
COLLISION HANDLING AND SHADOW CASTING
IN VIRTUAL-PRISMAKER

VICTOR LOPEZ, ANTONIO FERNANDEZ-CABALLERO, PASCUAL GONZALEZ,

FRANCISCO MONTERO & JOSE PASCUAL MOLINA
Regional Development Institute

University of Castilla-La Mancha
Spain

ABSTRACT

Our research team is developing a computer construction
game called Virtual-Prismaker based on the physical game
Prismakertm. We have had to deal with all typical and
essential features of any realistic 3D modeling and
animation environment. The first aim in these kinds of
environments is to provide an easy way to manipulate the
game pieces. The need to use standard input devices in a
natural manner has guided us to limit movement freedom.
This imposed limitation allows the pieces to be easily
assembled. As we try to achieve a realistic simulation,
collision handling and shadow casting are two more
problems found up to date. In this paper we comment
some lacks of the Java 3DTM application programming
interface in this context, and we propose our solutions.
Collision handling is faced by using a 3D grid that stores
the position of all objects of the virtual playground.
Shadow casting is simulated by drawing polygons
according to a single light source and the environmental
light and using the associated 3D grid position
information.

KEY WORDS: Virtual reality, collision handling,
shadow casting, educational games.

1. INTRODUCTION

The creation of software for children is usually linked to
the binomy computer games and visual interfaces. Their
playing issues and their attractive interfaces make these
kinds of tools especially interesting for educational
environments. Using computer games provides new
characteristics that improve any learning process.
According to Sedighian et al [15] computer games supply
meaningful learning, goals, success, challenge, cognitive
artifact, and association through pleasure, attraction, and
sensory stimuli. These factors are even enhanced when
using 3D environments and attractive visual interfaces.

Virtual-Prismaker [7] is a project being carried out in
conjunction with the corporation that created the physical

game Prismakertm [9]. This project tries to analyze the
game’s utility inside educational environments. In order to
achieve this goal a multidisciplinary team has been
created, formed of computer engineers, psychologists, and
pedagogues.

Prismakertm is a construction game that provides a reduced
number of kinds of pieces (see figure 1a) to build with.
Besides conventional possibilities, you can use logos to
assign a meaning to these pieces, and, this way, it is
possible to extend the educational features of the game.
This game is intended for children older than 3 years. The
physical version of this game has received several prizes
because of the educational features it incorporates.

In the current development of the virtual version of
Prismakertm we provide children with a working
environment as similar as possible to the way things exist
in the real world. Virtual-Prismaker is a 3D environment
based game (figure 1b) that tries to best simulate the
possibilities offered by the physical version of Prismakertm
game. This environment uses the different kinds of pieces
of Prismakertm system to develop many different
constructions.

Playing inside our 3D environment is carried out in a
virtual room. Virtual-Prismaker has been designed for
people without computer knowledge. To make these
people easier to use Virtual-Prismaker, we are engaged in
removing computer concepts, such as “load/save”,
“menus”, and so on. We have designed a user interface
based on metaphor use that offers the concepts the way a
child is familiar with. For instance, we have replaced
standard I/O operations (load/save) with some shelves
where users can store their work, so it can be resumed
later on at any moment.

In this same context it is necessary to greatly facilitate
object manipulation. The actual typical interaction devices
have not been designed to control 3D movement. An
arbitrary degree of freedom in pieces’ movement
complicates any assembly task. That’s why we have
decided to limit movement capacity, restricting to fixed
rotation angles and fixed translation steps.

(a) (b)

Figure 1. (a) Prismakertm system. (b) Virtual-Prismaker playground.

2. JAVA 3D: A BRIEF DESCRIPTION

The tool chosen to develop Virtual-Prismaker is Java
3DTM. The selection was due to the fact that with Java 3D
API constructs application developers can describe very
large virtual worlds, which, in turn, are efficiently
rendered by the Java 3D API. Java 3D API's scene-graph
based model makes it ideal for virtual reality systems and
other applications that wish to represent and navigate
complex 3D worlds.

Java 3D API was designed to satisfy among others the
following goals [8]: (1) high performance, (2) rich set of
3D features, (3) high-level, object-oriented paradigm, (4)
wide variety of file formats. The Java 3D API's scene
graph-based programming model provides a simple and
flexible mechanism for representing and rendering
potentially complex 3D environments. The scene graph
contains a complete description of the entire scene, or
virtual universe. This includes the geometric data, the
attribute information, and the viewing information needed
to render the scene from a particular point of view.

