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Ana E. Delgado b, Miguel A. Fernández a
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Abstract

In a recent article, knowledge modelling at the knowledge level for the task of moving objects detection in image sequences has been

introduced. In this paper, the algorithmic lateral inhibition (ALI) method is now applied in the generic dynamic and selective visual attention

(DSVA) task with the objective of moving objects detection, labelling and further tracking. The four basic subtasks, namely feature extraction,

feature integration, attention building and attention reinforcement in our proposal of DSVA are described in detail by inferential CommonKADS

schemes. It is shown that the ALI method, in its various forms, that is to say, recurrent and non-recurrent, temporal, spatial and spatial-temporal,

may perfectly be used as a problem-solving-method in most of the subtasks involved in the DSVA task.
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1. Modelling the dynamic and selective visual attention task

1.1. Modelling by algorithmic lateral inhibition method

In a recent article (Mira, Delgado, Fernández-Caballero, &

Fernández, 2004), knowledge modelling at the knowledge

level for the task of moving objects detection in image

sequences has been introduced. Three items were the focus of

the approach: (1) the convenience of knowledge modelling of

tasks and methods in terms of a library of reusable components

and in advance to the phase of operationalization of the

primitive inferences, (2) the potential utility of looking for

inspiration in biology, (3) the convenience of using these

biologically inspired problem-solving methods (PSMs) to

solve motion detection tasks. In this paper, the approach is

the same, and the algorithmic lateral inhibition (ALI) method is

now applied in the generic dynamic and selective visual

attention task with the objective of moving objects detection,

labelling and further tracking.

A computational system within a media made up of visual

sensors is said to possess the faculty of dynamic and selective
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visual attention (DSVA) when it is capable of processing the

sequence of images coming from this media, selecting in every

moment a series of objects from the current scene at that

precise moment in time and focusing on the selected objects

through time, at least while the criteria used in the process of

selection are fulfilled. In this paper the algorithmic lateral

inhibition (ALI) method adapted to the different subtasks

involved in the DSVA work is introduced. It is shown that the

ALI method, in its various forms, that is to say, recurrent and

non-recurrent, temporal, spatial and spatial-temporal, may

perfectly be used in most of the subtasks involved in the DSVA

task. From (Mira et al., 2004) firstly remember the non-

recurrent case. Each calculation element samples its data in the

central (C) and periphery (P) part of the volume that its RF

(receptive field) specified in the input space V. On these two

data fields, the calculation element carries out evaluation

inferences and results comparison. This comparison inference

is made according to a set of criteria to generate a set of

discrepancy classes as input to the final selection, where the

output is obtained from the set of outputs associated with the

different discrepancy classes, according to the specific

discrepancy classes generated by the previous comparison

inference. In an analogous manner there is the inferential

scheme for the recurrent ALI circuits. Now each element of

calculus starts to infer from data sampled in the central (C*)

and periphery (P*) parts of its feedback receptive fields in the

output space. The values in C* (individual opinion before
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dialogue) are compared with the evaluation of the ‘opinions’ of

all the elements in the periphery. This comparison is made

according to a set of rules for consensus to produce a

discrepancy class. Finally, as in the non-recurrent case, this

discrepancy is the input to a selection to provide the consensus

output.

In the inferential schemes used in the writing of this work

we will use the usual agreement in CommonKADS (Schreiber,

Akkermans, Anjewierden, de Hoog, Shadbolt, van de Velde,

et al., 2001) to represent the static and dynamic roles and the

operational meaning of the inferential verbs proposed by

Breuker and van de Velde (1994) (evaluate, compare,

select,.) The dynamic roles are represented as rectangles

with solid lines and the static roles are represented as rectangles

with broken lines. On some occasions a dynamic role resulting

from an inference can play the part of a static role in another

later inference within the information flow. Accordingly, we

will use a double rectangle where a solid line is the end of the

arrow that brings the rectangle from the inference generating it

as a dynamic role and where a broken line (outside the other

rectangle) is the origin of the arrow finishing in the inference

where the rectangle plays a static role.

1.2. Modelling the dynamic and selective visual attention task

Attention is the cognitive process of selectively concentrat-

ing on one thing, while ignoring other things. Of the many

cognitive processes associated with the human mind (decision-

making, memory, emotion, etc.) attention is considered the

most concrete because it is tied so closely to perception. One of

the most influential theories about the relation between

attention and vision is the feature integration theory (Treisman

& Gelade, 1980). In the 1960s, Anne Treisman found that

certain object features such as colour or orientation could be

detected in parallel, while conjunctions of these features could

not. According to this model, attention is responsible for

binding different features into consciously experienced wholes.

Attention remains a major area of investigation within

psychology and neuroscience, and many computational models

have been proposed for selective attention so far.

The models for selective attention may be divided into two

broad groups: (a) models based exclusively on the scene

(bottom-up), and, (b) models based on the scene (bottom-up)

and on the task (control top-down). The first bottom-up

neurally plausible architecture of selective visual attention was

proposed by Koch and Ullman (1985), and it is related to the

feature integration theory. In (Itti, Koch, & Niebur, 1998) a

visual attention system inspired by the behaviour and the neural

architecture of the early primate visual system is presented.

Multi-scale image features are combined into a single saliency

map. A dynamical neural network then selects attended

locations in order of decreasing saliency. The connectionist

model called SLAM (selective attention model) (Phaf, van der

Heijden, & Hudson, 1990) assumes an interactive-activation

network consisting of input, hidden, and output nodes. Input

nodes represent words and colours in a particular spatial

position. Processing occurs through activation spreading from
colour input nodes via hidden nodes to output nodes, and

directly from word input to output nodes, whereby nodes

change their activation with time in a continuous non-linear

manner. There are excitatory links between nodes representing

compatible information, and there are inhibitory links between

nodes standing for incompatible information. In (Heinke,

Humphreys, & diVirgilo, 2002) a neural network (connec-

tionist) model called the selective attention for identification

model (SAIM) is introduced. The function of the suggested

attention mechanism is to allow translation-invariant shape-

based object recognition. One goal of SAIM is to explain

neuropsychological data on different versions of attention

disorders, that is, ‘space- and object-based’ neglect. The model

of Guided-Search (GS) by Wolfe (1994) uses the idea of

‘saliency map’ to realize the search in scenes. GS assumes a

two-stage model of visual selection. The first, pre-attentive

stage of processing has great spatial parallelism and realizes

the computation of the visual simple features. The second stage

is spatially serial and it enables more complex visual

representations to be computed, involving combinations of

features.

The approach to the DSVA task is explained next. The

selection of the elements of interest in the scene necessarily

starts by setting up the criteria based on the features extracted

from the elements (feature extraction). Firstly, all the necessary

mechanisms to provide sensitivity to the system are included in

order to succeed in centring the attention. Frame to frame

attention is captured (attention capture) on elements (blobs)

constructed from image pixels that fulfil the requirements

established by the user and obtained after a feature integration.

On the other hand, stability has been provided to the

system. This has been achieved by including mechanisms to

reinforce attention (attention reinforcement), in such a way that

the elements accepting the user’s predefined requirements

(figures) are strengthened up to be shaped as the system

attention centre.

Fig. 1 shows the block diagram that illustrates the two

components of ‘sensitivity’ and ‘stability’ in the DSVA task, as

an initial step towards the construction of the complete

conceptual model. Notice that we name components of
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‘sensitivity’ to what neurophysiology calls a data-driven or

bottom-up organization. Similarly, we call ‘stability’ to what in

Psychology is referred to as a knowledge-driven or top-down

organization.

