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Applying ranking techniques for estimating influence
of Earth variables on temperature forecast error

Abstract—This paper describes how to analyze the influence of
Earth system variables on the errors when providing temperature
forecasts. The initial framework to get the data has been based
on previous research work, which resulted in a very interesting
discovery. However, the aforementioned study only worked on
individual correlations of the variables with respect to the error.
This research work is going to re-use the main ideas but introduce
three main novelties: (1) applying a data science approach by a
few representative locations; (2) taking advantage of the rankings
created by Spearman correlation but enriching them with other
metrics looking for a more robust ranking of the variables; (3)
evaluation of the methodology by learning random forest models
for regression with the distinct experimental variations. The
main contribution is the framework that shows how to convert
correlations into rankings and combine them into an aggregate
ranking. We have carried out experiments on five chosen locations
to analyze the behavior of this ranking-based methodology. The
results show that the specific performance is dependent on the
location and season, which is expected, and that this selection
technique works properly with Random Forest models but can
also improve simpler regression models such as Bayesian Ridge.
This work also contributes with an extensive analysis of the
results. We can conclude that this selection based on the top-
k ranked variables seems promising for this real problem, and it
could also be applied in other domains.

I. INTRODUCTION

Weather forecasting is one of the most valuable services
worldwide, given its impact on all scales, from making leisure
plans to generating flood containment strategies to prevent-
ing problems from extreme temperatures. Numerical weather
prediction (NWP) simulates and predicts the atmosphere’s
behavior over time. NWP techniques involve dividing the
atmosphere into a grid system, where mathematical equations
represent fundamental physical principles such as atmospheric
dynamics, thermodynamics, and fluid motion are applied to
each grid point. Those models are highly reliable, and their
improvement has been undeniable through the years [1]. There
exist multiple and interrelated factors that have contributed to
this improvement in weather prediction accuracy over the past
few decades: (1) increased computational power, (2) improved
observational technologies, and (3) better understanding of
atmospheric processes. Besides, the use of ensemble fore-
casting techniques and the design of better verification and
validation practices have led to more reliable predictions and
more consistent assessment of forecast performance over time.

The current paper pursues a very specific goal in relation
to this topic, and it is a continuation of the work presented in
[2]. In this study, authors used ecological, hydrological, and
meteorological variables to study their potential for explaining

temperature forecast errors at the weekly timescale. In partic-
ular, Spearman correlations between each considered variable
and the forecast error obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) sub-seasonal-
to-seasonal (S2S) forecasts. The data was collected using a
thorough procedure that integrated multiple sources, obtaining
data across the globe from 2001 to 2017. The findings provided
valuable information on processes to improve the temperature
forecast skill of the ECMWF–S2S forecasting system.

However, the analysis approach did not consider that Earth
system variables are somewhat correlated with each other, and
even if the correlation metric was completely adequate and
corrected with the Benjamini–Hochberg procedure to detect
significance, we believe the process could benefit from more
sophisticated techniques. The scope of the current paper is
more machine-learning oriented, where we will present a
framework that should provide an extension that is more robust
and informative but also simple enough to be applied to the
global context. To provide insight into the variable analysis, we
will extract specific locations as use cases among those areas
detected as potential at [2]. The methodology will cover three
main steps: exploratory analysis, constructing an ensemble
ranking, and evaluating the results via Ranfom Forest models.

II. PROBLEM DEFINITION: DATASET

We have conducted the current research following the same
procedure as in [2]. The dataset has been constructed inte-
grating distinct sources, which is summarised in the flowchart
in Fig. 1. These data consider the global land area and the
period 2001–2017. Each forecast is run using distinct lead
times. Notice that in the current study, we will use the 3-week
lead time (15 to 21 days), as it was proved to be the most
representative. All the data are registered on a weekly scale.
To compute the target variable, error forecast, the Climate
Prediction Center (CPC) data were collected and compared
with the ECMWF–S2S temperature forecasts. In order to
remove bias, this error is the result of de-seasonalizing forecast
and reference temperatures at a weekly level. Fig. 1 shows
where the data were obtained from in a schematic way.

Table I provides a more detailed description of every vari-
able used in this dataset. It is important to remark that even if
there are 21 features, our dataset will include a total of 36, that
is because, for those fluctuating variables, we include both the
absolute variables (denoted by suffix abs) and their anomaly
value (denoted by suffix anom). This does not apply to the
circulation indices ENSO, MJO, NAO, AAO, AO, and PNA,
as they are already interpreted as anomalies. When computing
the compute anomalies, the long-term trend is subtracted, and
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Fig. 1. Graphical summary of the data gathered, which involved multiple sources and allows a classification of the feature variables into three main families:
Land surface, Climate and Circulation.

Fig. 2. Scheme of a data point referring for a particular week datatime and reflecting information for a cell.

the seasonal cycle is also removed on a weekly basis. That,
our dataset will contain 36 predictive variables, which accounts
for 15 variables (absolute and anomaly values per each), plus
the 6 indices. already anomalies). An example of data-point is
schematized in Fig. 2.

Table I shows which feature variables have been included
in the dataset, with their names as feature (left column) and a
brief description. A scheme of the sources from which those
variables were measured is shown in Fig. 1.

This paper will focus on a Machine Learning approach that
intends to extend the methodology followed in [2] so that better
analysis can be conducted. For this reason, instead of using the
global dataset, this work will use a set of specific locations
as use cases. We aim to present a methodology that generates
more robust rankings but also some validation based on model
learning. These locations have been selected with two main
criteria: (1) choose those areas where the error forecast had
a better margin for improvement, and (2) choose areas in
distinct continents. Among the pre-selected locations, we will
use just one of them for simplicity in the section on exploratory

analysis.

