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b Departamento de Sistemas Informáticos, Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
Abstract

Depth inclusion as an important parameter for dynamic selective visual attention is presented in this article. The model introduced in
this paper is based on two previously developed models, dynamic selective visual attention and visual stereoscopy, giving rise to the so-
called dynamic stereoscopic selective visual attention method. The three models are based on the accumulative computation problem-
solving method. This paper shows how software reusability enables enhancing results in vision research (video segmentation) by
integrating earlier works. In this article, the first results obtained for synthetic sequences are included to show the effectiveness of the
integration of motion and shape features with depth parameter in video segmentation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Visual input is with no doubt the most powerful source
of information used by humans to represent a dynamic
scene (Buxton, 2003). Visual information consists of a ser-
ies of redundant spatial data sets, which the brain processes
fast and robustly. In order to advance in vision research it
seems mandatory to provide robust reusable software
(Costagliola, Francese, & Scanniello, 2003; Frakes &
Kang, 2005). Indeed, according to Selby (2005): ‘‘Software
reuse enables developers to leverage past accomplishments
and facilitates significant improvements in software pro-
ductivity and quality. Software reuse catalyzes improve-
ments in productivity by avoiding redevelopment and
improvements in quality by incorporating components
whose reliability has already been established’’.
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The name dynamic selective visual attention comprises a
set of image processing mechanisms to focus your vision on
those regions where spatio-temporal relevant events take
place (e.g., Ban & Lee, 2006; Le Meur, Le Callet, Barba,
& Thoreau, 2006). A computational model capable of sup-
porting the selective visual attention theory can be funda-
mental in dealing with the great amount of information
in a video sequence. Our research group has recently
developed a dynamic selective visual attention (DSVA)
model (López, Fernández-Caballero, Fernández, Mira, &
Delgado, 2007). Its application to moving objects detection
and labeling has also been described (López, Fernández-
Caballero, Mira, Delgado, & Fernández, 2006), as well as
its approach to visual surveillance (López, Fernández-
Caballero, Fernández, Mira, & Delgado, 2006a). We have
approached the solution to the DSVA problem with a
series of biologically inspired methods based on two
fundamental mechanisms: (1) accumulative computation
(Fernández et al., 1995) and (2) a generalized version of
the calculation done by lateral inhibition networks called
algorithmic lateral inhibition (Fernández-Caballero, Mira,
Fernández, & López, 2001; Fernández-Caballero, Mira,
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Delgado, & Fernández, 2003). Our approach is similar to
the attention model for dynamic vision presented by
Backer and Mertsching (2003), where the characteristics
extracted are symmetry, eccentricity, color, contrast and
depth. In our case, the characteristics extracted and
integrated to determine the attention focus are the differ-
ence in illumination level, size, height, width, density,
height/width relationship, velocity, and acceleration (López,
Fernández-Caballero, Fernández, Mira, & Delgado,
2006b), where velocity as well as acceleration is calculated
using object motion in the visual scene as a base.

The greatest difference between the dynamic selective
visual attention and the closest dynamic model (Backer &
Mertsching, 2003) is that we did not use the depth charac-
teristic, obtained thanks to the use of visual stereoscopy
techniques. Currently, there are many algorithms devel-
oped to analyze depth in a scene. An excellent article on
revision methods can be read in Brown, Burschka, and
Hager (2003). Our group has also presented a comprehen-
sive state of the art (López-Valles, Fernández, & Fernán-
dez-Caballero, 2005), in Spanish, as a previous step to
the implementation of its own depth-securing model based
on area correlation, which exploits the symbiosis between
stereoscopy and movement (López-Valles, Fernández, &
Fernández-Caballero, 2007). Recently, the stereovision-
correspondence-analysis task has also been described in
detail (Fernández-Caballero et al., 2007).

