
S ViewFolder
[[;»7 File J

[/) Filter [

Fig. 6. Dependencies specification for splitting a fileHd-Split tool.

The prototype irFig. 5 shows different abstract interactors, togetheh g pur-
pose. There are elements to input information eosystem, trigger some behaviour
or show information to the user.

There are two types of dependencies depictddgn6. On the one hand there are
dependencies between abstract interactors. Fanicst there are dependencies be-
tween input abstract interactors and output abtstrderactor. These dependencies
represent that the contents of the output absinéatactor depend on the interaction
of the user with the input element. A similar degemcy appears between the abstract
control interactors in the upper right corner of fbwer prototype ofig. 6. These
dependencies denote that they modify what is showie output abstract interactor.

On the other hand, there is another type of depenydeelated to navigation. In the
bottom right part of the lower prototype Bfg. 6 both control abstract interactors
have a dependency of this type. This type of depecyg will be further explained in
the section devoted to abstracting task activity.

The abstract user interface generated consistedltistract interactors and the be-
haviour of the user interface. The behaviour derieetomatically by generating a
class diagram of the view according to the protioty@and tagging activities.

At this step, the designer and users can spedfy thle existing dependencies be-
tween the abstract interactors identified. As alltesf this step some elements will
becomenotifiersand some others will becortistenersof thosenotifiers An element
can be at the same timdistenerand anotifier. Fig. 6 shows the dependencies speci-
fied for our example.

The conceptual model of the abstracted user iterfenerated is called the view
model. It consists of the abstract interactors #medbehaviour of the user interface.
This view model and its behaviour are derived aatiically by generating a class
diagram of the view according to the prototypirge tagging activities and a set of
heuristics.

A3. Abstracting domain model

In this activity, designers and users can reviegvdiiailable view model in order to
identify persistent data and the data manipulatetiis view model. This information

is also modelled in SECREM. The model for the datmipulated is called domain
model. This activity is carried out by tagging tbentainers with entities, attributes
and methods related with the information manipuldig users though the user inter-
face.

The domain model consists of a set of entities imdelationships. These entities
are mainly manipulated by users using the userfade of a software product. In our
example, the domain model consists of two entifiessandfolder. These entities are
associated to the input and output files.

A4. Abstracting task model

Lastly, the information usually stored in the taskdel will be abstracted. The task
model is, together with the previous model, onehef platform independent models
essential for the model-based development of uderfaces. It represents the task the
user will carry out in the system, including theyamization of those tasks and the
spatial-temporal relationships among the tasksr& hee different notations to repre-
sent the task model, being the most widely-acceptmtturTaskTrees (CTT) [24]. In
SECREM the task model is generated from four siNites applied to the proto-
typed screenshots:

» The first subactivity is the specification of theder the user is supposed to use the
different interactors in the prototype for a giveser interface. This is carried out
by tagging the interactors with a number to repretiee order (seEig. 7).

» The second subactivity is the specification of nlagigation relationships between
the different screenshots the user visits to camtyan activity in the system (intra-
activity navigation). This kind of navigation inclas, but is not limited to, error
messages or confirmations, that is, they are n&wigawithin the same activity. In
Fig. 7 two examples of this kind of relationship are shawthe interactors tagged
with the order numbers 3 and 4 in the lower prgietymage. When the designer is
creating this kind of relationship, he is specifeshuential spatial-temporal rela-
tionships, as the ones used in CTT.

» The third subactivity is related to inter-activit@vigation specification. That is, it
is related to the specification of the navigati@ivieen screenshots from different
activities.

» Lastly, the fourth subactivity is aimed at the dfieation of what tasks in each
screenshot are optional.

mainWindow

[2i_split —f——1&] splitbiaiog

oA 1
L @ optional]K:iZopﬁona

& Bomp—rs

D OpenFileDialog"
[<E>opﬁonal l @ :: 1
@
[P _ |
I <z> optional]
E} optiortal

Fig. 7. Sequential order specification of interactors aadigation dependencies.