III. CORRELATION METRICS AS RANKINGS

Correlation metrics are a very informative tool in statistical
analysis, aiding in understanding relationships between vari-
ables. Spearman, Pearson, and Kendall correlation coefficients
are among the most widely used metrics for quantifying the
degree of association between variables. Each metric offers dis-
tinct characteristics, depending on the nature of relationships
within datasets.

A. Spearman
The Spearman correlation coefficient [3], denoted by ρ (rho),

measures the strength and direction of association between
two variables. It is based on the ranks of data points rather
than their actual values. It is ideal for assessing monotonic
relationships (where the variables move in the same direction
but not necessarily linearly). It does not need specific distri-
butional assumptions about the data. Spearman correlation is
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Feature name Brief description
ssrd Surface solar radiation downwards
strd Surface thermal radiation downwards

sst 1 Sea surface temperature at a grid cell located at
the same latitude and 10 degrees eastward of the
coastline of the respective grid cell

sst 2 Sea surface temperature at a grid cell located at
the same latitude and 10 degree westward of the
coastline of the respective grid cell

q Specific humidity
precip Total precipitation
wind speed wind ERA5 (reanalysis)

sp diff meridional Surface pressure differences between 5o north and
5o south of the respective grid cell

sp diff zonal Surface pressure differences between 5o east and 5o
west of the respective grid cell

ENSO El Nino Southern Oscillation based on El Nino 3.4
index (anomalies only)

MJO Madden Julian Oscillation (anomalies only)
NAO North Atlantic Oscillation (anomalies only)
PNA Pacific North American pattern (anomalies only)
AAO Antarctic Oscillation (anomalies only)
AO Arctic Oscillation (anomalies only)

snow Snow cover fraction
EVI Enhanced vegetation index

albedo Albedo, the fraction of light that a surface reflects
EF Evaporative fraction, the ratio between latent heat

flux and available energy at the land surface
SM1 Surface soil moisture (0 to 10cm)

SM deep Subsurface soil moisture (10 to 50cm)

TABLE I. TABLE WHICH SHOWS ALL THE INCLUDED VARIABLES.

robust to outliers and is particularly useful when dealing with
ordinal or non-normally distributed data. However, it ignores
the magnitude of differences between ranks. The formula for
Spearman’s ρ involves calculating the difference between the
ranks of paired data points (see Eq. 1).

ρ = 1− 6
∑
d2i

n(n2 − 1)
(1)

Where:
• ρ is the Spearman correlation coefficient.
• di is the difference between the ranks of corresponding

paired observations.
• n is the number of paired observations.

B. Pearson
The Pearson correlation coefficient [4], often represented by

r, quantifies the linear relationship between two variables. It
measures the strength and direction of the linear association
between variables, assuming that the data follow a bivariate
normal distribution. It is especially suitable for assessing linear
associations. Pearson correlation is sensitive to outliers and
deviations from linearity but provides information about both
the strength and direction of the linear relationships within
the data. The formula for Pearson’s r involves covariance and
standard deviations of the variables. (see Eq. 2).

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(2)

Where:
• r is the Pearson correlation coefficient.

• xi and yi are the individual data points.
• x̄ and ȳ are the means of the x and y variables,

respectively.

C. Kendall
The Kendall Tau [5] correlation coefficient, denoted by τ

(tau), assesses the strength of the ordinal association between
two variables. It compares the concordance and discordance
of the ranks between paired observations, irrespective of the
actual values of the variables. It is particularly useful when
dealing with ordinal data or ranks. Kendall’s correlation is
robust to outliers and non-normally distributed data, making
it suitable for analyzing relationships in ranked data sets or
when the assumptions of linearity are not met. However,
it ignores the magnitude of differences between ranks. The
formula for Kendall’s correlation involves counting concordant
and discordant pairs (see Eq. 3).

τ =
#Concordant pairs−#Discordant pairs

1
2n(n− 1)

(3)

Where:
• τ is the Kendall Tau correlation coefficient.
• n is the number of observations.
• #Concordant pairs: number of concordant pairs.
• #Discordant pairs: number of discordant pairs.
A pair of data points is considered concordant if their order

remains consistent when comparing the two variables. In other
words, if both variables show the same relative ranking for that
pair. For example, if xi and yi are data points, they form a
concordant pair if (xi > xj) and (yi > yj) or (xi < xj) and
(yi < yj). On the contrary, a pair of data points is considered
discordant if their order differs between the two variables, that
is, if one variable ranks them differently from the other. For
example, if xi and yi are data points, they form a discordant
pair if (xi > xj) and (yi < yj) or (xi < xj) and (yi > yj).

The value of Kendall’s Tau ranges from -1 to 1:
• τ = −1: Perfect negative association (all pairs are

discordant).
• τ = 0: No association (random arrangement of pairs).
• τ = 1: Perfect positive association (all pairs are concor-

dant).

D. Correlation as a ranking
The general recommendation for choosing one of them is to

observe the data type, the research question to be answered,
and the assumptions. Each metric provides valuable insights
into the nature of associations, allowing researchers to make
informed decisions in scientific investigations. That is why the
base paper [2] used Spearman correlation, as the study looked
for potentially nonlinear relationships. In this paper, we will
show how these correlations are also valuable in a way that the
exact values are not strictly utilized, but what matters is their
order or rank. That is, we are going to use them as rankings. As
there is extensive research on ranking combinations, we will
explore how to make a consensus ranking using the three of
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them and pursue a more robust ordering of the feature variables
with respect to the target (error forecast).

