
L.C. Jain and C.P. Lim (Eds.): Handbook on Decision Making, ISRL 4, pp. 117–142.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 5

Computational Agents in Complex Decision
Support Systems

Antonio Fernández-Caballero1 and Marina V. Sokolova1,2

1 Universidad de Castilla-La Mancha, Departamento de Sistemas Informáticos
Campus Universitario s/n, 02071-Albacete, Spain

caballer@dsi.uclm.es, marina.v.sokolova@gmail.com
2 Kursk State Technical University, Kursk, ul.50 Let Oktyabrya, 305040, Russia

Abstract. The article introduces a general approach to decision making in
complex systems and architecture for agent-based decision support systems
(DSS). The approach contributes to decentralization and local decision
making within a standard work flow. The architecture embodies the logics
of the decision developing work flow and is virtually organized as a layered
structure, where each level is oriented to solve one of the three following
goals: data retrieval, fusion and pre-processing; data mining and evaluation;
and, decision making, alerting, solutions and predictions generation. In or-
der to test our approach, we have designed and implemented an agent-based
DSS, which deals with an environmental issue. The system calculates the
impacts imposed by the pollutants on the morbidity, creates models and
makes forecasts by permitting to try possible ways of situation change. We
discuss some used data mining techniques, namely, methods and tools for
classification, function approximation, association search, difference analy-
sis, and others. Besides, to generate sets of administrative solutions, we de-
velop decision creation and selection work flows, which are formed and
then selected in accordance with the maximum of possible positive effect
and evaluated by external and internal criteria. To conclude, we show that
our system provides all the necessary steps for standard decision making
procedure by using computational agents. We use so much traditional data
mining techniques, as well as other hybrid methods, with respect to data na-
ture. The combination of different tools enables gaining in quality and pre-
cision of the reached models, and, hence, in the recommendations that are
based on these models. The received dependencies of interconnections and
associations between the factors and dependent variables help correcting
recommendations and avoiding errors.

1 Introduction

The use of agent-based intelligent decision support systems (IDSS) is important
for the environmental related issues, because they allow specialists to quickly
gather information and process it in various ways in order to understand the real

118 A. Fernández-Caballero and M.V. Sokolova

nature of the processes, their influence on human health, and the possible out-
comes in order to make preventive actions and take correct decisions. The areas
these systems could help in are diverse, from the storing and retrieval of necessary
records, storing and retrieval of key factors, examination of real-time data gath-
ered from monitors, analysis of tendencies of environmental processes, retrospec-
tive time series, making short and long-term forecasting, and in many other cases
[1-3].

Nowadays, in the area of agent-based systems there are a lot of applications of
decision support systems (DSS) for social and ecological issues in general, and for
the environmental impact upon human health assessment problem in particular
[4]. To understand the current trends and to assess the ability of current agent-
based intelligent decision support research it seems to be reasonable to survey the
current state of the art and conclude how it is possible to optimize it.

2 Decision Support Systems for Complex Systems Study

The majority of real-life problems related to sustainable development and envi-
ronment can be classified as complex composite ones, and, as a result, they have
some particular characteristics, due to those, they require interdisciplinary ap-
proaches for their study. A system is an integration of interconnected (through
informational, physical, mechanical, energy exchange, etc.) parts and components,
which results in emerging of new properties, and which interacts with the envi-
ronment as a whole entity. If any part is being extracted from the system, it loses
its particular characteristics, and converts into an array of components or assem-
blies. An effective approach to complex system study has to follow the principles
of the system analysis, which are:

• Description of the system. Identification of its main properties and

parameters.
• Study of interconnections amongst parts of the system, which include infor-

mational, physical, dynamical, temporal interactions, as well, as functionality
of the parts within the system.

• Study of system interactions with the environment, in other words, with other
systems, nature, etc.

• System decomposition and partitioning. Decomposition supposes extraction
of series of system parts, and partitioning suggests extraction of parallel sys-
tem parts. These methods can be based on cluster analysis (iterative process
of integration of system elements into groups) or content analysis (system di-
vision into parts, based on physical partitioning or function analysis).

• Study of each subsystem or system part, utilizing optimal corresponding tools
(multidisciplinary approaches, problem solving methods, expert advice,
knowledge discovery tools, etc.)

• Integration of results received on the previous stage, and obtaining a pooled
fused knowledge about the system. Synthesis of knowledge and composition
of a whole model of the system can include formal methods for design,

 Computational Agents in Complex Decision Support Systems 119

multi-criteria methods of optimization, decision-based and hierarchical de-
sign, artificial intelligence approaches, case-based reasoning and others, for
example, hybrid methods.

It is obvious, that a DSS structure has to satisfy the requirements, imposed by
specialists, and characteristics and restrictions of the application domain. On
Fig. 1 there is a general workflow of a decision making process, which is embod-
ied in a DSS. The traditional “decision making” workflow includes the prepara-
tory period, development of decision and, finally, decision making itself and its
realization.

Background
information

and data
about the
situation

Stating the
general aim

and the
halfway
aims and
sub-aims

Creating an
evaluation
system for

the situation
assessment

Analysis of
the situation

and
diagnostic

Forecasting
of situation
dinamics

1 2 3 4 5

Generating
alternatives of

situation
development

Selecting of
the main

variants of
control

influence

Working out
scenarious of

situation
development

Selecting

the optimal
scenario

6 7 8 9

Fig. 1. The general workflow of a decision making process

In accordance with Fig. 2, a decision can be seen as the result of local deci-
sions, alternatives, which satisfy selection criteria. The complexity increases in
case if all these spaces have a composed organization. In the simplest case, possi-
ble alternatives are independent, but they can be grouped into clusters, or form
hierarchies; decisions can consist of the best optimal alternative, but can also be
formed as a result of combination (linear, non-linear, parallel, and so on) of alter-
natives, and their subsets and stratifications; criteria can be both independent or
dependent, and, commonly, hierarchically organized.

Our approach towards DSS for complex system is based on the general DSS
structure discussed in section 3. The main components of the DSS, which are (a)
the user interface, (b) the database, (c) the modeling and analytical tools, and (d)
the DSS architecture and network, have been determined for special features and
characteristics of possible application domains. The most important difference is
that the DSS is realized in form of a multi-agent system, and the agents provide
system functionality and realize organizational and administrative functions.

DSS organization in form of a MAS facilitates distributed and concurred deci-
sion making, because the idea of the MAS serves perfectly to deal with difficulties
of a complex system. A MAS, which can be described as a community of

120 A. Fernández-Caballero and M.V. Sokolova

…

Generation alternatives
(by classification, function
approximation, etc.)

Generation alternatives
(by classification, function
approximation, etc.)

Generation alternatives
(by classification, function
approximation, etc.)

Ranking of alternatives
and local decision

making

…

…
Ranking of alternatives

and local decision
making

Evaluation and
integration of

composite decisions

Ranking of alternatives
and local decision

making

Evaluation and
integration of composite

decisions

…

…

Fig. 2. Composite decision as a result of compositions between possible decisions, alterna-
tives, with respect to selection criteria

intelligent entities – computational agents, offers solutions because of the agency
properties, which are: reactivity (an agent responds in a timely fashion to changes
in the environment); autonomy (an agent exercises control over its own actions);
goal-orientation (an agent does not simply act in response to the environment, but
intents to achieve its goals); learning (an agent changes its behavior due to its pre-
vious experience), reasoning (the ability to analyze and make decisions), communi-
cation (an agent communicates with other agents, including external entities), and
mobility (an agent is able to transport itself from one machine to another) [5-6].

