
Proxywork: Framework to transform from Web Application

to Distributable User Interface Web Application
Pedro G. Villanueva, Ricardo Tesoriero, José A. Gallud

Computer System Department. University of Castilla-La Mancha

Campus Universitario de Albacete

(02071) Albacete, Spain

[pedro.gonzalez, ricardo.tesoriero, jose.gallud]@uclm.es

ABSTRACT

The growth of cloud services and new tools for web development

is greatly favoring the growth of the number of Web Application

that we use today. Furthermore, is becoming more common that

we have a variety of interconnected devices able to visualize any

type of Web Application. In general, today Web Applications do

not offer the possibility to distribute parts of the interface from

one device to another. For example that the navigation menu,

from a Web Application displayed on a PC, can be sent to a

mobile device thus allowing navigation from your mobile device

to your PC. In this paper, we present a Framework in the form of

proxy that transforms any Web Application into a Web

Application with distributable user interface, at the time in which

is requested through the browser. In this way, any Web

Application offers the possibility to distribute parts of your

interface between different devices. The Framework includes a set

of menus on each UI component that allows users to perform

certain actions (display/undisplay, copy and distribute) with each

component and orchestrating the parts that are migrated on

different devices involved in the migration. Throughout the work

presents the implementation of the Framework and demonstrates

its functionality on a particular Web Application (University of

Castilla - La Mancha) using multiple devices with different

platforms.

Categories and Subject Descriptors

H.5.m [Information Interfaces and Presentation (e.g., HCI)]:

Miscellaneous; D.3.3 [Programming Languages]: Language

Constructs and Features

General Terms

Design, Human Factors, Languages.

Keywords

Distributed User Interfaces, Web, Proxywork.

1. INTRODUCTION
Could computing offers many advantages such as the

centralization of data, security, scalability, and saving on

maintenance and cost, etc. These advantages are favoring that

every year have a greater number of companies and individuals

who migrate their applications to this type of architectures.

According to a study carried out by Mimecast1. Currently, 70% of

companies use cloud services. This has driven the increase in Web

1 Taklin’clud.com: URL=http://talkincloud.com/cloud-computing-

research/survey-71-organizations-using-unsanctioned-cloud-

Applications that provide functionality to manage all information

and presenting data to end users quickly and accessible from

anywhere.

Another aspect that has greatly influenced the proliferation of

Web Applications are the advances in new tools of web

development. These tools provide great power and speed at the

time of development and allow you to build rich user interfaces.

On the other hand, is increasingly more common to see users who

have and do use in their every day from a variety of personal

devices (Desktop, Laptop, Smartfone, Tablet, etc.) connected to

Internet through Wi-Fi connection or data connection rates. In

addition, all of them equipped with a browser capable of

rendering any type of Web Application.

Clearly identified these two trends such as the rise of Web

Applications and the diversity of interconnected personal devices,

we must ask if we exploit the advantages offered by the paradigm

of Distributed and Distributable User Interfaces.

Today Web Applications do not offer the possibility to distribute

parts of a user interface from one device to another. For example,

imagine that we are viewing a Web Application of a newspaper in

our Smartphone. At a certain point, we want to read some of the

news that we have found, but in a bigger screen as our desktop

computer. It would be ideal to bring news directly from our

Smartphone to desktop screen directly and transparently.

This is the problem that we have detected and solved with the

work presented here. In this paper, we present a Framework,

implemented as a proxy, which offers the ability to transform any

Web Application into a Web Application with distributable user

interface. This transformation is performed at runtime when the

application is requested by the browser from any device and

platform. In this way, any Web Application offers the possibility

to distribute parts of the interface between different devices.

The Framework we propose makes certain changes in the

behavior of the Web Application to insert a set of menus on each

UI component. These menus allow users to perform certain

actions (display/undisplay, copy and distribute) on the UI

components. Besides, the Framework is responsible for

orchestrating the parts that are migrated on different devices

involved in the migration.

Throughout the paper presents the implementation of the

Framework called Proxywork and demonstrates its functionality

on a specific Web Application using multiple devices with

different platforms.

apps

The document is structured in the following way: in the current

section, we present a gentle introduction to the motivation that has

come to do the work done, we present the problem and we are

moving forward with the proposed solution. Section 2 is a review

of some work from the point of view of multiple display systems

and Frameworks focused on DUIs, besides, section 2 compares

the advantages of our proposal with related works. Later, in

section 3, we describe in detail the proposal submitted and finally,

in section 4 are broken a number of conclusions.

