
University of Castilla-La Mancha

A publication of the

Computing Systems Department

Nacreous: An Adaptive Service–Aware
IaaS Cloud Manager

by

Javier Conejero, Carmen Carrión and Blanca Caminero

Technical Report #XXX Mes, año

This work was supported by the Spanish Government under Grant TIN2012-38341-C04-04

and through a FPI scholarship associated to TIN2009-14475-C04-03 project.

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS

ESCUELA POLITÉCNICA SUPERIOR

UNIVERSIDAD DE CASTILLA-LA MANCHA

Campus Universitario s/n

Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224





Nacreous: An Adaptive Service–Aware

IaaS Cloud Manager *

Javier Conejero Carmen Carrión
Blanca Caminero

Computing Systems Department. Escuela Politécnica Superior

Universidad de Castilla-La Mancha. 02071 - Albacete, SPAIN

{francisco.conejero, mariablanca.caminero, carmen.carrion}@uclm.es

9 de marzo de 2015

Resumen

Nowadays, Cloud Computing is a trending topic both in academia and in in-

dustry, offering a wide range of services at different levels. Thus, efficient Cloud

service management poses a challenge on Cloud providers, specially when non-

trivial Quality of Service (QoS) guarantees are expected by users. Also, Cloud

providers seek to maximize their Return on Investment (ROI) by managing the

underlying resources in the most efficient way, so that clients receive their ex-

pected level of service with the minimum possible amount of allocated resources

and other associated costs (i.e., energy consumption).

In this work an extensible framework, named Nacreous, is proposed. Nacreous

is able to consolidate and coordinate multiple services within an IaaS Cloud, and

optimise them by allowing different adaptive and complex policies for deployment

and scheduling to be implemented. From the user point of view, Nacreous will

*This work was supported by the Spanish Government under Grant TIN2012-38341-C04-04 and
through a FPI scholarship associated to TIN2009-14475-C04-03 project.

3



enable the specification of simple or complex IaaS service requests by using a WS-

Agreement based interface (or a CLI API). Some experiments aimed at providing

a glance of Nacreous basic functionalities over a private Cloud testbed, with a

specific attention to Hadoop applications, are also provided.

1. Introduction

Over recent years, Cloud Computing is being considered a revolutionary and hot

topic technology. The amount of efforts and developments, both from academia and

industry, focused on its implantation and integration across datacenters are growing

quickly and seem to be unstoppable. The Cloud computing concept is very wide and

offers various service models, namely: Software as a Service (SaaS), Platform as a

Service (PaaS) and Infrastructure as a Service (IaaS). There are three deployment

models that a Cloud environment can follow, these are: Public, Private and Hybrid

(as a combination of both). The amount of services that Cloud computing can provide

within each service model is huge. In particular, so-called Big-Data applications, like

Hadoop [1], are experiencing an increasing demand in order to be able to analyse the

growing amount of data produced every day by social media networks (e.g., Twitter [2],

Facebook [3], etc.) [4]. These applications require a vast amount of resources in order

to perform an analysis across a representative amount of data.

On the other hand, pay–per–use models impose a number of terms, associated

requirements and costs, that are usually established by SLA negotiation between the

users and the service provider. These terms condition the decisions that a Cloud service

provider needs to take when negotiating an agreement with its clients. More precisely,

the performance of the backend Cloud infrastructure, the types of services being de-

manded, the amount of users and their expectations varies over time. Consequently,

4



any information that can be extracted from the behaviour of both Cloud infrastructure

and users, can be useful in order to optimise resource usage, i.e., defining an adequate

exploitation policy (e.g., in terms of energy saving, maximum performance, etc.), while

at the same time fulfilling the maximum number of established SLAs.