3 Decision Support Systems and Their Characteristics

There are many definitions of what a DSS is; for example, one is that decision sup-
port systems are a specific class of computerized information systems that support
business and organizational decision-making activities. A properly-designed DSS is
an interactive software-based system intended to help decision makers in compiling
useful information from raw data, documents, personal knowledge, and/or business
models to identify and solve problems and make decisions. Bonczek et al. [7] define
a DSS as a computer-based system consisting of three interacting components: a
language system, a knowledge system, and a problem-processing system. This

 Computational Agents in Complex Decision Support Systems 121

definition covers both old and new DSS designs, as the problem processing system
could be a model-based, or an expert system, or an agent-based system, or some
other system providing problem manipulation capabilities. Keen [8] applies the term
DSS to situations where a ‘final’ system can be developed only through an adaptive
process of learning and evolution. Thus, he defines a DSS as the product of a devel-
opmental process involving the builder, the user and the DSS itself to evolve into a
combined system.

Sprague and Carlson [9] identify three fundamental components of a DSS: (a)
the database management system (DBMS), (b) the model-based management
system (MBMS), and, (c) the dialog generation and management system (DGMS).
Levin [10] analyses a number of works and names the following components as
essential for a modern DSS: (1) models, which include multi-criteria techniques,
problem-solving schemes, data processing and knowledge management; (2)
analytical and numerical methods of data pre-processing and identification of
problems for the preliminary stages of decision making; (3) human-computer
interaction and its organization through graphic interface and others; (4) informa-
tion support, communication with databases, web-services, etc. According to
Power [11], academics and practitioners have discussed building DSS in terms of
four major components: (a) the user interface, (b) the database, (c) the modeling
and analytical tools, and (d) the DSS architecture and network. The definition of a
DSS, based on Levin and Power, in that a DSS is a system to support and improve
decision making, to our point of view, represents an optimal background for prac-
tical DSS creation.

3.1 Agents and Decision Support Systems

Agents and multi-agent systems (MAS) are actively used for problem solving and
have recommended themselves as a reliable and powerful technique [12-14]. The
“agent” term has many definitions, and, commonly, is determined as “an entity
that can observe and act upon an environment and directs its activity towards
achieving goals”. In practice, agents are often included into multi agents systems,
which can be determined as a decentralized community of intelligent entities task
solvers (computational agents), oriented to some problem. The agents in a multi-
agent system have several important characteristics [6]:

• Autonomy: the agents are at least partially autonomous.
• Local views: no agent has a full global view of the system, or the system is

too complex for an agent to make practical use of such knowledge
• Decentralization: there is no central guidance in the system, and the agents

use their reasoning abilities to act in accordance with internal believes.

MAS can manifest self-organization and complex behaviors even when the indi-
vidual strategies of all their agents are simple. The agents can share knowledge
using any agreed language within the constraints of the system's communication
protocol. Example of agent communication languages are Knowledge Query Ma-
nipulation Language (KQML) or FIPA's Agent Communication Language (ACL).

122 A. Fernández-Caballero and M.V. Sokolova

There is a need of mechanisms for advertising, finding, fusing, using, presenting,
managing, and updating agent services and information. Most MAS use facilitator
agents to help find agents, agents to which other agents surrender their autonomy
in exchange for the facilitator's services. Facilitators can coordinate agents' activi-
ties and can satisfy requests on behalf of their subordinated agents. MAS can be
classified in accordance with several classifiers. There are closed and open MAS.
The first ones contain well-behaved agents designed to cooperate together easily
towards a global goal. The MAS, related to the second type, can contain agents
that are not designed to cooperate and coordinate, but to assist the agents in work-
ing together. The most common kind of these mechanisms is for negotiations and
auctions.

Weiss gives other classifications: MAS classified by the level of autonomy, of
organizational type, and architecture [6]. Depending on the level of autonomy and
self-orientation of every agent, MAS can vary from distributed and “independent”
to supervised systems of “organizational” type, in which every agent knows the
order and turn of its execution. The MAS is a kind of an informational system, and
its planning and creation, actually, include the same set of tasks and works as in
the general case of any software tool.

3.2 Multi-agent Planning and Design

3.2.1 Multi-agent Developing Life Cycle

Creation, deployment and post-implementation of a MAS as a software product is
a complex process, which passes through a sequence of steps forming its life cy-
cle. Every step of the life cycle process has to be supported and provided by pro-
gram tools and methodologies. In case of MAS development, there is no unified
approach to cover all the steps. However, there are some works dedicated to this
issue [15-16]. For instance, de Wolf and Holvoet [15] have offered a methodology
in the context of standard life cycle model, with accent to decentralization and
macroscopic view of the process. As tools and frameworks the authors mention
Jade [17], Repast [18] and an environment for the coordination of situated multi-
agent systems [19].

The authors offer their methodology on the assumption that the research task
has already been defined. Though, the software life cycle includes the problem
definition and domain analysis stages, which cannot be omitted. The software
development in case of MAS is based on the following steps [20]:

1. Domain Analysis - is related to the analysis of the project idea, problem defi-

nition, extraction of aims, creation of the goal trees, sequence of tasks and
subtasks to be solved. This stage also implies domain ontology creation,
which covers the problem area, the set of relations between the concepts and
the rules to receive new knowledge. The work of domain areas experts is re-
quired at this stage.

2. Software Elements Analysis - this stage also deals with private ontologies
creation, but now, ontologies are created for the system and its elements. The

 Computational Agents in Complex Decision Support Systems 123

sets of goals and tasks are related to the sets of system functions (roles), re-
quired resources (commonly in form of informational files), interactions, etc.

3. Specification - is the written description of the previous stages, which results
in system meta-ontology creation.

4. Software Architecture - implies the abstract representation of the system to
meet the requirements. The software architecture includes interfaces for com-
puter-user communication.

5. Implementation (coding) - the iterative process of program creation.
6. Testing - program testing under normal and critical conditions.
7. Deployment and Maintenance - program application and support until the

software is put into use. Sometimes some training classes on the software
product are made.

8. End of Maintenance - is a final stage of the software life-cycle.

3.2.2 Ontology Representation

There are a great number of languages for ontology creation. To name some, but
not all, we have: OKBC, Ontolingua/KIF, OIL, SHOE, XOL, DAML+OIL, CycL,
OWL, and RDF. The creation of XML (eXtensible Markup Language) appeared
to be a visible advantage towards knowledge representation in the Web. The XML
gives the users a range of possibilities to create their own logical systems of data
representation, determining tags, structural elements and their relations. All the
connections between tags can be settled and stored in DTD (Document Type
Definition) or XML schema document. The modes of data representation in XML
documents are defined in XSL (eXtended Style Language) files. Though XML
permits to organize and to structure data representation, it lacks possibilities to
represent their semantics, because in XML there is no standard for tags and their
relations definition.