2. RELATED WORK
In this section, we compare the advantages and disadvantages of

the major related work in order to identify the specific aspects of

our proposal. Works related to our proposal can be grouped into

three main lines: Multiple Display System, Distributed User

Interfaces and Framework to support Distributed User Interfaces.

2.1 Multiple Display Systems and Distributed

User Interfaces
Many research papers present environments with multiple

displays as well as design of distributed user interfaces that

exploit the advantages offered by these systems.

A typical example is Office of the Future [14], envision a

workplace in which every surface serves as a high-resolution

projected display. In their system, they modify images projected

onto particular surfaces so that they appear correctly to observers

at known locations.

In the work called i-LAND [18], the authors have also worked on

integrating real architectural and virtual information spaces. They

have populated this environment with various physical

components, each with its own associated display device.

Together these displays provide physical affordances that aid in

content organization and work process control. Another similar

work is Augmented Surfaces [15] implemented by Rekimoto and

Saitoh, but have focused on interaction techniques, as the

technique called hyperdragging, users utilize the physical

relationship between devices to transfer information between

them.

InfoCockpit [19] improves human memory for information

viewed. Authors not only use multiple monitors to spatially

distribute information and engage human memory for location,

but also present synthetically created visual context on large

ambient projection displays to leverage human memory for place.

In a similar work called Kimura [11], utilizes projected peripheral

displays to support the perusal, manipulation, and awareness of

background activities in order to manage multitasking between

multiple working contexts.

Finally, other works that show multiple display systems are Group

scribbles [16], projects supporting brainstorming in face-to-face

as WeSpace [22], or digitalized rooms such as Connectable [20].

Furthermore, the design of user interfaces for this type of system

is widely. Probably the first DUI ever was developed as a system

that distributed a UI over many workstations connected to the

same network and running the same operating system [3] thanks a

to a connector mechanism.

In [1] and [21], a part or whole of a DUI can be migrated from

one platform to another at run-time. The underlying architecture is

a client-server architecture that maintains in a central position the

internal state of the DUI.

WallShare [6] is a collaborative system that can distribute the

interfaces between different devices such as mobile phones,

PDAs, laptops, etc., and a shared space to be displayed via a

projector on a surface such as a wall. Another similar work is

Dynamo [8].

CSchool [4] is system to support the administration of schools

educational process in the cloud by applying DUI.

The Framework that will be presented in this paper is significantly

different form this previous work in that it is not a distributed user

interface system, but it is a Framework or tool to transform Web

Applications to Distributed User Interfaces Web Application in

real time. Previous work demonstrate the variety of multiple

displays system and our proposal to provide a Framework to cover

this scenarios with Distributed User Interfaces Web Application.

2.2 Framework to support DUIs
The domain of Distributed User Interfaces (DUI) is still in

evolution and there are few Frameworks allowing the creation of

DUIs, moreover, in most pieces of work, there is almost no

genuine DUI.

There are toolkits to develop UI such as Java Swing or Windows

Presentation Foundation (WPF), but they do not support DUIs.

The UI elements simply remain in their initial context, while

communicating with each other, but without redistribution. There

is some distribution of UI elements, but it is mainly predefined

and opportunistic: no configuration of the distribution at run-time.

Sjölund presented in [17] a work that the repartition of UI

elements across the Smartphone and the TV is fixed. It is not

possible to rearrange their distribution. Some works allow

distribution at run-time but with some limitations. The UI

elements subject to this redistribution are mainly containers, such

as windows or dialog boxes. The problem is that the granularity of

UI distributed elements is often coarse-grained; it is not possible

to distribute at the widget level.

In addition, they do not support replicability, i.e. when another

platform comes in the context of use, it is hard to migrate on this

platform parts that have already been transferred to other

platforms.

In [7], a web page is split in partial pages which will be replicated

to all the users. The framework supports multi-device and multi-

user Web browsing where clients connect to a server which

delivers the page. A proxy split the pages in respect to the device

and user constraints. Each page is in a XML file with specific tags

to configure how the Web page will be split among the different

users and devices. This work is very similar our proposal, but our

proposal allows distributing parts of UI from the Web Application

in runtime.

A similar work implemented by Luyten and Coninx [9], shown

how an interactive system can be distributed among several peer

devices. Their approach relies on the fact that nowadays most

computing resources are network-enabled and publish their device

profile like in UAProf or CC/PP. It raises the opportunity for

supporting collaborative tasks with the same user interface with

little or no extra effort from the user interface designer. Our

approach is significantly different from this work in that our

approach provides a Framework to all Web Applications. This

work only presents an example to support the design,

development and deployment of DUI.