When generating a ranking of features with respect to a
target variable, each correlation metric offers unique advan-
tages. Spearman correlation is suitable for identifying mono-
tonic relationships, making it valuable for ordinal data or
when the relationship between variables is non-linear. Pearson
correlation, on the other hand, is ideal for detecting linear
associations but may be sensitive to outliers. Kendall Tau
correlation provides insights into ordinal associations, making
it useful for ranked data sets. Our first contribution is a
framework where we will generate a combined ranking that
will work as a more complete and general method using
an ensemble-based approach. In [6] the authors explored the
benefits of ensemble methods in a broader context, highlighting
their ability to improve predictive accuracy and robustness.
Ensemble methods leverage the wisdom of crowds by combin-
ing multiple base models, each capturing different aspects of
the data, resulting in more reliable predictions. This collective
intelligence enables ensemble methods to achieve superior
performance over individual models. This applies to models
but could also be used for any information we are inferring
from data, such as rankings of variables with respect to the
target variable, which is our case.

IV. MACHINE LEARNING TOOLS

A. Ranking techniques
Ranking methods are pivotal in various domains where

disparate factors or labels necessitate ordered arrangements.
Different raters or judges may assign distinct rankings to the
same set of items in numerous scenarios, such as evaluating
preferences, assessing performances, or aggregating opinions.
This theoretical problem not only underscores the subjectivity
inherent in human judgments but also poses computational
challenges in reconciling diverse rankings into a cohesive and
representative order. From a computational perspective, the
challenge of finding a consensus between distinct rankings
involves establishing a framework that quantifies the disparity
between individual rankings and facilitates the synthesis of a
unified ranking.

Let N denote the number of items being ranked, and let Ri

represent the ranking assigned by a particular rater or judge
i, where i ∈ {1, 2, . . . ,M}, where M is the total number of
raters or judges. Each ranking Ri comprises a permutation
of the items, reflecting the preferences or assessments of the
respective rater. Formally, we can represent a ranking Ri as a
permutation vector πi = (πi1, πi2, ..., πiN ), where πij denotes
the position of the j-th item in the ranking assigned by rater i.
The challenge lies in devising methodologies to compare and
reconcile these permutation vectors to generate a consensus
ranking that accurately reflects the collective preferences or
assessments.

One widely employed method for combining rankings is the
Borda count [7], which assigns points to each item based on
its position and sums them across all rankings to determine
the aggregate ranking. The Borda score (Bj) is calculated as:
Bj =

∑M
i=1(N − πij + 1). This method is simple but works

Fig. 3. Example Decision Tree (left). Partial and schematic dataset from
which it could have been inferred (right).

properly in the general case, and it can be easily applied to
generate an ensemble ranking.

B. Decision Trees and ensemble models
A decision tree is a fundamental building block in machine

learning. It can be seen as a flowchart where each internal node
represents a decision based on a feature, and each leaf node
corresponds to an outcome: a class label for classification or a
numerical value for regression. Decision trees are intuitive,
interpretable, and capable of handling both categorical and
continuous features. Decision trees have leaf nodes, which
represent the prediction, and intermediate nodes, which could
be as a decision about the path to be taken. Therefore, when
constructing a decision tree, there are two main mechanisms:
• Split: The tree recursively splits the dataset into subsets

based on the most informative feature. The goal is
to minimize impurity (e.g., variance, Gini index, or
entropy) within each subset.

• Determine the prediction: At each leaf node, the
model predicts the target value by averaging the training
samples within that leaf (for regression) or by majority
voting (for classification).

As an illustration, Fig. 3 shows a hand-crafted and simple
Decision Tree based on the classic play tennis example [8].
In this case it is for classification, as the target variable
has categorical labels. This shows three intermediate deci-
sion nodes that correspond with three feature variables. Rain
probability and temperature are continuous variables, and in
this case a binary threshold determines the decision. Indoors
Facility is a binary categorical variable (Yes/No). On the right,
some cases of the possible input dataset is shown. There
are multiple algorithms for learning a decision tree, as ID3
[9] or C4.5 [10]. Once we have it constructed, their use for
inference or prediction is simple, as any possible case can
only follow one branch that will direct for one final decision
in the corresponding leaf node. For instance, in a new case
which could be {Rain probability=7%, Temperature=27oC,
Indoors=no}, the prediction would be ’YES’ because the path
leads to that leaf node.

Decision trees are versatile machine-learning models for
classification and regression tasks. They mimic human
decision-making processes by dividing the input space into
regions and making decisions based on the features present
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in those regions. Each internal node of the tree represents a
decision based on a feature, and each leaf node represents
the predicted outcome. Decision trees are easy to interpret
and understand, making them popular choices for various
applications. However, regular decision trees tend to overfit
due to their high flexibility in partitioning the feature space
to fit the training data precisely. As decision trees grow
deeper, they become increasingly complex and can capture
noise or outliers present in the training data, leading to poor
generalization performance on unseen data. Overfitting occurs
when the model learns to memorize the training data rather
than capturing underlying patterns or relationships.