3. JAVA 3D: SOME FLAWS

3.1. Collision handling

Since the advent of computer graphics, programmers have
continuously developed ways to simulate the world more
precisely. Collision detection is one of the most important
features to create realism. Nevertheless, collision handling
in 3D is very difficult to implement in a realistic way. As
virtual game users demand levels of increasing realism,
collision detection and handling has to be implemented to
approximate the real world in virtual worlds as closely as
possible.

Java 3D uses behaviors [3] for animation and interaction.
Behaviors are links to user code to update scene objects,

both graphics and sound. Behaviors are fired when they
get a stimulus. A stimulus is received when moving a
mouse, pressing a key, getting some objects collided,
detecting some other event, or a combination of them.
Before an object is added to the scene graph (in order to
become “live”) you have to set its capabilities.
Capabilities define which object parameters can be
modified. One such capability is the
ENABLE_COLLISION_REPORTING capability.

So, Java 3D is able to report on collisions. Where is then
the problem? The problem is that a collision is reported
when it has already happened. This way, when you are
able to stop animation, it is too late. In the real world,
when two objects collide they crash. Thus, in a realistic
virtual environment, collisions have to be detected before
allowing any movement.

3.2. Shadow casting

Improvements in graphics accelerators have let
programmers advance beyond the limitations of 2D games
and create 3D environments with remarkable realism. But,
even with fancy perspective devices and texture
perspective correction, the onscreen rendering lacks a true
sense of depth if there is no shadow casting. Without
shadows the 3D illusion is sorely lacking. Indeed, real-
time dynamic shadowing represents a huge leap forward
in realism, depth perception, and the overall presence of
objects within a 3D environment. Figure 2 illustrates how
hard it is to find out where an object is really placed in a
3D world where there is no shadow casting.

Take a look at the picture on the left (figure 2a). It depicts
two spheres sitting on, or floating above a base. It's hard
to tell whether they are touching the base or if they are
floating above it. Now look at the picture on the right
(figure 2b). Suddenly all has become clear. The sphere on
the right corner is resting at the back of the base. The

other one is floating above the base, and it is closer to the
observer. The only difference is that the picture on the
right incorporates shadows. Thus, we must agree that
casting shadows is essential to manipulate a 3D virtual
world.

(a)

(b)

Figure 2. (a) Scene with no shadow casting. (b) Scene
with shadow casting

Unfortunately, Java 3D does not support shadow casting.
That’s why this process must be done using conventional
software algorithms. And that is the reason why we have
added our proper shadow casting support to Virtual-
Prismaker environment.

4. PROPOSED SOLUTIONS

The kind of people the virtual game is designed for, and
the limitation in the input devices currently in use, impose
some restrictions to realism in order to achieve more
manipulation and usability conditions. This is the reason
why we have limited the allowed movements (translations
and rotations) up to a reasonable degree. To solve this
problem, a 3D grid capable of facing collision handling
and shadow casting is used.

4.1. A 3D grid for collision detection

Different ways to manage collision detection have been
considered so far [10] [11] [12] [13] [14]. The same way
most of them are strongly dependent on the problem they
deal with, our solution also does. In our virtual
playground, children build constructions by only using
pieces of a few different kinds.

We have broken these different kinds of pieces in smaller
blocks that could fit in a 3D grid. This 3D grid fills the
whole playground, as you may observe on figure 3. Our

proposed solution is based on the capability of the 3D grid
to store the positions of all objects present in the virtual
playground.

Figure 3. 3D grid to fit building blocks

When a movement takes place in Virtual-Prismaker, we
have to follow two steps. Firstly, collision detection is
performed. This step begins marking the current positions
of the moving objects as free. Then, all the final positions
of the moving blocks are tested to be free in the grid. If
this is the case and none of these positions are outside the
grid limits, it is concluded that no collision has occurred.
If a collision is detected, movement is stopped. Secondly,
scene positions and 3D grid positions of the objects are
updated if no collision has been detected. This is the way
we achieve fast collision detection to simulate real world
behavior in our virtual playground.

4.2. Polygons for shadow casting simulation

As long as current 3D graphics cards do not support
shadow casting, we have to deal with the problem directly.
Many different algorithms for shadow casting have been
proposed. Most of them are based on BSP trees [4],
shadow volumes [5], or raster lines to merge shadow
processing and visible surfaces [1] [2] [6]. All of them are
fast, but maybe not enough for real-time rendering. Our
proposal introduces a realistic shadow casting algorithm.

Apart from the environmental light, shadows in our virtual
world are due to one single light source. All shadows are
simulated using polygons. That’s why a first step will lead
us to find out the shape of the polygon of the processed
object’s shadow. As already mentioned, in our virtual
environment there are a limited number of kinds of pieces,
so the number of possible shapes is limited to a bunch of
polygons.