This article proposes the incorporation of depth as a
fundamental characteristic of dynamic selective visual
attention giving rise to the so-called dynamic stereoscopic
selective visual attention (DSSVA). Accumulative compu-
tation problem-solving method is present in most steps
throughout the DSSVA method introduced.
2. Proposal for dynamic stereoscopic selective visual

attention

This section presents the proposed solution to the
dynamic stereoscopic selective visual attention (DSSVA)
problem. As Fig. 1 shows, DSSVA is broken into two sub-
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Fig. 1. Dynamic stereoscopic selective visual attention tasks.
tasks: the dynamic selective visual attention (DSVA)
subtask and the visual stereoscopy (VS) subtask. This divi-
sion does not mean that a selective attention technique is
carried out first and later another one for stereoscopy. It
is simply a name for the subtasks into which the system
is broken down. In fact, DSVA is also carried out in the
VS subtask choosing elements from a certain depth.

Fig. 2 shows the general diagram for the DSSVA system.
The inputs to the system are the stereo image sequences and
the observer’s purpose, providing permitted values to the
parameters size, height, width, density, height/width rela-
tionship, velocity, and acceleration. Thus, the parameters
needed to accomplish the tasks are introduced into the
system by means of the observer’s purpose. The image
sequences are grey-leveled (GLl and GLr) and correspond
to the right and left image sequences, respectively.

The outputs supplied by this model are the right and left
stereo attention foci (SAFl and SAFr), which are the set of
figures of interest. If we observe the complete diagram in
Fig. 2 we see that the DSVA is applied first to each input
sequence in a parallel and independent way. We should
point out that the DSVA feeds back on attention foci
which come from VS.

The result of the DSVA for both input sequences is the
monocular attention focus (MAFl and MAFr), and the seg-
mented objects in focus (SOFl and SOFr) in current instant
t and in the previous one t � 1. The MAFs are formed by
the set of pixels in the objects and in the figures of interest
in the input sequences with the observer’s restrictions. In
pixels where the MAFs include a figure, the SOF output
contains the object selected from the input image, trans-
formed into grey-level bands (GLB).

Finally, the observer’s purpose restrictions related to
stereovision, along with the aforementioned DSVA out-
puts, are the visual stereoscopy subtask inputs. Once the
selection in the subtask is made, we go on to work with
both sequences to obtain three-dimensional information
by selecting the objects for a certain depth. This informa-
tion is used to perfect DSVA. In the end, we get the atten-
tion foci (left stereo attention focus SAFl and right stereo
attention focus SAFr) for the objects which have passed
all the selection processes.

Next, we proceed to the specification of the two subtasks
the system comprises.

2.1. Dynamic selective visual attention

This section briefly mentions the original DSVA solu-
tion (López, Fernández-Caballero, Mira, et al., 2006)
which was developed to find a solution for selective visual
attention in a single input sequence. Fig. 3 shows the
DSVA breakdown into its four subtasks: (a) Feature
Extraction: Obtaining dynamic characteristics from the
pixels in the image, as well as the shape characteristics in
the blobs and attention-grabbing figures. (b) Feature Inte-
gration: Application of the criteria established by the user
to the characteristics extracted in the Feature Extraction



Fig. 2. Dynamic stereoscopic selective visual attention general diagram.
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Fig. 3. Dynamic selective visual attention tasks.
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subtask, filtering the pixels, blobs and the figures of interest
to obtain pixels of interest. (c) Attention Building: Building
blobs from the pixels of interest calculated in Feature Inte-
gration. (d) Attention Reinforcement: Building figures and
holding the attention on certain figures (or objects) of inter-
est in the sequence of images.

And, Fig. 4 shows the proposed new design for the
DSVA model, adapted for the integration with stereos-
copy, as well as the subtasks’ input and output. The input
to the DSVA subtask is a grey-leveled sequence of images
and the attention focus that comes from VS. In Fig. 4, this
is shown as GLl/r[x,y, t] and SAFl/r[x,y, t], respectively. As
output, we get the attention focus (MAFl/r[x,y, t]) and the
segmented objects present in the focus (SOFl/r[x,y, t] and
SOFl/r[x,y, t � 1]) in the current and previous instant. That
is, the set of figures which comply with the observer’s spec-
ifications. Notice that l/r means left or right in all cases.