4 Conclusions and futurework

In this paper a reverse engineering method, narB&IZREM is described. This
method puts together User-Centred Design and MBdséd User Interface Devel-

opment approaches to improve current reverse eagintetechniques. By including
UCD in the reverse engineering process we aimatiging a dynamic model-based
approach to reverse engineering, where the userdhenusers interacting with the
running system are involved in the process to absinformation regarding the de-
sign of the user interface and the behaviour ofsysem. To integrate UCD in the
reverse engineering life cycle some UCD technicaresused. Ethnographic studies
and Personasmethod are used to achieve one of the most impotdaks in UCD:
knowing the users and their tasks. Prototypindde ased to guide the generation of
the models abstracted from the screenshots ofutieirrg system. Using prototypes
introduces very interesting advantages. Becauseate simple, a user with no soft-
ware design expertise can use and understand atetypes created.

The goal of the approach is to provide a solutmmeverse engineering when the
source code is not available to apply other reversgineering approaches. On the
contrary to most reverse engineering approacheghanresult from this method is
that it is language independent. We don't rely loa $ource code as an input. There-
fore, it can be applied regardless of the langthgeapplication was developed.

Now we are working in the development of a softwaa@ that will offer support
to all the activities described for this proceshkisTtool will support decomposing the
old system by creating three views to describeiffergnt detail and in distinct ab-
straction levels the information abstracted duthmgreverse engineering process. The
models generated from these three views can be afedvards to, for instance,
reengineer the original system or for documentimgppses.

Acknowledgements. This work has been partially supported by the grant

insPIre (TIN2012-34003) and AVANZA TSI-020400-202@Q- from the Spanish
Government.

References

1. Bandelloni, R., Paterno, F., and Santoro, C. Reverggneering Cross-Modal User
Interfaces for Ubiquitous Environments. In J. Gedén, M.B. Harning, P. Palanque, G.C.
Veer and J. Wesson, edBngineering Interactive SystentSpringer Berlin Heidelberg,
Berlin, Heidelberg, 2008, 285 — 302.

2. Bellucci, F., Ghiani, G., Paterno, F., and Po@a,Automatic reverse engineering of
interactive dynamic web applications to supportpaat#on across platform&roceedings
of the 2012 ACM international conference on IntelfigUser Interfaces - IUl 'L2ACM
Press (2012), 217.

3. Bouillon, L., Limbourg, Q., Vanderdonckt, J. Matte, B. Reverse Engineering of Web
Pages Based on Derivations and Transformatidhsd Latin American Web Congress
(LA-WEB'2005) IEEE, 3-13.

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Bbuillon, L., and Vanderdonckt, J.
A Unifying Reference Framework for multi-target useterfaces.Interacting with
Computers 153 (2003), 289—-308.

5. Canfora, G., Penta, M. Di, and Cerulo, L. Achiegats and challenges in software
reverse engineerinGommunications of the ACM 54 (2011), 142.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Chikofsky, E.J. and Cross, J.H. Reverse engineaningdesign recovery: a taxonomy.
IEEE Software 71 (1990), 13-17.

Coimbra Morgado, I., Paiva, A., Pascoal FariaDynamic Reverse Engineering of
Graphical User Interfacekiternational Journal On Advances in Software351 (2012),
224-236.

Constantine, L. and Lockwood, L.A.[Boftware for Use: A Practical Guide to the
Models and Methods of Usage-Centered Desigitdison-Wesley Professional, 1999.
Constantine, L.L. and Lockwood, L.A.D. Usage-eeetl engineering for Web
applications|EEE Software 192 (2002), 42-50.

Cooper, A., Reimann, R., and Cronin, Ahout Face 3: The Essentials of Interaction
Design Wiley, 2007.

Gould, J.D. and Lewis, C. Designing for usapilikey principles and what designers
think. Communications of the ACM 28 (1985), 300-311.

Grilo, A., Paiva, A., and Faria, J. Reverse eegiing of GUI models for testing.
Information Systems and Technologies (CISSHEE Computer Society (2010), 1-6.
Guerrero, J., Gonzalez-Calleros, J.M., Vandekip J., and Mufioz Arteaga, J. A
Theoretical Survey of User Interface Descriptiomduaages: Preliminary Resul®roc.

of LA-WEB/CLIHC 2009(2009), 36—-43.