The purpose of this work is to design and provide an extensible framework able

to consolidate multiple IaaS related services within Cloud environments and optimise

them by using different adaptive and complex deployment policies, based on historical

performance monitorization or on individual IaaS service provider specifications. More

specifically, we focus on two main types of services: 1) providing virtual infrastruc-

tures that customers can use in order to deploy and exploit particular applications,

and 2) providing applications within virtual infrastructures, adaptively, configured and

controlled. Both services can require complex virtual infrastructures. Thus, an architec-

ture able to consolidate and manage multiple (related or not) Virtual Machines (VMs)

within the same infrastructure and coordinate their service offering and provisioning

is proposed here. It is not specific to any particular IaaS Cloud environment, and it

can be integrated into existing Cloud infrastructures. This architecture has been im-

plemented as a ready–to–use and extendable framework, called Nacreous, that attends

the users expectations by offering them a WS-Agreement compliant service.

This paper is structured as follows. Nacreous architecture, including some insight

into its features and internal design, is presented in detail in Section 2. Details on the

implantation and some proof of concept results are provided in Section 3. In Section 4

related work is presented. Finally, the conclusions derived from the work and suggested

future work are presented in Section 5.

5



2. Nacreous

In this Section, the Nacreous1 framework is described in detail, paying special

attention to the new additions to the existing Cloud infrastructures.

Formally, Nacreous is a framework able to consolidate and manage multiple ser-

vices within the same infrastructure, and coordinate the service offering and provision-

ing requested by users. Nacreous will smartly act on IaaS Cloud managers, but will

help to hide the complexities of the services provided. Consequently, it has been devel-

oped as a modular software layer that lays on top of a whole IaaS Cloud architecture

(i.e., OpenNebula, Openstack, etc.) and it is ready to attend users directly (Figure 1).

Nacreous can obtain the monitoring performance from the underlying IaaS Cloud man-

ager and also the users expectations, and act as a broker that can be configured with

adaptive exploitation policies.

Nacreous is aimed at providing an adaptive IaaS service provisioning. To this end,

Nacreous interacts with the underlying IaaS managers in order to provide the best ser-

vice (previously negotiated through SLAs with the users). Consequently, Nacreous can

handle an IaaS manager in order to deploy a complex virtual infrastructure and a

specific service/application on it (e.g., Hadoop virtual cluster). But it can also han-

dle existing virtual infrastructures, leveraging the complexities of specific services or

applications. For example, Nacreous can be used to exploit Hadoop virtual clusters

within Cloud environments, hiding the deployment and configuration complexities, or

alternatively, it can handle and exploit an existing Hadoop virtual cluster. It must be

noted that Nacreous does not interact directly with the virtualization software layer

(i.e., hypervisors such as KVM). Alternatively, it delegates this tasks to the underlying

1Nacreous is named after the Polar Stratospheric Clouds (PSCs), which are known as nacreous

clouds (from nacre) due to its iridescence. These clouds can be found at a very high altitude in the

stratosphere, over most clouds.

6



Figura 1: Proposed Cloud Architecture.

IaaS manager, avoiding the complexities associated with these tasks.

2.1. Features

The IaaS Cloud model provides users with virtual infrastructures in order to

exploit them. The virtual infrastructures offered are single (or groups of individual)

virtual machines (VMs) that can be deployed following different policies (e.g., max-

imum spread, consolidation policies, etc.). There are also services/applications that

require specific deployment architectures. One example are distributed applications

(such as Map/Reduce, MPI, etc.) which require a cluster architecture, where a group

of related VMs, configured as a Virtual Cluster (VC) is needed. Furthermore, the vir-

tual infrastructures that can be deployed are offered for a multi–purpose mission. This

fact complicates the requirements provisioning in order to fulfil the SLAs. Moreover,

it is important to take into account the inter–VM interferences that may occur when

they are being exploited in order to achieve the best performance.

7



Nacreous provides the functionalities to handle complex virtual infrastructures de-

pending on specific applications/services requirements explicitly defined by users, that

is, sets complex virtualization contexts within single VMs. On the other hand, taking

into account inter–VM interference is not an easy task since the service provider needs

to have information related to the service deployed within the virtual infrastructure. To

this end, Nacreous incorporates performance monitors and predictors that keep track

of the evolution of the overall infrastructure and executions.

