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Abstract

Segmentation of the left ventricle in echocardiographic images is a task with important diagnostic power. This paper describes a
method for the calculation of the ventricle’s contours in long- and short-axis views. The segmentation process starts with a complex
border detection process, followed by the application of a generalized Hough transform to detect curves and ended up through an
active-contour algorithm. Afterwards, parameters left ventricular area in a short-axis view, left ventricular length in a long-axis view,
left ventricular volume, left ventricular mass, and heart-wall thickness are specifically calculated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Cardiovascular diseases are a major health concern
worldwide. Of all the known heart diseases, hypertension,
coronary heart disease, rheumatic valvular heart disease,
chronic cor pulmonale, and congenital heart disease have
been identified as the five most important (Fuster, Alexan-
der, & O’Rourke, 2001; Yan, Jiang, Zheng, Peng, & Li,
2006). The left ventricle and in particular the endocardium
is a structure of particular interest since it performs the task
of pumping oxygenated blood to the entire body (Paragios,
Jolly, Taron, & Ramaraj, 2005). Therefore, segmentation
of the left ventricle in echocardiographic images is a
task with important diagnostic power. More concretely,
contour extraction is an important criterion for subjective
evaluation of the cardiac function and has become an area
of focus (Mishra, Dutta, & Ghosh, 2003). This paper
describes a method for obtaining a series of parameters
from the heart’s left ventricle which are useful in the detec-
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tion of certain heart diseases based on echocardiographic
images. The bulk of the article describes methods for left
ventricle segmentation in short- and long-axis views to cal-
culate cardiac parameters useful for medical personnel. The
following parameters are specifically calculated:

� Left ventricular area in a short-axis view.
� Left ventricular length in a long-axis view.
� Left ventricular volume.
� Left ventricular mass.
� Heart-wall thickness.

To solve these problems a set of algorithms providing
left ventricular segmentation will be used. The problem
that physicians face with echocardiographies is its great
uncertainty. Each doctor decides where to place the cursor
to take the measurements (Braunwald, Zipes, Libby, &
Bonow, 2004). If he or she is not a well-qualified expert
in this type of measurements, he can make considerable
mistakes. This paper is, thus, addressed to the elimination
of the observer’s uncertainty. This is achieved by automat-
ing the whole segmentation process, as well as the calcula-
tion of the results. We aim to carry out an approximation
to the ventricle’s contours in a long- and short-axis views
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through an active-contour algorithm. These algorithms are
efficient at finding object edges, in this case, from the left
ventricle. The trouble with the algorithm, though, is that
the initial points must be introduced manually so that the
algorithm approximates the object in question. This is
solved with a Hough transform, a technique used to find
objects with certain shapes. Therefore, when the transform
finds an object in the image in the shape of a left ventricle,
this information will be passed on to the active-contours
algorithm to approximate and perfect the resolution. It is
then possible to calculate the necessary parameters.

The aim of this approach is to automate these calcula-
tions, especially the detection of the left ventricle in a
long-axis view, which is the one the doctors use most. No
bibliographical reference has been found in the state-of-
the-art study for automatic ventricle detection in this view.
Therefore, we regard this as an important contribution of
the present paper. We do not expect to get perfect calcula-
tions, since this would require more sophisticated filters to
process the images (Nastar & Ayache, 1993), and this is not
the aim of this paper. However, the results obtained are
very close to reality, as it will be shown throughout this
article.

2. Antecedents in left ventricle segmentation

This section will include some prior studies carried out
in the field of echocardiographic images, specifically left
ventricle segmentation starting from contour extraction
models. There are many published works in the matter
(Buda et al., 1983; Mikic, Krucinski, & Thomas, 1998;
Pardo, Solé, & Cabello, 2000; Pincum, Schwartz, Corday,
Fujibayashi, & Meerbaum, 1986). We will list the most rel-
evant publications related to this paper.

The methods suggested by Chu, Delp, and Buda (1988)
require mostly the grey-level information along with some
user-defined initial contours to extract the boundary in the
images. Nastar and Ayache (1993) have proposed a basic
model for the contour as a set of mass linked by springs
to track the motion in a sequence of 2D images. However,
the method proposed by Staib and Duncan (1992) imple-
mented a probabilistic deformable model considering the
boundary as two-dimensional deformable object using
maximum posteriori estimate. A more recent work by
Chalana, Linker, Haynor, and Kim (1996) reports an inter-
esting approach to detect epicardial and endocardial
boundaries of short-axis echocardiographic sequences
using a multiple-active-contour model, an extension to
the original model proposed by Kass, Witkin, and Terzo-
poulos (1988). The multiple-active-contour model is a spe-
cial case of active surface model where the surface is
represented as a sequence of planar contours. The algo-
rithm requires user-defined initial approximation for epi-
cardial boundary that detects the contour by computing
gradients using Canny’s edge detection method. The vari-
ance of the Gaussian kernel used to convolve the gradient
image progressively decreases to intensify the convergence.
The optimized contours of the epicardial boarders are used
as initial approximation for endocardial boundary with
empirically determined values of the snake model parame-
ters. A similar automated contour extraction algorithm
proposed by Ranganath (1995) is applicable to spin and
gradient echo magnetic resonance imaging (MRI) image
sequences. It suggests a contour propagation technique to
track the boundary in a sequence despite its poor temporal
resolution. In Malassiotis and Strintzis (1999), a temporal
learning–filtering procedure is applied to perfect the left
ventricular (LV) boundary detected by an active-contour
model. Instead of making prior assumptions about the
LV shape or its motion, the information increases directly
from the images and it is exploited to achieve a more coher-
ent segmentation. A Hough transform technique is used to
find an initial approximation of the object boundary at the
first frame of the sequence. Then, an active-contour model
is used in a coarse-to-fine framework, for the estimation of
a noisy LV boundary.

More recently, automatic detection of the boundary of
left ventricle in a sequence of cardiac images has been
proposed (Mishra et al., 2003). The contour detection algo-
rithm is formulated as a constrained optimization problem
based on active-contour model. The optimization problem
has been solved using a genetic algorithm (GA). The result
obtained by the proposed GA based approach is compared
with conventional nonlinear programming methods. In
Montagnat, Sermesant, Delingette, Malandain, and
Ayache (2003), a 4D (3D + time) echocardiographic image
anisotropic filtering and a 3D model-based segmentation
system are presented. To improve the extraction of left ven-
tricle boundaries, the authors rely on two pre-processing
stages. First, they apply an anisotropic filter that reduces
image noise. This 4D filter takes into account the spatial
and temporal nature of echocardiographic images. Second,
they adapt the usual gradient filter estimation to the cylin-
drical geometry of the 3D ultrasound images. The recon-
struction of the endocardium takes place by deforming a
deformable simplex mesh having an a priori knowledge
of left ventricle shape and that is guided by a region-based
data attraction force. In another approach (Shekhar, Zag-
rodsky, & Walimbe, 2004), images of the left ventricle are
acquired both at rest and upon stress; these are then com-
pared to detect the onset of new wall motion abnormalities
post-stress or worsening of existing wall motion abnormal-
ities at rest. In a work (Angelini, Homma, Pearson,
Holmes, & Laine, 2005), a clinical study for segmentation
of right and left ventricular volumes is introduced. A pre-
processing of the volumetric data sets is performed using
spatiotemporal brushlet denoising. Two deformable-model
segmentation methods are implemented in 2D using a
parametric formulation and in 3D using an implicit formu-
lation with a level set implementation for the extraction of
endocardial surfaces on denoised data.

