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Abstract. The massive amount of data available in recent years has led
to an explosive growth in the field of machine learning. Black box models
gain from this, because they can be trained more effectively and provide
the best results. In contrast, however, these models are intrinsically less
interpretable than other white box models, e.g. a decision tree.
With regards to supervised classification problems, where the objective
is to assign a class label to a new instance, there are critical applications
where interpretability can be a key factor when deciding which model to
use or even whether or not to implement a machine learning process. A
well-accepted practice to incorporate black box models into these pro-
cesses is to build a surrogate explainable model that can mimic black box
behavior in a neighborhood of the instance whose classification has to be
explained. For that purpose, white box models can be used to extract an
explanation, defined as both a factual and a counterfactual explanation.
A factual explanation is a way to justify the classification of the given
instance in a certain category, whereas a counterfactual explanation is a
way to understand why that particular instance has not been classified
differently. In the literature, we find that these factual and counterfactual
explanations are most often built using crisp classifiers.
In this work, we propose the use of a fuzzy rule-based system which gen-
erates factual and counterfactual explanations by mimicking the behavior
of a black box model. This will be done by learning a fuzzy decision tree
in a neighborhood of the given instance, which will provide a rule-based
system. These rules will be used to extract a factual and a counterfactual
explanation. Finally, to maintain the semantics of the problem domain,
these rules, learned in a neighborhood of the instance, will be mapped
to the global fuzzy sets, defined over the entire range of each variable.

Keywords: Explainable Artificial Intelligence, Fuzzy Decision Trees, Counter-
factuals, Machine Learning, Rule-Based Systems, Fuzzy Agnostic Explainer

1 Introduction

In recent years, machine learning is making its way into numerous fields, thanks
to the enormous amount of data available, which can be used to feed new,
increasingly complex models [6, 9, 31]. Because of this large amount of data,
some of these models (in particular black box models) are able to very accurately
approach previously unaffordable problems.

Increasing model complexity is often accompanied by decreasing interpretabil-
ity [3], which means that certain decisions cannot be explained. This is unac-
ceptable in certain fields, e.g. critical systems, where it is as important to have
an accurate solution so as to be able to explain the decision made by the model.
Furthermore, this is also countersigned by the current legislation in Europe, e.g.
the right to explanation included in the General Data Protection Regulation [23],
which affects both humans and artificial intelligence techniques.

In the current landscape of supervised machine learning, the most proficient
algorithms are mainly black box algorithms, e.g. Deep Neural Networks and En-
sembles. They also happen to be those whose inner workings are most difficult



to understand. It is this problem that has given rise to the field of eXplain-
able Artificial Intelligence (XAI) [4]. Research is being carried out to push for
interpretability and explainability in order to better understand the results gen-
erated by these processes. A current approach focuses on opening these black
boxes, that is, on creating ways to explain how these models work. Agnostic
methods [14, 24, 25] explain the decision made by any classifier, independently
of its nature and inner structure. Local explanations focus on explaining the
classification process for a single instance, while global explanations seek to ex-
plain or understand the reasoning process of the model as a whole. Much work
is being done on generating explainable models that can mimic the behavior of
the black box in a small region of the feature space, i.e. a neighborhood of the
target instance.

This paper presents Fuzzy Local Agnostic Rule-based Explanations, FLARE,
a fuzzy agnostic explainer that creates a neighborhood by sampling instances
from a known probability distribution and uses a Fuzzy Decision Tree (FDT) [26]
to generate a set of rules which allows us to provide factual and counterfactual
explanations for the decision made by the black box algorithm. A factual expla-
nation is a justification, usually a set of attribute-value pairs, which attempts to
answer the question of why the instance has been classified in that category. On
the other hand, a counterfactual explanation seeks to provide an answer to the
question of why the instance has not been classified in a different category.

The main contributions of this study are:

– First, we provide a method to generate a neighborhood of the target instance.
The method selects an instance for each class value, which it uses to define
the features’ sub-spaces from which neighbors are sampled.

– Second, we use a fuzzy decision tree trained from that neighborhood to
generate the explanations. We generate the factual explanation as proposed
in [12], and propose a method to obtain the counterfactual explanation based
on that work.

– Third, to obtain semantically meaningful factual explanations, we provide
a mapping between the local fuzzy sets restricted to the neighborhood sub-
space, used in the (locally trained) fuzzy decision tree, and the globally
defined linguistic variables.

– Fourth, we empirically compare both the factual and counterfactual expla-
nations against some of the most representative algorithms in the state of
the art by using some well-established metrics and datasets.

The rest of the paper is structured as follows. In Section 2, we define the
problem at hand. In Section 3, we provide an overview of the state of the art.
Section 4 explains the algorithm to generate the explanations, while Section 5
provides an example to illustrate the algorithm step by step. In Section 6, we pro-
vide a comparison against some of the outstanding existing methods regarding
the metrics considered. Finally, Section 7 presents the conclusions and proposes
some future work.



2 Problem Definition

Let us consider a supervised classification problem, consisting of assigning a
class cj belonging to a predetermined set C = {c1, ..., cm} to an instance x =
(x1, ..., xn) of values defined over n input variables X1, X2, ..., Xn. We will denote
as dom(Xi) the domain in which a variable Xi can take values, as ncont the
number of continuous variables, and as ndisc the number of discrete variables,
0 ≤ ncont, ndisc ≤ n, ncont + ndisc = n.