In [10], there are already attempts to model the distribution. The

granularity is however limited to tasks that are predefined before

the application starts.

A toolkit for Distributed User Interfaces was proposed in [12]. It

is based on a widget distributed structure composed of two main

parts: one part (the ‘proxy’ of the widget) remains stationary

within the process that created the widget; the other part (the

renderer) is distributed and migratable and the user can interact

with it. The toolkit is based on a peer-to-peer architecture in

which a multi-purpose proxy is connected to one or more

rendering engines able to render (partially or entirely) a graphical

user interface. In addition, this solution requires that the user

interface be implemented using an extension of the Tcl/Tk toolkit,

while we are interested in solutions that allow partially migrating

any Web application developed with the standard Web languages

(XHTML, CSS) and Javascript, moreover, our solution differs in

that Web applications can be migrated without posing any

constraint on the authoring technique to use for developing the

applications.

The work [5] presents a solution for partial Web migration, it

allows users to interactively select parts of existing interfaces and

have them migrate to a target device. This approach has a native

application that allows the user to select the parts of the web

application interface to migrate. Our approach is not dependent on

a native application.

In [2], Bandelloni and Paterno have shown that a web interface

can be partially or completely migrated. Here, partial migration

implies the web interface is split up in two or more parts that each

run on a separate device. This is accomplished by exploiting

information that is available about the interactive system and by

using a flexible language to describe the interface presentation.

Our approach is significantly different from this work in that our

approach provides a Framework to all Web Applications.

The work [13] proposes a catalog of distribution operations and a

toolkit based on this catalog. The catalog of distribution

operations is composed of: SET, DISPLAY, UNDISPLAY,

COPY, MOVE, REPLACE, MERGE, SEPARATE, SWITCH

and DISTRIBUTE. The toolkit provides a native command line

interface to allow manual redistribution at runtime. Our approach

is not dependent on a native application.

In summary, the Framework that will be presented is significantly

different from this previous work in that it provides a unique

combination of the following features:

 Proxywork supports DUIs and not only UIs.

 Proxywork transforms any Web application developed

with the standard Web languages (XHTML, CSS, etc.)

and Javascript to a Distributed Web Application.

 Allows migrating Web applications without posing any

constraint on the authoring technique to use for

developing the applications.

 The transformation is done in runtime, when users

request the Web Application.

 Because the Framework is for Web Application, it is

supported by all platforms.

 The granularity is not limited to tasks that are

predefined before the application starts. The granularity

of distribution can range from the application level to

the widget level: an entire application can be distributed

across platforms for instance, but also the different

components of any widget.

 Proxywork is not dependent on a native application to

distribute application´s elements.

3. FRAMEWORK TO TRANSFORM WEB

APPLICATION
In this section, we start showing two case studies that we have

chosen to demonstrate the power of our Framework named

Proxywork. Afterwards, we present Framework software

architecture, functions that supports, details of granularity for the

permitted actions and runtime architecture that allows that the

Framework can be applied to any Web Application. Finally we

apply the Framework in the case studies.

3.1 Case studies
We could list countless case studies for the Framework which we

propose, but we will only present two case studies to show the

power of the Framework.

The first case study is Distributed Brower in Web Application.

This scenario is very common when you are viewing a Web

Application that has a menu to navigate through the different

sections or categories of application. This menu can be distributed

to another device (i. e. a Smartphone). Thereby, the Smartphone

can remotely control the navigation of the Web Application as a

remote control in question. Figure 1 shows the action of

distributing the navigation menu of the University of Castilla - La

Mancha Web Application. Application is initially displayed on

the computer and the menu is distributed to a Smartphone. Once

distributed the menu disappears from the computer. If user clicks

on the menu, the effect should occur on the computer.

Figure 1 Distributable menu in University of Castilla-La

Mancha Web Application

Figure 2 Distributable news on University of Castilla-La

Mancha Web Application

The second case study is Distributed News Reader. Another

common scenario is news Web Applications. It is quite usual to

access Web Applications of our favorite newspapers from our

Smartphone. However sometimes it is not so comfortable to read

an extensive news from the Smartphone. In these cases, it is more

convenient to read the news on a large screen such as a computer

or laptop. The news could be distributed from the Smartphone to

a desktop computer to read the news on a large screen. Figure 2

shows the action of distributing a news from the University of

Castilla - La Mancha Web Application. Initially, the Smartphone

shows the application that displays the news and the news is

distributed from the Smartphone to a computer. The news

disappears from the Smartphone and it appears only on the

computer.