The terminology used to describe the task is the following

one:

† Pixel of interest: image pixel that fulfils the dynamic

features (motion features) defined by the user.

† Point of interest: pixel of interest which also fulfils the blob

and figure features defined by the user.

† Grey level band: step or range of grey levels.

† Blob: set of connected pixels belonging to a same grey level

band, and which includes at least one point of interest.

† Blob of interest: spot that fulfils the blob features defined by

the user.

† Figure: set of connected blobs of interest.

† Figure of interest: figure that fulfils the features defined by

the user.

† Attention focus: set of figures of interest.

In the Fig. 2 you may distinguish the four basic subtasks in

the DSVA work, where:

† Feature extraction: processing of the dynamic features of

the image pixels, the features related to the blobs, and the

figures of an image capable of capturing attention.

† Feature integration: application of the criteria established

by the user to the features extracted in the Feature

Extraction subtask, consisting of filtering pixels, blobs and

figures to setup the interest points.

† Attention building: construction of blobs starting from the

interest points calculated in Feature Integration.

† Attention reinforcement: construction of figures and

keeping attention on certain figures (or objects) of the

image sequence that are of real interest to the user.
Next each of the subtasks is described with the help of a

simple running example, as shown in Fig. 3. It consists of a

scene where a vehicle and a pedestrian are moving

independently. The aim is to hold the attention on the objects

that fulfil certain conditions of size and shape, in addition to

fulfilling a series of dynamic parameters.
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2. Attention building

The purpose of the attention building subtask is to select and

to label zones (blobs) of the objects (figures) to pay attention

on. See, therefore, that after processing attention building, the

whole figures are not classified. Instead, each one of the blobs,

understood as homogeneous connected zones that form the

figures, are marked with different labels. Obviously, the blobs

are built from image points that fulfil the requirements

established by the guidelines of the observer (points of

interest).

Fig. 4 shows a process scheme for the attention building

subtask. The output of this subtask is called Working Memory.

The selection of the term working memory stems from its

resemblance with the concept used in Psychology, where the

working memory—also called short-term or functional

memory (Awh, Anllo-Vento, & Hillyard, 2000; Awh &

Jonides, 2001; Awh, Matsukura, & Serences, 2003; O’Reilly,

2003; O’Reilly, Braver, & Cohen, 1999)—stores and processes

during a brief period of time the chosen information coming

from the sensory records. In our case, only blobs constructed in

the Working Memory will potentially form the figures of the

system’s attention focus.

In our proposal the blobs of the Working Memory are built

from the information in the so-called Interest Map and from the

input image divided into grey level bands. The interest map is

obtained, as it will be explained later on, by performing a

feature integration, both of motion and shape features. For each

image pixel, in the interest map the result of a comparison

among three discrepancy classes—‘activator’, ‘inhibitor’ and

‘neutral’—is stored. The interest points are those points of the

interest map labelled as ‘activator’ points. Grey-level bands are

obtained as a result of the classification in grey-level bands

subtask, which is explained next.
Classification in 
Grey Level Bands

Working Memory 
Generation

Recurrent Temporal ALI

Recurrent Spatial-Temporal ALI

Fig. 4. The ‘attention building’ subtask.
2.1. Classification in grey-level bands

The classification in grey-level bands subtask transforms the

256 grey-level-input images into images with fewer levels. In

particular, good results are usually got with eight levels. These

eight level images are called images segmented into eight grey-

level bands (GLB). The reason of working with grey-level

bands is two-fold. (1) A now traditional method of motion

detection is based on image differencing. The noise level

diminishes with little changes in grey level (or luminosity) of

a same object between two consecutive images, when joining a

range of grey levels into a single band. (2) On the other hand, a

decrease in the computational complexity is achieved, bearing

in mind the great parallelism used in the algorithms of the

proposed model. We now calculate in parallel in the order of

magnitude of grey-level bands n, and not of grey levels N,

where NOn.

The inferential scheme of classification in grey level bands

(Fig. 5) follows the layout of a Recurrent-Temporal ALI, as the

output in the current time instant t, GLB[x,y,t], takes into

account its proper output in the previous instant, GLB[x,y,tK1].

As shown in Fig. 5, the static roles are the number of grey-level

bands (n) in which the image is split, the overlap between the

bands (O) and the maximum (GLmax) and minimum (GLmin)

grey levels of the input image. The overlap value between the

bands, O, is used to augment the size of the bands without

diminishing the number of bands. This way the level of noise

decrease due to little changes in luminosity between two

consecutive image frames is even better adapted.

Fig. 6 graphically shows the underlying idea in the overlap

between bands. The figure shows in the left side the division in

N grey levels, where NZGLmaxKGLminC1, and in the rest of

the figure, the division in n grey level bands, ranging from

GLB1 to GLBn, where obviously n!N. As it may be noticed,

there is an overlap between the grey level bands, so that an

image point whose grey level is GL could be thought

beforehand to belong to a single grey-level band—if the

overlap does not affect the grey level—or to two different grey-

level bands—if the grey level is included in an overlap zone.

Obviously, at each instant t, an image point may only belong to

one grey-level band. As it has already been pointed out, the use

of grey-level bands reduces the noise level. The overlap

between bands aims that a point belonging to a grey-level band

remains in the same band when the change of luminosity is

‘small’. ‘Small’ means that the luminosity of an image point

included in an overlap zone does not fall out of the same zone

in the next moment. Thus, noise decreases without diminishing

the number of bands. Also observe in Fig. 6 the values E2max,

the maximum band value (in this case, for band 2), and E2min,

the minimum band value.

Next an explanation of all inferences present in Fig. 5 is

provided. The first evaluate inference performs the compu-

tation of value B over the centre C. This value is the output of

the subtask if there is no change of grey-level band. B is the

computed value of stepping from grey-level to grey-level band

before asking for the overlap. The calculus of B is expressed in

formula (1). As you may notice, this is just an easy scale
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transformation. Notice also that we are still not deciding if

there is a change of grey-level band in the point.

B Z
GL½x; y; t�n

ðGLmaxKGLmin C1Þ

� �
C1 (1)

The second evaluate inference performs the calculation of

the extreme values of the grey-level band, Emax and Emin, on

the central part of the output space. In other words, it performs

on its proper output in the previous time moment. When

interpreting the formulae (2) and (3), notice that Emin and Emax

correspond to a grey level, the lowest grey level of the grey-

level band at instant tK1 and the highest grey level of the grey-

level band at the same time instant tK1.

Emin Zmax
ðGLB½x; y; tK1�K1ÞðGLmaxKGLmin C1Þ

n

�

KO;GLmin

�
ð2Þ

EmaxZmin
GLB½x;y;tK1�ðGLmaxKGLminC1Þ

n
CO;GLmax

� �
(3)

Now, the compare inference verifies whether the value

of the grey level, GL[x,y,t], produces a change of band

with respect to the grey-level-band value obtained at tK1,
GLB[x,y,tK1]. For it, the criterion is the following one: if

GL[x,y,t] is inside the range established between Emin and

Emax, then the output of this inference, called variation as it

detects a change of grey-level band between time instants t and

tK1 at a pixel, takes value 0, and 1 in any other case:

VariationZ
0; if Emin%GL½x; y; t�!Emax

1; otherwise

(
(4)
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Finally, the select inference offers as output value the

calculated value B, if the output of inference compare was 1,

and GLB[x,y,tK1] if the output of inference compare was 0:

GLB½x; y; t�Z
GLB½x; y; tK1�; if variationZ 0

B; otherwise

(
(5)

To sum up, the result of the classification in Grey-Level

Bands subtask is, for each input image pixel, the transformation

of the grey level into its corresponding grey-level band, but

always bearing in mind its grey-level band in the previous time

instant.
2.2. Working-memory generation

The objective of this subtask is, firstly, to select and to label

(to classify numerically) image blobs associated to pixels of

interest-pixels that possess dynamic features in the numerical

intervals established by the guidelines of the observer. Secondly,

the subtask eliminates the blobs whose shape features do not

correspond with the guidelines. In order to achieve these aims,

the images in Grey-Level Bands are segmented into regions

composed of connected points whose luminosity level belongs to

a same interval (or grey-level band), and only connected regions

that include some ‘activator’ point (or, point of interest) in the

Interest Map are selected. Each region or zone of uniform grey

level is a blob of potential interest in the scene.