Let us assume that, associated with each continuous input variable Xi, there
is a fuzzy (linguistic) variable Fi = {vi,1 . . . , vi,ki

} defined through a Ruspini
partition of ki ordered fuzzy sets (see Figure 2a). We will use vi,zi to denote
both the fuzzy set and its corresponding associated linguistic label indistinctly.
Given a value δ ∈ dom(Xi), let

µi(δ) = (µi,1(δ), . . . , µi,ki
(δ))

be the vector of membership degrees of δ to the ki fuzzy sets of Fi. In other
words, µi,zi(δ) is the membership degree of δ to the set vi,zi .

1

Let B be a classifier whose decision-making process needs to be explained, e.g.
a black box model, learned from a training dataset TR = {(xt

1, . . . , x
t
n, c

t)}Tt=1,
where T is the number of instances, and ct ∈ C is the classification (category or
class label) associated with the t-th instance.

Given an instance x0, let B(x0) = c ∈ C denote that B assigns the class
value c to x0. Our objective is to create an explainer E(x0, c, B) that is able to
return an explanation e = ⟨f, cf⟩ for x0, where f is a factual explanation and
cf is a counterfactual explanation.

As the explainer uses a fuzzy decision tree as the surrogate (local) classifier,
the explanations are based on the rules extracted from this tree. A rule R of
length b is defined as

R : l1 ∧ l2 ∧ · · · ∧ lb → cj .l

Here, each lp = ⟨Fi, vi,zi⟩ is a literal, i.e. an attribute-value pair. For the contin-
uous variables, Fi is a fuzzy variable and vi,zi is a fuzzy set belonging to that
fuzzy variable. For the discrete variables, Fi = Xi and vi,zi is a value from its
domain. Finally, the consequent of the rule is c(R) = cj .

In this work, because fuzzy reasoning is used, more than one rule may be
necessary to justify the classification c assigned to x0, i.e., f may consist of more
than one rule [12].

On the other hand, the counterfactual explanation, cf , represents the mini-
mum changes that must be applied to x0 to modify the class assigned by classifier
B. Let xcf be the instance obtained by applying the changes in cf to x0. Then, to
obtain cf , we propose to minimize d(x0, xcf ) according to the following distance:

1 Note that for discrete variables, we can interpret each value as a linguistic label
whose associated fuzzy set has membership degree 1 in case the instance takes that
value and 0 otherwise.



d(x, y) =
ncont

n

∑
i∈ncont

|xi − yi|+
ndisc

n

∑
i∈ndisc

I(xi ̸= yi) (1)

where the function I(cond) returns 1 if cond is true and 0 otherwise. Note that,
in the case of numerical variables, not only is the number of modified features
counted but the magnitude of the change is also taken into account.

3 Related Works

In this work we focus on factual and counterfactual explanations, which are types
of local explanations, consisting in explaining the decision made for a single in-
stance. Counterfactual explanations date back as far as 1983 [8] and are widely
used in fields such as chemistry [30], medicine [22] or justice [11]. In computer
science, they have been used for improving automatic code review [7] and de-
bugging machine learning models [1].

There are multiple ways to generate counterfactual explanations. They can be
created by using adversarial examples [20], optimization processes [2,5,10,18,29],
white box models such as decision trees [12,14,16,27], etc.

Furthermore, our explainer is model-agnostic, which means that it is indepen-
dent of the underlying model used to make the decision. Prominent related meth-
ods in the literature include LORE [14], CEM [10], WACH [29] and CEGP [18].
The first is the algorithm that inspired this contribution, while the other three
are some of the best-performing counterfactual explanation generation methods
according to the study carried out in [13].

LORE (LOcal Rule-based Explainer) [14] is a local agnostic method that
provides explanations formed by both factual and counterfactual rules. LORE
takes an instance and a black box binary classifier, and creates a balanced neigh-
borhood around the given instance (with half of the neighbors matching the clas-
sification of the instance and half having the opposite classification) by means of
a genetic algorithm. A decision tree is then learned from the neighborhood ob-
tained, and a factual and a counterfactual rule are extracted from that decision
tree. Given the nature of the decision tree used, LORE is only able to generate
explanations for problems with binary class labels.

WACH [29] is one of the first approaches in the literature to deal with coun-
terfactual explanations. WACH defines a loss function to be minimized, which
is a trade-off between (1) the margin between the class predicted by the coun-
terfactual explanation and the class assigned by the original classifier to the
instance to be explained, and (2) the quadratic distance between the given in-
stance and its modification by using the counterfactual explanation. The balance
(preference) between these two objectives is controlled by a numerical parame-
ter, and a gradient-descent-based algorithm is used to guide the optimization of
the counterfactual explanation until convergence is achieved.

CEM (Contrastive Explanation Method) [10] uses the concepts of pertinent
positives and pertinent negatives. The pertinent positives are the minimally suffi-
cient set of features to obtain a particular classification. In contrast, the pertinent



negatives are the set of features that need to be modified in an instance to obtain
a particular classification. This means that by applying the changes proposed in
the pertinent negatives, the instance would be classified differently, similarly to
a counterfactual explanation. In order to find the pertinent positives and per-
tinent negatives, two different loss functions are defined. The loss function for
the pertinent negatives (counterfactual explanations) is based on a weighted ag-
gregation that combines (1) the margin between the black box prediction of the
instance and the modified instance; (2) a regularization term to minimize the
changes carried out in the instance; and (3) a term, controlled by an autoencoder,
which minimizes the implausibility of the modified instance. By implausibility,
the authors in [10] refer to how far (close) the modified instance is with respect
to feasible realizations in the problem feature space. The loss function for the
case of pertinent positives has a similar structure, but the perturbation applied
to the original instance consists of removing features instead of modifying their
values, and the same classification must be maintained for both the given and
the modified instance.

