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Abstract

Up to date several strategies of how to retrieve dispar-
ity information from a sequence of images have been de-
scribed. In this paper we introduce a method to retrieve
disparity based on motion and stereovision. A motion rep-
resentation in form of a bidimensional motion charge map,
based in the so-called permanency memories mechanism is
presented. For each pair of frames of a video stereovision
sequence, the method displaces the left permanency stereo-
memory on the epipolar restriction basis over the right one,
in order to analyze the disparities of the motion trails cal-
culated.

1. Introduction

In general there are several strategies of how to retrieve
depth information from a sequence of images, like depth
from motion, depth from shading and depth from stereo-
vision. In this paper we introduce a new method to re-
trieve disparity based on motion and stereovision. In a con-
ventional stereoscopic approach, usually two cameras are
mounted with a horizontal distance between them. As a
consequence, objects displaced in depth from the fixation
point are projected onto image regions which are shifted
with respect to the image center. Due to the geometry of the
optic system, it is sufficient to restrict disparity analysis to
the projection of corresponding linear segments in the left
and right camera. In some approaches, the disparity is com-
puted by searching the maximum of the cross-correlation
between image windows along the epipolar lines of the left
and right image [11].

So far, many algorithms have been developed to analyze
the depth in a scene. Brown et al. [2] describe a good ap-
proximation to all of them in their survey article. In many
previous works, a series of restrictions are used to approach
the correspondence problem. The most usual restriction is
the disparity restriction, which considers that is not prob-
able that there exist objects very close to the camera. The

scene uses to be limited to a medium distance. This way, too
high disparities are eliminated [14]. Koenderink and van
Doorn [12] expressed the necessary theory in best initial
works related to disparity restriction, and Wildes [16] im-
plemented some of their ideas [17]. More recently, dispar-
ity in stereoscopy continues showing its great interest (e.g.,
[13], [1]).

According to the correspondence techniques used, we
may classify methods into correlation-based, relaxation-
based, gradient-based, and feature-based. The main
correlation-based technique is the area correlation tech-
nique (e.g., [18]. The basic idea of relaxation techniques
is that pixels to be set into correspondence perform ”con-
trolled estimations”. In this kind of process, the correla-
tion values of the neighbors of a pixel are of a great impor-
tance for the evaluation of the correspondence [10]. Meth-
ods based in the gradient or in the optical flow aim to deter-
mine local disparities between two images by formulating a
differential equation that relates motion and luminance [3].
Techniques based in features limit to reliable features, such
as contours or curves (e.g., [15]), at the analyzed regions.

Most methods have as a common denominator that they
work with static images and not with motion information.
In this paper, we have chosen as an alternative not to use di-
rect information from the image, but rather the one derived
from motion analysis. The system proposed uses as input
the motion information of the objects present in the stereo
scene, and uses this information to perform a depth analy-
sis of the scene, through the use of a bidimensional motion
charge map.

2. Bidimensional Motion Charge Map

The input to our system is a pair of stereo image se-
quences. These sequences have been acquired by means of
two cameras arranged in a parallel configuration. The cen-
tral idea behind our approach is to transpose the spatially-
defined problem of disparity estimation into the temporal
domain and compute the disparity simultaneously with the



incoming data. This can be achieved realizing that in a well-
calibrated fronto-parallel camera arrangement the epipolar
lines are horizontal and thereby identical to the camera
scan-lines. Thus, they will capture two similar, although
not exactly equal, scenes. In case the images have been
acquired in a convergent configuration, horizontal epipolar
lines can be obtained by image-rectification techniques [4].

The motion analysis algorithm used in this work has al-
ready been tested in applications such as moving object
shape recognition in noisy environments [6] [9], moving
objects classification by motion features such as velocity or
acceleration [5], and in applications related to selective vi-
sual attention [8]. Motion analysis performs separately on
both stereovision sequences in two phases. The first analy-
sis phase is based in grouping neighboring pixels that have
similar grey levels in closed and connected regions in an
image frame (of both stereo sequences). The method used
is segmentation in grey level bands. This method consists
in reducing the resolution of illumination levels of the im-
age, obtaining this way a lower number of image regions,
which potentially belong to a single object in motion. Let
B(x, y, t) be the grey level band associated to pixel(x, y)
at time instantt, GL(x, y, t) the grey level,n the number of
grey level bands, andN the number of grey levels, then:

B(x, y, t) = �B(x, y, t − 1) · n
N

+ 0.5� (1)

A detailed analysis of the features and performances of
this segmentation method is described in [7]. Obviously,
segmentation in grey level bands performs in parallel on
each couple of images of the stereo sequence.