3.2.3 Meta-ontology planning

According to Guarino et al. [21], an ontology can be understood as an intentional
semantic structure which encodes the implicit rules constraining the structure of a
piece of reality. There are a number of approaches to ontology creation, mostly
induced by the specificity of the domain of interest and the nature of the tasks to
solve (e.g. [22]), from which we can induce and convert to our aims an algorithm
of distributed ontology creation:

1. Situation description in natural language.
2. Vocabulary creation (extraction of concepts describing the situation).
3. Taxonomy creation.
4. Distributed meta-ontology structure creation.
5. Domain of interest ontology statement.
6. Description of tasks to solve and creation of the respective private ontology.
7. Description of MAS roles, agents and creation of the system architecture

ontology.
8. Description of agent ontology.

124 A. Fernández-Caballero and M.V. Sokolova

9. Agent environment ontology statement by specifying interaction and commu-
nication protocols.

10. Ontologies mapping.
11. Data Bases filling for a MAS.
12. Data Sources delivering to agents.

When briefly studying the steps of a given algorithm, it is worth noting that step 1 -
problem description - serves for better understanding the aims of the research and
structure of the functionality of the situation. This initial analysis helps defining
concretely the problem at hand and recovering the concepts, their characteristics
and relations to examine. On this stage, expert information, which is supplemented
by statistical data and multimedia references related to the problem, is used.

Fig. 3. Components of the meta-ontology

The consequentially following task (2) is the creation of a vocabulary, which
includes the necessary and sufficient information about the concepts. The further
step 3 consists in adding a set of relations (including hierarchical ones) between
the concepts to a vocabulary, which results into a taxonomy. As in our work we
use the inductive method of ontology creation, then, on step 4 we determine the
general structure of the meta-ontology (see Fig. 3) and extract the main function-
ally and semantically separated components. On steps 5 to 8 we create private
ontologies for the extracted components of the meta-ontology, namely domain of
interest, MAS architecture, tasks, agents and interactions. At steps 9 and 10 the
private ontologies are mapped together. Finally, we fill data bases for a MAS (11)
and deliver the real data to agents (12). In the following part of the article the
distributed meta-ontology and the private ontologies, as well as the mapping pro-
cedure, are described in detail.

 Computational Agents in Complex Decision Support Systems 125

To provide the ontological basis as for the domain of interest, as well as for the
MAS structure and organization, the meta-ontology creation framework, which
maps together private ontologies, was developed. The Distributed Meta-Ontology
is obtained as a result of private ontologies mapping, and is pooled by their com-
mon use and execution. This is achieved at step 10 of the algorithm proposed be-
fore. The shared ontological dimension, filled with the data, provides agents with
correct addressing to proper concepts and synchronizes the MAS functionality.

3.2.4 Frameworks of Multi-agent Systems Planning

Domain Analysis and Software Elements analysis steps, noted in the MAS devel-
oping algorithm, can be made through domain analysis and ontology creation,
using software products for knowledge representation, described in the previous
part. Thus, “Software elements analysis” needs information about MAS function-
ality and taxonomy. Here we can use one of the several frameworks, existing and
used in scientific practice. Some of the most frequently used, but not limited, are:
MaSE [23], Gaia [24], Agent ULM [25], Prometheus [26], Tropos [27], INGE-
NIAS [28], and some others.

Agent-Oriented Software Development is one of the recent contributions to the
field of Software Engineering. To date numerous methodologies for agent-
oriented software development have been proposed in the literature. However,
their application to real-world problems is still limited due to their lack of matur-
ity. Evaluating their strengths and weaknesses is an important step towards devel-
oping better methodologies in the future. MAS bring some difficulties to a
researcher, which are caused by task identifications, specifying sets of protocols,
interactions, methods and agents behaviors. That makes software design tools
more sophisticated, which operate with new concepts as agents, goals, tasks, inter-
actions, plans, believes, etc. Methodologies offer different tools to cope with the
complicity and facilitate MAS planning and design [29]. The brief review of
some methodologies includes the following ones.

The Prometheus methodology defines a detailed process for specifying, de-

signing and implementing agent-oriented software systems. It consists of three
phases [30]: the System Specification phase, which focuses on identifying the
goals and basic functionalities of the system, along with inputs (percepts) and
outputs (actions) [31]; the Architectural Design phase, which uses the outputs
from the previous phase to determine which agent types the system will contain
and how they will interact; and, the Detailed Design phase, which looks at the
internals of each agent and how it will accomplish its tasks within the overall
system.

System Specification. The Prometheus methodology focuses particularly on
specification of goals [32], and on scenario description [33]. In addition, it re-
quires specification of functionalities – small chunks of behavior – related to the
identified goals. There is also a focus on how the agent system interfaces with the
environment in which it is situated, in terms of percepts that arrive from the envi-
ronment, and actions that impact on the environment. As part of the interface
specification, Prometheus also addresses interaction with any external data stores

126 A. Fernández-Caballero and M.V. Sokolova

or information repositories. The aspects developed in the System Specification
phase are: specification of system goals with associated descriptors, development
of a set of scenarios that have adequate coverage of the goals, definition of a set of
functionalities that are linked to one or more goals and which provide a limited
piece of system behavior, and, description of the interface between the agent sys-
tem and the environment in which it is situated.

Architectural Design. The three aspects that are developed during the Architec-
tural Design phase are: deciding on the agent types used in the application,
describing the interactions between agents using interaction diagrams and interac-
tion protocols, and, describing the system structure through the system overview
diagram.

Detailed Design. In the Detailed Design, for each individual agent, it is decided
what capabilities are needed for the agent to fulfill its responsibilities as outlined
in the functionalities it contains. The process specifications to indicate more of the
internal processing of the individual agents are developed. And when getting into
greater detail, the capability descriptions to specify the individual plans, beliefs
and events needed within the capabilities are developed. Then the views that show
processing of particular tasks within individual agents are developed. It is during
this final phase of detailed design that the methodology becomes specific to agents
that use event-triggered plans in order to achieve their tasks.

The Gaia methodology [24] provides a full support for multi-agent system

creation starting from the requirements determination, up to the detailed design.
There are two phases of modeling with Gaia: analysis and design. The aim of the
first stage is to understand the system structure and its description. The objective
of the design stage is “to transform the abstract models derived during the analy-
sis stage into models at a sufficiently low level of abstraction that can be easily
implemented”.

The analysis phase. The analysis phase supposes the following steps:

1. Identification of the roles.
2. Detailed description of the roles.
3. Modeling interactions between the roles.

At first phase, as the requirements to the system are stated, there are two models to
be created: the Roles model and the Interactions model. To create a Roles model,
the developer has to understand the main purposes of the system created, analyze
the organizational and functional profile of the system, which is decomposed and
represented by set of played roles. The concept of “Role” is one of the key ones in
Gaia methodology, as it determines a function related to some system task (or
tasks), which is semantically and functionally interacts with the other roles. Role
can be related to a system entity, for example, in case of human organization, a
role can represent a “manager” and “seller”.