CEGP (Counterfactual Explanation Guided by Prototypes) [18] uses the loss
function introduced by CEM but incorporates the concept of prototype to control
the proximity of the perturbed instance (counterfactual explanation) to the data
distribution given a class label. Therefore, prototypes are class-label-dependent,
and in CEGP, for each class label c, they are computed as the average encoding
over the k nearest instances to x0 with class label c. The autoencoder designed
in CEM is also used in CEGP to search for the nearest instances in the latent
space. Both CEM and CEGP methods use an iterative gradient-descent-based
process to optimize the perturbed instance,i.e., the counterfactual explanation.

4 Methodology

In this paper, we propose Fuzzy Local Agnostic Rule-based Explanations (FLARE),
an algorithm that generates a factual and a counterfactual explanation for the
classification assigned by a classifier to a given instance. In Algorithm 1, we can
see that, aside from the usual inputs received by agnostic explainers, i.e., the in-
stance, the classifier and a dataset, because of its fuzzy nature, FLARE also needs
as input a set of fuzzy variables defined for each continuous domain variable. At
first, FLARE generates a neighborhood around an instance by randomly sam-
pling the neighbors according to the marginal probability distributions estimated
from the dataset. A fuzzy decision tree is then trained for this neighborhood and,
from this local model, a factual and a counterfactual explanation are extracted.
Finally, FLARE expresses the local factual explanation in terms of the global
fuzzy variables.

4.1 Neighborhood

The first step consists in generating a neighborhood N from which the fuzzy
decision tree will be trained. This neighborhood must be composed of instances



Algorithm 1 FLARE

Require: training set TR, fuzzy variables F , classifier B, class variable C, m = |C|
procedure FLARE(x0, s)

c← B(x0)
N ← CreateNeighborhood(x0, ⌈s/m⌉, c)
for all cj ∈ C ∧ cj ̸= c do

TRj ← TR↓C=cj

x̄j ← argminx∈TRj d(x0, x)
N j ← CreateNeighborhood(x̄j , ⌈s/m⌉, cj)
N ← N ∪N j

end for
F ′ ← FuzzyPartitioning(N)
tree← FuzzyDecisionTree(F ′, N)
f ← Factual(tree, x0)
cf ← Counterfactual(tree, x0)
return ⟨f, cf⟩

end procedure

Fig. 1: Complex global decision boundaries can be simple when observed locally.



Algorithm 2 Neighborhood creation

Require: classifier B
procedure CreateNeighborhood(x, l, cj)

N j ← ∅
while |N j | < l do

x̂← RandomPerturbation(x)
if B(x̂) = cj then

N j ← N j ∪ {x̂}
end if

end while
return N j

end procedure

similar to x0 in order to reproduce the local decision boundary ofB. The intuition
behind using a neighborhood is that local boundaries can be simpler to model
than global boundaries, as represented in Figure 1.

We can see in Algorithm 1 that, for each class value cj , we extract a pivot x̄j

from TRj (the subset of instances from TR with class value cj). This pivot is the
closest instance in TRj to x0 according to Eq. 1. In particular, when cj = B(x0),
then x̄j = x0. Using that pivot, we then generate the sub-neighborhood of size
l = ⌈s/m⌉ using Algorithm 2.

In order to generate a neighbor x̂ by randomly perturbing the pivot x̄j , the
process is as follows:

– For each continuous variable Xi, the i-th component of x̂ is obtained by
sampling from the empirical distribution in the interval

[max(min(Xi), x̄i − ϵi),min(max(Xi), x̄i + ϵi)],

where ϵi defines the range of the interval.
– For each discrete variable Xi, the i-th component of x̂ is obtained by sam-

pling from the multinomial probability distribution p(Xi) estimated from
TR.

If B(x̂) = cj , we add x̂ to N j . Otherwise, we discard it. We create each sub-
neighborhood N j by repeating the process until we obtain the desired number l
of neighbors, and finally, all the sub-neighborhoods are joined to obtain N .

4.2 Fuzzy Decision Tree

The next step is to build the fuzzy decision tree. In this work, we use the Fuzzy
Multiway Decision Tree, FDT, described in [26] with the aggregated vote process
for the inference.

The tree is learned from the dataset N and the locally defined set of fuzzy
variables F ′. These variables are obtained by means of fuzzy entropy-based fuzzy
partitioning [26].



Algorithm 3 Factual explanation generation

Require: global fuzzy variables F , local fuzzy variables F ′

procedure Factual(tree, x0)
f ← ∅
f ′ ← MinRobustFactual(tree, x0) ▷ See [12]
for all R′

f ∈ f ′ do
Rf ← ∅
for all ⟨F ′

i , v
′
i,z′i
⟩ ∈ R′

f do

vi,zi ← M(v′i,z′i
, Fi) ▷ See Eq. 2

Rf ← Rf ∧ ⟨Fi, vi,zi⟩
end for
Rf ← Rf ∧ c(R′

f )
f ← f ∪Rf

end for
return f

end procedure

4.3 Factual Explanation

A factual explanation is the reason why a particular instance is classified into a
certain class value. This typically means that the rule fired by a (crisp) decision
tree is the factual explanation, as the path that leads to the classification is
unique. This does not apply directly when fuzzy models are used to generate
the explanation. There are proposals, such as [27], which consider that using the
best rule according to the inference process is sufficient to generate the factual
explanation. Other works, such as [12], propose that more than a single rule can
be used to generate a factual explanation.