According to Fig. 4, the more interesting associated for-
mulas are explained next. Firstly, as part of subtask Atten-
tion Building, the input images captured in grey levels are
segmented into a lower number (nGLB) of levels:

GLBl=r½x; y; t� ¼
GLl=r½x; y; t� � nGLB

GLmax �GLmin þ 1

� �
þ 1 ð1Þ

where GLmax and GLmin are the maximum and minimum
grey-level values, respectively, for an input image. Typi-
cally, GLmax = 255 and GLmin = 0.

The subtasks Feature Extraction and Feature Integra-
tion obtain the Interest Map (IM), which filters image pix-
els according the parameters set up by the observer,
reinforced by the current stereo attention focus (SAF). This
map stores for each image pixel the result of the compari-
son with three discrepancy classes: ‘‘active’’, ‘‘inhibited’’
and ‘‘neutral’’, as a result of evaluating motion detection
between two consecutive time instants and the observer’s
guidelines, as shown next:



Fig. 4. Dynamic selective visual attention general diagram.
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IMl=r½x;y; t� ¼

vactive; if ðGLBl=r½x;y; t� 6¼GLBl=r½x;y; t�1�Þ
^ðguidelines� fulfilledÞ

vinhibited; if ðGLBl=r½x;y; t� 6¼GLBl=r½x;y; t�1�Þ
^ 6¼ ðguidelines� fulfilledÞ

vneutral; if ðGLBl=r½x;y; t� ¼GLBl=r½x;y; t�1�Þ

8>>>>>><
>>>>>>:

ð2Þ
Next the way in which the Working Memory (WM) is ob-
tained for each grey-level band in subtask Attention Build-
ing is explained. The value for each pixel [x,y] is vactive

whenever the pixel is in ‘‘active’’ state in the IM. vneutral

is assigned if the pixel is labeled as ‘‘neutral’’ and vinhibited

if the pixel is ‘‘inhibited’’:

WMi;l=r½x; y; t� ¼

vactive; if ðGLBl=r½x; y; t� ¼ iÞ
^ ðIMl=r½x; y; t� ¼ vactiveÞ

vneutral; if ðGLBl=r½x; y; t� ¼ iÞ
^ ðIMl=r½x; y; t� ¼ vneutralÞ

vinhibited; otherwise

8>>>>>><
>>>>>>:

ð3Þ
The value at each pixel of the WM will be the maximum
value of the WMi calculated at each grey-level band:

WMl=r½x; y; t� ¼ arg max
i

WMi;l=r½x; y; t� 8i 2 ½1::nGLB�

ð4Þ

Lastly, the monocular attention focus is obtained on a rein-
forcement basis in Attention Reinforcement subtask. Pixels
that appear with a value equal to vactive in the WM rein-
force attention in the MAF, whilst those that appear as a
vinhibited decrement the attention value:

MAFl=r½x; y; t� ¼

maxðMAFl=r½x; y; t � 1� � DMAF;ChminÞ;
if WMl=r½x; y; t� ¼ vinhibited

minðMAFl=r½x; y; t � 1� þ CMAF;ChmaxÞ;
if WMl=r½x; y; t� ¼ vactive

8>>><
>>>:

ð5Þ

where DMAF and CMAF are the discharge and charge con-
stants, respectively, for the monocular attention foci. This
is the first time when accumulative computation appears
as a PSM (problem-solving method). Remember from
Fernández-Caballero et al. (2007) that the general modality



1398 A. Fernández-Caballero et al. / Expert Systems with Applications 34 (2008) 1394–1402
of accumulative computation (AC) is the charge/discharge
mode, which may be described by means of the following
generic formula:

Ch½x;y; t� ¼
minðCh½x;y; t�1�þC;ChmaxÞ; if ðP ½x;y; t�� fulfilledÞ
maxðCh½x;y; t�1��D;ChminÞ; otherwise

�

ð6Þ
The temporal accumulation of a persistency measure of the
property P[x,y, t] gotten at each time instant t at each pixel
[x,y] is calculated. If the property P is fulfilled, the charge
value Ch goes incrementing by increment charge value C

up to reaching Chmax, whilst, if property P is not fulfilled,
the charge value goes decrementing by decrement value D

down to Chmin. Values of C, D, Chmax and Chmin have to
be fixed according to the application characteristics.

The segmented objects in focus are also obtained
through a simple filtering:

SOFl=r½x; y; t� ¼
GLBl=r½x; y; t�; if MAFl=r½x; y; t� > Chmin

�1; otherwise

�

ð7Þ
2.2. Visual stereoscopy

Fig. 5 shows the proposal for the obtaining of depth in
stereoscopic image sequences (Fernández-Caballero et al.,
2007; López-Valles et al., 2007), except adapted to the
inclusion of selective visual attention, which was not
accounted for in the original works. Said subtasks are:
(a) Obtaining of the 2D Charge Map: This obtains the
dynamic characteristics of the pixels in the input image
sequences by means of accumulative computation mecha-
nisms. (b) Charge Disparity Analysis: This subtask is in
charge of the matching. That is, finding the correspondence
between the pixels in the left images and those in the right
images in such a way that they reference the same pixel in
the real scene. (c) Obtaining of Depth: Its result is the
potential objects which meet the requirements introduced
by the observer and the information about the depth of
the selected objects. (d) 3D Attention Reinforcement:
Obtaining of the 2D 
Charge Map  

Charge Disparity 
Analysis 

3D Attention 
Reinforcement 

Visual 
Stereoscopy 

Problem-solving-method

Obtaining of the 
Depth  

Fig. 5. Visual stereoscopy tasks.
Building figures and holding the attention on certain fig-
ures (or objects) of interest to the observer of the sequence
of images. It returns the final stereo attention foci (SAF).
Notice that this latter subtask was not present in the previ-
ous versions of visual stereoscopy.

In Fig. 6, we now see the complete design of the pro-
posed model for VS. The inputs are the segmented objects
in right and left focus (segmented objects in left focus
SOFl[x,y, t] and SOFl[x,y, t � 1], and segmented objects
in right focus SOFr[x,y, t] and SOFr[x,y, t � 1]) and the left
and right monocular attention focus (MAFl[x,y, t] and
MAFr[x,y, t]) that come from the DSVA subtask done in
parallel on both initial (left l and right r) input sequences.
This subtask’s outputs are the same as those from the final
system, that is, the final SAFs (left stereo attention focus
SAFl[x,y, t] and right stereo attention focus SAFr[x,y, t]).
We also have the inputs and outputs for the four great sub-
tasks which make up the VS subtask.

Fig. 6 is also explained in terms of the most relevant
equations that obtain the parameters in the subtasks for
the VS. Firstly, there is a calculation of the so-called motion
charge memories through a couple of subtasks Obtaining of
the 2D Charge Map, inspired in the biological visual
hemifields. For this purpose, left and right motion charge
memories (CM) are obtained by means of AC PSM to pro-
vide accurate information about movement:

CMl=r½x; y; t� ¼

maxðCMl=r½x; y; t � 1� � DCM;ChminÞ;
if SOFl=r½x; y; t� ¼ SOFl=r½x; y; t � 1�

minðCMl=r½x; y; t � 1� þ CCM;ChmaxÞ;
if SOFl=r½x; y; t� 6¼ SOFl=r½x; y; t � 1�

8>>><
>>>:

ð8Þ

where DCM and CCM are the discharge and charge con-
stants, respectively, for the motion charge memories.