The role is defined by the following attributes: responsibilities, permissions, ac-
tivities and protocols. Responsibilities determine functions of the role and have
aliveness properties and safety properties. Aliveness properties describe the

 Computational Agents in Complex Decision Support Systems 127

actions and conditions that the agent will bring, by the other words, it determines
the consequences of executed procedures, which will be potentially undertaken
within a role. Safety properties state crucial environmental conditions, which can-
not be exceeded or neglected. Permissions determine the resources and their limits
for the role, and are commonly represented by information resources. For exam-
ple, it can be abilities to read, change or generate information. Activities are
private actions of an agent, which are executed by the agent itself, without com-
munication with the other agents. Every role can be associated with one or more
protocols, which state communications with other roles. The described attributes
for every role are pooled in so-called role schemata, thus, comprising the Roles
model.

The interaction model is focused on protocols description and their comprising.
Protocols determine links between roles and provide the interaction within the
multi-agent structure. The protocol definition includes: purpose - the brief textual
description or detailed name of the protocol, which discovers the nature of interac-
tion; initiator – the name of the role, which initiated the interaction; responder –
the role with which the initiator communicates; inputs - the information, supplied
by the responder during the interaction; processing – the brief description of proc-
esses realized within the protocol. Finally, in the analysis phase, there are the
Roles models created, with the associated protocols, comprising the Interaction
model.

The design phase. During the design phase, service, agent and acquaintance
models are created. These models provide detailed description of the multi-agent
system that then could be easily implemented. The Agent model relates roles to
every agent type, taking into account that an agent may play one or more roles.
The agents form a hierarchy in which leaf nodes correspond to roles and other
nodes to other agent types. The number of agent instances is also documented; for
example, the agent may be called for execution once, or n times, or repeated from
m to n times, etc. The Services model identifies the necessary resources for every
function performed by an agent. Every function (or service) has properties, which
include inputs, outputs - those are derived from protocols, and pre-conditions and
post-conditions, which state constraints and are derived from safety properties of
related roles. The Acquaintance model is created from the Interactions and the
Agent models, and serves to state communication links between the agents, and is
represented by directed graphs, where each vertex of those relates to an agent, and
every edge to a communication link.

3.2.5 Software Tools for Mutli-agent Systems Design and Implementation

Because of the complex nature of problems to solve, multi-agent systems become
more complicated to plan and to design. There appeared new concepts such as
goals, roles, plans, interactions, environment, necessary to identify system func-
tionality, interactions between agents, mental states and behavior of the last. On the
other hand, MAS have to be secure, mobile and able to cope with distributed prob-
lem solving. These put on requirements on methodologies to help designers to deal
with these problems, and manage this complexity. A methodology should facilitate
and support agent-based system engineering by providing solid terminology

128 A. Fernández-Caballero and M.V. Sokolova

support, precise notations and reliable interactions, and general system functional-
ity organization.

Nowadays, there are a number of methodologies for MAS planning and design,
which are divided into steps, during which the system is firstly described in gen-
eral terms, and then in more details, which determine the internal functionality of
system entities. Two well-known methodologies were presented and discussed in
the previous section. And, in this part software tools for the system coding imple-
mentation will be discussed. These can be viewed as a logical continuation of the
methodologies (JACK Software tool is related with Prometheus Design Tool and
MASDK is based on Gaia methodology).

JACK Development Environment (JDE) is a software package for agent-

based applications development in Java-based environment JACK [35]. The JDE
has a visual interface, which supports application creation. This may be done
directly in JDE environment, or be imported, for example, from Prometheus
Development Tool, a graphical editor which provides agent systems design in
accordance with its associated methodology Prometheus [35]. The JDE enables
building applications by providing a visual representation of the system compo-
nents in two modes: agent mode and team mode.

Jack, written in Java, provides object-oriented programming for the system, en-
capsulating the desired behavior in modular units so that agents can operate inde-
pendently. JACK intelligent agents are based on the Believe-Desire-Intention
model, where autonomous software components (the agents) pursue their given
goals (desires), adopting the appropriate plans (intentions) according to their cur-
rent set of data (beliefs) about the state of the world.

Hence, a JACK agent is a software component that has (a) a set of beliefs about
the world (its data set), (b) a set of events that it will respond to, (c) a set of goals
that it may desire to achieve (either at the request of an external agent, as a conse-
quence of an event, or when one or more of its beliefs change), and, (d) a set of
plans that describe how it can handle the goals or events that may arise. JACK
permits the creation of multiple autonomous agents, which can execute in agent
and in team mode within a multi-agent system. MAS creation can be realized
using a graphical interface. JACK extension to Team mode permitted Teams
Models to be treated as peers, and introduces new concepts as team, role, team
data and team plan, which required to wide semantics of some elements, and to
appear team reasoning entity, knowledge and internal coordination of the agents
within the team. The key concept, which appears here, is the role concept. A role
defines the means of interacting between a containing team (role tenderer) and a
contained team (role performer or role filler). In JACK Team mode each team has
its lifetime, which is divided into two phases: first phase is for setting up an initial
role obligation structure and the second phase constitutes the actual operation of
the team. In addition to the agent believes, in team mode, knowledge can be
“propagated” over the team members.

Prometheus Development Kit permits creation of the skeleton code for its later
implementation in JACK, which facilitates the stages of MAS planning and cod-
ing. Actually, JACK teams can be used for complex distributed system modeling
and problem solving.

 Computational Agents in Complex Decision Support Systems 129

Java Agent DEvelopment Framework (JADE) is a software Framework fully
implemented in Java language [17]. Developers position JADE as “a middleware
for the development and run-time execution of peer-to-peer applications which are
based on the agent paradigm and which can seamless work and interoperate both
in wired and wireless environment.” JADE facilitates the development of distrib-
uted applications composed of autonomous entities that need to communicate and
collaborate in order to achieve the working of the entire system.

On the one hand, JADE is a run-time system for FIPA-compliant MAS, which
supports application agents agree with FIPA-specification. On the other hand,
JADE provides object-oriented programming through messaging, agent life-cycle
managing, etc. Functionally, JADE provides the basic services necessary to dis-
tributed peer-to-peer applications in the fixed and mobile environment. Each agent
can dynamically discover other agents and is able to communicate with them di-
rectly. Each agent is identified by a unique name and provides a set of services,
manage them, can control its life cycle and communicate with others.

JADE is a distributed platform, which comprises one or more agent containers,
supported by Java Virtual Machine (JVM) each, and JVM provides a complete run
time environment for agent execution and allows several agents to concurrently
execute on the same host. The configuration can be controlled via a remote
graphic-user interface. The configuration can be even changed at run-time by
moving agents from one machine to another one, as and when required. JADE has
two types of messaging: inter-platform and intra-platform (interacting agents are
inside the same platform). Messaging, realized in Agent-Communication Lan-
guage (ACL), is presented in form of queue, which can be accessed via a combi-
nation of several modes: blocking, polling, timeout and pattern matching based.
JADE is completely implemented in Java language and the minimal system re-
quirement is the version 1.4 of JAVA (the run time environment or the JDE).

Multi-agent System Development Kit (MASDK) is a relatively new method-

ology, created in the Laboratory of Intelligent Systems, St. Petersburg Institute for
Informatics and Automation of the Russian Academy of Sciences [4,36]. The
software tool provides support for the whole life cycle of MAS development. As a
terminological foundation, the authors use the Gaia methodology.