3.2 Software Architecture
As shown in Figure 3, the Proxywork is composed of 5 main

modules: Code Manager, Devices Manager, Links Manager,

Granularity Manager and Distribution Manager.

 Code Manager. This module is the main module. It is

responsible for inserting the necessary code into Web

Applications requested by devices. The inserted code allows

application components can be distributed. In other words,

it is in charge of transforming a normal Web Application

into a distributable Web Application. It makes use of other

modules to carry out its function.

 Devices Manager. This module is responsible for

maintaining the status of the devices connected to the

distribution environment. Whenever a device makes a

request, it checks if it is the first time, if so prompts the user

for a device name. Thus at all times, Proxywork knows

connected devices for distribution.

 Links Manager. It is the module responsible for

transforming internal links of Web Applications. In this

way, when users press them, links have effect on the

corresponding device if they have been distributed.

 Granularity Manager. This module is responsible for

setting the granularity of distribution. It sets that parts of the

web application interface can be distributed and which

cannot. By default, the distribution is carried out at the

container level (div tag in HTML). The granularity manager

adds for each container a menu with functions that users can

be performed, these functions will see in section 3.3.

 Distribution Manager: It is the module responsible for

showing or hiding interface elements. It maintains the

distribution state of each device. The module stores

information of the Web Application for each device. Thus,

Proxywork knows the elements of the application that

should be visible/not visible for each device.

Figure 3 Proxywork software architecture

3.3 Functions
In the state of the art section, some authors propose a catalogue of

distribution primitives. This section lists and describes the

primitives that have been implemented within our proposal. In

Proxywork have been implemented the most important primitives

to demonstrate the potential of the Framework. In future work, we

will expand the implemented primitives to cover the catalogue.

Proxywork implements the next primitives or actions:

 Connect. This action connects a device to a distribution

environment. It associates the IP address of the device with

a device name. User is asked for the device name when the

first request from the browser is make. Once the device is

connected, the name will be shown under each action that

requires a target device (Copy and Distribute).

 Disconnect. It disconnects a device from a distribution

environment. Once the device is disconnected, its name

disappears from the list of target devices associated with

actions that require a target device (Copy and Distribute).

 Rename. This action allows to change the registered name

of the device.

 Display. This action allows you to display parts of the

interface which have previously been marked with Hide

action.

 Hide. This action allows you to hide parts of the interface

that are being displayed.

 Copy. It allows to copy a part of the interface from one

device to another device connected to the same distribution

environment. This action will have an associated list with all

devices connected to the distribution environment and to

perform the action, the user must select one of devices.

 Distribute. This action sends part of the interface from one

device to another device connected to the distribution

environment. This action will have an associated list with all

devices connected to the distribution environment and to

perform the action, the user must select one of them.

The Connect action executes the first time user makes a request to

a Web Application by using the browser. The Proxywork detects

that the device is not connected and user is asked for a device

name. The Disconnect action will be accessible by the user in any

time via a button located on the top right. Disconnect actions is in

all Web Applications provided by the Framework.

Display and Hide actions affect on the same device on which the

action is launched.

The Copy action is performed in one device A and affects one

device B and both are different devices. Furthermore, when the

action is performed, if user performs any action on the copied

component in the device A the results will affect the device A and

if user performs any action on the copied component on the

device B, results will affect the device B.

Finally, the Distribute action is performed in one device A and

affects one device B and both are different devices. When a

component is distributed from A to B, the component disappears

from A and appears in B. In addition, any action the user performs

in that visible component in device B will have impact on device

A.

It should be noted that if two devices A and B perform the

Distribute action of the same component in the same Web

Application to a third device C, the actions on that component in

the device C will affect both devices A and B.

3.4 Granularity
We have spoken to distribute parts of the web application

interface between different devices, but not explained which parts

of the interface may be distributed or it makes sense to distribute.

This section describes how Proxywork resolves the issue of the

granularity.

The granularity in the distribution of web applications is

determined by the HTML elements that can be distributed. To get

a finer granularity when distributing interface elements must go

down to basic elements such as <a>, <p>, , etc. On the

other hand, if what is sought is a coarser granularity, we climb to

more complex elements or other elements that group as the

<body>, <head>, <div>, <table>, etc.

A fine granularity can over overload the Web Application with

too many distribution menus and it may confuse the user when

choosing a component to distribute. In addition, there are items

associated with other elements that lose sense if we separate them.