This paper opens a door towards left ventricular detec-
tion in a long-axis view (two- or four-chambers). Although
digital techniques have improved, the echocardiographic
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images are inherently noisy due to the air in the lungs;
therefore, initial point detection relying on thresholds can
be complicated, since these thresholds can change from
one image to the next.
3. Echocardiographic parameters for coronary disease
detection

3.1. Two-dimensional echocardiography principals

The term ‘‘echocardiography‘‘ refers to a group of tests
where the ultrasound is used to examine the heart and
record information in the form of echoes (sound wave
reflections). The maximum limit for a sound to be audible
is 20,000 cycles/s or 20 KHz. The frequency used in ultra-
sounds is from 1 to 10 million cycles/s. The frequencies
used for adults are usually 2.0–5.0 MHz, whereas the ones
used for children are usually higher, from 3.5 to 10 MHz.
The resolution of the image registration, which is the
ability to distinguish two objects near in space, is directly
proportional to the frequency and inversely proportional
to the length of the wave. A high frequency ultrasound
(short wave) identifies objects less than 1 mm away. Rays
with the lowest frequency and longest wave have a more
deficient resolution. On the other hand, the intensity of
sound penetration, which is the ability to transmit enough
ultrasonic energy into the thorax to provide an adequate
range, is inversely proportional to the signal’s frequency.
A high frequency ultrasonic ray (e.g. 5 or 10 MHz) does
not penetrate a thick thoracic wall, thus lower frequency
ultrasound rays are used for adults. Although this enables
the rays to penetrate the thoracic wall, it partially sacrifices
the resolution; however, even with a transducer that
produces 2.5 MHz rays, which is frequently used in adult
echocardiographies, it is still possible to identify objects
at 1 and 2 mm away from each other.

Ultrasonic rays move in a sector in such a way that a
projection of the heart in the shape of a piece of cake is
obtained. In most two-dimensional commercial echocar-
diographs, the ultrasonic rays move in such a way that
approximately 30 slices/s are obtained. The ultrasonic ray
can move mechanically oscillating a single transducer or
rotating a series of transducers. Similarly, the ultrasound
is electronically guided using the principles of phase
sequences where several ultrasonic elements are used to
form the ray and in which the elements’ shot sequence is
controlled. It is necessary to use a computer or a micropro-
cessor to control the elements’ shots and the direction of
the ray.

A heart ultrasonic test is, essentially, an ultrasound ana-
tomic incision where a beam of thin ultrasounds makes
incisions in different places, depending on where the trans-
ducer or another source of ultrasonic rays is placed. Due to
the increasing use of the different positions of the trans-
ducer, the American Society of Echocardiography has
standardized the nomenclature used for the different posi-
tions naming them supraesternal, paraesternal, apical and
subcostal (Braunwald et al., 2004).

It is possible to obtain an infinite number of incisions
from the heart for each of the above-mentioned positions.
There are many heart tests and views reported in the liter-
ature. The American Society of Echocardiography has
standardized the two-dimensional tests described (Braun-
wald et al., 2004). The society believed that all views could
be categorized in three orthogonal planes. These planes are
a plane over the long or major axis, a plane over the short
or minor axis and the four-chambered (or cavities) plane.
These planes can be obtained from more than one position
of the transducer. The society recommends any examina-
tion within 45� of a basic plane to be identified with the
name of that plane. Therefore, there are multiple views
within each plane. The angular modifications depend on
the exact cardiac structure to be examined.

The long-axis view can be obtained by placing with the
transducer in the apical, paraesternal (left sternal border)
positions or in the supraesternal cavity. The short-axis view
crosses the heart so that the left ventricle looks like a circle.
The right ventricle wraps around the left ventricle. These
views are obtained by placing the transducer in a paraester-
nal or subcostal position. The four-chamber view enables
us to examine the four-chambers of the heart simulta-
neously and it is obtained by placing the transducer over
the heart or in a subcostal position.

3.2. Cardiac parameters

Medical images obtained from two-dimensional echo-
cardiographies will be used to calculate left ventricular
area, length, volume and mass. With these data, we can
infer the type of heart disease that the individual being
studied may suffer from. Cardiac function assessment is a
difficult but extremely important task for the study of
patients with an evident or suspected heart disorder. Ven-
tricular functioning is related to the simple pumping func-
tion of the ventricle revealed as cardiac expense or output
and expressed per heart beat or per minute. Ventricular
function relates these indicators of ventricular performance
with certain preloaded measurements, such as volume, tel-
ediastolic dimension and pressure or wall strain.

The angiographic methods are the most widely used for
measuring heart chamber volume and also ventricular wall
thickness. It is also possible to use techniques which do not
involve corporal penetration to assess ventricular volume
or dimensions. In this project, we will use images taken
without corporal penetration, such as two-dimensional
echocardiographies.

Methods that use cardiac catheterization and quantitative
coronary angiography to study the function and contract-
ibility of the heart are the most exact. However, they are
not without risk or discomfort for patients, due to corporal
penetration. We will, therefore, use less bloody medical
images (two-dimensional echocardiographs) obtaining sim-
ilar results.
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3.2.1. Left ventricular volume

The most widely used method to calculate left ventricu-
lar volume is the area–length method developed by Dodge
(Braunwald et al., 2004). Left ventricular volume is calcu-
lated by using the volume formula for an ellipsoid, since
volumes calculated this way (and checked through a regres-
sion equation) are correlated with ventricular volume
directly measured. Left ventricular long-axis (L) is directly
measured; that is to say, the distance between the base
point and the aortic valve. Afterwards, left ventricular
diameter (D) is calculated using the formula:

D ¼ 4 � A
L

ð1Þ

where A is the area of left ventricular cavity in cm2.
The left ventricle is usually in the shape of an ellipsoid of

revolution with a larger and two smaller diameters. Based
on this, left ventricular volume is calculated using the
formula:

V ¼ 4

3
� p � L

2
� DAP

2
� Dlat

2
ð2Þ

where V is the volume in ml, L is the long-axis in cm in the
AP (anteroposterior) or lateral (planimetry), DAP, and Dlat

is the diameter (short-axes) in cm, calculated for AP and
lateral projections, respectively. At the same time, these
diameters are calculated based on the formula for the area
of an ellipse (A) as follows:

D ¼ 4 � A
p � L ð3Þ

Real ventricular volume is determined from the volume cal-
culated by using a regression formula, which takes into ac-
count the volume taken up by the papillary muscles and the
chordae tendinae inside the left ventricular cavity. The
exactness of this method has been investigated in human
hearts obtained by necropsy, and in models and moulds ta-
ken from these hearts. A high correlation was noted.