In previous works of our research team some methods based

on image segmentation from motion have already been used.
Working Me
Generati

Fig. 7. The ‘working memo
These methods are the permanency effect and the lateral

inhibition (Fernández-Caballero, Mira, Fernández, & López,

2001; López, Fernández, Fernández-Caballero, & Delgado,

2003). Based on the satisfactory results of these algorithms

(Fernández-Caballero, Mira, Férnandez & Delgado, 2003), in

this paper we propose to use mechanisms of charge and

discharge together with mechanisms of lateral inhibition to

solve the current task of DSVA.

Fig. 7 shows the inputs and the output of the Working

Memory Generation subtask. The inputs are the image in Grey-

Level Bands and the Interest Map, whereas the output is the

Working Memory. The Working Memory stores a common

number for each pixel belonging to a blob. Value 0 is given to

pixels that do not belong to any blob.

The idea consists in overlapping, as with two superposed

transparencies, the Grey-Level Bands image of the current

frame (t) with the Interest Map image built at the previous

frame (tK1). At t, only blobs of the Grey-Level Bands image at

t are selected where at least one point of interest fell at tK1.

Nevertheless, not the total blob is taken, but pixels that

coincide with points of the Interest Map classified as

‘inhibitors’ are eliminated. The computational model used to

perform the preceding steps incorporates the notion of lateral

inhibition, which enables that the points of interest flood their

zones of uniform grey levels whilst eliminating all points

classified as ‘inhibitors’.

In order to achieve the aims of this subtask, the processes

shown in Fig. 8 are performed. Firstly, by means of the process
mory 
on

ry generation’ subtask.
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called Division in Bands, n images GLBi[x,y,t], 1%i%n, (one

image per band) are obtained from the grey-level-bands image,

GLB[x,y,t].

Each one of theGLBi[x,y,t] images stores a 1 ifGLB[x,y,t]Zi

(that is to say, for each pixel whose grey-level band is equal to

band i), and 0 in the opposite case, as shown in Fig. 9. Next, for

each GLBi[x,y,t] the different connected regions that include an

‘activator’ point in the Interest Map and which do not

correspond to ‘inhibitor’ points in the Interest Map

are labelled. This process has been called Blobs Generation

and its output is the Working Memory for Grey-Level Band i,

WMi[x,y,t]. WMi[x,y,t] stores the label corresponding to the

generated blob to pixels belonging to blobs, and value 0 for the

rest of the pixels. The output of this subtask, the Working

Memory, WM[x,y,t], is the result of adding up all the obtained

blobs in all WMi[x,y,t] (through the Blobs Summation subtask).

Fig. 9 shows the application of Division in Bands to

the running example. In this figure pixels in black in each

GLBi[x,y,t] represent that their grey-level-band value is equal

to band i.

Now, Fig. 10 shows the result of applying the Blobs

Generation subtask to the running example.

A detailed description of all subtasks composing Working-

Memory Generation is provided in the following paragraphs.
2.2.1. Division in bands

The only inference of Division in Bands, inference evaluate,

shown in Fig. 11, obtains n binary images GLBi[x,y,t] from an

image in grey-level bands GLBi[x,y,t] (one image for each

band). Each one of these images, GLBi[x,y,t] stores a value of 1

for a pixel whose grey-level band is i and a 0 in the opposite

case. That is to say:

GLBi½x; y; t�Z
1; if BNG½x; y; t�Z i

0; otherwise
; ci; 1% i%n

(

(6)
2.2.2. Blobs generation. Recurrent-spatial-temporal ALI

The blobs generation subtask, as shown in Fig. 12, gets and

labels for each grey-level band, pixels belonging to connected

regions that include any ‘activator’ point in the interest map but

do not correspond with ‘inhibitor’ points of the interest map. Its

output, working memory for grey-level band i, WMi[x,y,t],

stores for each pixel the label corresponding to the generated

blob if it belongs to the blob, or the value 0.

The static roles of the inferences have the following

meanings: vactivator is the value given to the points of interest

(‘activators’) of the interest map, vneutral is the value for the

‘neutral’ points of the interest map, vinhibitor is the value for the

‘inhibitor’ points of the interest map, NR is the number of rows

of the image, and NC is the number of columns of the image.

The dynamic roles of the inference are the grey-level band i,

GLBi[x,y,t], the interest map, IM[x,y,t], the label value of the

centre, zc, and the label value of the periphery, zp. Centre has to

be understood as each element used to compute the working

memory—in this case, the grey-level bands—and periphery as

the eight neighbours that surround each of the centres. The idea

is to get a consensus label for all pixels of a common blob. As

shown in Fig. 12, there are two time scales, a global scale, t,

and a local scale, t, typical of recurrent algorithmic lateral

inhibition (ALI).

The primitive evaluate in time scale t, which operates

on the input data of the centre, C, formed by GLBi[x,y,t] and

IM[x,y,t], assigns at each time increment t to all points where

GLBi[x,y,t]Z1 an initial and provisional value as shown in

formula (7):
zcðtÞZ

x!NCCyC1; if GLBi½x; y; t�Z 1o IM½x; y; t�

Z vactivator

NR!NCC1; if GLBi½x; y; t�Z 1o IM½x; y; t�

Z vneutral

0; otherwise

8>>>>><
>>>>>:

(7)



Fig. 9. Application of ‘division in bands’ to the running example.
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This value corresponds to (x!NCCyC1) when IM[x,y,t]Z
vactivator, to a greater value than NR!NC when IM[x,y,t]Z
vneutral, and to value 0 in the rest of the cases. In other words, if

the centre belongs to the grey level band and corresponds to a

point of interest of the interest map, the tentative value for the

centre is a function of its proper coordinate. Now, if the centre

belongs to the grey level band but corresponds to a ‘neutral’

point of the interest map, the provisional value given to the

centre is a value greater than any possible value of the coordinate

function. In any other case, the value is 0. This initial value

assignment to all calculus elements in time scale t, serves to get

an agreement in the labels of the blobs after the negotiation in

time scale t. Of course, there will only be collaboration among

calculus elements that possess an initial value greater than 0.

The primitive evaluate operates on the output data of the

periphery, P*, in time scale t. It is made up of the eight

neighbours of each WMi[x,y,t], and gets the minimum value of

their values, called zp.

zp Zminðvpða;bÞÞc ½a;b�2½xG1; yG1�jð½a;b�s½x; y�Þ

o ð0!zpða;bÞ%zmaxÞ; where zmax ZNR!NCC1

(8)
Inference compare generates two discrepancy classes D1 y

D2 by comparing values zc(t) and zp(t), as shown in Table 1.

D1 means that the value of the centre does not change in the

interaction, whereas D2 means that zc takes the value of zp in

the present pass. As you may notice, the centre talks with the

elements of the periphery whose value is different from 0 and

always retains the smallest value. Thus, blobs are labelled

with the ordinal corresponding to the point with the lowest

coordinate (if the superior left image point is taken as origin).