An example can be a textbox and its explanatory label text. The

advantage is that everything can be distributed and is more

powerful.

On the other hand, a coarse granularity further simplifies

distribution actions. But it loses power because there will be items

that are not allowed distribute or at least separated from others.

Therefore, we have sought a compromise to implement

Proxywork. The Framework takes into account the default tag

<div> like element that establishes the granularity. This label has

been chosen because it usually used to group elements that have a

common functionality or a common goal.

The Framework settings allow anytime establish other tags to

make more flexible the granularity.

3.5 Global architecture
The Framework Proxywork is implemented as a proxy. All

configured devices to operate in the distribution environment sent

all web requests to our proxy.

Figure 4 shows the global architecture of the system by making

use of the Proxywork.

Figure 4 Proxywork global architecture

The Framework is hosted on a proxy server with an IP address

x.x.x.x listening on port 80. Devices that will be connected to the

distribution environment must be configured by setting the proxy

with the IP address x.x.x.x and port 80.

The process from a user requests a normal Web Application

(www.yyy.com), and distributable Web Application is displayed

in the browser is as follows:

a. The request for the application www.yyy.com departs

from device browser and arrives at Proxywork. See step 1

from Figure 4.

b. Proxywork requests for the application to the web server

where the application is hosted (Web Server

www.yyy.com). See step 2 from Figure 4.

c. The web server returns the application to the Proxywork.

See step 3 from Figure 4.

d. Proxywork inserts extra code in the HTML page to add

the distribution actions and a list of devices connected to

the distribution environment. Besides, some links to CSS

and JavaScript files.

e. Proxywork returns the application transformed into a

distributable application to the device. See step 4 from

Figure 4.

f. Finally, the browser displays the distributable application

(www.yyy.com).

3.6 Workflow Proxywork
The diagram in Figure 5 shows in detail the workflow process that

the Framework makes to transform the Web Application into a

distributable Web Application.

The process begins when a web request arrives from the device

browser to the proxy. The first check is if the device that has made

the request is registered in the system. The proxy checks the IP

address of the device. If device is not registered it is redirected to

a registration page where it asks for the device name (see Figure

6). Thus, the device is registered in the system. Once registered

the device browser is redirected to the page that was initially

requested.

If the device is already registered, the proxy checks if another

device has performed some distribution action and the device

from the current request need to reload to display a new page. If

this condition is true, the proxy returns to the browser the URL of

the new page to visualize. Thus, the browser will request the new

page and the process begins again.

If the device does not need to be recharged, the proxy checks if

the request corresponds to action (actions commented in section

3.3). To detect an action, the proxy compares the URL with the

URL pattern associated with actions. This pattern is explained

later. If it corresponds to an action, the parameters (identifiers of

action and target device) are obtained from the URL. Thereafter,

the proxy updates the distribution of the affected devices and the

same page from which the action was sent is returned to the

device.

If the request is not an action, it checks whether the request

corresponds to an internal navigation (links contained in the

distributable web applications are modified to be detected by the

Framework as we will see later). If it matches an internal

navigation, the parameters (item ID from where was the

navigation and navigation URL) are obtains from the URL.

Thereafter, the proxy updates the distribution of the affected

devices and returns the URL which should show the device.

If the request is not internal navigation, the proxy sends the

request to the web server that hosts the requested resource. The

proxy receives the resource and check if it is an HTML resource.

If the resource is not HTML, corresponds to another type of file

that should not be modified and the unchanged resource is

returned to the browser on the device that made the request.

If the requested resource is HTML, the Framework modifies the

page to turn it into distributable. Here is where the Code Manager

module participates (see Figure 3). The Code Manager starts

adding CSS files references to design the distribution menus.

Module adds JavaScript code that is responsible for checking

periodically to update the page if necessary, besides, JavaScript

asynchronously updates the list of devices connected to the

distribution environment. Subsequently, the Code Manager uses

the Links Manager module (see Figure 3) to modify the

http://www.yyy.com/
http://www.yyy.com/

navigation links that contained in the page. Finally, the Code

Manager uses the Granularity Manager module (see Figure 3) to

select the items that can be distributed according to the granularity

established. The Distribution Manager module insert the code to

show the actions menu to each of those items.

Once the Code Manager has finished modifying the HTML page,

the page is returned to the browser that made the request to be

displayed.

Figure 5 Diagram showing the workflow Proxywork

Figure 6 Page to register device

3.7 Distribution links and menus
This section explains more about the functionality of the Links

Manager and Distribution Manager modules.