Hackner, D.R. and Memon, A.M. Test case genefatoGUITAR. Companion of the
13th international conference on Software engimagri ICSE Companion 'Q8ACM
Press (2008), 959.

Holzinger, A. Usability engineering methods $oftware developer€ommunications of
the ACM 481 (2005), 71-74.

Hussmann, H., Meixner, G., and Zuehlke, D.,. édsdel-Driven Development of
Advanced User InterfaceSpringer Berlin Heidelberg, Berlin, Heidelberg, 201

I1ISO.ISO 9241-210:2010, Ergonomics of human-systemadaten -- Part 210: Human-
centred design for interactive syster@810.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Blon, L., and L6pez-Jaquero, V.
Usixml: A language supporting multi-path developmefuser interfacesEngineering
Human Computer Interaction and Interactive Systg@®305), 200—220.

Mayhew, D.JThe Usability Engineering Lifecycle: A PractitioreHandbook for User
Interface DesignMorgan Kaufmann Publishers, 1999.

Meixner, G., Patern0, F., and Vanderdonck®ast, Present, and Future of Model-Based
User Interface Developmeritcom 1Q 3 (2011), 2-11.

Nielsen, JUsability Engineering Morgan Kaufmann Publishers Inc, San Francisco,
USA, 1993.

Norman, D.A. and Draper, S.Wser-Centered System Design: New Perspectives on
Human-Computer Interactiom.awrence Earlbaum Associates, Hillsdale, NJ, 1986
Paterno’, F., Santoro, C., and Spano, L.D. MARMEM Transactions on Computer-
Human Interaction 164 (2009), 1-30.

Paterno, FModel-Based Design and Evaluation of Interactivepligations Springer-
Verlag, 1999.

Pinheiro, P. User Interface Declarative Modatgl Development EnvironmentsA
Survey. Proceedings of the 7th international conferenceDmsign, specification, and
verification of interactive systems (DSV-IS'08pringer-Verlag (2001), 207-226.

Pruitt, J. and Adlin, TThe Persona Lifecycle: Keeping People in Mind Thhmug
Product DesignMorgan Kaufmann, 2006.

Puerta, A.R. A model-based interface developreentronment|EEE Software 144
(1997), 40-47.

28.

29.

30.

31.

32.

33.
34.

35.

36.

Schlungbaum, BModel-based User Interface Software Tools Curresiiesof declarative
models 1996.

Silva, J.C., Silva, C.C., Gongalo, R.D., Saraivaardd Campos, J.C. The GUISurfer tool.
Proceedings of the 2nd ACM SIGCHI symposium on Eagimg interactive computing
systems - EICS "1®\CM Press (2010), 181.

Souchon, N. and Vanderdonckt, J. A review oflXtmpliant user interface description
languages.Proceedings of the 10th International Workshop oteractive Systems.
Design, Specification, and Verification: DSV-IS 308pringer (2003), 377-391.

Staiger, S. Reverse Engineering of Graphical Ugerfaces Using Static Analyseigith
Working Conference on Reverse Engineering (WCRE 2(@10)7), 189-198.

Sanchez Ramoén, O., Sanchez Cuadrado, J., anth Géoltina, J. Model-driven reverse
engineering of legacy graphical user interfac®soceedings of the IEEE/ACM
international conference on Automated software exgyiimg - ASE '10(2010), 147.

Unity Technologies. Unity3D Game Engine. 2018://unity3d.com/.

Vanderdonckt, J., Bouillon, L., Souchon, N., \aim, U. De, and Doyens, P. Flexible
Reverse Engineering of Web Pages with V AQUISTYCRE “01 Proceedings of the
Eighth Working Conference on Reverse Engineerin@R®’01), IEEE Computer
Society Press, Los Alamitos (2001), 241-248.

Vanderdonckt, J. A MDA-Compliant Environment foeveloping User Interfaces of
Information SystemsProc. of 17 th Conf. on Advanced Information Systeéntsneering
CAISE'05 Springer-Verlag (2005), 13-17.

W3C. Model-Based Ul XG Final Report. 2010.
http://www.w3.0rg/2005/Incubator/model-based-ui/X@&MRui-20100504/.