Moreover, Nacreous provides mechanisms for QoS differentiation. To this end, it

allows service providers to define a multi–level policy in terms of the explicitly defined

SLA terms, specific Service Level Objectives (SLOs) or even higher level parameters

such as confidence on the service.

These features are explained more in detail in the next paragraphs, distinguishing

the features related to clients and to the services/applications offered. The first one is

focused on the interaction between Nacreous and the users, and the second one focuses

on the features related to the services provided.

2.1.1. Client features

In order to attend users, Nacreous implements a WS-Agreement compliant ser-

vice [5]. This service is in charge of attending the users allowing them to negotiate

and establish SLAs and delegate their job/service execution. Although WS-Agreement

provides the structure, workflow and negotiation protocols, it leaves the negotiation

terms to be defined by the service provider. Thus, Nacreous provides an initial set of

terms (Table 1) that can be easily customized and/or extended.

The USER and NAME terms are used for human identification purposes and

track the users trends. The JOB term identifies the kind of service requested, that is,

8



Cuadro 1: SLA Template Terms and Example

TERM DESCRIPTION EXAMPLE

USER User name (identification) Client-5

NAME Submission Name (identification) MRtest

JOB Job/Service to be executed Hadoop

START Start day and time 15-Jul-2014 14:00:00

END Expected end day and time 15-Jul-2014 18:00:00

QoS Expected QoS High priority

REQUIREMENTS Specific VM resources reqs. 20 Gb HDD; 1 Gb RAM; Linux

NUM SLAVES Amount of slaves (VC mode) 5

SLAVES REQS. Specific VM slaves resources reqs. 20 Gb HDD; 1 Gb RAM; Linux

COST Service cost TBD

PENALIZATION Penalization conditions TBD

VALUE Penalization value TBD

the availability of an infrastructure for future use or the execution of an application.

The START and END terms are used to determine the period of time when the user

wants the service, and the QoS term is used to represent the QoS level that the user

expects to be provided. This level depends on the specific exploitation policy, and allows

the service provider to settle the service cost. For example, a service provider can set

a number of QoS levels to be offered. As a result, users may request a specific level for

the service requested in terms of the specific QoS level conditions, such as: performance

ensured, costs, etc. Moreover, it can also be used in order to achieve the confidence that

users expect from the service provider for the agreed service. The REQUIREMENTS,

NUM SLAVES and SLAVES REQUIREMENTS terms are optional. The first one,

REQUIREMENTS is used to specify the requirements that the user imposes (these

requirements can go from specific software versions, to amount of resources required

and/or hardware restrictions). The NUM SLAVES and SLAVES REQUIREMENTS

are used to extend the requirements that a user can specify by allowing to define

9



a virtual cluster. For single VM requests, these terms are not specified.Finally, the

COST, PENALIZATION, and VALUE are used to agree on the economical terms.

The COST term is set by the service provider in order to negotiate the service price,

while the PENALIZATION term is used to specify the agreement violation conditions,

and the VALUE term specifies the associated violation cost.

An example of use of this template is also shown in Table 1. In this case, a user

named Client-5 requests a Virtual Cluster (VC) composed of 6 VMs with Linux OS (1

master with 20 Gb of storage and 1 Gb of RAM and 5 workers with 8 Gb of storage

and 1 Gb of RAM) during 3 hours starting at 14:00 on the 15th of July 2014 with high

priority. In this example, the terms related to costs and penalization are omitted since

they have to be determined by the provider.

Nacreous is able to use the underlying CLI API when managing a private IaaS

Cloud infrastructure. Also, Nacreous could manage public IaaS though OCCI [6] com-

pliant APIs.

2.1.2. Service features

The main aspect that the Nacreous framework provides is the ability to man-

age and control multiple services within multiple resource provisioning infrastructures.

Consequently, Nacreous provides an extensible monitoring system and a complex policy

definition system.

Nacreous supports multiple information sources and monitoring applications. All

the information gathered from these sources is candidate to be used within management

policies. More in detail, the monitoring information that Nacreous exploits is focused

on: resource status, virtual infrastructure status, client demands and behaviour and

offered service status.