C. Ensemble models: Random Forest

Ensemble methods have been extensively studied and empir-
ically validated to outperform individual decision trees. In [11]
the effectiveness of ensemble methods, particularly boosting
and bagging, was demonstrated across different datasets. This
study concluded that ensemble methods consistently yielded
lower error rates and better generalization performance than
individual classifiers, including decision trees. In particular,
Random Forest is recognised as one of the most widely used
ensemble methods. There are several key factors contributing
to its success. One significant factor is its robustness against
overfitting, which is achieved through the combination of
multiple decision trees trained on random subsets of the data
and features. By introducing randomness during both sample
selection and feature selection, Random Forest effectively
decorrelates the individual trees, reducing the risk of overfitting
and improving generalization performance [12]. Moreover,
Random Forest exhibits remarkable flexibility and scalability,
making it suitable for various applications across various
domains. The algorithm can handle high-dimensional data with
categorical and numerical features without requiring extensive
preprocessing, simplifying the modeling process and reducing
the risk of information loss. This versatility has contributed
to the widespread adoption of Random Forest in real-world
scenarios where complex data structures and large datasets are
common [13]. The interpretability of Random Forest models
is another advantageous feature that has contributed to its
popularity, and this is a perspective that we will discuss in
the explainability section. Finally, Random Forest’s compu-
tational efficiency and ease of implementation have made it
accessible to both researchers and practitioners. All the listed
characteristics have encouraged us to use this model, and its
prediction, for analysis and validation purposes throughout the
experimentation.

Once a Random Forest model has been learned (see steps at
Alg. 1), it can be easily used for prediction by averaging the
predictions from all trees (for regression), or using the majority
vote (for classification).

One utility that makes Random Forest particularly interest-
ing for our study is its ability to generate feature importance.
They allow the computation of the relative importance of each
feature (or variable) in predicting the target variable. It is
particularly useful for understanding which features contribute
the most to the predictive power of the model.

Algorithm 1 Random Forest Algorithm
1: Initialize an empty forest (a collection of decision trees).
2: for each tree do
3: Randomly sample the training data with replacement

(bootstrap).
4: Train a decision tree on the sampled data and randomly

select a subset of features for each split.
5: Add the trained tree to the forest.
6: end for

In exploratory analysis, this capability is very commonly
used for identifying the predictive power by examining feature
importance scores, as one can identify which features have
the most influence on the model’s predictions. This helps you
understand which aspects of your data are most relevant in
explaining the target variable. Also, this is applied to feature
subset selection by focusing on the most informative fea-
tures and potentially discarding less important ones. This can
simplify models and improve computational efficiency. Also,
as high feature importance may suggest strong relationships
between the feature and the target variable, exploring these
relationships further can provide insights into the underlying
dynamics of the data.

D. Explainability

While ensemble methods are often perceived as black-box
models, Random Forest offers insights into feature importance,
allowing users to understand the relative contribution of each
feature to the model’s predictions. This interpretability is cru-
cial in domains where model transparency and explainability
are paramount, such as healthcare and finance [14]. Feature
importance can help users understand the factors driving the
model’s decisions. Feature importance in Random Forests is
typically calculated based on how much each feature decreases
impurity across all decision trees in the forest. Features that
consistently contribute to reducing impurity are deemed more
important in determining the final predictions. This information
allows stakeholders to identify which features have the most
significant influence on the model’s output, facilitating trust
and transparency in decision-making processes. We will use
this utility in our analysis. Also, as we aimed to determine
those variables that most influenced forecast error, we can
also apply specific explainability techniques that account for
those contributions. Two popular approaches for interpreting
Random Forest models and other complex machine learning
models are SHAP and LIME.

1) SHapley Additive exPlanations: SHAP [15] values pro-
vide a theoretically grounded framework for explaining in-
dividual predictions by quantifying the contribution of each
feature to the model’s output. By leveraging concepts from
cooperative game theory, SHAP values assign a unique contri-
bution to each feature, taking into account interactions between
features. This approach offers a holistic understanding of how
each feature influences a specific prediction, enhancing the
interpretability of Random Forest models.
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SHAP values for Random Forest involve decomposing the
model’s prediction into contributions from individual features.
For each instance, we compute the difference between the
expected prediction (average over all instances) and the actual
prediction when a specific feature is included. Their interpre-
tation is:
• Positive SHAP value: The feature contributes positively

to the prediction.
• Negative SHAP value: The feature has a negative impact

on the prediction.
• Sum of SHAP values equals the difference between the

actual prediction and the expected prediction.
The SHAP Summary Plot shows the SHAP values for each

feature across the entire dataset. Notice that features with
larger absolute SHAP values contribute more significantly to
predictions. We could also observe particular predictions, and
then look at the individual SHAP Values for a specific instance.
This allows the SHAP values to be examined to understand
which features influenced the prediction.

2) Local Interpretable Model-agnostic Explanations: LIME
[16] focuses on providing local explanations for individual
predictions by approximating the behavior of complex models
with simple, interpretable models. It generates locally faith-
ful explanations by perturbing input instances and observing
changes in predictions, allowing users to understand how small
changes in input features affect the model’s output. LIME’s
model-agnostic nature makes it applicable to a wide range of
machine learning models, including Random Forest, without
requiring knowledge of the underlying model architecture.
LIME provides feature importance coefficients for the local
model, then the values allows the interpretation of the coeffi-
cients to understand the impact of features on one particular
prediction.