In this work, we use the aggregated vote process to classify the instance
with the locally learned FDT, and it is thus appropriate to use multiple rules to
explain as well as to classify. Therefore, this algorithm is compatible with factual
explanations formed by multiple rules.

In [12], a factual explanation for x0 with class label c is considered robust
if, when removing from the set of rules fired by x0 those with consequent c
and not included in the factual explanation, the classification for x0 using the
remaining rules is still c. In particular, the minimum robust factual explana-
tion, mr-factual, becomes a good choice because it ensures the robustness while
keeping the number of rules corresponding to the factual explanations as low as
possible. For this reason, we will use the minimum robust factual explanation in
our experiments and it is the method referred to in Algorithm 3.

4.4 Factual Explanation Mapping

In our method, we use two different sets of fuzzy variables. FLARE receives the
set F = {F1, . . . , Fn} of linguistic fuzzy variables defined over {dom(X1), . . . , dom(Xn)},
for all numerical variable Xi. On the other hand, each time an explanation



is needed for the classification B(x0) = c, a new set of fuzzy variables F ′ =
{F ′

1, . . . , F
′
n} is learned over {domN (X1), . . . , domN (Xn)} with domN (Xi) ⊆

dom(Xi), N being the neighborhood of x0 used to learn the FDT. To obtain
meaningful factual explanations, they must be expressed in terms of the lin-
guistic fuzzy variables provided, otherwise, the explanations for different in-
stances would have different semantics. Therefore, we need to establish a map-
ping F ′ → F to re-write the rules in the factual explanation.

In order to map F ′ to F , we compute a similarity measure between two fuzzy
sets. Given a fuzzy set vi,zi defined over the variable Xi, take

Vi,zi = [azi , bzi ] ∈ dom(Xi), such that:

(1) ∀δ ∈ [azi , bzi ], µi,zi(δ) ≥ 0.5

(2) ∄ [a′zi , b
′
zi ] ⊃ [azi , bzi ] satisfying (1)

Note that as we use triangular fuzzy sets, Vi,zi corresponds to the α-cut with
α = 0.5 in vi,zi .

Then, given two fuzzy sets vi,zi ∈ Fi and v′i,z′
i
∈ F ′

i , we compute its similarity
as

S(vi,zi , v
′
i,z′

i
) =

length(Vi,zi ∩ V ′
i,z′

i
)

length(Vi,zi ∪ V ′
i,z′

i
)

Finally, given a variable Xi, we define the function M(v′i,z′
i
, Fi) that takes a

fuzzy set v′i,z′
i
∈ F ′

i and returns the set vi,zi ∈ Fi with the greatest similarity

M(v′i,z′
i
, Fi) = arg max

vi,zi∈Fi

S(vi,zi , v
′
i,z′

i
) (2)

We use this function M in Algorithm 3 to denote the mapping between the
local and global fuzzy sets to generate a global factual explanation from the local
minimum robust explanation obtained from the FDT.

4.5 Counterfactual Explanation

Given B(x0) = c, a counterfactual explanation is the minimum set of modifica-
tions to be applied over x0 that modifies the class value assigned by the classifier
B. As in [12], we use the rules from the FDT with a class different to c to find
possible counterfactual explanations.

Each of these rules Rcf proposes a set of changes cf to x0 that may change
the assigned class label. The method ApplyChanges in Algorithm 4 generates
a candidate counterfactual from a rule Rcf and x0 as follows:

– In the case of a numerical variable Xi, we consider that a change must be
applied if the membership degree is smaller than 0.5. In that case, we need
to provide an exact value from the infinite set dom(Xi). In our case, for the
literal ⟨F ′

i , v
′
i,z′

i
⟩, the change is the value δ such that µv′

i,z′
i

(δ) is maximum2.

2 Note that if normalized triangular fuzzy sets are used, this δ value corresponds to
the middle point of the triangle, with membership equal to 1



Algorithm 4 Counterfactual explanation generation

Require: classifier B
procedure ApplyChanges(x0, R)

x← clone x0

cf ← ∅ ▷ Changes to apply over x0

for all Xi continuous ∧ ⟨F ′
i , v

′
i,z′i
⟩ ∈ R do

if µi,z′i
(xi) < 0.5 then

xi ← Peak(v′i,z′i
)

cf ← cf ∪ {⟨Xi, xi⟩}
end if

end for
for all Xi discrete ∧ ⟨F ′

i , v
′
i,z′i
⟩ ∈ R do

if xi ̸= v′i,z′i
then

xi ← v′i,z′i
cf ← cf ∪ {⟨Xi, xi⟩}

end if
end for
return x, cf

end procedure

procedure Counterfactual(tree, x0, F
′)

rules← ExtractRules(tree)
cfRules← {Rcf | Rcf ∈ rules, c(Rcf ) ̸= B(x0)}
Ψ ← [ApplyChanges(x0, Rcf ) | Rcf ∈ cfRules]
Ψ ← Sort(Ψ)
for k ← 1 to |Ψ | do
⟨xcf , cf⟩ ← Ψk

if B(x) ̸= B(xcf ) then
return cf ▷ Counterfactual found

end if
end for
return ∅ ▷ No counterfactual found

end procedure

– In the case of a categorical variable Xi, the change is the value v′i,z′
i
∈

dom(Xi) in Rcf .