The values generated by the primitive compare fulfil the input

dynamic role to inference select, which determines the output

value zc(t) as a function of the resulting discrepancy class (D1,

D2). Thus,

zcðtÞZ
zcðtKDtÞ; if D1

zpðtKDtÞ; if D2

(
(9)
2.2.3. Blobs summation

The blobs summation subtask gets the working memory,

WM[x,y,t], as the result of adding up all the blobs computed at
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Fig. 11. Inferential scheme for ‘division in bands’.

Fig. 10. Application of ‘blobs generation’ to the running example.

M.T. López et al. / Expert Systems with Applications 31 (2006) 570–594578
each of the eight working memories for grey-level band i,

WMi[x,y,t], where iZ1,2,.,8.

Firstly, each WMi[x,y,t] whose output value in blobs

generation is NR!NCC1 (impossible value) is put to 0, as

shown in Eq. (10) and in the evaluate inference of Fig. 13.

zi½x; y; t�Z
WMi½x; y; t�; if WMi½x; y; t�!NR!NCC1;

0; otherwise

(

(10)

The following primitive is a select that obtains the

maximum value of all zi[x,y,t] (see formula (11)).

WM½x; y; t�Zmaxizi½x; y; t�; ci2½1.8� (11)

Notice that this maximum selection operation has to

be performed for all the elements of matrixes WMi[x,y,t] to

obtain the corresponding element in a single matrix of blobs,



Fig. 12. Inferential scheme for ‘blobs generation’.
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WM[x,y,t]. This way all blobs of all grey level bands have been

united and labelled with a common value.

Fig. 14 shows the result of applying the blobs summation

subtask to the running example. In this figure all the generated

blobs are represented in black on a white background.

3. Feature extraction

The feature extraction subtask calculates the properties

related to motion present in the input image sequence at pixel

level and to the shape of the objects in the sequence. This is

why the subtask has been divided into (a) motion feature

extraction, at pixels level in the image sequence, and (b)

shape-feature extraction, at blobs and figures level of the

images.

Table 1

Discrepancy classes for ‘blobs generation’

zc(t) zp(t) Condition Classes

0!zc(t)%zmax 0!zp(t)!zmax zc(t)Ozp(t) D2

Other cases D1
3.1. Motion-feature extraction

The motion feature extraction subtask acquires the

dynamic features of the image pixels; in particular, the
extracted features are motion presence, velocity and

acceleration.

Due to our experience (Fernández, Fenández-Caballero,

López, &Mira et al., 2003;Mira, Fernández, Lopez, Delgado&

Fernández-Caballero, 2003), we know some methods to

partially generate this information partially. As it was

explained before, working with grey levels diminishes the

effects of noise generated by small luminosity variations, and

may be used to detect motion presence in a more accurate

manner. By using accumulative computation methods studied

by our research team during the last years (Fernández & Mira,

1992), it is possible to calculate the velocity and the

acceleration in those image points where motion has been

previously detected from variations in their grey level bands.



Fig. 13. Inferential scheme for ‘blobs summation’.
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The more general variety of accumulative computation is

the charge/discharge mode, used successfully in works on

moving-objects detection, classification and tracking in video

sequences so far. This mode may be described by means of the

following generic formula (12):

Ch½x;y;t�Z
minðCh½x;y;tKDt�CC;ChmaxÞ; if propertyP½x;y;t�

maxðCh½x;y;tKDt�KD;ChminÞ; otherwise

(

(12)

That is to say, temporal accumulation of the persistency of

binary property P[x,y,t] measured at every time instant t at each

pixel [x,y] of the data field is computed. Generally, if the

property is fulfilled at pixel [x,y], charge value at that pixel

Ch[x,y,t] goes increasing by the increment in charge value C up

to reaching Chmax, whilst, if property P is not fulfilled, charge

value Ch[x,y,t] goes decreasing by decrement in charge value D

down to Chmin. All pixels of the data field have charge values in

the range between the minimum charge, Chmin, and the

maximum charge, Chmax.

Obviously, values C, D, Chmin and Chmax are configurable

depending on the different kinds of applications, giving raise to

all different operating modes of the accumulative computation.

Chmax and Chmin have to be chosen by taking into account that

charge values will always fall into this range. The value of C

defines the charge increment interval between time instants

tK1 and t. Greater values of C allow arriving in a quicker way

to saturation. On the other hand, D defines the charge-

decrement interval between time instants tK1 and t. So, notice

that the charge stores motion information as a quantified value,

which can be used for several classification purposes. In (Mira

et al., 2003) the whole architecture of the accumulative
computation module is introduced. In that paper all the

functioning modes are described, showing the versatility and

the computational power of the method.

Fig. 15 permits to observe the scheme of the subtask. The

values calculated and associated to motion are the motion

presence, the motion-charge memory, the velocity and the

acceleration. The motion-charge memory is obtained by means

of accumulative computation methods on the negative of

property motion presence. Velocity and acceleration, in turn,

are calculated from the values stored in the motion-charge

memory. Under velocity we understand the calculus of the

module and the angle of the velocity vector. The same is true

with the acceleration.
3.1.1. Motion-presence calculation. Non-recurrent-temporal ALI

Motion presence, Mov[x,y,t], is obtained from a point-to-

point comparison between a pair of images segmented in grey-

level bands in successive time instants. If point [x,y] at time t

belongs to the same GLB as at the previous time instant, tK1,

we consider that there has been no motion, whilst if there has

been no change in the GLB, then we consider that motion has

been detected.

Motion presence, Mov[x,y,t], is obtained from input-

dynamic roles grey-level band at time instants t and tK1

(Fig. 16). Inference compare verifies whether GLB[x,y,t] and

GLB[x,y,tK1] are equal. The output of this inference, called

motion presence, Mov[x,y,t], is 0 if GLB[x,y,t] and GLB[x,y,

tK1] are equal, and 1 in the other case:

Mov½x; y; t�Z
0; if GLB½x; y; t�ZGLB½x; y; tK1�

1; if GLB½x; y; t�sGLB½x; y; tK1�

(
(13)

Fig. 17 illustrates by means of real images the result of the

carrying out of this inference. The scheme is the one of a non-

recurrent-temporal ALI, as there is no recurrence and the input

receptive field extends over the time axis.
3.1.2. Motion-charge-memory calculation.

Recurrent-temporal ALI

As we stated before, in this subtask motion-charge memory

is calculated by means of accumulative computation on the

negative of property motion presence associated to the

accumulation process. Out of accumulative computation

operation modes, the one used in this case is the LSR

(length–speed ratio) mode (Fernández et al., 2003). The

property measured in this case is equivalent to ‘no motion’ at

pixel of coordinates [x,y] at instant t.

The functioning mode is explained by means of the

inferences shown in Fig. 19. The static roles shown have the

following meanings: Chmin and Chmax are now the minimum

and maximum value, respectively, that the values stored in the

motion charge memory can reach, and CMM is now the charge-

increment value. Notice that in DMM, (formerly D) the

decrease-charge value does not appear explicitly, as we

consider that DMMZChmax. The idea behind the LSR is that

if there is no motion on pixel [x,y] charge value ChMM[x,y,t]



Fig. 14. Application of ‘blobs summation’ to the running example.
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goes increasing up to Chmax, and if motion exists there is a

complete discharge (the charge value is given, value Chmin).

Points where movement has existed recently are charged

between the complete discharge, Chmin, and the maximum

charge, Chmax, being closer to Chmin the more recent the

movement has taken place. On the contrary, it will take a

value closer toChmax themore time has elapsed sincemotion has

been detected on this point (Fig. 18). Thus, charge value

ChMM[x,y,t] represents a measure of time elapsed since the last

significant variation in brightness on image pixel [x,y] (Fig. 19).