V. METHODOLOGY

A. Chosen Locations
To conduct the research presented in this paper, the first

step was to re-run all the scripts coded by Melissa Ruiz-
Vázquez for the experimentation shown in [2]. Contributing
with a more Machine Learning perspective, co-author and
visiting researcher in Jena, M. Julia Flores, needed a better
understanding of the data source and of all the intermediate
computations, together with insight into how the distinct multi-
dimensional datasets were transformed. For this collaboration,
we decided to perform a local study to make the conclusions
clearer and the analysis oriented into particular locations.
That also makes the learning process manageable, and for
future work, those tools that prove more promising could be
integrated into the worldwide grid. Then, both for verification
purposes and simplification (faster process and much smaller
input files), the experimentation here presented uses the same
workflow as in Fig. 1 but stores it for a single square in
the original gridding system. The global system divided the
globe into 360 longitudes, and latitudes were divided into
720 elements. In the current experimentation, we will just
use one square but look for meaningful locations. The data
verification, that is, how the two processes have been checked

Fig. 4. This figure shows the parallel procedure to get the values focusing
on a particular location starting from the original research work.

to provide identical data, is depicted in Fig. 4. The code to
construct a data-frame structure for a point was distinct than
the original one, being the sources the same as in Fig. 1. Also,
per location, we save the yearly data, but in the global process,
the information is separated into files by season1. Finally, for
a specific location, we extract the data frames and check that
the values for all the features and targets are identical. Notice
that the top part of this graph describes the work done in [2],
while the bottom part corresponds to the work performed to
carry out the study of this paper.

Table II shows the locations we have finally considered.
Notice that the location name is an approximation. Using
the original paper’s results, five locations were spotted using
the Nominating2 API. Every location has a descriptive name,
the associated latitude (lat) and longitude (long) coordinates.
Then, we include the exact latitude and longitude values in
the dataset, stored in multidimensional .nc files. Finally, we
report the indexes ilat and ilon, which are internal values that
serve for checking the data are correctly stored and extracted
from the global dataset (see right part in Fig. 4).

Name Country lat lon latnc lonnc ilat ilon
Lewiston USA 46.42 -117.02 46.25 -117.25 87 125
Lincoln USA 40.81 -96.71 40.75 96.75 98 166
Jena Germany 50.93 11.59 50.75 11.75 78 383
Jiangxi China 28.00 116.00 28.25 116.25 123 592
Canberra Australia -35.30 149.10 -35.25 149.25 250 658

TABLE II. MAIN INFO ABOUT THE CHOSEN LOCATIONS

B. Exploratory Analysis
In the original paper, Spearman correlation was computed

per season and per location to generate rankings of variables;
the main results were analyzing those variables in the first
positions. For a better generalization, they also used the three
families of variables (Land surface, Circulation and Climate).
In this previous study, only significant correlations were finally

1December–January–February (DJF), March–April–May (MAM),
June–July–August (JJA), and September–October–November (SON)

2https://nominatim.org/
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Fig. 5. Spearman Correlation for Lewiston, United States.

used. To compute that significance, the Benjamini–Hochberg
procedure [17] was applied to ensure control of the false
discovery rate. The limitation of this approach is that in many
locations, a great number of the variables did not research the
significance threshold, and their values were lost for analysis
purposes. In this new approach, we will use all the correlation
values without applying a post-process to the specific values.
In our case, the motivation is that the tools we will apply for
machine learning will be able to detect those spurious relation-
ships. For that purpose, we will generate an aggregate ranking
that integrates the information from correlation metrics. Also,
we will use a top-k strategy to use the most important ones.

With the data frame corresponding to one of our locations,
Lewiston, Fig. 5 plots the Spearman correlation of every vari-
able with respect to every variable in a heatmap, distinguishing
by season. In this heatmap we do not identify the specific
variables. Each of them is shown with an index from 0 to 35,
and 36 belongs to the error. We can visually identify clusters
of variables, as the anomalies and absolute values of the same
features are typically together. We can also be how the diagonal
always shows 1.

In this dataset, we maintain the whole data for the 900 weeks
distributed by season, like DJF: 220, MAM: 238, JJA: 221,
and SON: 221. We have performed some exploratory analysis,
but it would not be possible to present all the plots in this
paper, as there are too many variables and four datasets for
location. As a sample, Fig. 6, we have selected some of the
land surface variables and plotted them in pairs. This plot
shows the linearity of the two measurements per variable and
also that there is not a clear pattern with respect to the target
variable error using any of them individually.

We can see how the error tends to be small, but present
some larger values in some cases. This is shown by season in

Fig. 6. Partial pairplot for Lewiston (USA) in winter (season DJF).

Fig. 7. Boxplot for the target variable (error forecast) in Lewiston, by season.

the boxplots at Fig. 7.
In many exploratory analysis for regression tasks, a Random

Forest model is learned with the aim of providing which
variables seem more relevant, as commented in subsection
IV-C. As a sample, we have computed the feature importance
in winter (DJF) for Lewiston, but also for the spring (MAM),
as we can see the first one had a lot of outliers (see Fig. 7).

Because we have a model able to predict, in this analysis we
could use the explainability techniques described in IV-D. For
those, we should use, a model. As a sample, using the random
forest learn for the ’MAM’ season, and keeping 30% of the
test to train in Lewiston, Fig. 9 shows the summary plot for
the SHAP explainer. LIME is tailored for local explanations,
that is, given a prediction, indicate which variables played an
important role. This possibility is also possible with SHAP.
To show a possible use, we randomly picked an instance and
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DJF MAM

Fig. 8. Bar plot that shows the importance by the Random Forest values for two seasons (DJF and MAM) in Lewiston.

Fig. 9. SHAP summary plot, for Lewiston, MAM.

used both tools, and plotted the results in Fig. 10. It is very
illustrative for the use but will be interesting for analysing
particular predictions.