Note that ApplyChanges returns the set of changes cf proposed by the rule,
as well as the instance x0 with those changes applied, xcf .

The method Counterfactual in Algorithm 4 starts extracting the set of
rules cfRules from the FDT with a class label different to B(x0). Next, from
cfRules we obtain Ψ as the list of candidate counterfactual explanations for x0

that result from applying ApplyChanges to each Rcf in cfRules. Then, Ψ is
sorted increasingly according to d(xcf , x0) (Eq. 1). Finally, the algorithm runs
over this sorted list, testing whether B(xcf ) ̸= B(x0) and, if so, returns cf , i.e.,
the counterfactual explanation.



5 Illustrative Example

age 15 25 45

teen young adult

(a) Fuzzy sets for age.

weight 65 80 90 100 105

thin normal fit strong
very-
strong

(b) Fuzzy sets for weight.

Fig. 2: Global fuzzy sets defined over the complete domain of the fuzzy variables
age and weight.

(a) age histogram. (b) weight histogram.

Fig. 3: Histograms extracted from TR for the continuous variables age and
weight.

For illustrative purposes, let us consider a problem where the classification of
an instance must be explained. We consider a binary classification problem, C =
{yes, no} where the following objects are received as inputs: a training set TR
defined over variables age, weight, hair and C; a (possibly black box) classifier
B already trained using TR; and the fuzzy variables age = {young, teen, adult}
and weight = {thin, normal, fit, strong, very-strong} (see Figure 2) defined
for the numerical domain variables with the same name. Figure 3 shows the
histograms for age and weight obtained from TR.



In this example, we aim to explain the classification of the following instance:

x0 = {age : 25, weight : 70, hair : blond}
B(x0) = yes

5.1 Neighborhood Generation

(a) age projected distribution. (b) weight projected distribution.

Fig. 4: Projected probability distributions for Nyes.

The first step of the algorithm is to obtain neighborhood N for x0. As C =
{yes, no} we need to generate Nyes and Nno (Algorithm 2).

As B(x0) = yes, the pivot for Nyes is x0 itself. Given the values in x0 for age
and weight and their estimated standard deviations (σage = 5 and σweight = 10,
shown in Figure 3), which we will use as ϵ for each variable, the sampling intervals
are:

[max(min(age), 25− 5),min(max(age), 25 + 5)] =

= [20, 30],

[max(min(weight), 70− 10),min(max(weight), 70 + 10)] =

= [65, 80]

for age and weight respectively. Figure 4 shows the empirical distributions pro-
jected over these intervals, from which the neighbor values are sampled. Thus,
Nyes is formed by individuals such as

{age : 23, weight : 68, hair : red}
{age : 27, weight : 72, hair : blond}
{age : 24, weight : 75, hair : red}
. . .



For Nno, we start by identifying the pivot x̄no as the closed instance to x0 in
TRno according to the distance defined in (Eq. 1). In our example, that instance
is:

x̄no = {age : 27, weight : 82, hair : brown}
B(x̄no) = no

with distance

d(x0, x̄
no) =

2

3
· (|25− 27|+ |70− 82|) + 1

3
= 9.67

By using the same process as for Nyes, we get neighbor instances such as:

{age : 25, weight : 80, hair : brown}
{age : 30, weight : 80, hair : blond}
{age : 29, weight : 77, hair : red}
. . .

5.2 Training a Fuzzy Decision Tree

Next, we obtain the fuzzy variables F ′ = {age′, weight′} to be used in the
process of learning an FDT from N . The original fuzzy variables for age and
weight cannot be used, as the neighborhood only involves a sub-interval of the
original domains. The variables age′ and weight′ obtained from N by using the
fuzzy entropy-based fuzzy partitioning are shown in Figure 5. The FDT learned
from N by using F ′ is shown in Figure 6.

age' 15 26 45

teen young adult

20

v'a,1 v'a,2 v'a,3

32

(a) Fuzzy sets for age′ (bold)
superimposed on the fuzzy
sets for age (light).

weight' 66 80 90 100 105

thin normal fit strong
very-
strong

68 70 92

v'w,1

v'w,2
v'w,3

v'w,4
v'w,5

(b) Fuzzy sets for weight′ (bold) superimposed
on the fuzzy sets for weight (light).

Fig. 5: Local fuzzy sets superimposed on the original (global) fuzzy sets.



hair weight

age

Yes No Yes Yes No No Yes No No No

hair

v'a,1 v'a,2 v'a,3

blond brown red blond brown red
v'w,1 v'w,2 v'w,3 v'w,4

Yes

v'w,5

Fig. 6: Local explainer model (FDT) learned using N and F ′.

5.3 Factual explanation

From the FDT, we extract the minimum robust factual explanation introduced
in [12]:

Rf → {age : v′age′,2 & hair : blond}.