Inference evaluate performs the calculus of values Ch1 and

Ch2, which are the possible values of the motion

charge memory on the centre at different time intervals.

Next, by means of inference select the output value, ChMM[x,y,

t], which takes one of the values of set {Ch1,Ch2} depending

on the result of Mov[x,y,t], is obtained. Thus, the selection

criterion is:

Ch1ZChmin

Ch2ZminðChMM½x; y; tK1�CCMM;ChmaxÞ
(14)
Ch1 represents the case for complete discharge, whilst Ch2

is the case when the charge value is augmented when no

motion is detected. Inference select selects as output value Ch1

if Mov[x,y,t], motion presence, is 1, and Ch2 in the other case.

ChMM½x; y; t�Z
Ch1; if Mov½x; y; t�Z 1

Ch2; if Mov½x; y; t�Z 0

(
(15)

The scheme of the subtask is the one of a recurrent-temporal

ALI, as for the production of output ChMM[x,y,t] the proper

response at the previous time instant ChMM[x,y,tK1] is

provided. In the next sections the way of calculating the

velocity and the acceleration from the motion charge-memory

is described.

3.1.3. Velocity calculation

Velocity calculation is obtained in two steps. Firstly,

velocities in Cartesian x and y axis are calculated; then, the

module and the angle of the velocity that the last moving object

held when passing on coordinate point [x,y] is calculated.

Velocity calculation is performed starting from the values

stored in the motion-charge memory, as explained in Table 2.



Mov [x,y,t]

compare

GLB [x,y,t-1]GLB [x,y,t]
C

C*

C

Criteria classes

BNG[x,y,t]=BNG[x,y,t-1] 0

BNG[x,y,t] ≠ BNG[x,y,t-1] 1

Fig. 16. Inference compare used for ‘motion-presence calculation’.

Fig. 15. Scheme for ‘motion-feature extraction’.
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Fig. 17. Illustration of the effect of the compare inference on ‘motion-presence calculation’.
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Remember that the charge value ChMM[x,y,t] is proportional

to the time spent since the last significant illumination change

on image pixel [x,y]. It is important to highlight that the

velocity obtained from motion-charge memory is not the

velocity of an object point that occupies pixel [x,y] in time t,

but rather the velocity of an object point that caused motion-

presence detection when it passed over pixel [x,y] a number of

k Z
ChMM½x; y; t�KChmin

CMM

time units before. Thus, notice that motion-charge memory

shows the same value for all those pixels where a simultaneous

motion occurred at a given time.

3.1.3.1. Calculation of vx. Non-recurrent-spatial ALI. First of

all, in order to calculate velocity in x-axis, charge value in [x,y],
Fig. 18. Illustration of the accumulative computation model, where we represent, fo

signal, and (c) the charge value in LSR mode.
where an object is currently passing, is compared to charge

value in another coordinate of the same row [xCl,y], where the

same object is passing. In the best of the cases, that is to say,

when both values are different from Chmax, the time that

elapsed since motion was lastly detected in instant tKk[x,y]Dt

at [x,y] up to the time when motion was detected in instant

tKk[xCl,y]Dt in [xCl,y] can be calculated as:

ChMM½x; y; t�KChMM½xC l; y; t�

Z ðChmin Ck½x;y�CMMÞKðChmin Ck½xCl;y�CMMÞ

Z ðk½x;y�Kk½xCl;y�ÞCMM (16)

This computation can obviously not be performed if any of

both values are Chmax, as we do not know how many time
r a pixel, (a) the thresholded-binary-input-image-sequence value, (b) the clock



Fig. 19. Inferential scheme for ‘motion-charge-memory calculation’.
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intervals have elapsed since the last movement. Hence, for

valid charge values, it is known that:

Dt Z
ðk½x;y�Kk½xCl;y�ÞCMM

CMM

Z k½x;y�Kk½xCl;y� (17)

And, as velocity can always be obtained as vxZ((x/(t)Z(l/Dt),

finally:

vx½x; y; t�Z
CMMl

ChMM½x; y; t�KChMM½xC l; y; t�
(18)

That is to say, the velocity in the x-axis of a pixel [x,y],

understood as the velocity in the x-axis that the last moving

object had on coordinate [x,y], is calculated as the value of the

charge increment by the space in pixels to pixel [xCl,y], l,

divided by the difference of charges between both pixels.

After having introduced the general theory, let us focus in

detail on this subtask, whose inferential scheme is shown in

Fig. 20. The calculation of the velocity in the x-axis, vx[x,y,t], is

restricted to those pixels whose value in motion-charge

memory is of real interest to the subtask. For this, it has been

included a parameter, called evaluation value, veval, which will

limit the range of the time elapsed since the last motion. The

evaluation value is defined through the formula (19):

veval ZChmin CkCMM!Chmax (19)
Table 2

Relation between the value in motion-charge memory and motion detection

Value in motion-charge memory Explanation

ChMM[x,y,t]ZChmin Motion is detected at pixel [x,

ChMM½x; y; t�ZChminCkCMM!Chmax No motion is detected at pixel

increments the maximum char

ChMM[x,y,t]ZChmax No motion is detected at pixel

memory is the maximum char
where value k is selected in such a way that veval!Chmax has to

be fulfilled. That is to say, velocity is only calculated at points,

which have detected motion in the last k time intervals. In the

rest of the points there is no interest in calculating the velocity,

even if motion has been detected. Thus, veval is directly

proportional to the charge increment. Generally speaking, with

a little value of k, and hence with a little veval, the system works

with the most recent motion information, whilst with a great k

(great veval) the system plays with more historic information. In

the generic task of dynamic-and selective-visual attention,

where it is important to capture attention on everything that is

moving at each instant, it is recommended to work with low

values of veval.

Next the roles and inferences shown in Fig. 20 are

introduced. Role veval, evaluation value, is the maximum

value permitted as charge value for the centre, ChMM[x,y,t], to

calculate its velocity. Thus, if charge value of the centre is valid,

that value is accepted. On the opposite side, an undefined value,

vundef, which is the value given to pixels where the velocity

cannot be calculated, is assigned. Role CMM is once more the

charge increment value and role Chmax is the maximum charge

value used to calculate the motion charge memory.

zcZ
ChMM½x;y; t�; if ChMM½x;y; t�%vevalZkCMM!Chmax

vundef ; otherwise

(

(20)

if considering that ChminZ0.

The periphery of each central element [x,y] is now the

closest neighbour to the right, that is to say, [xC1,y]. Thus, the

receptive space has been restricted to lZ1. The validation of

the periphery charge is not as restrictive as for the centre. This

way:

zp Z
ChMM½xC1; y; t�; if ChMM½xC1; y; t�!Chmax

vundef ; otherwise

(

(21)

The last calculus for the velocity in the x-axis is eventually:

vx½x;y; t�Z

vundef ; if ðzcZzpÞnðzcZvundefÞnðzpZvundefÞ

CMM

zcKzp
; otherwise

8>>><
>>>:

(22)

The scheme is a non-recurrent-spatial ALI, as the input

receptive field extends over the space, in particular over the

x-axis.
y] in t. Value in memory is the minimum charge value

[x,y] in t. Motion was detected for the last time in tKk Dt. After k charge

ge has not yet been reached

[x,y] in t. We do not know when motion was detected for the last time. Value in

ge value



Fig. 20. Inferential scheme for ‘calculation of vx’.