Under normal conditions, left ventricular end-diastolic
volume (SD, stroke diastolic) is, on the average, 70 ±
20 ml/m2. In general, left ventricular function decreases
when the ventricular end-diastolic volume is clearly high
(that is >110 ml/m2 or >2 standard deviation above the
normal average) and total stroke volume or cardiac output
and index have decreased or are within the normal limits,
as long as both heart rate and blood pressure are normal.

Left ventricular stroke volume (SV) is calculated by tak-
ing the difference between the end-diastolic volume (EDV)
and the end-systolic volume (ESV). Ejection fraction (EF)
is the coefficient of SV divided by EDV:

EF ¼ SV

EDV
ð4Þ

A two-dimensional echocardiography is user-friendly for
calculating left ventricular end-diastolic volume (EDV).
According to the method,
EDV ¼ Dmax �
Lmax

4
� 4:35

� �
� 6:44 ð5Þ

where Dmax is the longest minor diameter determined by the
paraesternal long-axis and four- and two-chamber views,
and Lmax is the greatest long-axis obtained in the apex
projections.

3.2.2. Left ventricular mass

This is defined as the difference between the total ven-
tricular volume (calculated based on the product of the left
ventricular myocardial length and the short-axis left ven-
tricular area) and the left ventricular chamber volume. This
method has been validated with regard to the real ventric-
ular mass. Therefore, the product of the volume of the wall
multiplied by the heart muscle density (1.050) is equal to
the mass:

M ¼ 4

3
� p � Lþ 2h

2
� DAP þ 2h

2
� Dlat þ 2h

2

� �
þ V

� �
� 1:05 ð6Þ

where h is the left ventricular wall thickening in cm, 1.050 is
the heart muscle density, DAP and Dlat are the left ventricu-
lar diameters in cm in the anteroposterior and lateral views,
respectively, and V is the left ventricular volume in ml.

When single-plane methods are applied, we assume that
DAP ¼ Dlat,

M ¼ p
6
� ðLþ 2hÞ � 4 � A

p � Lþ 2h2

� �
þ V

� �
� 1:05 ð7Þ

where A is the area of the silhouette of a single-plane.
Left ventricular wall thickening usually is an average of

10.9 ± 2.0 mm (SD); left ventricular mass, 92 ± 16 g/m2. A
chronic heart dilation secondary to volume overload or to
a primary myocardiopathy increases left ventricular mass
the same way a chronic pressure overload does.

3.2.3. Ejection fraction and myocardium fractional

shortening

The ejection fraction is the quotient of the stroke vol-
ume (SV) divided by the end-diastolic volume (EDV). It
represents a global index of the degree of ventricular fiber
shortening and, according to numerous empirical studies,
it is regarded as a useful measure of the left ventricular
pump function. On average, the left ventricular ejection
fraction is 0.67 ± 0.08 (SD) for normal subjects. The ejec-
tion fraction varies in inverse function to the cardiac
frequency.

The ejection fraction is directly related to the minor axis
percentage shortening during systole. It is the basis for cal-
culating the ejection fraction through echocardiographies.
In general, the perpendicular diameter to the mid-point
of the major axis is used, and the fractional shortening
(FS) is calculated as follows and expressed in percentages:

FS ¼ telesystolic dimension

telediastolic dimension
ð8Þ
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3.2.4. Relationship between parameters and coronary disease

Once the parameters to be calculated are defined, let us
take a look at how, using Table 1, we can find out the kind
of disease the individual being studied has, by calculating
left ventricular volume, mass and ejection fraction (Braun-
wald et al., 2004).

In Table 1, AS is the aortic valve stenosis with maximum
systolic gradient >30 mm Hg, AR is the aortic regurgitation
>30 ml per stroke, MS is the mitral stenosis with a valve area
<1.5 cm2, MR is the mitral regurgitation >20 ml per stroke,
A and M are the combined aortic and mitral myocardiopa-
thies. Myocardiopathy stands for acute or subacute myocar-
diopathy with coronary arteriosclerosis.

4. Left ventricular segmentation in the short- and long-axis

views

Medical image segmentation is a difficult task due to low
signal-to-noise ratios and poor contrast. In this project, we
try to solve certain problems with the help of active-contours
and other segmentation techniques, which will be applied to
the images to process them and obtain better results. The
application in medicine of image analysis and of computa-
tional vision and calculus has been a deciding factor in the
increase of medical diagnosis accuracy and treatment plans.
Segmentation is essential to any image analysis system.

Active-contour techniques allow to integrate different
information elements into the segmentation process. It is
possible to combine information from regions and bound-
aries with shape and/or statistical models. However,
several problems must be solved in the classical implemen-
tation. One of them is requiring good initialization to stop
the local minimum energy in the energy minimization pro-
cess. A Hough transform will be used in the initialization
process. The active-contours try to find object boundaries
by heading for pixels where abrupt changes break the
homogeneity of some of the scenes in the image. One of
the most widely used features to identify these points is
the gradient. High gradient is usually associated with a
noticeable boundary. However, when dealing with medical
images, it is very common to find boundaries with a gradi-
ent similar to that of the object boundary, due to noise or
to other objects. Moreover, boundaries in the contours of
interest might seem unconnected.
Table 1
Parameters versus diseases

Group Patients Telediastolic vol. (ml/m2)

Normal – 70 ± 20.0
AS 14 84 ± 22.9
AR 22 193 ± 55.4
AS and AR 13 138 ± 36.5
MS 37 83 ± 21.2
MR 29 160 ± 53.1
MS and MR 29 106 ± 34.4
A and M combined 45 130 ± 55.8
Myocardiopathy 15 199 ± 75.7
Left ventricle segmentation will be carried out as
follows: first, the echocardiographic images will be pre-
processed (both views), until gradient smoothness is
obtained. After the images have been pre-processed, a
Hough transform will be used to find the ventricle and,
thus, obtain a better initialization of the active-contour.
Once we have the pixels (snaxels) obtained by the trans-
form, they are transferred to the active-contour algorithm,
which completes the left ventricle segmentation. Finally,
the parameters needed to get a diagnosis are calculated.
A diagram of this process is shown in Fig. 1.
4.1. Pre-processing: smoothing, gradient detection and

gradient smoothing

4.1.1. Border detection: gradient

Next, the processes followed to calculate the gradient
image will be explained. The derivative from a continuous
signal provides the local variations regarding the variable,
so that the faster the variations, the greater the value of
the derivative. Let us assume a two-dimensional function
f ðx; yÞ, the derivative is a vector which points in the direc-
tion of maximum variation of f ðx; yÞ and whose modulus is
proportional to the said variation. This vector, known as
rf ðx; yÞ, is called a gradient and is defined as

rf ðx; yÞ ¼
o
ox f ðx; yÞ
o
oy f ðx; yÞ

" #
¼

fxðx; yÞ
fyðx; yÞ

� �
ð9Þ

Observing the previous equation, the gradient in a pixel
ðx; yÞ is given by derivatives f ðx; yÞ along the axis of the
orthogonal coordinates x and y. The modulus and direc-
tion of the gradient are given by

jrf ðx; yÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxðx; yÞ2 þ fyðx; yÞ2

q
ð10Þ

aðx; yÞ ¼ arctan
fyðx; yÞ
fxðx; yÞ

ð11Þ

In the discrete two-dimensional case, the different approx-
imations of the gradient operator are based on the differ-
ences in the image’s grey-levels. For instance, the partial
derivative fxðx; yÞ (row gradient) can approximate through
the difference in adjacent pixels in the same row, that is to
say,
Stroke vol. (ml/m2) Mass (g/m2) Ejection fraction