This brief exploratory analysis can give an idea of the kind
of data we are working with. However, this only refers to a
particular cell in the original 720x360 grid created in [2], as
the final goal is to make a global study that accounts for more
information. All the plots provided, as well as more extended
analysis and pre-processing, would be really interesting when
the expert wants to focus on a particular location. But this
is not the scope of the current work. Our current study is
about searching for a more informed methodology to analyze
the influence of the earth variable on the error forecast with
a common framework or methodology that could be applied
to all the squares. This is a preliminary work that could be
extended in many directions, some of them discussed in section
VII. The five locations described in subsection V-A will serve

SHAP

LIME

Fig. 10. Explainability for one random instance both in SHAP (up) and
LIME (down).

for our experimentation that could help us evaluate, with an
objective metric, the performance of the proposed method.

C. Experimentation setup
This work tries to determine if the aggregating method

of rankings provides good results. The best way to quantify
the performance is by model evaluation. We have chosen
Random Forest given its great performance, versatility, and
innate ability to provide a selection of the chosen features.
The explainability tools are not integrated within the experi-
mentation, as there is no clear and systematic way to validate
them. They could be, however, of great help when trying to
visualize unexpected results locally.

The experimentation will be focused on comparing these
three scenarios:

1) The performance of the aggregated rank. We will use
the top k selected variables and learn a model, in which
we can measure performance in the test cases.

2) The performance using the top k features using the
feature importance of the Random Forest model.

3) As a reference, we will also report the error when
learning using all the variables.

There is a key parameter in the experimentation to be
reported: how many elements within the rank we are going
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to use. We will call this parameter k and that set of relevant
features or variables will be denoted as top-k. It would seem
that lower values of k will give higher errors, if we use all the
variables, we will be in the base case, that will quite probably
tend to overfitting. That is why we tested k in this set of values
{5,10,15,20,25}. We will report those results that resulting
more representative. To compare the experimental results, we
report the Root Mean Square Error (rsme). It accounts for
the standard deviation of the residuals (prediction errors).
This error is commonly used in climatology, forecasting, and
regression analysis.

Having an input dataset X and a numeric target variable y
is calculated as the square root of the average of the squared
differences between the predicted values ŷ and the actual
values y:

rmse =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4)

Where:
• n is the number of samples in the dataset.
• yi is the actual value of the target variable for the i-th

sample.
• ŷi is the predicted value of the target variable for the

i-th sample.
The scheme of the global experiments we have launched is

described in pseudocode in Alg. 2. It is important to comment
that RF stands for Random Forest (algorithm 1). When we use
the syntax LEARN VALIDATE(MODEL,DATA) we are using a
regressor model, the data instances divided in train (80%)
and test (20%). The model is learned with the training set,
and the rsme is reported using the predictions on the test.
GET TOP K VARS uses the feature importance values and
returns those K feature with the highest scores.

Algorithm 2 Experimentation procedure
Require: K (input parameter)

for every season s
2: for every locations loc

data ← GET DATA(S,LOC)
4: I. Get top K variables

rp ← RANK PEARSON CORR(data)
6: rs ← RANK SPEARMAN CORR(data)

rk ← RANK KENDALL CORR(data)
8: borda← BORDA(rp, rs , rk)

rb ← RANK(borda)
10: sel agg ← GET TOP K VARS(rb,K)

II. Compute rsme
12: rfbase ← LEARN VALIDATE(RF,data)

selrf ← TOP VAR(rfbase,K)
14: rf1 ← LEARN VALIDATE(RF,data[sel agg])

rf2 ← LEARN VALIDATE(RF,data[sel rf ])
16: EndFor

EndFor

To illustrate a case for the most important contribution of
this paper, Fig. 11 shows the bar plots for the three correlation

Fig. 11. Bar plot for the three correlation metrics in a single case: Jiangxi
in the winter (DJF) season.

metrics in one sample pair of location and season. In order
to measure the concordance between them we compute a
concordance value, by the Kendall tau correlation [5], which
coincides with the Levenshtein/Wasserstein correlation that
ranky.corr method computes. We can see them in the
heatmap plot at Fig. 12. In this plot we can see how spearman
and Kendall seem closer, while pearson is more distant, having
already a correlation clearly higher than 0.5. This pattern
repeats in all the cases we have visualized. For the same
location in summer season (JJA) this correlation goes to 0.7
and 0.72. In other locations, pearson can be correlated more
than 0.8, but the other two metrics are always closer. In this
singular case, the average correlation of the original metrics
with respect to the aggregated one (by Borda technique) is
0.84.

VI. ANALYSIS OF THE EXPERIMENTS

All the experiments were performed using Python code.
Apart from the libraries typically used in a Machine Learn-
ing (scikit-learn, pandas and numpy), we have used
xarray for managing .nc files, seaborn and matplotlib
for the plotting, and ranky [18]for the ranking computa-
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Fig. 12. Pairwise correlation of the rankings extracted from the three
correlation metrics. Values for a sample case: : Jiangxi in the winter (DJF)
season.

tions and visualizations. For plots both matplotlib and
seaborn have been applied.

A. Results
The experimental procedure schemed in Alg. 2, for every K

value yields 4 (number of seasons) × 5 (number of locations)
runs, and every of these runs give us three error values.