For the left visual hemifield, we obtain the left–left and
right–left motion charge memory (MMll[x,y, t] and
MMrl[x,y, t]):

MMl=r;l xþ NC
2
; y; t

� �
¼ CMl=r x� NC

2
; y; t

� �
ð9Þ

And, the operation is simpler for the left–right and right–
right motion charge memory (MMlr[x,y, t] and
MMrr[x,y, t]):

MMl=r;r½x; y; t� ¼ CMl=r½x; y; t� ð10Þ

The disparity map gotten in subtask Charge Disparity
Analysis is a three-dimensional depth map, which shows
the depth of points in the scene where there has been move-
ment. This decision stands on the disparity with the great-
est reliability, taking the epipolar, the ordering and the
disparity restrictions into account:

DM½x; y; t� ¼ djCCM½x; y; d; t�
P CCM½x; y; e; t� 8ðd; eÞ; 0 6 d; e 6 dmax

ð11Þ
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where CCM is the charge correspondence memory result-
ing from the comparison of the charges present in the
motion charge memories obtained as hemifields,and dmax

is the maximum permitted disparity between a couple of
left and right images.

After Obtaining of Depth subtask, in a similar way as
described in DSVA, the left and right stereo working mem-
ories (SWM) are calculated:

SWMl=r½x; y; t� ¼
vactive; if ðMAFl=r½x; y; t� 6¼ ChminÞ

^ ðguidelines� fulfilledÞ
vinhibited; otherwise

8><
>:

ð12Þ

Lastly, the couple of stereo attention foci (SAF) is obtained
on a reinforcement basis in subtask 3D Attention Rein-
forcement – just as for the monocular attention foci. Pixels
that appear with a value equal to vactive in the SWM rein-
force attention in the SAF, whilst those that appear as a
vinhibited decrement the attention value:
SAFl=r½x; y; t� ¼

maxðSAFl=r½x; y; t � 1� � DSAF;ChminÞ;
if SWMl=r½x; y; t� ¼ vinhibited

minðSAFl=r½x; y; t � 1� þ CSAF;ChmaxÞ;
if SWMl=r½x; y; t� ¼ vactive

8>>>><
>>>>:

ð13Þ
where DSAF and CSAF are the discharge and charge con-
stants, respectively. Again we are in front of the PSM accu-
mulative computation.
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3. Data and results

In this section, we show the results obtained in a series
of input stereo image sequences after the proposed DSSVA
method was applied.

3.1. Cubes scene

This synthetic scene, called Cubes, is made up of 240
frames which have a pixel size of 320 · 240. The aim of this
example is to hold the attention on an unbending object
which does not change its perspective with respect to the
cameras and which moves in space.

3.1.1. Example 1

In this first example, we hope to accomplish visual atten-
tion using only size and shape parameters as criteria. The
parameters which stand out the most for the desired object
are, in this case: height = 60 pixels, width = 60 pixels and
maximum size = 3000 pixels. Notice that these are the
observer’s guidelines concerning the shape of the objects.
The results obtained are presented in Fig. 7, where columns
(c) and (d) show the attention focus obtained for the
respective cameras.

We should point out that with the features displayed in
the aforementioned table, we are able to focus the attention
on the small cube throughout the sequence. The results can
be rated as very good since we have selected and held the
attention on the object throughout time, giving a specific
size and shape criteria which excluded the rest of the image.

3.1.2. Example 2

In this second example, we use depth as the selection cri-
terion. That is to say that we will give size and shape criteria
Fig. 7. Results for cubes scene, Example 1. (a) Left input image. (b) Right inp
which will select both cubes (we increase shape = 500 pixels,
width = 500 pixels and maximum size = 20,000 pixels), but
we will only keep the one whose depth is close to the camera
(minimum disparity = 6 pixels; maximum disparity = 8
pixels). The results obtained are presented in Fig. 8, where,
again, columns (a) and (b) show the input images to the
cameras and where column (c) now shows the depth map
obtained and columns (d) and (e) show the attention focus
obtained for the right and left cameras.