The Links Manager module finds all labels HTML <a> and

modifies its href attribute with the following pattern:

http://nav-dui.com?Div=[id_div]&URL=[previous_url]

The URL "http://nav-dui.com" is used only for the Framework can

detect this pattern and recognize it is an internal navigation of the

page.

For example, a tag <a> as shown below that it is within an

element <div> identified by the Framework with id = "9":

It would be modified in the following way:

The Distribution Manager module inserts, for each element

indicated by the Manager Granularity module, a menu with the

distribution actions (Display/Hide, Copy and Distribute) and for

each action, if applicable, a list of devices on which the action

may impact.

The following is an example of transformation of an element

<div>. This element is shown in Figure 7 and the result is shown

in Figure 8.

In this example there are two devices connected to the distribution

environment (“MyiPhone” and “Nexus10”). The element

"Cuerpo_Menu_Dch" contains a banner that displays an image in

a Web Application. During the transformation, Proxywork inserts

code to element <div>. This code allows you to display a menu on

the element with the permitted actions. The onmouseover event

will make visible the distribution menu when mouse passes over

the element and the onmouseout event will make hide the menu

when the mouse leaves the element.

Figure 7 Div element before beging transformed

It also inserts a new element <div> containing the distribution

menu with the list of actions (Display/Hide, Copy and Distribute).

The remaining actions (Rename, Connect and Disconnect) are not

associated with the interface elements and is therefore not

included here. For Copy and Distribute actions Proxywork adds a

nested list with connected devices.

Actions are represented with tags <a> where the href property

contents a special URL and it has the following pattern:

http://action-dui.com?Div=[id_div]&Action=[id_action]&IP=[ip_device]

The URL "http://action-dui.com" is used only for the Framework

can detect this pattern and recognize it is an action.

The id_div parameter is the identifier of the menu assigned by the

Framework, for our example is 42. The id_action parameter is the

identifier of the action. And the ip_device parameter is the IP

address of the device which the action will affect.

In Figure 8 we can also see how the banner href property has been

transformed by the Links Manager module.

Figure 8 Div element with distribution menu

3.8 Final examples
This section takes up again the case studies presented in section

3.1. We will see how it applies the proposed Framework in these

case studies to solve the problems.

3.8.1 Distributed navigation menu
The first case study describes a very common scenario. Imagine a

Web Application either, usually has a bar or a navigation menu

that allows us to navigate between the different sections of the

application. In this case study raises the possibility of distributing

this navigation bar from a computer to a Smartphone. In this way,

the navigation can be performed through the Web Application

using your Smartphone, as if it was a remote control.

This case study has been implemented with two devices. A laptop

Dell XPS M1530 with Windows 8 operating system and Google

Chrome browser. And a smartphone Nokia Lumia 900 with

Windows Phone 8 and Internet Explorer browser. Both devices

configured with the IP address and port of the proxy where the

Framework Proxywork is deployed.

From laptop we request the UCLM Web Application (URL is

“www.uclm.es”) and to be the first web request will display a

page to register the device. It is necessary to enter a name that

identify the device in all distribution actions. The name we assign

is "DellXPS", then the browser will redirect to the requested page.

Similarly in the smartphone we access the UCLM web application

and register the device with the name "Lumia".

When devices we use in the distribution are registered, context

menus appear on each div element when the mouse cursor passes

over them. These menus contain the distribution actions can be

made on each element. In the laptop will appear the actions and

together with them the devices list, in this case only the "Lumia"

device (see Figure 9 - A).

In this example we distribute the navigation menu on the left side

of the Web Application displayed on the Dell device. So we put

the mouse over the navigation menu and an actions menu will

appear with an action to distribute (see Figure 9 - A). Clicking on

it displays a list of devices to which we can distribute and we

click on "Lumia". The navigation menu of the Web Application

automatically disappears and appears instantly in the Smartphone

browser (see Figure 9 - C). Thus, the Chrome browser shows the

UCLM Web Application completely but without the navigation

menu on the left (see Figure 9 - B) and the Internet Explorer

browser displays only the navigation menu which had been

distributed (see Figure 9 - C).

When you click on any link in the navigation menu shown in

smartphone, the navigation takes place in the laptop and not on

the smartphone (see Figure 9 - D).

Note that if a third device (e.g. another laptop) is registered in the

distribution environment and the same navigation menu is

distributed from the new device to the smartphone, clicking on a

link in the smartphone the navigation would be on both laptops

simultaneously.