MASDK 3.0 software tool consists of the following components: (1) system
kernel which is a data structure for XML–based representation of applied MAS
formal specification; (2) integrated set of the user friendly editors supporting
user's activity aiming at formal specification of an applied MAS under develop-
ment at the analysis, design and implementation stages; (3) library of C++ classes
of reusable agent components constituting what is usually called Generic agent;
(4) communication platform to be installed in particular computers of a network;
and (5) builder of software agent instances responsible for generation of C++
source code and executable code of software agents as well as deployment of
software agents over already installed communication platform.

MASDK includes three editors, which act on each of the three levels. The edi-
tors of the first one correspond to the Gaia´s analysis phase and are dedicated to
ontology determination, roles extraction and determination of protocols and

130 A. Fernández-Caballero and M.V. Sokolova

interactions between the agents. The editors of the second level support the design
activities and primarily aim at specification of agent classes. They include agents
which determine behavior, agent ontologies, functions and plans. The editors of
the third level support implementation stage of applied MAS and particular com-
ponents and lists of agents instances of all classes with the references to their
locations (hosts names), and initial states of agent believes. The next stage is cor-
respondent to the design phase of the Gaia methodology, where the developer fills
generalized MAS structural entities with internal components, which are the
following ones: (1) invariant (reusable) component called Generic Agent, (2)
meta-model of agent class’s behavior, (3) a multitude of functions of agent class
represented in terms of state machines, and, (4) library of specific auxiliary func-
tions The applied MAS specification produced by designers exploiting the above
editors is stored as an XML file in the system kernel. This specification, including
a set of particular components and functions implemented in C++, and Generic
Agent reusable component form the input of the software agent builder generating
automatically software code based on XSLT technology.

4 General Approach for Multi-agent System Creation

4.1 Information Change

Large amounts of raw data information describe the “environment - human
health” system, but not all the information can be of use though. For the situation
modeling we orient to factual and context information, presented in data sets and
we use computational agents to extract it. So, the information transforms from the
initial “raw” state to the “information” state, which suggests organized data sets,
models and dependencies, and, finally, to the “new information” which has a form
of recommendations, risk assessment values and forecasts. The way in which the
information changes, is given in Fig. 4.

Fig. 4. The information transformation, which changes from weakly organized and hetero-
geneous view into the form of knowledge

The hidden information is discovered by agents, but for new information con-
struction not only intelligent agents, but knowledge of decision maker or expert
are involved. The agent-based decision support system (MAS) we are creating
provides these information changes. The process of information change, shown on

 Computational Agents in Complex Decision Support Systems 131

Fig. 4, corresponds to the MAS life cycle flow, which, in case of MAS, counts the
following steps:

1. Domain Analysis - is related to the analysis of the project idea, problem

definition, extraction of aims, creation of goal trees, sequencing of tasks and
subtasks to be solved. This stage also implies the domain ontology creation,
which covers the problem area, the set of relations between the concepts and
the rules to incorporate new knowledge. The experience of domain area ex-
perts is required on this stage.

2. Software Elements Analysis - this stage also deals with private ontologies
creation; but now ontologies are created for the system and its elements. The
sets of goals and tasks are related to the sets of system functions (roles), re-
quired resources (commonly in form of informational files), interactions, and
so on.

3. Specification - is the written description of the previous stages, which results
in system meta-ontology creation.

4. Software Architecture - implies the abstract representation of the system to
meet the requirements. The software architecture includes interfaces for hu-
man-computer communication.

5. Implementation - the iterative process of program creation.
6. Testing - program testing under normal and/or critical conditions.
7. Deployment and Maintenance - program application and support until the

software is put into use. Sometimes some training classes on the software
product are made.

8. End of Maintenance - is the final stage of the software life cycle.

The workflow of tasks, which has to be solved for information integration (see
Fig. 2) contains four sequential states of data transformation: (1) initial heteroge-
neous data sources, (2) storages of extracted data, (3) mapped (fused) meta-data,
(4) shared global ontology of the problem area (domain ontology) and three
flows/processes, which provide and organize the transformations: (i) data retrieval
and extraction, (ii) data mapping (fusion), (iii) filling in the ontology of the prob-
lem area (domain ontology).

4.2 Multi-agent System Organization and Architecture

We have implemented an agent-oriented software system dedicated to environ-
mental impact assessment. The system receives retrospective statistical informa-
tion in form of direct indicator values - water pollution, solar radiation - and in
form of indirect indicator values - types and number of vehicles used, energy used
annually and energy conserved, types and quantity of used fuel, etc. The indirect
indicators are utilized in accordance with ISO 14031 “Environmental Performance
Evaluation” standard in order to estimate air and soil pollution [37]. The popula-
tion exposure is registered as number of morbidity cases with respect to Interna-
tional Statistical Classification of Diseases and Related Health Problems, 10th
review (ICD-10) [38].

132 A. Fernández-Caballero and M.V. Sokolova

In order to provide the system design we decided to use the Prometheus Devel-
opment Tool (PDT), which provides a wide range of possibilities for MAS
planning and implementation: the system architecture, the system entities, their
internals and communications within the system and with outer entities. The most
important advantages of PDT are an easy understandable visual interface and the
possibility to generate code for JACK™ Intelligent Agents, which is used for
MAS implementation, verification and maintenance.

The initial analysis of the system has resulted in obtaining and describing the
system roles and protocols. There, the proposed system is logically and functionally
divided into three layers; the first is dedicated to meta-data creation (information
fusion), the second is aimed to knowledge discovery (data mining), and the third
layer provides real-time generation of alternative scenarios for decision making.

The goals drawn in Fig. 5 repeat the main points of a traditional decision mak-
ing process, which includes the following steps: (1) problem definition, (2) infor-
mation gathering, (3) alternative actions identification, (4) alternatives evaluation,
(5) best alternative selection, and, (6) alternative implementation. The first and the
second stages are performed during the initial step, when the expert information
and initial retrospective data is gathered, the stages 3, 4 and 5 are solved by means
of the MAS, and the 6th stage is supposed to be realized by the decision maker.
Being implemented by means of the Prometheus Design Tool, the Analysis Over-
view Diagram of the MAS enables seeing the high-level view composed of exter-
nal actors, key scenarios and actions (see Fig. 5). The proposed MAS presupposes
communication with two actors. One actor is named as “Expert” and it embodies
the external entity which possesses the information about the problem area -in
more detail, it includes the knowledge of the domain of interest represented as an
ontology -and delivers it through protocol ReturnEI to the MAS.

The data source, named “The CS Results” stores the results of the simulation
and forms a knowledge base (KB). Through the Simulate Models scenario user
interacts with the KB, and gets recommendations if they have been previously
simulated and stored before, or creates and simulated the new ones. As a result of
the interaction within the FuseHeterogeneousData scenario, the raw information
is being read, and it is shown as “Heterogeneous Data Sources” data storage, and
there are “Pollutants” and “Morbidity” data sources are created.

The second actor, named “Decision Maker”, is involved in an interactive proc-
ess of decision making and choosing the optimal alternative. This actor communi-
cates with agents by message passing through protocol ReturnSUI, stating the
model, simulation values, prediction periods, levels of variable change, etc. It
accepts the best alternative in accordance with its beliefs and the MAS. The flow
of works, which are essential for decision making, include three scenarios: the
Simulate models scenario, the Create recommendation scenario and the Search for
the adequate model scenario; and three goals, which related to every scenario and
have similar names. Each goal has a number of activities, and within each scenario
are used, modified or created informational resources in form of data sources.