10



Nacreous also provides mechanisms for generic VM image management (that

implements different services), that can be used within IaaS infrastructures in order

to provide multiple services, and configuration mechanisms for each VM image being

deployed. For example, when a user requires a VM with a specific software, the system

deploys the generic VM image that best suits the user requirements, and customizes

that VM for that user following the requested specifications.

Finally, Nacreous provides scheduling features, since it is able to interact with

multiple virtual infrastructures. To this end, it is able to submit, delegate, and control

the jobs/services offered by using the underlying management mechanisms.

2.2. Internal Design

Nacreous is a modular software layer that lays on top of a whole IaaS Cloud

architecture and provides an interface to the users (Figure 2).

Figura 2: Nacreous internal architecture.

Besides a WS-Agreement compliant service, Nacreous provides users with a Com-

mand Line Interface (CLI) API. Both are implemented within the Client Module. It is

11



in charge of attending the users allowing them to negotiate and establish agreements

(SLAs) with the Cloud service provider and delegate their job/service execution.

The Cloud infrastructure status monitoring and performance evolution is con-

trolled by the Resource Module, thanks to the communication with the Scheduler. Thus,

it also keeps track of the infrastructure, monitoring the available resources and their

associated performance. These data are useful in order to estimate which resources

are (and how) being used by Nacreous for the given users requests and requirements.

The available VM images and offered applications are also monitored. To this end, the

Repository Module updates periodically this information. The Resource Service and the

Repository Service gather the information from the available monitoring tools through

wrappers. Consequently, they are prepared to work with any underlying IaaS Cloud

provider, since they provide the required information (e.g., amount of resources asso-

ciated, resources use percentage, VM images offered, applications offered). If there is

any parameter that can not be obtained, or another monitoring software wants to be

used alternatively, Nacreous can be easily adapted.

The core module, namely Scheduler, applies the exploitation policies in terms of

the monitoring results, users requests and requirements, and future expected perfor-

mance. The service level or QoS differentiation is specified in this module. It can depend

on specific service provider needs and it can be defined in high level terms that the

policy must translate into low level terms for the service/infrastructure management.

The Scheduler implements three main sub–modules. The first one is Data Structure,

where the underlying resources are mapped to a data structure in order to keep track

of the physical resources assignment and ease the decision taking process. This data

structure must be efficient in terms of speed and space. The policies are explicitly

defined in the Policies sub–module. And, in order to apply the decisions taken, the

Scheduler implements a specific set of sub–modules, known as Helpers, which are in

12



charge of transmitting the actions taken to the underlying Cloud infrastructure.

Nacreous has been designed considering the future use of performance and users

expectation forecasting (Forecast Module) and proactive mechanisms (Advance Mod-

ule). These modules interact with the Scheduler and among them, in order to perform

all the forecasting process and to perform proactive actions.

3. Implantation and Proof of Concept

The Nacreous framework proposed in this work has been successfully tested on

the University of Castilla-La Mancha (UCLM) Cloud testbed. In this Section, some

details on its implantation, service, operation and proof of concept are provided.

3.1. Testbed Description

The University of Castilla-La Mancha (UCLM) Cloud testbed (known as Vesu-

vius) is composed of 10 compute nodes, with 2 Xeon e5462 CPU (4 cores per processor),

32 GB of main memory and 4 TB of storage each. It also has a headnode, with the

same configuration and a Gigabit Ethernet network across all nodes. The OS deployed

across all nodes is CentOS 6.2 Linux [7].

The virtualization software deployed is the KVM (Kernel-based Virtual Machine)

hypervisor [8] and the IaaS Cloud management system available in the Vesuvius Cloud

is OpenNebula 4.2 [9]. OpenNebula manages KVM in order to deploy, monitor and

control any virtual machine on each physical machine associated with the local Cloud

infrastructure.

We have chosen the Hadoop [1] framework as an example of service that can

13



be deployed through Nacreous in a convenient way. To this end, a set of VM images

containing Hadoop packages installed on them have been created.