45 ± 13.0 92 ± 16.0 0.67 ± 0.08
44 ± 10.1 171 ± 32.7 0.56 ± 0.17
92 ± 30.0 223 ± 73.0 0.57 ± 0.13
75 ± 19.1 231 ± 56.9 0.53 ± 0.10
43 ± 11.9 98 ± 24.1 0.57 ± 0.14
87 ± 21.3 166 ± 49.9 0.47 ± 0.10
58 ± 14.7 119 ± 27.8 0.57 ± 0.12
69 ± 25.5 156 ± 55.9 0.55 ± 0.12
44 ± 14.5 145 ± 27.6 0.25 ± 0.09



Pixels
(snaxels)

Active contour

Surface

Pixels
(snaxels)

Active contour

Lenght, mass, 
volume, thickness

Detection of coronary
disease

Diagnosis

Transversal
projection image

Pre-processing

DroG operator

Hough transform
(ellipse equation)

Longitudinal
projection image

Pre-processing

DroG operator

General Hough
transform

Fig. 1. Left ventricular segmentation in the short- and long-axis views for the detection of coronary diseases.
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fxðx; yÞ � GF ði; jÞ ¼
F ði; jÞ � F ði; j� 1Þ

T
ð12Þ

or also through the difference in separate pixels:

fxðx; yÞ � GF ði; jÞ ¼
F ði; jþ 1Þ � F ði; j� 1Þ

2T
ð13Þ

where it is assumed that, without the loss of generality, the
row index i grows from top to bottom and the column in-
dex j from left to right. 1

T and 1
2
T are scale factors. Row gra-

dients GF and column gradients GC for each pixel are
obtained through image convolution with a mask H F and
H C, respectively, that is to say

GF ði; jÞ ¼ F ði; jÞ � H F ði; jÞ
GCði; jÞ ¼ F ði; jÞ � H Cði; jÞ

ð14Þ

where H F ði; jÞ and H Cði; jÞ are the impulse responses for
the row and column gradients, respectively. The magnitude
and orientation of the gradient vector are obtained accord-
ing to the previous equations. Although these equations re-
quire great computational cost to calculate the magnitude,
the following expression is normally used:

jGði; jÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GF ði; jÞ2 þ GCði; jÞ2

q
¼ jGF ði; jÞj þ jGCði; jÞj ð15Þ

The Sobel operator is the operator used to calculate the
gradient (HF and H C). This operator is more sensitive to
diagonal edges and works somewhat better with medical
images than the Prewitt operator, which is more sensitive
to vertical and horizontal edges

HF ði; jÞ ¼
�1 0 1

�2 0 2

�1 0 1

2
64

3
75 ð16Þ

HCði; jÞ ¼
1 2 1

0 0 0

�1 �2 �1

2
64

3
75 ð17Þ

The idea with this operator is to use an approximation of
the gradient which is computationally efficient and more
isotropic than other operators. The magnitude of direc-
tional derivative g is defined as

jgj ¼ intensity difference

distance to neighbor
ð18Þ

The direction of g is given by the unitary vector, from the
central to the neighboring pixel. Gradient G in the pixel ta-
ken is calculated from the sum of the directional derivatives
with its eight neighbors, that is to say

G ¼ c� e
R
þ e� g

R

� �
� ð1; 1Þ

T

R
þ a� e

R
þ e� i

R

� �

� ð�1; 1ÞT

R
þ b� e

R
þ e� h

R

� �
� ð0; 1ÞT

þ f � e
R
þ e� d

R

� �
� ð1; 0ÞT ð19Þ
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where R ¼
ffiffiffi
2
p

. The operand in the previous expression
results

G ¼
2ðf � dÞ þ ðc� g � aþ iÞ
2ðb� hÞ þ ðc� g þ a� iÞ

				
				 ð20Þ
Since the previous expression should scale with factor 1
4

to
obtain unity gain in the positive and negatives sides of the
operator, the equation really provides a value 8 times great-
er than the real value. Fig. 2 shows the implementation of a
border detection algorithm.

Once the gradient modulus is calculated for each pixel
Gði; jÞ, a thresholding operation is usually applied, where
it is decided which pixels belong and which do not belong
to an edge of the image. Threshold choice is critical: a low
threshold would detect fluctuations as edges due to noise
(especially using echocardiographic images) and would give
rise to multiple responses. On the contrary, a high thresh-
old would not detect many of the edges in the image. For
this threshold, we use the same grey-level usually the heart
tissue has (see Fig. 3).

The direction of the gradient in a pixel in the image is
that of grey-level maximum variation. That is to say, per-
F (i,j)

HF (i,j)

HC (i,j)

GF (i,j)

GC (i,j)

Convolution

|G (i,j)|
Gradient
image

Convolution

Union of both 
images

|…|+|…|

Fig. 2. Border detection algorithm.

Fig. 3. Application of the gradient operator. (a) Original image of the left ven
short-axis view.
pendicular to the edge of the said pixel. This direction is
not taken into account in the previous diagram, but it is
very important because it supplies significant information
for subsequent stages, since it will be used to apply a
Hough transform. This transform will be used for image
segmentation and to carry out a first approximation of
the active-contour (see Fig. 4).

The size of the operator is of great importance with
regard to detection and location. 2� 2 and 3� 3 operators
are noise sensitive (especially the 2� 2). This problem is
usually solved by increasing the size of the mask which acts
upon a greater number of pixels. This is similar to applying
a pre-smoothing to the image and later applying the gradi-
ent operator.

4.1.2. Smoothing
Smoothing operations are primarily used for diminish-

ing noise and/or spurious effects in an image as a
consequence of the capturing process, digitalization, trans-
mission or the very nature of the image. They are usually
necessary prior to the application of an edge detector.
The down side of using an image smoothing is that it
implies edge diminution and blurring, and thus more diffi-
culties in locating them. However, if a smoothing of the
image was not applied prior to this, the noise would affect
the gradient operator too much and would detect non-
existing objects. This would happen especially in echocar-
diographic images, since they are noisy by nature due to
the air in patients’ lungs.