We also notice that in frame 60, with the exposed fea-
tures in the table mentioned earlier, it is possible to focus
the attention on both cubes. This is because, although we
can see in the initial input images that the big cube is fur-
ther away than in instant t = 1, there are areas situated
in the indicated disparity and the small cube is close
enough to appear too. In the next frame shown, t = 120,
we see clearly that the cubes in the input images are further
away. This has an effect on the output because none of the
cubes appear there. In the last frame in this study, t = 220,
the big cube has come closer. We know this because it is the
only one seen in the final result.

3.2. Ball scene

This example uses depth as a selection criterion. Size and
shape criteria, which select all the objects that appear in the
scene, will be given. This is done this way because the
objects’ geometry varies a lot. They revolve around them-
selves and move close and move away constantly, making
it very difficult to determine their shapes and sizes. For this
reason, their depth will be used as a selection criterion. We
have use the parameter maximum disparity dmax = 3 pixels,
which will enable us to film the figures at the back of the
scene, located far away from the camera. The results are
ut image. (c) Left stereo attention focus. (d) Right stereo attention focus.



Fig. 8. Results for cubes scene, Example 2. (a) Left input image. (b) Right input image. (c) Depth map. (d) Left stereo attention focus. (e) Right stereo
attention focus.
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presented in Fig. 9, where columns (a)–(c) mean the same
for Fig. 8. Columns (d) and (e) show the overlapping of
the attention focus obtained with the corresponding input
images for the respective cameras.

We see right away that the results are not as optimum as
in the cubes scene. The reason for this is that if the figures
rotate or do not have edges, the proposed system does not
work properly and some pixels’ disparity will be measured
incorrectly. This small number of pixels almost always takes
up as much disparity as possible, thus the Visual Stereos-
copy subtask will allow the attention focus that comes from
the dynamic selective visual attention subtask to go through.
Fig. 9. Results for ball scene. (a) Left input image. (b) Right input image. (c)
stereo attention focus on right input image.
We will now take a closer look at the results in Fig. 9.
Since the cube and the ring body are at the back of the
scene in frame 21, they display a dark gray level in the
depth map. They cube does not show up in the depth
map in frame 81. In the next frame, 111, the cube, which
is moving closer to the camera and pivoting, should have
disappeared from the Depth Map and therefore, from the
attention focus. However, due to the turning motion, the
system fails again. On the other hand, the ball blocks up
the ring body, but not completely. Due to the closeness
and to the restrictions imposed, there is a gap in the ring
body’s depth map, which belongs to the ball. In the last
Depth map. (d) Left stereo attention focus on left input image. (e) Right
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frame, the ball is situated in the darkest pixels, which are
located at the far end.

4. Conclusions

This article has presented the inclusion of the depth
parameter in selective visual attention, based on previous
experience on both subjects – dynamic selective visual
attention (DSVA) and visual stereoscopy (VS) – separately.
We have shown that software reusability is perfect to
enhance applications from previously acquired knowledge.
As a result of the way we structured the task, by dividing
the DSSVA task into two subtasks, DSVA and VS, we
started out with a great advantage. It is possible to do only
subtask DSVA and manage to focus and hold the attention
with motion, shape and size parameters. By using subtask
VS, we obtain depth information about the objects in the
scene. Notice again, that our accumulative problem-solving
method is used in many steps throughout the DSSVA
model proposed. Thus, the model benefits from a well-
proven and efficient base method.

With regard to the initial results on synthetic images, we
can say that the success rate is encouraging. When the
objects keep their perspective, their geometry is flat in rela-
tion to the camera and object motion is gentle and not too
fast, the results are good, as has been proved in the quite
complex cubes scene. Nonetheless, if the objects pivot, their
geometry is not regular, they lack edges or move too fast,
the results are not as good (Ball scene).
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