Figure 4. Shadow casting in Virtual-Prismaker

In order to figure out the shape of the whole shadow the
3D grid is again found to be of great interest. Indeed, the
fact that each cell of our 3D grid may offer part of a
piece’s shape, makes shadow casting faster and easier. If
there is no block below an occupied 3D cell, then this cell
will be used to create the shape of the shadow polygon,
otherwise it will not. The union of these cells will give the
parts of the objects that take place in obtaining the
resulting complete shadow.Lastly, the right color and the
right size of the shape are obtained. To find out the right
size is equivalent to getting the right scale for the polygon.
As our single light source (some kind of lamp) is located
above the playground, the scale we are looking for is
proportional to the distance between the light source and
the object. On the other hand, the transparency value
(shadow color) is inversely proportional to the distance
between the object and the floor. Transparency will
decrease as the object gets nearer to the virtual floor.
Figure 4 shows an example of shadow casting of a
complicated construction.

5. CONCLUSION

In this paper we have offered our solutions to the main
problems we have found during the development of the
construction game Virtual-Prismaker. First of all, we have
faced the game’s usability. An imposed limitation to
movement allows the pieces to be easily assembled. This
way we may lose some degree of reality but manipulation
is greatly improved. To recall a realistic 3D modeling and
animation environment, a correct implementation of
collision handling and shadow casting have appeared to be
of a tremendous importance.
Collision handling has been performed by using a 3D grid
able to store the positions of all objects in the virtual
playground. As opposite to Java 3D focus, in our specific
collision detection algorithm, collisions are detected
before they really occur. A movement is permitted or
denied on the basis of the 3D grid cells occupation states.
Shadow casting has been simulated by means of polygons
from the 3D grid object’s position information. Each cell
of our 3D grid offers part of a piece’s shape. The union of
these shapes result in the complete shadow. The scale

value is proportional to the distance between the single
light source and the object, while the transparency value is
inversely proportional to the distance between the object
and the floor.

6. ACKNOWLEDGEMENT

This work is supported in part by the CICYT–FEDER
1FD97–1017 grant and by the 2000020264 JCCM and
European Social Fund.

REFERENCES

[1] A. Appel, Some techniques for shading machine
renderings of solids, SJCC, 1968, 37-45.
[2] W.J. Bouknight, A procedure for generation of three-
dimensional half-tones computer graphics presentations,
Communications of the ACM, 13(9), 1970, 527-536.
[3] D.J. Bouvier, Getting Started with the Java 3D API,
Sun Microsystems, Inc., 1999.
[4] Y. Chrysanthou &M. Slater, Shadow volume BSP
trees for computation of shadows in dynamic scenes",
Proceedings of the 1995 Symposium on Interactive 3D
Graphics, 1995, 45-50.
[5] F.C. Crow, Shadow algorithms for computer
graphics", SIGGRAPH 77, 1977, 242-247.
[6] J.D. Foley, et al., Introduction to Computer Graphics,
Addison-Wesley, 1994.
[7] P. González, F. Montero, V. López & A. Fernández-
Caballero, A virtual learning environment for short age
children, Proceedings IEEE International Conference on
Advanced Learning Technologies, ICALT 2001, 2001.
[8]http://java.sun.com/products/java-media/3D/index.html
[9] http://www.prismaker.com/
[10] P.M. Hubbard, Collision detection for interactive
graphics applications," IEEE Transactions on
Visualization and Computer Graphics, 1(3), 1995, 218-
230.
[11] P. Jiménez, F. Thomas & C. Torras, 3D collision
detection: A survey”, Computers and Graphics, 25(2),
2001, 269-285.
[12] Y. Kitamura, A. Smith, H. Takemura, F. Kishino, A
real-time algorithm for accurate collision detection for
deformable polyhedral objects, PRESENCE, 7(1), 1998,
36-52.
[13] J. Klosowski, M. Held, J. Mitchell, H. Sowizral & K.
Zikan, Efficient collision detection using bounding
volume hierarchies of k-dops, IEEE Transactions on
Visualization and Computer Graphics, 4(1), 1998.
[14] M. Lin & S. Gottschalk, Collision detection between
geometric models: A survey”, Proceedings of IMA
Conference on Mathematics of Surfaces, 1998.
[15] K. Sedighian & A.S. Sedighian, Can educational
computer games help educators learn about the
psychology of learning Mathematics in children?, 18th
Annual Meeting of the International Group for the
Psychology of Mathematics Education, Florida, USA,
1996.