 Computational Agents in Complex Decision Support Systems 133

Fig. 5. The Prometheus diagram of MAS interaction with actors

In addition to the accepted MAS architecture and in order to gain time of the
recommendation generation process and optimize interactions between agents, we
used local agent teams, which coordinate and supervise task execution and re-
source usage. Agent teams have permitted to synchronize the work of the system,
plans execution in a concurrent mode and strengthen the internal management by
local decision making.

As we use four agent teams within the system: two within the first level, and
one team on the second and third level, and each “main” agent plays several roles.
In Table 1 we give a view of the correspondent logical levels, and the roles, which
are played there. During the system work cycle, agents manipulate with diverse
income and outcome information flows: data transmission protocols, messages,
income and outcome data, etc. These information sources differ by the “life time”:

134 A. Fernández-Caballero and M.V. Sokolova

Table 1. The roles played in the MAS

Logical
level

Main agent Subordinate agent Role

Data Fusion Data Aggregation
agent

Data Pre-
processing agent

Domain Ontology agent
Traffic Pollution Fusion agent
Water Data Fusion agent
Petroleum Data Fusion agent
Mining Data Fusion agent
Morbidity Data Fusion agent
Waste Data Fusion agent

Normalization agent
Correlation agent
Data Smoothing agent
Gaps and Artifacts Check agent

Data Fusion

Data Clearing

Data Min-
ing

Function Ap-
proximation agent

Regression agent
ANN agent
GMDH agent
Committee Machine agent
Decomposition agent
Evaluation agent

Impact As-
sessment
Decomposition
Function Ap-
proximation

Decision
Making

Computer Simula-
tion agent

Forecasting agent
View agent
Alarm agent

Computer
Simulation
Decision Mak-
ing
Data Distribu-
tion

they can be permanent and temporary, by the assessment levels – some can be
used modified or deleted by agents, the decisions about others have to be taken by
a system user. So, in this case the DPA has to operate as a planning agent, on the
one hand, and has to pool the results of the subordinate agents’ execution.

In the next section we shall describe the agents’ organization in detail.

5 Description of the Agents within the MAS

5.1 The Data Aggregation Agent

The Data Aggregation agent (DAA) has a number of subordinate agents under its
control; they are the Domain Ontology agent (DOA) and the fusion agents: the
Water Data Fusion agent (WFA), the Petroleum Data Fusion agent (PFA),
the Mining Data Fusion agent (MFA), the Traffic Pollution Fusion agent (TFA),
the Waste Data Fusion agent (WDFA) and the Morbidity Data Fusion agent
(MFA). First, the DAA sends the message ReadOntology to the DOA, which reads
the OWL-file, which contains information about the ontology of domain, and
makes it available to the DAA. The DOA terminates its execution, sending the
message OntologyIsBeingRead to the DAA. Next, the DAA sends the message

 Computational Agents in Complex Decision Support Systems 135

Start Fusion to the fusion agents, which initiate their execution. When starting to
execute, each fusion agent searches for the files that may contain information
about the concept of its interest. Each fusion agent works with one or a few con-
cepts of the domain ontology: WFA searches for the information about water
contaminants and their properties, PFA – about the use of petroleum and related
concepts, MDF retrieves data about the contamination related to mining industry
activity, the WDFA retrieves data about wastes and its components, the TFA –
data about transport vehicles activity, and the MFA – data about morbidity and
their properties. When it finds the information file, the agent retrieves the informa-
tion about the concept and its values, and changes their properties (in order to get
rid of heterogeneity and to homogenize information) and sends it to the DAA,
which pools retrieved information together. Finally, DAA fills the domain ontol-
ogy with data, and puts data into a standard format. After that, the data files are
ready to be pre-processed, and the DAA through the protocol ReturnDF tells the
DPA that the data is fused and pre-processing can be started.

5.2 The Data Pre-processing Agent

The Data Pre-processing agent (DPA) provides data pre-processing and has a
number of subordinate agents which specialize in different data clearing tech-
niques: Normalization agent (NA), Correlation agent (CA), Data Smoothing agent
(DSA), Gaps and Artifacts Check agent (GAA). They perform all data pre-
processing procedures, including outliers and anomalies detection, dealing with
missing values, smoothing, normalization, etc.

Fig. 6 gives a look at the first logical level, within which the Data Aggregation
agent and the Data Pre-processing agent act. DPA starts to execute as soon as it
receives a triggering message from DAA. The main function of the DPA is to
coordinate the subordinate agents and decides when they are executed and in
which order. Starting its execution, DPA sends the StartDataConsistenceCheck
message, which triggers the GAA to eliminate artifacts, searches for double values
and fills gaps. Having finished its execution, GAA sends to DPA a message. Then,

Fig. 6. Interaction between the Data Aggregation agent and the Data Pre-processing agent

136 A. Fernández-Caballero and M.V. Sokolova

DPA through the message StartSmoothing calls for DSA, which can execute ex-
ponential and weighted-average smoothing and terminates sending SmoothingIs-
Finished message to DPA. Then, NA and CA are called in their turn.

The outcomes of the DPA work are: data, ready for further processing and
modeling, and additional data sources with correlation and normalization results.

5.3 The Function Approximation Agent

The Function Approximation agent (FAA) has a hierarchical team of subordinate
agents, which serve to support the roles: “Impact Assessment”, “Decomposition”
and “Function Approximation” (see Fig. 7). FAA has under its control a number
of data mining agents: the Regression agent (RA), the ANN agent (AA), and the
GMDH agent (GMDHA), which work in a concurrent mode, reading income
information and creating models. Then, if any agent from this group finishes mod-
eling, it calls the Evaluation agent (EA), which evaluates the received models, and
returns the list of the accepted ones. The others are banned and deleted. The FAA
pools the outcome of the agents work, creates the list with the accepted models
and then, once RA, AA and GMDHA finish their execution, calls the Committee
Machine agent (CMA), which creates the final models in form of committees for
each of the dependent variables, and saves them.

Fig. 7. Function Approximation agent and its team

The FAA working cycle is the following one. FAA sends StartDecomposition
message and waits until DA finishes its execution. Then, having received the
StartDataMining message, the data mining agents start execution in a concurrent
mode. Each of them has plans with particular tools, and in case of AA, it has neu-
ralNetwork and evaluateImpactAssessment plans, where the first plan is oriented
to artificial neural network (ANN) creation and training, and the second plan aims
to evaluate the environmental impact by means of ANN with determined structure
and characteristics. EA is called by each of the data mining agents to evaluate the
created models, and to check the adequacy of the model to the experimental data.
EA is triggered by the StartEvaluation message from a data mining agent, and,

 Computational Agents in Complex Decision Support Systems 137

whenever it is not busy, starts to execute. Having terminated the execution, it is
ready to receive tasks and handle them. CM is the last to be called by FAA, as CM
creates final hybrid models for every dependent variable. Each hybrid model is
based on the previously created and evaluated models from the data mining
agents, and uses the data sources created by them: Models Table, IAResults.

5.4 The Computer Simulation Agent

The Computer Simulation agent (CSA) interacts with the user and performs a set
of tasks within Computer Simulation, Decision Making and Data Distribution
roles. It has the agent team, which includes Forecasting agent (FA), Alarm agent
(AmA) and ViewAgent (VA) as sown in Fig. 8.