For the smoothing, we will use a weighted average of the
background, which takes into account the grey-level of the
neighboring pixels that will be used. This type of smooth-
ing, which assigns different weights to each pixel, is used
to avoid blurring features in the image. A Gaussian filter
will be used by means of the mathematical operations
shown next:
tricle in the short-axis view. (b) Gradient image of the left ventricle in the



Fig. 4. Smoothing. (a) Image smoothed with r ¼ 7. (b) Image smoothed with r ¼ 50.
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grðx; yÞ ¼
1

2pr2
e�

ffiffiffiffiffiffiffi
x2þy2
p

2r2 ¼ 1

2pr2
e�

r
2r2 ¼ grðrÞ ð21Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

The convolution of function grðx; yÞ with a signal
f ðx; yÞ gives rise to a new signal hðx; yÞ, where the value
for each point is the result of working out the average,
with different weights, of neighboring values at both sides
of the said neighbors. Standard deviation r plays an
important role in controlling the operator’s degree of
smoothing.

When we spoke earlier about the edge detection of an
image, we said that threshold choice was critical. If it is
too low, we could detect edges that do not belong to the
object, due to noise, and if it is too high, we would not
detect anything. Thresholding is not explicit; rather, when
the snake acts, it does it over pixels that exceed a certain
threshold (they attract the snake).
Fig. 5. Image obtained after DroG operator smoothing.
4.1.3. DroG operator smoothing

A very usual procedure to make the gradient operator
less vulnerable to noise consists in previously smoothing
the image. Both procedures (smoothing and gradient) can
be combined into one through convolution:

Hði; jÞ ¼ H Gði; jÞ � HSði; jÞ ð22Þ

where H Sði; jÞ is the original image smoothing and HGði; jÞ
is the gradient image. Gradient calculation for a continu-
ous function f ðx; yÞ smoothed with grðx; yÞ is given by
the composition of operations:

r½f ðx; yÞ � grðx; yÞ� ð23Þ

where r½� � �� indicates the gradient operator. Since the gra-
dient operator, as well as the convolution, is a linear oper-
ation, the previous equation can be expressed as

r½f ðx; yÞ � grðx; yÞ� ¼ f ðx; yÞ � r½grðx; yÞ�
¼ f ðx; yÞ �DroGðx; yÞ ð24Þ
Operator DroG is a vector defined as

DroGðx; yÞ ¼
o
ox ðgrðxÞgrðyÞÞ
o
oy ðgrðxÞgrðyÞÞ

					
					 ¼ grðyÞ o

ox ðgrðxÞÞ
grðxÞ o

oy ðgrðyÞÞ

					
					

¼
�xgrðxÞgrðyÞ

r2

�ygrðxÞgrðyÞ
r2

" #
ð25Þ

where grðx; yÞ ¼ grðxÞgrðyÞ.
To implement operator DroG into a digital image, it is

necessary to discretize the components x and y in the pre-
vious equation. This discretization is carried out according
to the value of standard deviation r. Since echocardio-
graphic images are very noisy, the smoothing is usually
applied again over the imaged obtained with operator
DroG (see Fig. 5).

4.2. Hough transform

A Hough transform is a tool which allows us to detect
curves in an image. Although, at first, the curve has to be
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specified by means of an analytical expression (the most
common being the ones for straight lines, circumferences
and ellipses), this technique is not all that restrictive, since
it can be used to detect arbitrary curves, for which there is
no equation. This will be verified in left ventricle detection
in the long-axis. The main advantage of this technique is its
efficiency with noisy images and with gaps in the object
boundary. This is of great help in echocardiographic
images, since they are known for having a lot of noise
and not having completely joined contours.

When applying a Hough transform to an image, it is first
necessary to obtain a binary image of the pixels which will
probably be part of the boundary. In order to do this, the
image smoothed with operator DroG is obtained from
the original image. Then, a cut-threshold is applied. In
the explanation of the Hough transform, the detection of
circumferences will be used and later given general applica-
bility to any equation. The detection of circumferences in
an image is somewhat more complex than the detection
of straight lines because circles have three parameters.
The equation for a circumference is as follows:

ðx� aÞ2 þ ðy � bÞ2 ¼ r2 ð26Þ

where a and b are the center of the circumference and r is
the radius.

The aim is to find the different set of points that will sat-
isfy the equation of the circumference for the different val-
ues of a, b and r. To apply a Hough transform, it is
necessary to discretize the parameter space into a series
of, what is called, accumulator cells. This discretization is
carried out for parameters a, b and r. The accumulator will
be three-dimensional in this case. That is to say and that it
will have the following shape Aða; b; rÞ. The procedure con-
sists in incrementing a and b, determining r through the
previous equation and voting in the associated cell. The
equation is then evaluated and at the end of the process,
the number of votes obtained in each cell indicates the
number of points that, except for discretization errors, sat-
isfy the equation of the corresponding circumference.
Therefore, cells with a greater accumulation of votes con-
stitute the set of circumferences detected.

With the purpose of reducing the number of operations,
when the length of the radius is known, local information
about boundary location for each pixel can be used to
obtain the position of the center of the circle. In practice,
this is done by placing the center at a distance R through-
out the gradient direction for each pixel in the edge. This
way, the number of points accumulated is equal to the
number of edge pixels in the image, which implies great
computational savings. To achieve this, the operator used
for edge detection must be accurate enough (for example,
the Sobel operator).
4.2.1. Short-axis left ventricle detection from an ellipse
Next, we will delve deeper into the problem. The shape

of a left ventricle short-axis view is that of an ‘‘irregular”
ellipse. However, we can approximate it to a regular ellipse,
since having an equation that defines the ellipse makes it
easier. To estimate left ventricular boundary in the short-
axis view through an ellipse, it is necessary to know the cen-
ter of the ellipse, the size of the axes and the rotation angle.
These data are estimated by using information about image
intensity. Directly applying the Hough transform algo-
rithm for ellipse detection implies searching in a five-
dimensional space. Another alternative is to explore the
information given by the gradient. The graph for an ellipse
in polar coordinates is as follows:

x ¼ r1 cos / cos hþ r2 sin / cos hþ x0

y ¼ �r1 cos / sin hþ r2 cos / cos hþ y0

ð27Þ

where r1, r2 are the length of the axes, h is the rotation an-
gle, and ðx0; y0Þ is the center of the ellipse. By deriving the
previous expressions with respect to / we obtain

dx
d/
¼ �r1 sin / cos hþ r2 cos / sin h

dy
d/
¼ r1 sin / sin hþ r2 cos / cos h

ð28Þ

where x0, y0 have been eliminated. This way, parameters r1,
r2 and h are estimated, by using gradient direction for each
pixel.

Next, we will show both algorithms used to apply a
Hough transform:

8 pixelðx; yÞ belonging to the border

8Aðr1; r2; hÞ 2 S

solve min/ rGðx; yÞ dx
d/

;
dy
d/

� �				
				

if rGðx; yÞ dx
d/

;
dy
d/

� �				
				 < e then V ðAÞ ¼ V ðAÞ þ rGðx; yÞj j

ð29Þ

where Gðx; yÞ is the gradient image solved with the Sobel
operator, S is the discretized space and e is the threshold
for accumulator V ðAÞ. The set of parameters which maxi-
mize V ðAÞ defines the ellipse or ellipses. Once this is over,
we look for the greater value of V ðAÞ, and that will be
the center and the angle of the ellipse defined by the left
ventricle.