Fig. 21. Inferential scheme for ‘calculation of the module and the angle of the

velocity’.
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3.1.3.2. Calculation of vy. Non-recurrent-spatial ALI. In the

same way the velocity in y, vy[x,y,t], is obtained from the

motion-charge memory. The reasoning is similar, just changing

neighbour of the same row by neighbour of the same column.

The equations are in this case:

zcZ
ChMM½x;y; t�; if ChMM½x;y; t�%vevalZkCMM!Chmax

vundef ; otherwise

(

(23)

zpZ
Ch½x;yC1; t�; if Ch½x;yC1; t�!Chmax

vundef ; otherwise

(
(24)

vy½x;y; t�Z

vundef ; if ðzcZzpÞnðzcZvundefÞnðzpZvundefÞ

C

zcKzp
; otherwise

8>>><
>>>:

(25)

3.1.3.3. Calculation of the module and the angle of the velocity.

This inference gets the values for the module of the velocity at

each pixel [x,y] in time t, jðv½x; y; t�j, and the angle of the

velocity, b[x,y,t], from the values of the velocity in x-axis, vx[x,

y,t] and the velocity in y-axis, vy[x,y,t].
As you may grasp, in Fig. 21 there is only one inference,

evaluate, where the classic computation for the module and the

angle are performed:

b½x; y; t�Z arctan
vy½x; y; t�

vx½x; y; t�
(26)



Fig. 22. Inferential scheme for ‘calculation of the acceleration in x’.
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jðv½x; y; t�jZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx½x; y; t�

2 Cvy½x; y; t�
2

q
(27)

3.1.4. Calculation of the acceleration

Calculation of the acceleration is performed in a similar way

to calculation of the velocity. First, the acceleration in the x-axis,

ax[x,y,t], and then in the y-axis, ay[x,y,t], are calculated. Then the

module and the angle of the vector acceleration are inferred.

3.1.4.1. Calculation of ax and ay. The x component of the

acceleration is calculated from the velocity values on the x-axis

and the values present in the motion-charge memory (Fig. 22).

In a way similar to the calculus of the velocity, now axZvvx/vt

is calculated by operating on the values obtained at vx. As those

points where vxZvundef the acceleration will also be undefined.
ax½x; y; t�Z

CMM vx½x; y; t�Kvx½xC1; y; t�
� �

ChMM½x; y; t�KChMM½xC1; y; t�
; ifðvx½x; y; t�svundefÞo ðvx½xC1; y; t�svundef�Þ

vundef ; otherwise

8><
>: (28)

features size, width and height are extracted. As the figu
Similarly, the y-component of the acceleration is got,

substituting [xC1,y] by [x,yC1].
ay½x; y; t�Z

CMMðvy½x; y; t�Kvy½x; yC1; t�Þ

ChMM½x; y; t�KChMM½x; yC1; t�
; if ðvy½x; y; t�svundefÞo ðvy½x; yC1; t�svundefÞ

vundef ; otherwise

8><
>: (29)
3.1.4.2. Calculation of the module and the angle of the

acceleration. This inference gets the values for the module of

the acceleration at each pixel [x,y] in time t, jða½x; y; t�j, and the

angle of the acceleration, a[x,y,t], from the values of the

acceleration in the x-axis, vx[x,y,t] and the acceleration in the

y-axis, vy[x,y,t], the same way as in calculation of the module
and the angle of the velocity. Formulas are also very similar:

a½x; y; t�Z arctan
ay½x; y; t�

ax½x; y; t�
(30)

jða½x; y; t�jZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax½x; y; t�

2 Cay½x; y; t�
2

q
(31)

4. Shape-feature extraction

The shape feature extraction subtask, Fig. 23, calculates the

values of the various shape properties as indicated by the

observer. The input information to extract the shape features

are stored as blobs in the working memory and as figures in the

attention focus.

For the case of the blobs stored in the working memory,

res in
the attention focus are approximations to complete objects,

additionally to extracting the same features than for the blobs,

the width–height relation and the compactness features are
extracted for the figures as well. Notice that these features are

nonsense for the blobs. This is why the shape-feature extraction

subtask is split into two subtasks: blob-shape-feature extraction

and figure-shape-feature extraction.

4.1. Blob-shape-feature extraction

As indicated, this subtask evaluates for every blob of the

working memory the size, s_Bjvetiqj, the width, w_Bjvetiqj and



Fig. 23. ‘Shape-feature extraction’ subtask.
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the height, h_Bjvetiqj, features by means of some easy evaluate

inferences, where vlabel is the value of the label associated to

the blob. In our ALI scheme, the centre is formed by the whole

blob and the periphery is the rest of the image. Eqs. (32)–(34)

show how to evaluate those features.

s_B ½vlabel�Z
X

i

pi½x; y; t�jpi½x; y; t�

Z
1; if WM½x; y; t�Z vlabel

0; otherwise

(
(32)

w_B½vlabel�ZmaxðxÞKminðxÞjWM½x; y; t�Z vlabel (33)

h_B½vlabel�ZmaxðyÞKminðyÞjWM½x; y; t�Z vlabel (34)

The size of the blob is the number of pixels that form the

blob (formula (32)). The width of the blob is defined as shown

in formula (33), that is to say, as the difference between the

coordinate x of the pixel more to the right and the coordinate x

of the pixel more to the left of the blob. Equally, as you may

notice in Eq. (34), the height of the blob is defined as the

difference between the coordinate y of the pixel more at the top
Fig. 24. Inferential scheme for ‘blob-shape-feature extraction’.
and the coordinate y of the pixel more to the bottom of the blob

(Fig. 24).
4.2. Figure-shape-feature extraction

This inference evaluates for every figure of the attention

focus the size, s_F[vetiq], the width, w_F[vetiq], the height,

h_F[vetiq], the height/width relation, hw_F[vetiq], and the

compactness, c_F[vetiq]. This features are shown in Fig. 25,

and by means of formulas (35)–(39). Now, vlabel is the label of

the studied figure.

The size, the width and the height are calculated in the same

way than the features of the same names of the blobs.

s_F½vlabel�Z
X

i

pi½x; y; t�jpi½x; y; t�

Z
1; if AF½x; y; t�Z vlabel

0; otherwise

(
(35)

w_F ½vlabel�ZmaxðxÞKminðxÞjAF½x; y; t�Z vlabel (36)
Fig. 25. Inferential scheme for ‘figure-shape-feature extraction’.
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h_F ½vlabel�ZmaxðyÞKminðyÞjAF½x; y; t�Z vlabel (37)

The height/width relation is a parameter of great interest,

which is used in object classification as it discriminates among

different objects of the real world in a very easy way. It is

obtained by means of the formula (38).

hw_F½vlabel�Z
h_F ½vlabel�

w_F ½vlabel�
(38)

The compactness of a figure is defined as the quotient

between the number of pixels belonging to this figure and the

entire number of pixels of the minimal rectangle that

includes it:

c_F½vlabel�Z
s_F½vlabel�

h_F½vlabel� � w_F½vlabel�
(39)

5. Feature integration

The feature integration subtask gets as output the interest

map (Fig. 26) by performing an integration of motion features
Fig. 26. The ‘feature in
and shape features. As it may be noticed, feature integration is

decomposed into five subtasks, namely:

† Motion-features evaluation: This subtask values the

adequacy of the extracted motion features to the values of

the parameters imposed by the observer. The result of this

evaluation is a map for each one of the three features

(motion presence, velocity and acceleration), where we

have the value vactivator in all image pixels that fulfil the

restrictions to the motion features imposed by the observer

and the value vneutral in all pixels that do not fulfil the

restrictions.