Figure 9 Distributed navigation menu case study implemented with Proxywork

3.8.2 Distributed news reader
The second case study is distributed news reader. As discussed in

section 3.1, this case study can be found when visiting a Web

Application that contains news. If we are viewing the Web

Application with a small screen smartphone it can be sometimes

tedious to read an extensive news. In this case study we will show

how thanks to the proposed Framework we can distribute news

that we are reading in a device such as a smartphone to a device

with a larger screen such as a Tablet.

This case study has been implemented with two devices. A Nokia

Lumia 900 smartphone with Windows Phone 8 and Internet

Explorer browser. And a Nexus-10 Tablet with operating system

Android 4.2 and Google Chrome browser. Both devices

configured with the IP address and port of the proxy where the

Framework Proxywork is deployed.

As in the previous case study, from the smartphone we request for

news of UCLM web application (the URL is

“www.uclm.es/gabinete/noticias.asp”). If it is the first web

request, it will show a page to register the device. The name that

we assign is "Lumia", then the browser we redirect to the

requested page.

Similarly in the Tablet we access the same Web Application and

register the device with the name "Nexus10".

Once registered both devices, if we access news from smartphone

appears the actions menu of available distribution, and associated

with each action, if required, a list of possible target devices. In

our case will be shown only the "Nexus10" device (see Figure 10

- A).

Clicking on the "Nexus10" option from Copy action,

automatically the news will appear in the Tablet browser (see

Figure 10 - C). Besides, the news also follow showing in the

smartphone browser (see Figure 10 - B).

In this way the news has appeared on another device with a much

larger screen, facilitating its reading and improving the comfort of

the user.

4. CONCLUSION AND FURURE WORK
This work presents a Framework called Proxywork. This

Framework has been implemented in the form of proxy that

transforms any Web Application developed with the standard

Web languages (XHTML, CSS, etc.) and JavaScript into a Web

Application with distributable user interface. The transformation

is done in runtime, when users request the Web Application.

Because the Proxywork is for Web Application, it is supported by

all platforms and is not dependent on a native application to

distribute application´s elements.

The Framework takes into account the granularity. It takes the

default tag <div> like element that establishes the granularity

because tags <div> are usually used to group elements that have a

common functionality or a common goal. Besides, the setting

allow anytime establish other tags to make more flexible the

granularity.

Our proposal implements seven actions related with the

distribution. These actions are Connect, Disconnect, Rename,

Display, Hide, Copy and Distribute.

We could list countless case studies to use Proxywork which we

propose, but we will only present two case studies to show the

power of the Framework.

On the one hand, distributed navigation menu case study presents

the possibility of distributing a navigation bar from a computer to

a Smartphone. On the other hand, distributed news reader case

study shows how thanks to the proposed Framework we can

distribute news that we are reading in a device such as a

smartphone to a device with a larger screen such as a Tablet.

We are working on a new version of the environment that

implements new distribution actions such as Clone, Replace,

Merge, Switch and some more.

Further future work will be dedicated to allow that interface

elements can be adapted to target device when they are

distributed.

Figure 10 Distributed news reader case study implemented with Proxywork

5. ACKNOWLEDGMENTS
We thank all the CICYT-TIN 2011-27767-C02-01 Spanish

project, the PPII10-0300-4174 and the PII2C09-0185-1030

JCCM Projects for supporting this research. We also would like to

thank to the Programa de Potenciación de Recursos Humanos

from the Scientic Research, Technological Development and

Innovation Regional Plan 2011-2015(PRINCET).

6. REFERENCES
[1] Bandelloni, R. and Paternò, F. Migratory user interfaces able

to adapt to various interaction platforms. Int. J. Human

Computer Studies 60, 5-6 (2004), pp. 621-639.

[2] Bandelloni, R. and Paternò, F. Flexible Interface Migration.

In Proceedings of Intelligent User Interface 2004 (IUI 04),

pages 148–155, 2004.

[3] Bharat, K.A. and Cardelli, L. 1995. Migratory Applications

Distributed User Interfaces. In Proc. of UIST’95 (Pittsburgh,

Nov. 1995), ACM Press, New York, pp. 132-142.

[4] Fardoun, H. M., Paules, A., and Alghazzawi, D. M.

CSchool: DUI for Educational System using Clouds.

Proceedings of the 2nd Workshop on Distributed User

Interfaces: Collaboration and Usability, DUI 2012. ISBN

978-84-695-3318-5, pp 35-38. May 5th, 2012. Austin,

Texas, USA.