As a starting point summary, table III shows the error per
season and location without any selection, the one we denoted
as rfbase. Looking at this table, we can see the variability in the
error limits, between 2 and 6.25, being season DFJ the most
difficult to predict correctly. Besides, we can easily observe
how every location behaves differently, which clarifies that the
original assumption is true: the earth system variables affect
the error forecast.

location DJF MAM JJA SON

Jiangxi 3.38604 2.30072 1.85447 2.77039
Lincoln 5.68711 3.84551 4.01374 3.96976
Jena 6.25605 4.16224 3.20605 3.06079
Lewiston 4.56119 2.72669 2.98300 3.87644
Canberra 2.03477 2.23822 2.16543 2.46705

TABLE III. ERRORS PER LOCATION (ROWS) AND SEASON (COLUMNS)
WHEN USING ALL THE VARIABLES (RANDOM FOREST).

We have designed a compact way of showing the distinct
errors for all the seasons and locations. Fig. 13 plots this
for an intermediate value of K (15). Every radial axis is a
location. The filled area is to find if there are clear tendencies.
Notice that we are plotting errors, which is why some locations
generally have lower values (see Table III). Also, if one
strategy covers more surface, then the performance is smaller
because we intend to minimize error.

Figures 15 and 14 show the results with a smaller and
higher number for parameter k. Looking at these plots, we
can state that there is not a clear tendency, when we compare
the three methods, it depends on the city and the season.
However, as a general rule, the base case (learning with all
the variables, in green) seems to provide smaller errors, while
between the other two, in many cases, they perform quite

location DJF MAM JJA SON

Jiangxi 3.34568 2.34824 1.57824 2.71997
Lincoln 5.71176 3.75950 3.70479 3.89288
Jena 6.30099 4.07241 3.17720 3.17043
Lewiston 3.96669 2.78479 2.89577 3.98564
Canberra 1.91339 2.25791 2.02373 2.52020

TABLE IV. ERRORS PER LOCATION (ROWS) AND SEASON (COLUMNS)
WHEN USING ALL THE VARIABLES (BAYESIAN RIDGE REGRESSOR).

similarly, and in others rf2 wins (Fig. 13 in season JJA for
Lewiston, Lincoln and Jena) whereas sometimes rf1 has lower
error (same case for Jiangxi or Lewiston and Jena in MAM).
Notice that the dotted line in blue corresponds to our ranking-
based aggregation proposal, rf1 (Alg. 2, line 14) vs the solid
line in orange, which corresponds to the top K selection by
random forest importance, rf2 (Alg. 2, line 15).

Observing the results when k=10 (Fig. 15) and k=15 (Fig.
13), the values differ, sometimes with larger differences, but
the general analysis could be quite similar. These results
show that Random Forest may be overfitting, which makes
sense, as the number of instances it learns from is relatively
small. In order to check the hypothesis of a possible over-
fitting, as Random Forest may need larger datasets to learn
more robustly, we have included a simpler model into the
experimentation. We chose Bayesian Ridge Regression [19],
which is a variant of linear regression. It is a probabilistic
model that introduces a Bayesian framework to estimate the
parameters of the model. Even though it admits regularization
parameters to prevent overfitting, we used the default case
so that comparisons with Random Forest are fairer. Table IV
shows the base results if we use this model, instead of Random
Forest. In the experimental algorithm, it would just include the
line LEARN VALIDATE(Bayesian Ridge,data) like in line 12
of Alg. 2.

To visually compare the reported values in Tables III and IV,
we have created the plots in Fig. 16. This comparison shows
clearly that the performance of both methods is practically
the same and, when there are difference, the linear regression
provides lower error. That supports the hypothesis that, in the
current framework, Random Forest may overfit.

As the primary purpose of this study is to evaluate the
performance of the ranking aggregation to select the most
significant variables, we will show the errors for the two cases
where this ranking aggregation is used for selection, together
with the base Bayesian model and the use of selecting the
top k by the importance values of the RF (rf2). We will use
k=15, and the results are shown in Fig 17. From these plots,
we can see how our aggregation method works much better
using a simpler model as the Bayesian Ridge than when using a
random Forest. We can also see that it doesn’t always improve
the performance of the base model, but it never affects its
values strongly.

As Random Forest also provides a selection method,
one fair comparison would be applying the selection
of the top k features discovered by the importance
feature technique, and learn a Bayesian Ridge model.
Following the previous notation, it would be: bay2
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Fig. 13. Summary radial graphs when k = 15. In the radius we represent every location. Every season is one plot, as the plot title indicates: upper-left is DJF,
upper-right is MAM, bottom-left is JJA and bottom-right is SON.
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Fig. 14. Summary radial graphs when k = 20. In the radius we represent every location. Every season is one plot, as the plot title indicates: upper-left is DJF,
upper-right is MAM, bottom-left is JJA and bottom-right is SON.
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Fig. 15. Summary radial graphs when k = 10. In the radius we represent every location. Every season is one plot, as the plot title indicates: upper-left is DJF,
upper-right is MAM, bottom-left is JJA and bottom-right is SON.
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Fig. 16. Comparing the rsme of the base models (all variables included) for models Random Forest (RF) and Bayesian Ridge (Bay).