Once the objects present in the scene are approximated
in a broad way, the second phase has to detect possible mo-
tions of the segmented regions. Again, motion informa-
tion of both video sequences that form the stereo pair is
extracted. Motion detection is obtained from image pixels
change in luminosity as the video sequence goes on through
time. Motion in an image segmented in grey level bands is
detected through the variation of the grey level band of the
pixels. Notice that it is not that important that regions nei-
ther completely adjusts to the shape of the objects, nor that
at a given moment two different objects appear overlapped
in a same region. Consider that the proper relative motion
of the objects will force those regions belonging to a same
object to move in a uniform way, and those regions that hold
different objects separate in the future.

From motion detection, we now introduce a represen-
tation that may help to establish further correspondences
between different motion information. This representation
finds its basis in the permanency memories mechanism.
Precisely, this mechanism considers the jumps of pixels be-
tween bands, and it consists in a matrix of charge accumu-
lators. The matrix, also called bidimensional motion charge

map, is composed of as many units in horizontal and ver-
tical direction as pixels there are in an image frame. This
way, a position(x, y) of the image is associated to a perma-
nency memory charge unit. Initially all accumulators are
empty; that is to say, their charge is minimal. The charge in
the permanency memory depends on the difference between
the current and the previous images grey level band value.
An accumulator detects differences (diff(x, y, t) between
the grey level bands of a pixel in the current and the previ-
ous frame:

diff(x, y, t) =
{

0, if B(x, y, t) = B(x, y, t − 1)
1, if B(x, y, t) �= B(x, y, t − 1)

(2)
When a jump between grey level bands occurs at a pixel,

the charge unit (accumulator) of the motion charge map at
the pixel’s position -Ch(x, y, t) - is completely charged
(charged to the maximum charge valuemax). This is the
way to record that motion has just been detected at this
pixel. This complete charge is produced when there is a
jump to superior bands as well as to inferior bands. Thus,
charge units of the permanency memory are able to inform
on the presence of motion of the associated pixels. After
the complete charge, each unit of the bidimensional mo-
tion charge map memory goes decrementing with time (in
a frame by frame basis) down to reaching the minimum
charge valuemin, while no motion is detected, or it is com-
pletely recharged, if motion is detected again.

This behavior is described by means of the following
formula, where againB(x, y, t) is the grey level band as-
sociated to pixel(x, y) at time instantt. dec is a fixed
application-dependent quantity, which is decremented to
the instantaneous charge of each charge unit each time that
a frame is analyzed and no motion is detected. Thus, this
quantity shows the discharge velocity of the permanency
memory.

Ch(x, y, t) =




max,
if diff(x, y, t) = 1
max[Ch(x, y, t − 1) − dec, min],
if diff(x, y, t) = 0

(3)
Values of parametersdec, max andmin have to be fixed

according to the applications characteristics. Concretely,
values max and min have to be chosen by taking into ac-
count that charge values will always be between them.dec
defines the charge decrement interval between time instants
t − 1 andt. Thus, notice that the two-dimensional motion
charge map stores motion information as a quantified value,
which may be used for several classification purposes.

Thus, obviously, the evolution of charge in space de-
pends on the velocity of the mobile in a direction. A slow
mobile causes a short charge slope, as the object’s advance
from pixel to pixel may last various frames. During this



Figure 1. Motion charge map: (a) one image of a se-

quence, (b) same perspective after some seconds, (c)

motion trails as represented on the bidimensional mo-

tion charge map

time elapsed all affected units are discharging. In this case,
between the charge and discharge of a unit, the mobile cov-
ers a short distance. On the other hand, a quick mobile
causes various memory units to charge simultaneously, such
that there many more units will be affected by this motion.
In this second case, between the total charge and discharge
of a unit of the memory the mobile covers many pixels. Fig-
ure 1 shows all these issues. Figure 1a and Figure 1b show
two images of a monocular sequence. The advance of a car
may be appreciated, as well as a more slight movement of a
pedestrian. In Figure 1c you may observe the effect of these
moving objects on the motion charge map.

The difference between a quick object as the car, which
is leaving a very long motion trail (from dark grey to white),
and a pedestrian whose velocity is clearly slower and whose
motion trail is nearly unappreciable with respect to the cars
one, is presented. Thus, motion charge maps enable repre-

senting the motion history of the frames that form the image
sequence, that is to say, there is segmentation from the mo-
tion of the objects present in the scene.