[5] Ghiani, G., Paternò F., Santoro C. On-demand CrossDevice

Interface Components Migration, Proceedings Mobile HCI

2010, pp. 299 – 308, 2010, ACM Press.

[6] González, P., Gallud, J.A., Tesoriero, R. WallShare:A

Collaborative Multi-pointer System for Portable Devices.

PPD10: Workshop on coupled display visual interfaces. May

25, 2010, Rome, Italy.

[7] Han, R., Perret, V., and Naghsineh, M. 2000. WebSplitter: A

Unified XML Framework for Multi-Device Collaborative

Web Browsing. In Proc. of the ACM Conf. on Computer

Supported Cooperative Work, pp. 221-230.

[8] Izadi S, Brignull H, Rodden T, Rogers Y, Underwood M

(2003): Dynamo: a public interactive surface supporting the

cooperative sharing and exchange of media. Proc. 16th ACM

UIST ’03. ACM, New York, pp 159.

[9] Luyten, K. and Coninx, K. 2005. Distributed User Interface

Elements to support Smart Interaction Spaces. In Proc. of the

7th IEEE Int. Symposium on Multimedia, IEEE Comp.

Society, Washington, DC, pp. 277-286.

[10] Luyten, K., Van den Bergh, J., Vandervelpen, Ch., and

Coninx, K. Designing distributed user interfaces for ambient

intelligent environments using models and simulations.

Computers & Graphics 30, 5 (2006), 702–713.

[11] MacIntyre, B., Mynatt, E.D., Voida, S., Hansen, K.M.,

Tullio, J., & Corso, G.M. (2001). Support for Multitasking

and Background Awareness using Interactive Peripheral

Displays. Proceedings of UIST 2001, 41-50.

[12] Melchior, J., Grolaux, D., Vanderdonckt, J., and Van Roy, P.

A toolkit for peer-to-peer distributed user interfaces:

concepts, implementation, and applications, in Proceedings

of EICS 2009, ACM, 2009, 69-78.

[13] Melchior, J., Vanderdonckt, J. and Van Roy. Distribution

Primitives for Distributed User Interfaces. Distributed User

Interfaces Workshop, ACM CHI 2011, Vancouver, BC, May

7th, 2011. ISBN 978-84-693-9829-6. Pag 29-32.

[14] Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs,

H. (1998). The Office of the Future: A Unified Approach to

Image-based Modeling and Spatially Immersive Displays.

Proceedings of SIGGRAPH 1998, 179-188.

[15] Rekimoto, J., Saitoh, M. (1999). Augmented Surfaces: A

Spatially Continuous Workspace for Hybrid Computing

Environments. Proceedings of CHI 1999, 378-385.

[16] Schank, P., & Dwyer, N. (2008). ScribbleProv: Supporting

Disciplined Improvisation During Face-to-Face Discussion,

First Year Project Report (NSF-IIS #0713711), Menlo Park,

CA: SRI International.

[17] Sjölund, M., Larsson, A., Berglund, E. Smartphone Views:

Building Multi-Device Distributed User Interfaces. In: Proc.

Of MobileHCI’2004. LNCS, Springer (2004), 507-511.

[18] Streitz, N.A, Geibler, J., Holmer, T., Konomi, S., Muller-

Tomfelde, C., Reischl, W., Rexroth, P., Seitz, P., &

Steinmatz, R. (1999). i-LAND: An Interactive Landscape for

Creativity and Innovation. Proceedings of CHI 1999, 120-

127.

[19] Tan, D.S., Stefanucci, J., Proffitt, D., Pausch, R. (2001). The

Infocockpit: Providing Location and Place to Aid Human

Memory. Workshop on Perceptive User Interfaces 2001.

[20] Tandler, P., Prante, Th., Müller-Tomfelde, Th. Streitz, N.

and Steinmetz. R. ConnecTables: Dynamic coupling of

displays for the flexible creation of share workspaces, Proc.

of 14th ACM Symp. on UI Software and Tech. UIST’01,

ACM Press, New York, 2001, pp.11–20.

[21] Vandervelpen, Ch., Vanderhulst, G., Luyten, K., and Coninx,

K. 2005. Light-Weight Distributed Web Interfaces: reparing

the Web for Heterogeneous Environments. In Proc. of ICWE

2005, pp. 197-202.

[22] Wigdor D, Jiang H, Forlines C, Borkin M, Shen C. The

WeSpace: The Design, Development and Deployment of a

Walk-Up and Share Multi-Surface Visual Collaboration

System. ACM CHI. 2009.