† Blob-shape-features evaluation: This subtask determines

the adequacy of the extracted blob-shape features to the

values of the blob-shape parameters imposed by the

observer. The result of this evaluation is a unique map

where value vactivator is assigned to all pixels of the analyzed

blobs that fulfil the restrictions on the blob shape parameters

imposed by the observer and the value vinhibitor in all pixels

of the same blobs that do not fulfil the restrictions. Value

vneutral is deserved to the rest of the image pixels, that is to
tegration’ subtask.



Fig. 27. Inferential scheme for ‘motion-features evaluation’.
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say, to those pixels that do not belong to the subtask’s input

blobs.

† Figure-shape-features evaluation: This subtask works

exactly the same way than the previous one does, but it is

applied to figures instead of blobs.

† Shape-features evaluation: This subtask combines the

outputs of the two previous subtasks into a new map

where the following priority relation is imposed: vinhibitorO
vactivatorOvneutral, when comparing the values of a same

pixel in both input maps.

† Integration-mode application: The guidelines of the

observer not only establish the superior and inferior limits

of all dynamic and shape features, but also determine the

so-called integration mode. This integration mode, M,

assigns more importance to the fulfilment of the input

values of a few inputs than to others. Therefore, it is highly

dependent on specific DSVA applications.

5.1. Motion-features evaluation

Motion-features evaluation performs on motion presence,

Mov[x,y,t], velocity, ðv½x; y; t�, and acceleration, ða½x; y; t�,
Fig. 28. Inferential scheme for ‘bl
obtaining a different map for each of these evaluations. In

Fig. 27 the scheme of this evaluation is shown.

The evaluation of motion presence is calculated from the

map related to the feature motion presence, by means of

comparing the value of the feature at each pixel to the imposed

restriction, rMov, which may have the values 0 for ‘no motion’

and 1 for ‘motion’.
EMov½x; y; t�Z
vactivator; if Mov½x; y; t�Z rMov

vneutral; otherwise

(
(40)
In the other two maps the result of verifying whether the

value of the feature falls between the inferior and superior

limits established by the observer for that property is obtained.
Ev½x; y; t�Z

vactivator; ifðrv min% jðv½x; y; t�j%rv maxÞ

oðrb min%b½x; y; t�%rb maxÞ

vneutral; otherwise

8<
:

(41)
ob-shape-features evaluation’.



Fig. 29. Inferential scheme for ‘figure-shape-features evaluation’.
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Ea½x; y; t�Z

vactivator; ifðramin
% jða½x; y; t�j%ramax

Þ

oðramin
%a½x; y; t�%ramax

Þ

vneutral; otherwise

8<
: (42)

In all the cases, the fulfilment of the restrictions leads to

value vactivator and the non-fulfilment to vneutral.
5.2. Blob-shape-features evaluation

Blob-shape-features evaluation, as offered in the inferential

scheme of Fig. 28, consists of one evaluate. All evaluations of

the blob-shape features are grouped into a unique map.

Again, the result of the verification if the values of all

features are below a superior limit established by the observer

in order to obtain that property is gotten. The fulfilment of all

restrictions leads again to value vactivator and the non-fulfilment

of any of the restrictions to vinhibitor. Value vneutral is assigned to

all pixels that do not belong to any blob.

EB½x;y;t�Z

vactivator; if ½x;y�2gi zijðs_B½vlabel�%rs_BÞ

oðw_B½vlabel�%rw_BÞoðh_B½vlabel�%rh_BÞ

vinhibitor; if ½x;y�2gi zijðs_B½vlabel�Ors_BÞ

nðw_B½vlabel�Orw_BÞnðh_B½vlabel�Orh_BÞ

vneutral; if ½x;y�;gi zi

8>>>>><
>>>>>:

(43)

5.3. Figure-shape-features evaluation

Figure-shape-features evaluation is very similar to blob-

shape-features evaluation. The main difference is the number
of parameters used, and hence the number of restrictions

imposed (Fig. 29).

Once again, all evaluations of the figure shape features are

grouped into a unique map, where the result of the verification

if the values of all features for each pixel are between a superior

and inferior limit established by the observer to obtain that

property. This way, each element of EF[x,y,t] takes the value of

vneutral, vactivator or vinhibitor depending on expression (44).

EF½x;y;t�Z

vneutral; if ½x;y�;gi vi

vactivator; if ½x;y�2gi vijðrs_Fmin
%s_F½vlabel�

%rs_Fmax
Þoðrw_Fmin%w_F½vlabel�

%rw_F maxÞoðrh_Fmin%h_F½vlabel�

%rh_FmaxÞoðrhw_F min%hw_F½vlabel�

%rhw_FmaxÞoðrc_Fmin%c_F½vlabel�

%rc_F maxÞ

vinhibitor; if ½x;y�2gi vijðs_F½vlabel�!rs_Fmin
Þ

nðs_F½vlabel�Ors_Fmax
Þnðw_F½vlabel�

!rw_F minÞnðw_F½vlabel�Orw_FminÞ

nðh_F½vlabel�!rh_FminÞnðh_F½vlabel�

Orh_FmaxÞnðhw_F½vlabel�!rhw_F minÞ

nðhw_F½vlabel�Orhw_FmaxÞ

nðc_F½vlabel�!rc_F minÞnðc_F½vlabel�

Orc_F maxÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(44)

Remember that the fulfilment of all the restrictions leads to

the value vactivator and the not fulfilment of anyone of them

gives place to vinhibitor. The value vneutral is assigned to the

pixels that do not belong to any figure.



Fig. 30. Inferential scheme for ‘shape-features evaluation’

Table 4

Most common integration modes

Integration

mode

Output of evaluation for Classes

Motion

EMov[x,y,t]

Velocity

Ev[x,y,t]

Acceleration

Ea[x,y,t]

Shape

EO[x,y,t]

MZ0 vactivator vactivator vactivator vactivator vactivator
vactivator vactivator vactivator vneutral vactivator
* * * vinhibitor vinhibitor
Rest of combinations vneutral

MZ1 * * * vactivator vactivator
vactivator * * vneutral vactivator
vneutral * * vinhibitor vinhibitor
vneutral * * vneutral vneutral

MZ2 * * * vactivator vactivator
* vactivator * vneutral vactivator
* vneutral * vinhibitor vinhibitor
* vneutral * vneutral vneutral

MZ3 * * * vactivator vactivator
* * * vneutral vneutral
* * * vinhibitor vinhibitor

*Any value.
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5.4. Shape-features evaluation

Shape-features evaluation, as you may notice in Fig. 30,

consists of the fusion into a unique map, EO, of the maps

coming from blob-shape-features evaluation, EB, and figure-

shape-features evaluation, EF.

The algorithm associated to this inference is shown in

Table 3, where it may be observed that value vinhibitor occupies

the first place on vactivator, which in turn occupies the first place

on vneutral. In other words, it is enough that EB[x,y,t] or EF[x,y,t]

take value vinhibitor so that EO[x,y,t] also takes the same value,

vinhibitor. If both evaluations, in which on EB[x,y,t] and EF[x,y,t]

are vneutral, Shape-Features Evaluation also takes value vneutral.