Fig. 8. Computer Simulation agent and its team

The CSA execution cycle starts by asking for the user preferences, to be more
precise, for the information of the diseases and pollutants of interest, the period of
the forecast, and the ranges of their value changes. Once the information from the
user is received, CSA sends a message SimulateAlternative to FA, which reasons
and executes one of the plans, which are Forecasting, ModelSimulation, and Crite-
rionApplication. When the alternative is created, CSA sends the StartAlarmCheck
message to AmA. The AmA compares the simulation and forecast data from the
FA with the permitted and alarm levels for the correspondent indicators. If they
exceed the levels, AmA generates alarm alerts.

6 Results

The MAS has an open agent-based architecture, which enables an easy incorpora-
tion of additional modules and tools, enlarging a number of functions of the sys-
tem. The system belongs to the organizational type, where every agent obtains a
class of tools and knows how and when to use them. Actually, such types of sys-
tems have a planning agent that plans the orders of the agents’ executions. In our
case, the main module of the Jack program carries out these functions. The View-
Agent displays the outputs of the system functionality and performs the interaction

138 A. Fernández-Caballero and M.V. Sokolova

with the system user. As the system is autonomous and all the calculations are
executed by it, the user has only access to the result outputs and the simulation
window. He/she can review the results of impact assessment, modeling and fore-
casting and try to simulate tendencies by changing the values of the pollutants.

To evaluate the impact of environmental parameters upon human health in the
Spanish region Castilla-La Mancha, in general, and in the city of Albacete in par-
ticular, we have collected retrospective data since year 1989, using open informa-
tion resources offered by the Spanish Institute of Statistics and by the Institute of
Statistics of Castilla-La Mancha. As indicators of human health and the influenc-
ing factors of environment, which can cause negative effect upon the noted above
indicators of human health, the factors described in Table 2 were taken.

Table 2. Diseases and pollutants studied in research

Type of Dis-
ease/Pollutant

Disease class

Endogenous
diseases:

Certain conditions originating in the prenatal period; Congenital
malformations, deformations and chromosomal abnormalities.

Exogenous
diseases:

Certain infectious and parasitic diseases; Neoplasm; Diseases of the
blood and blood- forming organs and certain disorders involving
the immune mechanism; Endocrine, nutritional and metabolic
diseases; Mental and behavioral disorders; Diseases of the nervous
system; Diseases of the eye and adnexa; Diseases of the ear and
mastoid process; Diseases of the circulatory system; Diseases of the
respiratory system; Diseases of the digestive system; Diseases of
the skin and subcutaneous tissue; Diseases of the musculoskeletal
system and connective tissue; Diseases of the genitourinary sys-
tem; Pregnancy, childbirth and the puerperium; Symptoms, signs
and abnormal clinical and laboratory findings, not elsewhere
classified; External causes of morbidity and mortality.

Transport: Number of Lorries, Buses, Autos, Tractors, Motorcycles, Others;

The MAS has recovered data from plain files, which contained the information

about the factors of interest and pollutants, and fused in agreement with the ontol-
ogy of the problem area. It has supposed some necessary changes of data proper-
ties (scalability, etc.) and their pre-processing. After these procedures, the number
of pollutants valid for further processing has decreased from 65 to 52. This
significant change was caused by many blanks related to several time series, as
some factors have started to be registered recently. After considering this as an
important drawback, it was not possible to include them into the analysis. The
human health indicators, being more homogeneous, have been fused and cleared
successfully.

The impact assessment has shown the dependencies between water characteris-
tics and neoplasm, complications of pregnancy, childbirth and congenital malfor-
mations, deformations and chromosomal abnormalities. Part of Table 3 shows that
within the most important factors apart from water pollutants, there are indicators
of petroleum usage, mines outcome products and some types of wastes.

 Computational Agents in Complex Decision Support Systems 139

Table 3. Part of the table with the outputs of impact assessment

Disease Class Pollutant, which influence upon the disease
Neoplasm Nitrites in water; Miner products; DBO5; Dangerous chemical

wastes; Fuel-oil; Petroleum liquid gases; Water: solids in
suspension; Asphalts; Non-dangerous chemical wastes;

Diseases of the blood
and blood- forming
organs, the immune
mechanism

DBO5; Miner products; Fuel-oil; Nitrites in water; Dangerous
wastes of paper industry; Water: solids in suspension; Dan-
gerous metallic wastes

Pregnancy, childbirth
and the puerperium

Kerosene; Petroleum; Petroleum autos; Petroleum liquid
gases; Gasohol; Fuel-oil; Asphalts; Water: DQO; DBO5;
Solids in suspension; Nitrites.

Certain conditions
originating in the
prenatal period

Non-dangerous wastes: general wastes; mineral, constriction,
textile, organic, metal. Dangerous oil wastes.

Congenital malforma-
tions, deformations
and chromosomal
abnormalities

Gasohol; Fuel-oil; DQO in water; Producing asphalts; Petro-
leum; Petroleum autos; Kerosene; Petroleum liquid gases;
DBO5 in water; Solids in suspension and Nitrites.

The MAS has a wide range of methods and tools for modeling, including re-

gression, neural networks, GMDH, and hybrid models. The function approxima-
tion agent selected the best models, which were: simple regression – 4381 models;
multiple regression – 24 models; neural networks – 1329 models; GMDH – 2435
models. The selected models were included into the committee machines. We
have forecasted diseases and pollutants values for the period of four years, with a
six month step, and visualized their tendencies, which, in common, and in agree-
ment with the created models, are going to overcome the critical levels. Control
under the “significant” factors, which cause impact upon health indicators, could
lead to decrease of some types of diseases.

As a result, the MAS provides all the necessary steps for standard decision
making procedure by using intelligent computational agents. The levels of the
system architecture, logically and functionally connected, have been presented.
Real-time interaction with the user provides a range of possibilities in choosing
one course of action from among several alternatives, which are generated by the
system through guided data mining and computer simulation. The system is aimed
to regular usage for adequate and effective management by responsible municipal
and state government authorities.

We used as well traditional data mining techniques, as other hybrid and specific
methods, with respect to data nature (incomplete data, short data sets, etc.). Com-
bination of different tools enabled us to gain in quality and precision of the
reached models, and, hence, in recommendations, which are based on these mod-
els. Received dependencies of interconnections and associations between the fac-
tors and dependent variables helps to correct recommendations and avoid errors.

To conclude, it is necessary to about our future plans regarding the work. As
the work appeared to be very time consuming during the modeling, we are looking

140 A. Fernández-Caballero and M.V. Sokolova

forward to both revise and improve the system and deepen our research. Third, we
consider making more experiments varying the overall data structure and trying to
apply the system to other but similar application fields.

7 Conclusions and Future Work

Agent-based decision making is a complicated problem, especially for a general
issue as environmental impact upon human health. Though supposing it to be a
tractable problem, we should note some essential advantages we have reached,
and some directions for future research. Consequently, our future work can be
drawn on various levels.