However, the dependency of the permanency memories
from the segmentation in grey level bands imposes a re-
striction. The diminishment of the resolution in illumina-
tion levels produced by the segmentation in grey level bands
does not exactly imply segmentation into objects. Some of
the objects of the images are segmented into various re-
gions, and physically distinct objects may be overlapped
into a same region. Nevertheless, this issue is not that im-
portant when taking into account that our aim is to charac-
terize motion of the objects and not their shape.

3. Stereovision Disparity Analysis

Motion-based segmentation into a bidimensional motion
charge map, as explained in the previous section, facilitates
the correspondence analysis. Indeed, motion trails obtained
through the permanency memories charge units are used to
analyze the disparity between the objects in the stereo pair
in a more easy and precise way. The set of all disparities
between two images of a stereo pair is called the disparity
map.

The retrieval of disparity information is usually a very
early step in image analysis. It requires stereotyped pro-
cessing where each single pixel enters the computation. In
stereovision, methods based on local primitives as pixels
and contours may be very efficient, but they are too much
sensitive to locally ambiguous regions, such as occlusions
or uniform texture regions. Methods based on areas are less
sensitive to these problems, as they offer an additional sup-
port to obtain correspondences of difficult regions in a more
easy and robust way, or they discard false disparities. Al-
though methods based on areas use to be computationally
very expensive, we introduce a simple area-based method
with a low computational cost.

In order to explain our disparity analysis method, it is
sufficient to analyze the process at the level of epipolar
lines. The key idea is that a moving object causes two
identical trails to appear in epipolar lines of the permanency
stereo-memories - see pair of bidimensional motion charge
maps. The only difference relies in their relative positions,
affected by the disparity of the object at each moment.

In Figure 2, the charge values in two corresponding su-
perimposed epipolar lines of the maps are represented. In a
parallel configuration as the one we have chosen, there will
be no disparity in right and left image for objects that are in
a great depth - imagine in the infinite. Nevertheless, when
an object approaches to the central point of the base line,
that is to say, between the two cameras, the object goes ap-
pearing more to the right on the left image and more to the
left on the right image. This is precisely the disparity con-



Figure 2. Disparity by motion charge maps

cept; the more close objects have a greater disparity than the
more distant ones.

Looking at Figure 2 it is possible to analyze the motion
of each one of the three objects present in the permanency
memories from their motion trails. This initial analysis is
independent of the epipolar constraint studied. You may
observe that object ”a”, which has a long trail and has his
maximum charge towards the left, is advancing to the left
at a high speed. Object ”b”, with a shorter trail, is also ad-
vancing towards the same direction but at a slower velocity.
Finally, object ”c”, whose trail is inverted in horizontal, is
moving to the right at a medium velocity, as shown by its
trail.

Also from Figure 2, but now comparing between the mo-
tion trails in both epipolar lines, disparity is analyzed. Mo-
tion trail of object ”b” presents a null disparity. Therefore,
we can conclude that this trail corresponds to an object that
is far away from the cameras. Remember that due to our
parallel cameras configuration, pixels with a null disparity
are located in the infinite. Object ”a” has a little greater
disparity. Finally, object ”c” offers the greatest disparity.

This simple example draws three main conclusions.
Firstly, in order to consider two motion trails to be cor-
respondent, it must only be checked that both are equal
enough in length and in discharge direction in epipolar lines
of the pair of bidimensional motion charge maps. Secondly,
we may affirm that, in order to analyze disparities, one pos-
sibility is to displace one epipolar line over the other one,
until we get the exact point where both lines are completely
superimposed. In other words, an epipolar line has to be
displaced over the other until motion trails coincide. Of
course, the right epipolar line can be displaced over the left
or the left epipolar line over the right. When the motion
trails coincide, the displacement value applied to the epipo-
lar line is the disparity value. In third place, if we consider
the representation of a mobile with a high velocity, vari-
ous charge units of the permanence memories may charge
simultaneously. This way, an object may correspond to var-
ious disparities. This is the reason why one single memory
unit is not able to establish the disparity of an object. It is

Figure 3. Frame 211 of the "OutdoorZoom" stereo se-

quence. (Top Left) Original Left Image, (Top Right) Origi-

nal Right Image, (Bottom Left) Rectified Left Image, (Bot-

tom Right) Rectified Right Image

necessary to analyze the correspondence from the values of
various units. The decision of all units has to validate the
overall disparity value. The more efficient way to manage
this is that each pixel chooses its disparity in such a way that
the maximum of its neighboring units confirm the disparity.