Providing “Hadoop as a Service” requires an application and data to be consumed

by Hadoop. This is usually left to clients decision. However, for this proof of concept,

the Hadoop application chosen for this evaluation is the Sentiment Analysis Tool for

Hadoop [10] designed by the COSMOS project [11]. In this case, we will request the

analysis of 100 million tweets in order to get their positive or negative sentiment.

This tool has shown to be interesting within research and marketing industries, but it

imposes a heavy stress on CPU and I/O and requires a distributed environment, such

as a cluster (or in this environment a virtual cluster (VC)).

Using Nacreous to deploy VCs and exploiting a service on them, the process and

the complexities derived from such a complex environment deployment and setup are

hidden to users. We have performed several tests by requesting multiple VCs with

different amounts of slaves. To this end, all VMs that belong to the VC have the same

specifications: CORES = 1;RAM = 1,7;HDD = 8Gb;ARCH = x64;OS = Ubuntu;

3.2. Experimental Results

In order to perform a proof of concept of the Nacreous framework, we have spec-

ified one deployment policy (maximum consolidation) and considered 3 sets of 60 re-

quests of VCs. The maximum consolidation policy consists on concentrating as many

VMs as possible within the minimum amount of physical nodes without oversubscribing

the physical resources. Consequently, the amount of physical nodes used is reduced and

the power consumption minimised. The three sets of requests contain 60 VC requests,

composed by a random number of VMs (Master + Workers) between 2 and 8.

Each VC query requests Hadoop services (more specifically, the Sentiment Anal-

14



ysis for Hadoop). The time range required to perform this analysis (considering all

the stages needed: deployment, boot, contextualization, Hadoop start-up, HDFS set-

up, analysis and destruction) varies from ∼ 65 minutes to ∼ 45 minutes depending on

the amount of VMs per VC (between 2 and 8).

We have evaluated Nacreous performance without time restrictions in order to

analyse the overall performance and decisions with multiple queries. This scenario is

considered as the reception of a set of queries that request the same start-time with

unknown end-time.

We analyse the overall performance, waiting times and resource utilization taking

into account four scheduling algorithms, namely, First Come First Served (FCFS), First

Fit (FF), Small First (SF) and Large First (LF). They have been chosen due to the

fact that they represent the basis of more complex scheduling algorithms, showing the

ability to decide, sort and reschedule. FCFS and FF are the well-known scheduling

algorithms. SF and LF sort requests in ascending or descending order, according to the

size of the virtual cluster.

Nacreous is able to process the sets of requests in less than 240 minutes applying

the FCFS scheduling algorithm for the three sets in average (Figure 3a). The perfor-

mance is increased a 6.46% applying FF compared to FCFS. While applying the SF

and BF scheduling algorithms, the performance improvement is lower: ∼ 3,9 and ∼ 3,1

respectively.

Regarding resource utilization (Figure 3b), it is interesting to observe how the

FF algorithm achieves best results compared with the other algorithms. This is due

to the fact that FF tries to allocate another VC when the FCFS has decided to wait.

Consequently, if another query fits into the available resources, it is allocated, exploiting

more resources at the same time. Since the SF and LF scheduling algorithms rely on

the FCFS algorithm, they both achieve similar resource utilization to FCFS. However,

15



(a) Average processing time. (b) Resource utilization.

Figura 3: Performance

Cuadro 2: Waiting time (Seconds)

FCFS FF SF LF

Min. 2765.00 2831.00 2887.00 2775.00

Perc. 10 3652.47 3309.77 3876.07 3319.73

Median 6763.50 6190.33 6771.50 7062.00

Perc. 90 9883.80 9691.33 9971.93 9759.80

Max. 10683.00 11462.00 11521.00 10332.00

AVERAGE 6729.28 6128.99 6824.20 6956.21

depending on the request order, the performance is slightly improved.

Observing the requests waiting time avoiding the transitory period (period until

the system gets full of VCs for the first time) (Table 2), the FF algorithm has shown to

reduce the average waiting time compared to FCFS. However, due to the FF nature,

some queries that arrived later where performed earlier than others that arrived before

(so that they had to wait more). The SF and LF algorithms have shown to achieve

worse average waiting time than FCFS. However, the waiting time range and median

are similar to FCFS.