Since we also have to use the left ventricle in a long-axis
view, the same steps as those for the short-axis view must
be taken. The problem here is that there is no longer an
equation to approximate the ventricle; therefore, a general-
ized Hough transform has to be used. It is explained next
(see Fig. 6).

4.2.2. Generalized hough transform

In the previous explanation about a Hough transform, it
was possible to use analytical equations of a figure (circum-
ference or ellipse) to transfer from an image coordinate
space into a parameter space. However, since it is no longer
possible to resort to equations which will define the desired



Fig. 6. Detection of the left ventricle (short-axis view).
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figure, a generalized transform has to be used. The idea is
to use a look-up table to define the existing relationship
between the pixels in the figure and the Hough space
parameters. The values in the look-up table have to be pre-
viously obtained using a figure prototype. We substitute
the equation for the table with the chosen points. Assuming
that the shape and direction of an object is known, the first
step in the elaboration of the table is to choose a reference
pixel at random ðxref ; yrefÞ in the object. From this point,
the rest of the points will be defined and, thus, the figure.
0º

90º

180º

270º

(xref,yref)

18

a

b
Fig. 7. (a) Left ventricle in the long-axis view. (b) Selection of points to define
the left ventricle.
The next step is to calculate direction bi and distance with
reference point ri for each boundary point ðxi; yiÞ.

Once the table has been elaborated, the Hough space is
defined according to the possible positions of the figure in
the image. When the Hough transform is applied, the num-
ber of cell coordinates to be increased, according to the
expression, is calculated for every image pixel:

xref ¼ xþ r cos b

yref ¼ y þ r sin b
ð30Þ

where the values for r and b are obtained from the table.
We have assumed up to now that the orientation of the

figure is known. If not, accumulator dimension would have
to be increased (as in real situations) by incorporating a
parameter / which would consider the possible orientation
of the object to be found. The previous expressions would
change in the following way:

xref ¼ xþ r cosðbþ /Þ
yref ¼ y þ r sinðbþ /Þ

ð31Þ

for all discrete values considered by /.
Once the algorithm for a generalized Hough transform

is proposed, we will explain, in the next point, how to
locate the left ventricle in a long-axis view.

4.2.3. Hough transform for left ventricle location (long-axis)

The first step to construct this type of algorithm is to
have the figure prototype to be found in the image (see
Fig. 7a). Once we have the figure prototype, a reference
0º

90º

0º

270º

20º
40º

110º

255º

c
the left ventricle in the long-axis view. (c) Selection of points which defines
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Fig. 8. Representation of the coordinates of Table 3.
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point is chosen ðxref ; yrefÞ, from which the rest of the points
that will make up the contour of the figure will be defined
(see Fig. 7b). The central point in the image is usually cho-
sen to ease the calculations. Once we have ðxref ; yrefÞ, we can
begin to construct the contour. The points which best dis-
play the characteristics of the figure are defined. The points
will be defined in polar coordinates, that is to say, for their
angle with regard to ðxref ; yrefÞ and their length (L).

With these data and a simple trigonometric calculation,
we can find the coordinates in x and y

x ¼ L cos aþ xref

y ¼ L sin aþ yref

ð32Þ

In Fig. 7c some points which have to be found have
been defined. The idea is to define all points in 360�. Next,
Table 2, which contains all points is shown.

This is the (look-up) table used as a reference for the
location of the left ventricle. The relation between the
image pixels and the Hough space parameters is defined
this way. After applying the equations, the following coor-
dinates (Table 3) are obtained. When representing these
coordinates, the graphic shown as Fig. 8 is obtained.

Once we have the look-up table and have checked that it
defines the left ventricle in a long-axis view, it is necessary
to introduce more parameters to the equations. One of
these parameters is information about the frequency of
Table 2
Points which define the left ventricle

a (�) L a (�) L a (�) L a (�) L

0 13 103 37 210 15 280 35
20 12 106 39 220 17 285 34
40 14 110 28 230 20 290 33
50 16 120 22 240 25 296 30
60 19 130 18 245 30 300 25
70 24 140 16 250 33 310 20
80 32 150 15 255 36 320 17
83 36 160 14 257 37 330 15
87 39 170 13 260 37 340 14
90 39 180 13 265 37 350 13
96 39 190 13 270 37
100 39 200 14 275 36

Table 3
Coordinates of the left ventricle

x y x y

13.00 00.00 �8.32 36.05
11.27 4.10 �9.37 32.68
10.72 8.99 �9.57 26.31
10.28 12.25 �11.00 19.05
9.50 16.45 �11.57 13.78
8.20 22.55 �12.25 10.28
5.55 31.51 �12.99 7.50
4.38 35.73 �13.15 4.78
2.04 38.94 �12.80 2.25
0.00 39.00 �13.00 0.00
�4.07 38.78 �12.80 �2.25
�6.77 38.40 �13.15 �4.78
the ultrasound, which enables us to know which scale fac-
tor the ultrasound is using. Depending on what it is, the
ultrasound will make deeper slices. Its value appears in
cm (14, 16, . . .). Depending on this value, the scale value
for the objects that appear in the image will vary. After
measuring the objects in the different depths used by the
ultrasound, the following expression is obtained:

q ¼ prof

139
� 1

1:15
ð33Þ

where prof is the depth the ultrasound uses. If this expres-
sion is added to the equations they would be as follows:

x ¼ ðq � LÞ cos aþ xref

y ¼ ðq � LÞ sin aþ yref

ð34Þ

The next step is to realize that all ventricles are not the
same, just like people who are not the same. Then, since
the aim is to search for something in an image, we should
x y x y

�12.99 �7.5 6.07 �34.46
�13.02 �10.92 8.79 �32.84
�12.85 �15.32 11.25 �31.00
�12.50 �21.65 13.15 �26.96
�12.67 �27.18 12.50 �21.65
�11.28 �31.00 12.85 �15.32
�9.31 �34.77 13.02 �10.92
�8.32 �36.05 12.99 �7.50
�6.42 �36.43 13.15 �4.78
�3.22 �36.85 12.80 �2.25

0.00 �37.00
3.13 �35.88
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bear in mind that the left ventricle can be of a different size,
depending on whether it belongs to a man or a woman, the
patient’s age, scale factor, and so on. Taking this parameter
into account, we have to introduce a new parameter to con-
trol the size of the ventricle during the search. This new
parameter will be x

x ¼ ðx � q � LÞ cos aþ xref

y ¼ ðx � q � LÞ sin aþ yref

ð35Þ

The results obtained with q ¼ 1 and x ¼ 0:8 are shown in
Fig. 9a.