Fig. 17. Comparing the rsme of the Bayesian Ridge model, when using all variables (bay), using the selection by aggregating rankings (bay1). As a reference,
we also include the results of rf1 and rf2.
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← LEARN VALIDATE(Bayesian Ridge,data[sel rf ]). In this
case, and in order to also explore the distinct values for k,
we will plot in the x-axis this value for k, and in the y-
axis the rsme values for applying our aggregation technique
versus RF selection. In order to keep under control the number
of figures, only two locations whose values resulted more
variable in the previous exploration have been chosen: Jena
and Lincoln. Figures 18 and 19 shows, per every season,
how these two selection techniques behave with respect to
the rsme in the Bayesian Regresson model. When looking
at the graphs the selection based on RF importance features
provides generally lower rsme error. However, when looking at
the absolute difference, it goes in an interval of [0,0.1] degrees.
With respect to the ideal value for k, we see that there could
be distinct behaviors depending on the location and the season.
In these cases a value between 10 and 20 could be reasonable,
as the performance is good enough, almost as good as using
all the variables, and the models will generalize better.

It could be relevant how much the three correlation rankings
correlate in every case and their correlation with respect to
the borda aggregation. We show Table V for that analysis.
In it, the column rankings shows the correlation of the ranks
from Pearson, Spearman and Kendall correlation. This value
is the average of the three pairwise correlations. The column
borda reports the average of computing the correlation of the
aggregated ranking with respect to the original three. The
data are shown per location and season. Considering these
two dimensions, the global mean values are reported on the
right column and the two last rows. This information is really
quite valuable to see the concordance of the three metrics, and
we can indeed see why Lewiston is sensitive to the distinct
regressor models (see Figures 16 and 17; in this case the
distribution at Fig. 6 can also be related). We can see that
it is the one whose rankings have a lower correlation in DJF
and JJA, but also on average. When the correlation is lower
than 0.75, it is clear that the errors can oscillate more. So,
this is one factor to be studied if a global scheme is included
when studying the importance of the variables. Finally, as it is
clear and expected, the aggregate ranking (borda) increases the
correlation with respect to the one computed fir initial three
input rankings. The best two values correspond to Lincoln and
Jena, and those are the cases we plotted by K values (Figures
18 and 19). It is remarkable how in most seasons a value of
K=20 (or smaller) get the same performance as using the whole
set of variables.

B. Evaluation of the results
After the provided experimentation and all the results we

have generated, there are some points to be highlighted:
• Our ranking-based technique has proven to be helpful

when applying it as a feature subset selection technique.
It works quite similarly as rf feature importance, but it
presents some advantages: (1) it is not model dependant,
(2) this is a basic scheme that can be improved by
integrating other metrics or correlations and/or by using
other aggregation methods (distinct from borda could be
studied)

corr DJF MAM JJA SON Avg
Location

Jiangxi ranking 0.73860 0.79020 0.79800 0.76230 0.772275
borda 0.84040 0.87540 0.88290 0.84840 0.861775

Jena ranking 0.80040 0.83110 0.83920 0.88150 0.838050
borda 0.87920 0.89830 0.90410 0.93290 0.903625

Lincoln ranking 0.87030 0.74810 0.84340 0.86080 0.830650
borda 0.92230 0.84740 0.90660 0.91490 0.897800

Lewiston ranking 0.65500 0.84760 0.73970 0.81590 0.764550
borda 0.79340 0.90450 0.84050 0.89210 0.857625

Canberra ranking 0.81510 0.82890 0.70770 0.82650 0.794550
borda 0.89390 0.89480 0.81620 0.89700 0.875475

Avg ranking 0.77588 0.80918 0.78560 0.82940 0.800015
borda 0.86584 0.88408 0.87006 0.89706 0.879260

TABLE V. CONCORDANCE/CORRELATION OF THE RANKINGS.

• Every location and season presents its particularities,
which this framework could extract by studying the
distinct metrics.

• For a single cell a simple model as a linear regression
provides better errors than Random Forest.

The exploration, experimentation and the plotted results
have contributed to the main purpose look for a Machine
Learning technique accounting for rankings to improve the
forecasting process.

VII. CONCLUSIONS AND FURTHER WORK

The work presented here is an initial study whose final
aim is to provide insight into which variables affect the most
error when performing temperature forecasts. In this paper,
we have shown that the ranking-based methodology works
for this purpose. The five cases of use have shown that our
methodology successfully reduces the number of variables,
which seems to be meaningful enough because the errors are
close to the base model (all variables). It would be a key point
to determine some parameters, such as the best k value or
which aggregation to use. This framework has been shown
with two models, but it can be extended to any regressor that
is available.

Random Forest has been proven to be a very powerful
model, and it also allows explainability methods, as explained
in the paper. However, when performing this study at a single-
cell level, the results are not highly reliable due to overfitting.
We could try to alleviate that problem in future work by using
bigger areas of N x N instead of a single cell (900 weeks or
data points, that makes around 225 weeks per season). For
example, to analyze the area of Jena, if N=3, we would use
as input the data the corresponding adjacent cells, and we will
multiply by 9 the number of instances to learn.

As additional future work, we should also investigate
the pairwise relationships between features, as the pairplots
showed some of them are strongly related. If we can establish
redundant or dependant variables, or even groups of variables,
by clustering, we could avoid the system detecting the same
information repeated by selecting variables expressing the
same information or the existence of confounding factors. This
is a very promising line when analyzing the impact of Earth
variables in the forecast errors. Finally, we could also focus
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Fig. 18. Comparing the aggregation selection and the rf selector for Bayesian Ridge and city Jena. rf shows the error for the base RF as a reference. In the
horizontal axis: the value K.

Fig. 19. Comparing the aggregation selection and the rf selector for Bayesian Ridge and city Lincoln. rf shows the error for the base RF as a reference. In
the horizontal axis: the value K.



17

on special events, such as extreme temperature values, which
are the most important errors to avoid.
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