We then have to express the factual explanation in terms of the original
linguistic fuzzy variables, so we have to map v′age′,2 to one of the linguistic labels
(fuzzy sets) in age. First, we compute the similarities:

S(teen, v′age′,2) =
length(teen ∩ v′age′,2)

length(teen ∪ v′age′,2)
= 0

S(young, v′age′,2) =
length(young ∩ v′age′,2)

length(young ∪ v′age′,2)
= 0.2

S(adult, v′age′,2) =
length(adult ∩ v′age′,2)

length(adult ∪ v′age′,2)
= 0

We then get:

M(v′age′,2, age) = arg max
vi,zi∈age

S(vi,zi , v
′
age′,2) = young.

Finally, as hair is a discrete variable, the factual explanation becomes:

f → {age : young & hair : blond}.

5.4 Counterfactual explanation

For the counterfactual explanation, all the rules from FDT with a different class
value from the instance must be extracted, i.e. Rcf ∈ tree : c(Rcf ) ̸= c(x0).



They are:

Rcf1 → {age : v′age′,1 & hair : brown}
Rcf2 → {age : v′age′,2 & hair : brown}
Rcf3 → {age : v′age′,2 & hair : red}
Rcf4 → {age : v′age′,3 & weight : v′weight′,2}
Rcf5 → {age : v′age′,3 & weight : v′weight′,3}
Rcf6 → {age : v′age′,3 & weight : v′weight′,4}

These rules generate a set of changes that must be applied to x0. When
µi,v′

i,z′
i

(xi) < 0.5, i.e. the membership degree of the instance to that fuzzy set

is smaller than 0.5, we apply that change. In those cases, xi is replaced by the
peak of the triangular fuzzy set.

ApplyChanges returns the following modified instances (each xcf being the
first component of the elements in Ψ):

xcf1 → {age : 20, weight : 70, hair : brown}
xcf2 → {age : 25, weight : 70, hair : brown}
xcf3 → {age : 25, weight : 70, hair : red}
xcf4 → {age : 32, weight : 66, hair : blond}
xcf5 → {age : 32, weight : 68, hair : blond}
xcf6 → {age : 32, weight : 70, hair : blond}

We then compute the distance (Eq. 1) between x and the counterfactual
explanations above:

d(x, xcf1) =
2

3
· 5 + 1

3
= 3.66

d(x, xcf2) =
1

3
= 0.33

d(x, xcf3) =
1

3
= 0.33

d(x, xcf4) =
2

3
· (7 + 4) = 7.33

d(x, xcf5) =
2

3
· (7 + 2) = 3

d(x, xcf6) =
2

3
· 7 = 4.66

The closest instances are xcf2 and xcf3 . In case of a tie, the counterfactual
explanation is selected arbitrarily in the order that the rules have been generated.
For this example, we choose the changes proposed by Rcf2 , thus selecting as
counterfactual explanation

cf → {hair : brown}



5.5 Explanation

Hence, our explanation becomes

e = ⟨f, cf⟩
= ⟨{age : young & hair : blond}, {hair : brown}⟩

That is, the classification of x0 as yes is supported because the person is
young and has blond hair, while the simplest way to change its classification to
no is to get brown hair.

6 Experimental evaluation

6.1 Datasets

For our experimental study, we chose the four binary (two class labels) datasets
described in Table 1, which are widely used in the literature 3.

Table 1: Number of continuous and discrete variables and number of instances
per dataset.

Name Discrete Continuous Instances

adult 9 4 48.800

compas 8 4 7.200

fico 0 23 10.400

german 18 3 1.000

6.2 Code, reproducibility and computational resources

The algorithm proposed in this paper is implemented as part of the Teacher
4 library and is completely open-source. It was programmed in Python 3.10,
using libraries such as Pandas [28] [19], NumPy [15] and scikit-learn [21] to
properly manage the data structures and efficiently generate the explanations.
To guarantee reproducibility, all the experiments are also published in a public
Github repository 5.

The experiments were executed in a Ryzen 9 3900x@3.8GHz with 32GB
of 3600MHz RAM Memory. The results were replicated from [13], where the
experiments are open-source, and so were adapted to work with our proposal.

3 https://archive.ics.uci.edu/ml/index.php, https://www.kaggle.com/

datasets.
4 https://github.com/Kaysera/teacher
5 https://github.com/Kaysera/flare-experiments

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets.
https://www.kaggle.com/datasets.
https://github.com/Kaysera/teacher
https://github.com/Kaysera/flare-experiments


6.3 Experimental methodology

For each dataset, we trained a Neural Network 6 and a Support Vector Machine 7

from scikit-learn as the classifier to be explained. For validation, holdout has been
considered by using standard values to create the partition (70% training and
30% test). The models were trained using a randomized search to find suitable
hyperparameters for each dataset. Then, the instances to be explained are taken
from the test set.

6.4 Factual explanation evaluation

To evaluate the factual explanation generated by FLARE, we use the following
two commonly considered metrics:

– fidelity : Measures the similarity of the predictions of B and the local ex-
plainer for the instances in the neighborhood.

– hit : Measures whether B(x0) is equal to the output of the local model learned
from the neighborhood N of x0.

Fig. 7: Ratio of factual explanations found per method.

Fig. 8: Fidelity of each method.

6 https://scikit-learn.org/stable/modules/generated/sklearn.neural_

network.MLPClassifier.html
7 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


Fig. 9: Hit for each method.