Lastly, one more parameter to control the ventricle’s
rotation angle has to be included. If this parameter were
not included, it would only be possible to do a search with
a certain angle. This is not true to reality, since the ventricle
can have different positions. That is to say, the transducer
controlled by the doctor. Parameter / will be in charge of
controlling the rotation angle. The equations will be mod-
ified as follows:

x ¼ ðx � q � LÞðcos a � cos /þ cos a � sin /Þ þ xref

y ¼ ðx � q � LÞðsin a � cos /þ cos a � sin /Þ þ yref

ð36Þ

Now the results obtained with q ¼ 1, x ¼ 0:8 and / = 10�
are shown in Fig. 9b.

Once the look-up tables are defined, as well as the equa-
tions to be used in the Hough transform, they can be imple-
mented. The biggest problem we face is the four-
dimensional search, which slows down the detection.
Detection is improved by reducing the space of the search
in the following manner:
-40

-30

-20

-10

0

10

20

30

40

-15 -10 -5 0 5 10 15 -20

a b

Fig. 9. (a) Representation after including the ventricle’s size. (b)
� Parameter x carries out the search between 0.90 and
1.20, because if x is reduced, the size of the ventricle
would be too small and the doctor would not be able
to find its characteristics. On the other hand, if x is
increased over 1.20, it would exceed the limits of the
ultrasound.
� Parameter / ranges between �300 and 300, taking the y

axis as a reference. If we increase the degrees over 300
(or under �300) the ventricle would rotate so much that
part of it would not be reflected in the echocardiogra-
phy. A complete left ventricular long-axis view detection
is attempted.
� Lastly, the maximum search space reduction is obtained

by creating a window where reference point ðxref ; yrefÞ is
more likely to be found. This is logical since half the
image is not relevant in this study.

This window was obtained while trying to find the upper
part of the ventricle. This is done by”looking‘‘ at the differ-
ent intensity levels of the pixels which make up part of the
gradient image. We begin in the upper part of the image
and go down until we find a pixel that exceeds a certain
threshold. Once this coordinate is obtained, the upper limit
of the ventricle has been determined. This is done again to
determine the lower, right and left limits. With these coor-
dinates, the left ventricular boundary is defined. The fol-
lowing parameters can be calculated:
Cx ¼
x4 � x2

2
þ x4

Cy ¼
y3 � y1

2
þ y1

ð37Þ
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Representation after including the ventricle’s rotation angle.



Fig. 10. Detection of the left ventricle (long-axis view).
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which corresponds to the center of the ventricle ðCx;CyÞ.
With this parameter, we can define a window taking
ðCx;CyÞ as its center.

Once the window has been defined, the search for the
coordinate corresponding to the upper left corner will start.
We check with the look-up table and the previous equa-
tions to find any coincidences, that is to say, if the coordi-
nates that give us the equations exceed a certain threshold
previously defined (in the smoothed image in operator
DroG). If this is so, the accumulator increases by one.
The said accumulator will be indexed by the reference
point, by / and by x. At the end of the search throughout
the window, we will look for the accumulator’s greatest
value, which will indicate the long-axis left ventricular loca-
tion. Fig. 10 shows a real image of the result of using the
algorithm.
4.3. Active-contours

An active-contour or snake is a plain parametric con-
tour model proposed by Kass et al. (1988) and made up
of a set of characteristic pixels (snaxels vi) whose dynamics
is controlled by the influence of a deformation or potential
energy, which we try to minimize to reach a stability point.
This model and its variations have been frequently used in
the automatic follow-up of characteristics on biomedical
images. The snake is a set of pixels which will be attracted
by pixels of profiles in the image. A pixel in the image will
attract more or less snaxels, depending on the energy asso-
ciated to that pixel. The said energy is defined by the func-
tions explained next. The classical formula for the global
energy function is

EtotalðvÞ ¼ aðvÞ
Z

EcontðvÞdvþ bðvÞ
Z

EcurvðvÞdv

þ cðvÞ
Z

EimageðvÞdv ð38Þ
The said potential is made up of two types of energies of
opposite signs: internal energy and external energy. The
definition of the weighted terms that make up the global
energy is the following one:

� Internal Energy: Defines the spatial relation between
snaxels, as well as contour shape restrictions.
� Contour energy: This function forces snaxels vi to

expand uniformly. The value indicates the mean dis-
tance between neighboring snaxels. The points in the
image, where the snaxels would be more separated
from the image of their nearest neighbors, attract
the snaxel less. The energy comes from the absolute
value of the mean distance between snaxels minus
the distance between neighboring snaxels
Econt ¼ jd � kvi � vi�1kj ð39Þ
� Curvature energy: This energy calculates the curva-

ture at a point. We maintain so the shape restriction
(global curvature)

Ecurv ¼ uiþ1

kuiþ1k �
ui
kuik




 



ui ¼ vi � vi�1

ð40Þ
� Image or external energy: This energy, of opposite signs
to the previous one and also called external energy, is
defined according to the characteristics we are trying
to attract the snake towards (contours, high intensity
points, distance transform). In the project model, it
comes from the intensity value provided by the image
smoothed with operator DroG.

All three energy terms must be in the same rank. In
this case, they will be at the interval [0, 1]. Parameters a,
b and c are used to give more priority to one energy or
another. We can handle the previous parameters accord-
ing to the characteristics of the image or the processing
we have to follow. The problem with snaxel minimization
is formulated as a continuous minimization of this energy
through subsequent potential changes. The said minimiza-
tion can be approached in a voracious way through
local minimization of the function in each snaxel’s
neighborhood.

4.3.1. Mathematical description of the active-contours

An active-contour is an orderly collection of n points in
the image plane:

V ¼ vi1 ; . . . ; vin

vi ¼ ðxi; yiÞ; i ¼ 1 . . . n
ð41Þ

The points in the contour approximate the limits of an ob-
ject iteratively through a minimization problem. For every
point in the vi neighborhood, the energy term is calculated:

Ei ¼ a0EintðviÞ þ b0EextðviÞ ð42Þ
where EintðviÞ is the energy function dependent on contour
shape and EextðviÞ is the energy function dependent on
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image properties, such as the gradient. a0 and b0 are con-
stant values that supply relative weight to the energy terms.
Ei, Eint and Eext are matrices. The central value for each ma-
trix corresponds to the contour energy in point vi. The rest
of the values in the matrices corresponds to the energy in
each point in the vi neighborhood. Each point vi is moved
to point v0i, corresponding to the localization of the mini-
mum value in Ei. If the energy functions are chosen cor-
rectly, contour V should approximate and stop at the
object boundary.

4.3.1.1. Internal energy. The internal energy function is
geared at forcing a shape on the deformable contour and
keeping a constant distance between contour pixels. Addi-
tional terms can be added to influence contour motion. The
internal energy function can be defined as follows:

a0EintðviÞ ¼ aEcontðviÞ þ bEcurvðviÞ ð43Þ

where EcontðviÞ is the continuity energy that forces the shape
of the contour and EcurvðviÞ is a curvature force that causes
the contour to increase or to shrink. a and b provide the
relative weight of the energy terms.