Finally, we want to remark that Nacreous has shown to handle large amounts of

16



VCs (and consequently, large amounts of related VMs), across a real Cloud testbed, to

a set of users with different demands. All SLAs received from the users were accepted,

and the QoS experienced is related to the waiting and processing time. As a result,

we have achieved better results applying the FF scheduling. However, considering a

maximum waiting time as an SLO, the amount of successful SLAs can be analysed

(Figure 4). The FF reduces the amount of violated SLAs compared with FCFS and

LF. But the SF achieves better successful ratio for lower maximum accepted time. This

is due to the fact that SF starts processing the smaller VC queries, so more VCs achieve

resources first, and consequently, the amount of processed VCs grows faster than in

the other algorithms. But the larger VC queries experience larger waiting times. The

difference between all of them reduces when the maximum accepted waiting time is

higher than the 90% of the maximum waiting time observed in these experiments.

To sum up, the FF scheduling algorithm achieves better results when providing

this service, reducing the average processing time, improving slightly the resource uti-

lization, reducing the waiting time and although the SF achieves better successful SLA

ratio (in terms of the maximum waiting time SLO), the FF does not penalize so much

large VC queries.

4. Related Work

There have been several relevant efforts in Cloud computing management, service

offering, SLAs and standardization, service coordination, and resource orchestration.

Some of the most significant are reviewed next.

In [12], a multi–level autonomic architecture for the management of virtualized

application environments in Cloud platforms is proposed. This work proposes an or-

chestration framework which is focused on tackling the Cloud resources adaptation in

17



Figura 4: Successful SLA ratio per maximum accepted waiting time.

order to satisfy conflicting objectives of running applications in terms of scaling and/or

migration. Alternatively, in [13] a framework for Cloud resource management based on

self–tuning fuzzy controllers is described. It provides support for multiple–objective

control and service differentiation.

Focusing now on service brokerage, in [14], a brokering service framework aimed

at choosing the most appropriate service offered by different Cloud service providers

depending on user QoS requirements (e.g., throughput and latency) is described. On

the other hand, in [15], a brokering service framework focused on SaaS Cloud providers

is presented. Both proposals consider the use of the Pareto optimization technique for

the optimal decision.

There are also studies and algorithms in the context of utility computing, where

the resource provisioning is conditioned by budget constraints.These proposals are very

interesting within the resource orchestration field since they can be useful in order to

maximize the return from the Cloud investment (ROI). In [16], a control–based ap-

proach for resource provisioning in terms of time and budget constraints is presented.

18



This proposal focuses on the dynamic CPU cycles and memory assignment for the

VMs in order to improve the overall QoS. In [17], a set of three algorithms for resource

provisioning of scientific workflow ensembles on IaaS Clouds is presented. These al-

gorithms push for the user-prioritized workflows maximization that can be completed

given time and budget constraints, and have shown to achieve important performance

results. Moreover, in [18] two auto–scaling mechanisms are proposed. Unfortunate-

ly, [12] [16] [17] and [18] proposals lack of an evaluation on a real Cloud environment,

or do not consider a multiple scheduling policy architecture [13], while [14] and [15]

proposals provide passive brokerage mechanisms that do not interact dynamically with

the underlying infrastructure. Furthermore, the efforts performed by Cloud framework

providers in terms of Cloud management focus on infrastructure management and ser-

vice delegation rather than service coordination.

To sum up, all these works and Cloud frameworks provide interesting features

within their field. However, there is still a lack of an architecture for a global service–

aware smart management within Cloud environments.

5. Conclusions and Future Work

The massive expansion of Cloud computing in conjunction with the amount of

services that this technology can provide is enormous, and keeps growing every day in

order to satisfy actual and new demands. This fact complicates the service manage-

ment, and can impact negatively on the amount of fulfilled SLAs, or result in resource

overprovisioning. Consequently, increasing the amount of satisfied SLAs is considered

the keystone in order to improve the QoS perceived by users and also improve the

confidence on the service provider.