All these considerations tell us that the disparity analysis
at epipolar line level consists in superimposing both epipo-
lar lines with different relative displacements and in ana-
lyzing the correspondences produced in the neighborhood
of each unit. The one displacement, which produces that a
maximum number of surrounding elements confirm its cor-
respondence, demonstrates to be the more trustful disparity
value.

4. Data and Results

In order to test our algorithms, a couple of real stereo
sequences are shown. Firstly, we show the results of apply-
ing our algorithms to a scenario called ”OutdoorZoom” (see
Figure 3), downloaded from labvisione.deis.unibo.it/ smat-
toccia/stereo.htm.

The whole sequence is 30 seconds long and has been
acquired at a rate of 10 images per second. The values of
the main parameters used in our test series were:

dec = 128; n = 8; min = 0; max = 255;

Figure 4 shows the result for some of the more represen-
tative results of applying our algorithms to the ”Outdoor-
Zoom” scenario. In column (a) the segmentation in grey
level bands may be appreciated, in column (b) motion in-
formation as represented in the right motion charge map is
offered, and in column (c) the final output, that is to say, the
scene depth as detected by the cameras, is presented.



Figure 4. Results for "OutdoorZoom" scenario

You may observe on Figure 4 that light colors in col-
umn (c) means that persons are closer to the cameras. Black
means there is no motion detected. The main information
is available in columns (b) and (c). We may observe some
details, as, for example, the following ones:

• In frame 35, a person is entering the scene on the right
side, very close to the cameras. This is why, in column
(c), the final output, very light grey levels appear.

• This person progressively is moving away from the
cameras, in such a way that on frame 50 it is repre-
sented by intermediate grey levels.

• In frame 65, the person is now far away from the cam-
eras. Its shape appears in dark grey values.

• Let us now focus on frame 215. A person is walk-
ing down the steps and at the same time an object is
appearing on the right side of the image. It may be ap-
preciated at the output of the system that the object is

Figure 5. Frame 53 of the "IndoorZoom" stereo sequence.

(Top Left) Original Left Image, (Top Right) Original Right

Image, (Bottom Left) Rectified Left Image, (Bottom Right)

Rectified Right Image

a bit lighter than the person. Thus, the object has to be
closer to the cameras than the walking person.

• From frame 215 to frame 228, the pedestrian is walk-
ing horizontally (to the left). Thus, we appreciate no
difference in the grey levels present in these frames.

• In frame 245, the person turns around, but there is still
no difference appreciated in its depth in the scene.

• Lastly, in frame 261, we may observe the person leav-
ing the scene on the right side, and at the output very
light grey levels. This obviously means that the man is
very close to the cameras.

In second place, we also show some results of the sce-
nario called ”IndoorZoom” (see Figure 5), downloaded
from labvisione.deis.unibo.it/ smattoccia/stereo.htm, as
well. In this scenario, two cameras are situated over an en-
trance door.

The whole sequence is 29.9 seconds long and has been
acquired at a rate of 10 images per second. Figure 6 shows
some of the more representative results of applying our al-
gorithms to the ”IndoorZoom” scenario.

The real interest of this series of images is related to oc-
clusions. The motion trails, and moreover the depths, of
people in the scene are different, enabling this way to dis-
tinguish among different persons.

5. Conclusions

In this paper we have introduced a new method to re-
trieve disparity information based on motion and stereovi-
sion. A motion detection representation helps establishing



Figure 6. Results for "IndoorZoom" scenario

further correspondences between different motion informa-
tion. This representation bases in the permanency memo-
ries mechanism, where jumps of pixels between grey level
bands are computed in a matrix of charge accumulators.
Thus, for the purpose to analyze scene depth from stereo
images, we have chosen the alternative not to use direct in-
formation from the image, but rather the one derived from
motion analysis. This alternative provides an important ad-
vantage.

Trough motion information stored in bidimensional mo-
tion charge maps it is easier to use correspondences than by
grey level information of the frames. The results are also
more accurate and robust. This is due to the instantaneous
motion features, such as position, velocity, acceleration and
direction of the diverse moving objects. Motion information
of an object is different from any other moving object’s one.
Nonetheless, when observing motion features of a concrete
object in both stereo sequences at the same time instant, we
appreciate that these features are extremely similar. This is
the reason why it is easy and robust to establish correspon-
dences between the motion information of an object at the
right image respect to the object at the left image. There
exist less ambiguity possibilities.
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