4.3.1.2. Continuity or contour energy. In the absence of
other influences, the continuity energy term forces an open
deformable contour into a straight line and a closed
deformable contour into a circle. The continuity energy
formula is expressed next. The energy term for each ele-
ment ejkðviÞ in matrix EcontðviÞ is defined as follows:

ejkðviÞ ¼
1

sðV Þ kP jkðviÞ � cðvi�1 � viþ1Þk2 ð44Þ

where P jk is the point in the image that corresponds spa-
tially to the energy matrix element ejkðviÞ. c ¼ 0:5 for open
contours. In this case, the minimum energy point is the ex-
act half-way point between vi�1 and viþ1. In the case of
closed contours, V is given by the modulus of n; therefore
vnþi ¼ vi. c is defined as follows:

c ¼ 1

2 cos 2p
n

ð45Þ

The normalization factor, sðV Þ, is the mean distance be-
tween every point in V:

sðV Þ ¼ 1

n

Xn

i¼1

kviþ1 � vik2 ð46Þ
4.3.1.3. Curvature energy or force. Curvature or balloon
force is used on closed deformable contours to force the
contour to expand (or shrink) in the absence of other exter-
nal influences. A contour initialized within an object in a
uniform image will expand under the influence of balloon
force until it gets close to the object boundary. In Chalana,
Haynor, and Kim (1994), an adaptable balloon force which
will vary proportionally inversely to the image gradient
magnitude is suggested. The adaptable balloon force is
strong in homogenous regions and weak near object
boundaries, edges and lines. The energy term for each ele-
ment, ejkðviÞ, in the matrix, EcurvðviÞ, is expressed as follows:

ejkðviÞ ¼ ni � ðvi � pjkðviÞÞ ð47Þ

where ni is the external unit normal for V to point vi and
pjkðviÞ are the neighboring points for vi corresponding to
input ejkðviÞ in the energy matrix. Therefore, the balloon
force is small at the points further away from vi in the
direction of ni. ni can be calculated by rotating the tangent
vector (ti):

ti ¼
vi � vi�1

kvi � vi�1k
þ viþ1 � vi

kviþ1 � vik
ð48Þ

Thus ni is a unit vector normal to ti.

4.3.1.4. External energy. The external energy function
attracts the deformable contour to more interesting charac-
teristics, such as object boundaries in an image. Any
expression that succeeds in doing this can be considered
for use. Image gradient and intensity are obvious charac-
teristics to be used (others could be object size or shape).
Therefore, the external energy function could be the fol-
lowing one:

cEextðviÞ ¼ mEmagðviÞ ð49Þ
where mEmagðviÞ is an expression which attracts contours to
high or low intensity regions. Moreover, constant m is used
to provide relative weight to the energy terms.

4.3.1.5. Image intensity energy. Each element in the inten-
sity energy matrix, mEmagðviÞ assigns the intensity values
corresponding to the image points in the neighborhood
of vi:

ejkðviÞ ¼ IðpjkðviÞÞ ð50Þ

If m is positive, the contour is attracted to low intensity re-
gions, but if m is negative, it is attracted to high intensity
regions. This depends on the scale being used. We can al-
ways move the scale towards positive values.

After having performed a Hough transform on the pre-
vious images and having found the left ventricular position
in the short-axis as well as long-axis or two-chamber views,
the next step is to execute the active-contour algorithm to
perfect the solution by finding the exact shape of the differ-
ent ventricular positions. Fig. 11 shows the result of apply-
ing the active-contour algorithm to both views of the left
ventricle.

4.4. Left ventricular length, area and wall thickness

Once the active-contour has found the long-axis left ven-
tricular view, its area, which corresponds to the area
enclosed within the active-contour, is calculated. The fol-
lowing formula is used:

2S ¼
X
n¼0

xnðyn�1 � ynþ1Þ ð51Þ



Fig. 11. (a) Detection of the left ventricle in the short-axis view. (b) Detection of the left ventricle in the short-axis view after active-contour algorithm.
(c) Detection of the left ventricle in the long-axis view. (d) Detection of the left ventricle in the long-axis view after active-contour algorithm.

2248 A. Fernández-Caballero, J.M. Vega-Riesco / Expert Systems with Applications 36 (2009) 2234–2249
where S represents the area, x and y represent the
coordinates for the points which form the closed
curve.

To calculate left ventricular length and thickness, it is
necessary to have a long-axis view. Once the active-contour
algorithm has been executed and the left ventricle has been
detected, it is necessary to know both coordinates for those
snaxels closest to the upper and lower parts of the image,
respectively. Then, the length between both points is calcu-
lated. To calculate thickness, a point in the active-contour
is taken and traced from that point towards the left and the
right until it drops from a certain intensity threshold. The
threshold defines the grey-level in the heart-wall. Once
the extreme values are obtained, the length between those
two points is calculated and thus ventricular thickness is
obtained. This is done for five active-contour points and
then the average length is calculated to obtain heart-wall
thickness.

The results obtained may also be consulted in Fig. 11.
These are
� area (short-axis view): 8.458 cm2;
� length (long-axis view): 11.118 cm;
� ventricular volume: 70.855 ml;
� heart-wall: 1.224 cm;
� ventricular mass: 84.768 g;

which fortunately correspond to a normal heart of one of
the authors of the paper.

5. Conclusions

This article has described how to obtain a series of
parameters from the heart’s left ventricle for the diagnosis
of certain heart disease. The bulk of this article has been
dedicated to left ventricular segmentation in the short-
and long-axis views to calculate cardiac parameters useful
for physicians. Echocardiographic images have been used
to support this. We have calculated parameters: (a) left
ventricular area in a short-axis view, (b) left ventricular
length in a long-axis view, (c) left ventricular volume,
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(d) left ventricular mass, and (e) heart-wall thickness,
which allow us to detect if the patient being studied suffers
from cardiopathy.

For these reasons, this article describes different algo-
rithms for left ventricular detection in two-dimensional
echocardiographic images, in short-axis as well as long-axis
views. Once the ventricle has been detected, a series of
parameters, which define that ventricle, have been
calculated.

The highlight of this proposal is that it is not necessary
to select the points or to color the contour manually to
detect it (as it is done in other methods), but that it can
be done automatically. All this is based on two types of
algorithms: active-contours and Hough transforms. A
Hough transform detects the ventricle’s shape in two views.
Once the first objective has been achieved, the points
obtained by the transform are transferred to the active-con-
tour algorithm, which then approximates the curve to the
ventricle. This automatism prevents the mistakes made
with manual detection. Let us remember once more that
this is one of the problems physicians face when making
a diagnosis using echocardiographic devices. Thanks to
this new implementation, we can avoid the observer’s
uncertainty.

As usual, there are always improvements to be made to
the system described. For example, the algorithm used for
active-contour energy minimization is a greedy algorithm.
The results could be improved if a different type of algo-
rithm were used. Other possible improvements are pre-pro-
cessing the images through more sophisticated filters,
eliminating noisy edges more efficiently, defining the edges
more accurately and/or speeding up the detection.

Another possible improvement in the detection software
would be to incorporate information about the stage of
ventricular dilation. That is to say, if it is in systole, diastole
or in-between. This is fairly easy to calculate by considering
ventricular area. Ejection force could also be calculated this
way.
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