The purpose of this work has been to design and provide an extensible framework,

19



named Nacreous, able to consolidate and manage multiple services within IaaS Cloud

environments, and optimise them by allowing to implement different adaptive and com-

plex deployment policies, scheduling heuristics, forecasting and proactive mechanisms.

The results achieved by the successful implementation of Nacreous on the private

Cloud testbed deployed at University of Castilla–La Mancha show that it is possible

to implement the proposed architecture. Moreover, Nacreous initial capabilities have

been tested and the results show that it is able to handle the underlying infrastructure,

attend users, keep track of the requests and infrastructure, and provide VMs and

services based on complex virtual infrastructures.

Experimental results show that the system is able to attend multiple service

requests, offering their associated services depending on the user needs.

Some future work guidelines are: to perform a thorough evaluation on the per-

formance impact of multiple deployment policies, to analyse the behaviour of different

metrics through the use of different scheduling algorithms, and to conduct a forecasting

algorithms evaluation within Nacreous.

Referencias

[1] Hadoop. Apache hadoop. Web page at http://hadoop.apache.org/, Last access:

21st January, 2014.

[2] Twitter. Social networking and microblogging service. Web page at http://

twitter.com/, Last access: 5th February, 2014.

[3] Facebook. Social utility that connects people. Web page at http://www.

facebook.com/, Last access: 5th February, 2014.

20



[4] P. Anderson. What is Web 2.0? Ideas, technologies and implications for education.

In JISC Online Report., 2007.

[5] Alain Andrieux et al. Web Services Agreement Specification (WS-Agreement)

GFD-R-P.192. Technical report, October 2011.

[6] OCCI. Open cloud computing interface. Web page at http://occi-wg.org/,

Last access: 26th January, 2014.

[7] CentOS. The Community ENTerprise Operating System. Web page at http:

//www.centos.org/, Last access: 14th January, 2014.

[8] KVM. Kernel based virtual machine (kvm). Web page at http://www.

linux-kvm.org/, Last access: 15th January, 2014.

[9] OpenNebula. The open source solution for data center virtualization. Web page

at http://opennebula.org/, Last access: 20th January, 2014.

[10] Javier Conejero, Omer Rana, Peter Burnap, and Jeffrey Morgan. Scaling Archived

Social Media Data analysis using a Hadoop Cloud. In IEEE 6th International

Conference on Cloud Computing (CLOUD), Santa Clara, CA, USA, june 2013.

[11] COSMOS. Cardiff on-line social media observatory. Web page at http://www.

cs.cf.ac.uk/cosmos/, Last access: 5th February, 2014.

[12] Omar Abdul-Rahman et al. Multi-Level Autonomic Architecture for the Man-

agement of Virtualized Application Environments in Cloud Platforms. In Cloud

Computing (CLOUD), 2011 IEEE International Conference on, 2011.

[13] Jia Rao et al. QoS Guarantees and Service Differentiation for Dynamic Cloud

Applications. Network and Service Management, IEEE Transactions on, 10(1):43–

55, 2013.

21



[14] M. Usha et al. An Efficient QoS Framework for Cloud Brokerage Services. In

Cloud and Services Computing (ISCOS), 2012 Intl. Symp. on, pages 76–79, 2012.

[15] Elarbi Badidi. A Cloud Service Broker for SLA-based SaaS provisioning. In

Information Society (i-Society), 2013 International Conference on, pages 61–66,

2013.

[16] Qian Zhu and G. Agrawal. Resource Provisioning with Budget Constraints for

Adaptive Applications in Cloud Environments. Services Computing, IEEE Trans-

actions on, 5(4):497–511, 2012.

[17] M. Malawski et al. Cost- and deadline-constrained provisioning for scientific work-

flow ensembles in IaaS clouds. In High Performance Computing, Networking,

Storage and Analysis (SC), 2012 International Conference for, pages 1–11, 2012.

[18] Ming Mao and M. Humphrey. Scaling and Scheduling to Maximize Application

Performance within Budget Constraints in Cloud Workflows. In Parallel Dis-

tributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages

67–78, 2013.

22