First, the MAS supports decision makers in choosing the behaviour line (set of
actions) in general case, which is potentially difficult to analyse and foresee. As
for any complex system, MAS allows pattern predictions, and the decision
maker’s choice is to be decisive. The framework we have created provides flows
of works for decision generation, receiving raw data which are treated by agent
teams, and transforming them into knowledge

Second, in spite of our time consuming modelling work, we are looking for-
ward to both revise and improve the system and deepen our research. We are
planning to refine data mining methods and modify some of them, to add some
new ones, which can be especially valuable for concrete works, for example, some
methods to work with qualitative information, fuzzy-based methods, dimension
reduction methods, etc.

Third, as the system architecture has a general structure, we consider making
more experiments varying data structure, and trying to apply the system to other
application fields.

Acknowledgements

This work was partially supported by Spanish Ministerio de Ciencia e Innovación
TIN2007-67586-C02 and TIN2010-20845-C03 grants, and by Junta de Comuni-
dades de Castilla-La Mancha PII2I09-0069-0994 and PEII09-0054-9581 grants.

References

1. Sokolova, M., Fernández-Caballero, A.: A multi-agent architecture for environmental
impact assessment: Information fusion, data mining and decision making. In: 9th In-
ternational Conference on Enterprise Information Systems, ICEIS 2007, vol. AIDSS,
pp. 219–224 (2007)

2. Chang, C.L.: A study of applying data mining to early intervention for developmen-
tally-delayed children. Expert Systems with Applications 33(2), 407–412 (2006)

3. Gorodetsky, V., Karsaeyv, O., Samoilov, V.: Multi-agent and data mining technolo-
gies for situation assessment in security-related applications. Advances in Soft Com-
puting, 411–422 (2005)

 Computational Agents in Complex Decision Support Systems 141

4. Sokolova, M., Fernández-Caballero, A.: Modeling and implementing an agent-based
environmental health impact decision support system. Expert Systems with Applica-
tions 36(2), 2603–2614 (2009)

5. Bradshaw, J.M.: Software Agents. The MIT Press, Cambridge (1997)
6. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-

gence. The MIT Press, Cambridge (2000)
7. Bonczek, R.H., Holsapple, C.W., Whinston, A.B.: The evolving roles of models in de-

cision support systems. Decision Sciences 11(2), 337–356 (1980)
8. Keen, P.G.W.: Adaptive design for decision support systems. ACM SIGMIS Data-

base 12(1-2), 15–25 (1980)
9. Sprague, R.H., Carlson, E.D.: Building Effective Decision Support Systems. Prentice-

Hall, Englewood Cliffs (1982)
10. Levin, M.S.: Composite Systems Decisions. Decision Engineering. Springer, Heidel-

berg (2006)
11. Power, D.J.: Decision support systems: concepts and resources for managers. Quorum

Books, Westport (2002)
12. Chen, H., Bell, M.: Instrumented city database analysts using multi-agents. Transpor-

tation Research, Part C 10, 419–432 (2002)
13. Sokolova, M.V., Fernández-Caballero, A.: An agent-based decision support system for

ecological-medical situation analysis. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007.
LNCS, vol. 4528, pp. 511–520. Springer, Heidelberg (2007)

14. Urbani, D., Delhom, M.: Water management policy selection using a decision support
system based on a multi-agent system. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005.
LNCS (LNAI), vol. 3673, pp. 466–469. Springer, Heidelberg (2005)

15. de Wolf, T., Holvoet, T.: Towards a full life-cycle methodology for engineering decen-
tralised multi-agent systems. In: The Fourth International Workshop on Agent-
Oriented Methodologies, pp. 1–12 (2005)

16. Vasconcelos, W.W., Robertson, D.S., Agusti, J., Sierra, C., Wooldridge, M., Parsons,
S., Walton, C., Sabater, J.: A lifecycle for models of large multi-agent systems. In:
Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp.
297–318. Springer, Heidelberg (2001)

17. Bellifemine, F., Poggi, A., Rimassa, G.: Jade – A FIPA-compliant agent framework.
Practical Applications of Intelligent Agents, 97–108 (1999)

18. Repast home page (2003), http://repast.sourceforge.net
19. Schelfthout, K., Holvoet, T.: ObjectPlaces: an environment for situated multi-agent

systems. In: Third International Joint Conference on Autonomous Agents and Multi-
agent Systems, pp. 1500–1501 (2004)

20. ISO/IEC 12207 home page, http://www.iso.org/iso/
21. Guarino, N., Giaretta, P.: Ontologies and knowledge bases: Towards a terminological

clarification. In: Towards Very Large Knowledge Bases, pp. 25–32. IOS Press, Am-
sterdam (1995)

22. Samoylov, V., Gorodetsky, V.: Ontology issue in multi-agent distributed learning. In:
Gorodetsky, V., Liu, J., Skormin, V.A. (eds.) AIS-ADM 2005. LNCS (LNAI),
vol. 3505, pp. 215–230. Springer, Heidelberg (2005)

23. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering. Inter-
national Journal of Software Engineering and Knowledge Engineering 11, 231–258
(2001)

142 A. Fernández-Caballero and M.V. Sokolova

24. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems 3, 285–
312 (2000)

25. Bauer, B., Müller, J.P., Odell, J.: Agent UML: a formalism for specifying multiagent
software systems. International Journal of Software Engineering and Knowledge En-
gineering 11(3), 207–230 (2001)

26. Padgham, L., Winikoff, M.: Prometheus: A pragmatic methodology for engineering
intelligent agents. In: Workshop on Agent Oriented Methodologies (Object-Oriented
Programming, Systems, Languages, and Applications), pp. 97–108 (2002)

27. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos software development method-
ology: Processes, models and diagrams. In: Giunchiglia, F., Odell, J.J., Weiss, G.
(eds.) AOSE 2002. LNCS, vol. 2585, pp. 162–173. Springer, Heidelberg (2002)

28. Gascueña, J.M., Fernández-Caballero, A.: Prometheus and INGENIAS agent method-
ologies: A complementary approach. In: Luck, M., Gomez-Sanz, J.J. (eds.) Agent-
Oriented Software Engineering IX. LNCS, vol. 5386, pp. 131–144. Springer, Heidel-
berg (2009)

29. Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engineering
for Agent Systems: The Agent-Oriented Software Engineering Handbook. Springer,
Heidelberg (2004)

30. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide.
John Wiley & Sons, Chichester (2004)

31. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (1995)

32. van Lamsweerde, A.: Goal-oriented requirements engineering: A guides tour. In: 5th
IEEE International Symposium on Requirements Engineering, RE 2001, pp. 249–263
(2001)

33. Liu, L., Yu, E.: From requirements to architectural design: Using goals and scenarios.
In: ICSE 2001 Workshop: From Software Requirements to Architectures, STRAW
2001, pp. 22–30 (2001)

34. JackTM Intelligent Agents home page,
http://www.agent-software.com/shared/home/

35. Prometheus Design Tool home page,
http://www.cs.rmit.edu.au/agents/pdt/

36. Gorodetsky, V., Karsaev, O., Konushy, V., Mirgaliev, A., Rodionov, I., Yustchenko,
S.: MASDK software tool and technology supported. In: International Conference on
Integration of Knowledge Intensive Multi-Agent Systems, pp. 528–533 (2005)

37. ISO 14031:1999. Environmental management - Environmental performance -
Guidelines, http://www.iso.org/

38. International Classification of Diseases (ICD),
http://www.who.int/classifications/icd/en/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