In particular, we compared FLARE against LORE, because it also learns a
local model on the neighborhood of x0. Of the rest of the methods considered in
this study, only CEM provides something resembling a factual explanation, the
pertinent positives. However, it directly searches for them by optimizing certain
metrics, not by learning a surrogate model. Therefore, fidelity and hit cannot be
computed.

In Figure 7 we show the percentage of factual explanations extracted per
method. We used the currently available implementation of LORE 8, where, as
can be observed, no factual explanation is found in some cases, which seems to
be an actual limitation of the implementation, not of the algorithm. For the rest
of the metrics, we show the actual value, but also a penalized one by taking into
account the percentage of cases in which the factual explanation is not found. In
Figures 8 and 9, the actual value can be seen in a lighter shaed and the penalized
one is in a stronger color.

In Figure 8, we can see that in most cases, for a given classifier and dataset,
the neighborhood generated by FLARE is able to better model the neighborhood
while maintaining the same classification as the original accurate classifier for the
instance to explain. This results in a higher percentage of factual explanations,
which also improves the hit as can be seen in Figure 9.

6.5 Counterfactual explanation evaluation

Evaluating counterfactual explanations is currently a highly active field of re-
search. In particular, many metrics are considered to study the different features
of the counterfactual explanations. In [13], the most prominent methods in the
state of the art are reviewed and compared considering a set of selected metrics.
From this set of metrics, we discarded those not applicable to the algorithms
here compared, e.g. those generating multiple counterfactual explanations, and
selected the subset that allows us to properly evaluate the counterfactual expla-
nations generated by the algorithms considered in these experiments:

– Proximity dissimilarity : Measures the proximity between x0 and xcf as the
distance between them (Eq. 1).

8 https://github.com/riccotti/LORE

https://github.com/riccotti/LORE


– Sparsity dissimilarity : Measures the length of the cf , that is, the number of
features that would have to change in x0 to change the classification.

– Implausibility : Accounts for how close the counterfactual explanation is to
the reference population, as measured by the distance (Eq. 1) between xcf

and the closest instance in TR, i.e.

min
x∈TR

d(xcf , x).

Note that, in all three metrics, the lower, the better. To evaluate FLARE’s
capability with respect to counterfactual explanation generation, we compared
it against state-of-the-art algorithms CEGP, CEM and WACH [13]. LORE was
tested but, in line with [13], the results were not as good as those ones obtained
by the other methods under study, and so it was excluded from the counterfactual
explanation evaluation. All the algorithms are open-source and implemented in
a well-known library [17] so that the experimental evaluation can be reproduced.

Hyperparameters were fine-tuned for every method (see the Appendix for
details). For all the optimization-based methods, the number of iterations was
limited to 1000 to keep the run time reasonable (several minutes per counter-
factual explanation extracted), so it is possible that, under this time limit, the
algorithm does not find a counterfactual explanation. The same time restriction
was applied to FLARE, which never exceeds it.

Figure 10 represents the number of counterfactual explanations found per
method. It is highly dependent on both the different datasets and the black box
classifier. However, we can see that, under the limit set, FLARE is the only
method that always finds a counterfactual explanation. Note that this also in-
fluences the results of the other metrics because, in some cases, the rest of the
algorithms have good averages since they only take into account the counterfac-
tual explanations found, which seem to be the less difficult ones regarding the
optimization process. Similarly to Section 6.4, all figures have the actual value
of the computed metrics in an intense color and a penalty applied based on the
ratio of counterfactual explanations in a lighter shade of the same color.

Fig. 10: Ratio of found counterfactual explanations.

Figure 11 shows the results for the proximity dissimilarity. The smaller the
distance, the better is the counterfactual explanation. Here we can see that,



despite being highly dataset-dependent, CEM or CEGP are usually the best
methods. FLARE, however, is close to both of them, winning in most cases after
applying the penalty corresponding to not always finding a counterfactual expla-
nation. As CEM, CEGP and WACH use optimization processes, they sometimes
are able to find shorter distances than FLARE, which is limited by the partitions
of the fuzzy sets and the greedy criteria we have chosen to define the changes in
the continuous variables.

Fig. 11: Proximity Dissimilarity: distance between x0 and xcf

Figure 12 represents the results of the sparsity dissimilarity. As can be ob-
served, FLARE is systematically better than the alternatives. In this case, the
closer instance obtained by CEM, CEGP and WACH entails changes in multiple
variables. FLARE, by changing the variables according to the fuzzy sets found,
performs bigger changes in each variable of the counterfactual explanation, so
needing to change the value of fewer variables.

Fig. 12: Sparsity Dissimilarity: number of changes in cf

Figure 13 represents the implausibility. In this case, the best-performing al-
gorithm is WACH. In adult and fico, the rest of the algorithms obtain notably
worse results. In german and compas we can observe that CEM and CEGP still
perform worse, but FLARE is able to get close or even improve WACH in some
cases.

Finally, Figure 14 shows the time spent to find a counterfactual explana-
tion. We can see here that, despite limiting the optimization methods to 1000



Fig. 13: Implausibility: distance between xcf and the closest instance in TR

iterations, they take several orders of magnitude longer than FLARE to find
a counterfactual explanation. It should be noted that all these methods work
by finding a counterfactual explanation for each new instance whose classifica-
tion needs to be explained, i.e. they cannot cache the counterfactual explanations
from previous cases to be applied to a new one. Given the nature of the problem,
in the real world, an explanation is expected almost immediately, as quickly as
a classification. This is why, for a real-world application, immediacy is a crucial
factor, and FLARE stands out in this regard.