In the rest of the cases value vactivator is applied, which

corresponds to the fact that the two evaluations are activated or

that one of them is activated and the other one takes value

vneutral.
5.5. Integration-mode application

After integration-mode application the interest map, where

for every image pixel one of the three classes—‘activator’,

‘inhibitor’ and ‘neutral’—is stored, is finally obtained. The

classification is performed, in first place, in accordance with the

observer’s guidelines in form of restrictions on the extracted

features. On the other hand, in addition to establishing the

limits for each feature, the guidelines of the observer introduce

the so-called integration mode. the integration mode, M,
Table 3

Fusion of shape features

EB[x,y,t] EF[x,y,t] EO[x,y,t]

vinhibitor * vinhibitor
* vinhibitor vinhibitor
vactivator vactivator vactivator
vactivator vneutral vactivator
vneutral vactivator vactivator
vneutral vneutral vneutral

*Any value.
assigns more importance to the fulfilment of the input values of

a few inputs than to others and is highly dependent on the

specific application (Table 4).

Mode MZ0 is the mode that gives an equal importance to

all four maps. In integration mode MZ0, the value of the

interest map is vactivator when no restriction is broken. Thus,

mode MZ0 is the most restrictive one. Integration mode MZ1

takes only motion presence and shape features into consider-

ation, and does not impose restrictions to velocity and

acceleration. It has the singularity of giving priority to values

vactivator in opposite to other cases. Integration mode MZ2 only

takes into account velocity and shape features, and does not

control motion presence and acceleration restrictions. Again,

vactivator values have a greater priority than the others.

Integration mode MZ3 only minds of shape features. This

mode is only used for tracking purpose once an object has been

selected in accordance to the rest of restrictions given by the

observer.
6. Attention reinforcement

The mechanisms used to generate the working memory

endow the system of sensitivity, as it includes elements

associated to interest points (‘activators’) in the memory at

each frame. Unfortunately, in the working memory scene blobs

whose shape features do not correspond to those defined by the

observer may appear at a time instant t. This is precisely

because their shape features have not yet been studied. But, if

these blobs-shape features do not really seem to be interesting

for the observer, they will appear as ‘inhibitors’ in tC1 in the

interest map (now, in tC1, their shape features will have been

obtained). And this means that in tC1 they will disappear from

the working memory. Thus, the working memory has to be

considered as a noisy memory. Scene blobs appear and

disappear at each input image frame, as they fulfil or do not



Fig. 32. Inferential scheme for ‘attention-charge-memory calculation’.

Fig. 31. Scheme for ‘attention reinforcement’.
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fulfil the desired blob-shape features. The same way we have

got sensitivity, we need some mechanism to endow stability to

the system.

In order to obtain only blobs with the desired features at

each frame, attention reinforcement performs an accumulative

mechanism followed by a threshold. Accumulation is realized

on pixels that have a value different from 0 (pixels that do not

belong to labelled blobs) in the working memory. The result of

this accumulative process followed by a threshold offers as

output the attention focus, AF[x,y,t]. More precisely, pixels that

appear with a value different from 0 in the working memory

reinforce attention, whilst those that appear with a value 0

diminish the attention value. The process manages to keep

activated in a stable way a set of pixels that belong to a group of

objects (figures) of the scene that are interesting for the

observer.

Fig. 31 shows the decomposition of the attention reinforce-

ment subtask into the attention-charge-memory calculation and

attention-focus calculation subtasks.
6.1. Attention-charge-memory calculation

This subtask performs an accumulative computation on the

working memory to get the attention-charge memory. As it has

been explained before, pixels that belong to a blob of the

working memory reinforce attention whilst all the other ones

decrease attention. The inferential scheme is offered at Fig. 32.

The accumulative computation takes in this case the form of

the Eqs. (45) and (46), based on the more general

charge/discharge-accumulative-computation mode, as

explained in formula (12). The evaluate inference shows
the charge and the discharge and the inference select offers the

property measured for the calculation.

The static roles have the following meanings: Chmin and

Chmax are the minimum and maximum values, respectively,

that the values stored in the attention charge memory can reach,

and CMA and DMA are now the charge increment and

decrement, respectively, in the memory computation.

Ch1ZmaxðChMA½x; y; tK1�KDMA;ChminÞ

Ch2ZminðChMA½x; y; tK1�CCMA;ChmaxÞ
(45)

ChMA½x; y; t�Z
Ch1; if WM½x; y; t�Z 0

Ch2; if WM½x; y; t�O0

(
(46)

The charge value ChMA[x,y,t] goes increasing up to Chmax,

if pixel [x,y] belongs to a blob of the working memory, and

goes decreasing down to Chmin if the pixel does not. Charge

value ChMA[x,y,t] represents a measure of the persistency of a

blob in the working memory on each image pixel [x,y].
6.2. Attention-focus calculation. Recurrent-spatial-temporal

ALI

This subtask produces, starting from the attention-charge

memory, the points that shape the attention focus, labelling the

obtained figures. The focus is on the figures, obtained by the

union of the connected blobs that have appeared successively

in the working memory and whose value in the attention-

charge memory is greater or equal to a given threshold, q. In the

output, the label corresponding to the figure is stored; value 0 is



Fig. 33. Inferential scheme for ‘attention focus calculation’.
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assigned to all pixels that do not belong to any figure (see

inferential scheme of Fig. 33).

The inference evaluate in time scale t, which operates with

the input data of the centre, formed by the value of the

attention-charge memory at pixel [x,y], assigns to each

increment of t an initial and provisional value—yet not agreed

with the periphery—corresponding to a function of the

coordinate of the pixel, if the charge value overcomes the

threshold q:

zcðtÞZ
x!NCCyC1; if ChMA½x; y; t�Oq

0; otherwise

(
(47)

The primitive evaluate, which operates with the output data

of the periphery in time scale t, formed by the eight neighbours

of each pixel, obtains the minimum of these values according

to formula (48):

zp Zminðzpða;bÞÞc ½a;b�2½xG1; yG1�jð½a;b�s½x; y�Þ

o ð0!zpða;bÞ%zmaxÞ (48)
The primitive compare generates the discrepancy value at

each time instant t by comparing the values of zc y zp, as shown

in formula (49):

D Z
D1; if zc%zp

D2; if zcOzp

(
(49)

Lastly, here is the inference select that assigns the new value

to zc.

zcðtÞZ
zcðtKDtÞ; if D1

zpðtKDtÞ; if D2

(
(50)

Once again in time scale t, after the competition phase

whose duration is DtZmDt, the value of the attention focus is

obtained; this is the value of the centre.

AF½x; y; t�Z ZcðtCmDtÞZ ZcðtCDtÞ (51)

7. Conclusions

We have presented the algorithmic lateral inhibition (ALI)

method in dynamic and selective visual attention (DSVA) task
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with application to moving objects detection and labelling. The

proposed solution defines a model with two types of processes:

bottom-up processes—based on the scene—which enable to

extract the pixels, blobs and figures features (feature

extraction), and allow to create the blobs (attention building)

and figures (attention reinforcement); and top-down pro-

cesses—based on the object—by means of which from the

intention of the observer the search parameters are modified up

to satisfying his expectations with regard to the attention focus.

These parameters correspond with the integration mode and

with the dynamic restrictions—at pixel level—and the shape

restrictions—at blob and figure level. The parameters are the

input, together with the outputs of the feature extraction

subtask, to the feature integration, subtask, engaged in

generating the interest map.

The paper shows the convenience of modeling knowledge

of tasks and methods in terms of a library of reusable

components (inferential verbs ‘evaluate’, ‘compare’ and

‘select’) and a set of input and output roles played by the

entities of the application domain. The paper also highlights the

possibility to use a PSM, namely the ALI method in any of its

forms—recurrent and non-recurrent, temporal, spatial and

spatial-temporal—to solve a specific problem in artificial

vision where the final configuration of a PSM is always

dependent on the particular balance between data and

knowledge available for the specific case under consideration.

For each one of the subtasks we have illustrated the results of

the inferential scheme.
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