Fig. 14: CPU Time

7 Conclusions

This work proposes FLARE, a novel approach to agnostic explainers by in-
troducing fuzzy logic in the generation process of factual and counterfactual
explanations, which provides an interesting alternative to the existing methods
in the state of the art.

We define FLARE, give an open-source code implementation of the algo-
rithm, and compare it against state-of-the-art factual and counterfactual al-
gorithms. The factual explanations for FLARE improve upon those of LORE,
which inspired the algorithm; while the counterfactual explanations of FLARE
are on-par or even better than the current best methods such as CEM, CEGP
or WACH.



We also showcase the greatest strength of FLARE against the current trend
of optimization-based methods: by using a surrogate model, finding a counter-
factual explanation in a near-instant time is guaranteed. Optimization methods
sometimes need minutes to find counterfactual explanations, even failing to find
one if time or computation constraints (i.e. number of iterations) are imposed.
This is a major drawback in a problem that requires a (near) real-time response.

There is room to extend this work. When looking for counterfactual expla-
nations, we aim to study a modification of the greedy behavior of our method to
change the value in continuous variables so that smaller changes are generated,
thus improving metrics like proximity dissimilarity and implausibility. However,
a more in-depth study is required to find ways to avoid a computationally slow
optimization process. It would also be interesting to generate natural language
explanations from these factual and counterfactual explanations so that they
can be presented to a final user, taking advantage of the closeness of fuzzy logic
to human language.
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Appendix: Hyperparameter Tuning

In order to find good hyperparameters for each method, a Random Search was
performed for every counterfactual algorithm. For all the optimization methods
(CEM, CEGP and WACH), the number of iterations was limited to 1000 to keep
the run-time reasonable (less than 15 minutes per counterfactual explanation
extracted). The same time constraint is applied to FLARE although it never
exceeds a few seconds.

For each algorithm, 100 different combinations of parameters were randomly
sampled. Each combination of parameters was then tested by evaluating 10 in-
stances not seen by the classifiers in training. The best combination for each
dataset and black box classifier was chosen and used for the experiments in this
paper. Note that, with more time and/or iterations, the optimization methods
might be able to obtain better results in the experimental evaluation, i.e. more
counterfactual explanations found.

More specifically, a configuration of hyperparameter values is selected based
on the following criteria:

1. Maximize the number of counterfactual explanations found. Given that we
are limiting the number of iterations to 1000, the optimization methods
might not find all 10 counterfactual explanations.
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2. If several configurations of hyperparameter values find the same number of
counterfactual explanations, the dissimilarity with respect to the instance
being explained is used to break the tie. In particular, we use a convex
combination of the proximity dissimilarity and the sparsity dissimilarity. In
case of a tie, we choose the best configuration at random.

Tables 2a, 2b, 2c and 2d show the hyperparameter search space tested for
the considered algorithms, as well as the range of options sampled. Tables 3a,
3b, 3c and 3d show the best combinations of the studied parameters found for
each algorithm, dataset, and black box classifier. The rest of the parameters for
CEM 9, CEGP 10 and WACH11 were left at their default values provided by the
library.

Parameter Range Step

κ [0.01, 0.2] 0.01

β [0.01, 0.4] 0.01

c init [1, 10] 1

c steps [10, 50] 1

(a) CEM Random Search Parameters

Parameter Range Step

β [0.01, 0.4] 0.01

c init [1, 10] 1

c steps [10, 50] 1

(b) CEGP Random Search Parameters

Parameter Range Step

tol [0.01, 0.05] 0.01

λ init [0.01, 0.1] 0.01

max λ steps [10, 50] 1

lr init [0.01, 0.2] 0.01

(c) WACH Random Search Parameters

Parameter Values

max depth [1,2,3,4,5,inf]

neigh size [100,500,1000,1500,2000]

min examples [1,3,5,7,10]

(d) FLARE Random Search Params

9 https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html
10 https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html
11 https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html

https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html
https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html
https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html


Classifier Dataset κ β c init c steps

SVM

adult 0.06 0.33 6 26
compas 0.06 0.2 3 21
german 0.02 0.36 9 32
fico 0.19 0.37 1 38

NN

adult 0.02 0.23 5 37
compas 0.06 0.2 3 21
german 0.06 0.23 5 34
fico 0.06 0.2 3 21

(a) CEM Final Parameters

Classifier Dataset β c init c steps

SVM

adult 0.29 8 32
compas 0.24 4 30
german 0.25 4 18
fico 0.2 5 32

NN

adult 0.36 1 33
compas 0.06 3 40
german 0.39 4 38
fico 0.37 1 38

(b) CEGP Final Parameters

Classifier Dataset tol λ init max λ steps lr init

SVM

adult 0.04 0.5 32 0.12
compas 0.02 0.5 25 0.01
german 0.03 0.6 32 0.02
fico 0.04 0.5 35 0.04

NN

adult 0.04 0.9 18 0.17
compas 0.03 0.9 27 0.1
german 0.01 0.6 10 0.04
fico 0.01 0.6 10 0.04

(c) WACH Final Parameters

Classifier Dataset max depth neigh size min examples

SVM

adult 3 500 5
compas 3 500 3
german 3 500 3
fico 4 2000 5

NN

adult 3 500 1
compas inf 500 1
german 3 500 10
fico 4 1500 10

(d) FLARE Final Parameters


