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Abstract

A new computational architecture of dynamic visual attention is introduced in this paper. Our approach defines a model for the gen-
eration of an active attention focus on a dynamic scene captured from a still or moving camera. The aim is to obtain the objects that keep
the observer’s attention in accordance with a set of predefined features, including color, motion and shape. The solution proposed to the
selective visual attention problem consists in decomposing the input images of an indefinite sequence of images into its moving objects, by
defining which of these elements are of the user’s interest, and by keeping attention on those elements through time. Thus, the three tasks
involved in the attention model are introduced. The Feature-Extraction task obtains those features (color, motion and shape features)
necessary to perform object segmentation. The Attention-Capture task applies the criteria established by the user (values
provided through parameters) to the extracted features and obtains the different parts of the objects of potential interest. Lastly, the
Attention-Reinforcement task maintains attention on certain elements (or objects) of the image sequence that are of real interest.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction to selective attention

Findings in psychology and brain imaging have increas-
ingly suggested that it is better to view visual attention not
as a unitary faculty of the mind but as a complex organ sys-
tem sub-served by multiple interacting neuronal networks
in the brain [33]. At least three such attentional networks,
for alerting, orienting, and executive control, have been
identified. The images are usually built from the entries
of parallel ways that process distinct features: motion,
solidity, shape, color, location [9]. One of the most influen-
tial theories about the relation between attention and
vision is the Feature-Integration Theory [37]. Treisman
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hypothesized that simple features were represented in par-
allel across the field, but that their conjunctions could only
be recognized after attention had been focused on particu-
lar locations. Recognition occurs when the more salient
features of the distinct feature maps are integrated.

The first neurally plausible architecture of selective visu-
al attention was proposed by Koch and Ullman [25], and is
closely related to the Feature-Integration Theory. In [23], a
visual attention system inspired by the behavior and the
neural architecture of the early primate visual system is
presented. The MORSEL (Multiple Object Recognition
and attentional SELection) model [31] links visual atten-
tion to object recognition in order to provide an explicit
account of the interrelations between these two processes.
In [21], a neural network (connectionist) model called the
Selective Attention for Identification Model (SAIM) is
introduced. SAIM can model a wide range of experimental
evidence on normal attention and attentional disorders
[20]. The model of Guided-Search (GS) by Wolfe [41] uses

mailto:mlopez@info-ab.uclm.es
mailto:miki@info-ab.uclm.es
mailto:miki@info-ab.uclm.es
mailto:caballer@info-ab.uclm.es
mailto:jmira@dia.uned.es
mailto:adelgado@dia.uned.es
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the idea of saliency map to realize the search of objects in
scenes. It is able to find one item in a visual world filled
with other distracting items. In [8] a system of interconnected
modules consisting of populations of neurons for modeling
the underlying mechanisms involved in selective visual
attention is proposed. In [34], the SCAN (Signal
Channelling Attentional Network) architecture is presented.
The building block of SCAN is a gating lattice, a sparsely
connected neural network. SCAN introduces a biological
solution to the problem of translation-invariant pattern
processing. In [38], a model that is able to obtain objects
separated of the background in static images is presented.
Thus, the previous models have in common that they
provide explanations for a wide range of experiments on
normal and abnormal visual perception and attention,
and they introduce neurally inspired architectures applied
to static images.

On the other hand, some visual attention models have
shown their interest in including motion analysis. A recent
model of attention for dynamic vision has been introduced
by Backer and Mertsching [1]. In this model there are two
selection phases. Previous to the first selection a saliency
map is obtained as the result of integrating the different
features extracted. In particular, the extracted features
are symmetry, eccentricity, color contrast, and depth. The
first selection stage selects a small number of items accord-
ing to their saliency integrated over space and time. These
items correspond to areas of maximum saliency and are
obtained by means of dynamic neural fields. The second
selection phase has top-down influences and depends on
the system’s aim (‘‘behind’’, ‘‘higher’’ or ‘‘larger’’, and so
on). In [18,28] NAVIS (Neural Active VIsion System),
object recognition is performed in a multistage way starting
from the hypothesis of the presence and localization of an
object. Then, it identifies the object from its parts. Features
extracted at the bottom-up process are axis orientation,
areas orientation, color and motion. The static features
are combined jointly with the top-down information of
the presence of an object to perform the recognition
process.

An excellent survey of approaches to computational
attention is given in [35]. The interest paid to attention
has grown a lot recently and is being used in real-world
applications. Some implemented systems based on selective
attention have so far covered up several of the following
categories: recognition [4,19,32,36,40], teleconferencing
[22], tracking of multiple objects [5,39], and mobile robot
navigation [2,3,42,29,6].
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Our approach defines a model for the generation of an
Active (Dynamic) Attention Focus on a dynamic scene.
The aim is to obtain the objects that keep the observer’s
attention in accordance with a set of predefined features,
including color, motion and shape. In other words, the
used features are related to the motion and shape of the
elements present in the grey-level images dynamic scene.
Thus, our proposal follows an attentional-scene-segmen-
tation-integrating approach [27], where shape and motion
are integrated. The model may be used to observe real
environments indefinitely in time (there is no limit in the
number of input images) with the purpose of tracking a
wide variety of objects. In relation to the most common
motion suppositions described in [30], our approach
obtains good results, as (i) objects need not stay in the
scene, (ii) our method does not impose any restriction
on null or constant motion of the camera, (iii) more than
just one single object may capture the attention in the
scene, and (iv) our proposal deals any kind of motion.
Let us insist on the fact that our computational model
performs well with static and moving cameras. In relation
to environmental suppositions, that is to say, constant
illumination, static image background, and uniform back-
ground, we can state, without any doubt, that our model
is a good one.

Fig. 1 shows the result of applying our model to the
generic Dynamic Visual Selective Attention task, where
attention has been paid on moving elements belonging to
the ‘‘car’’ class.

The solution proposed to the selective visual attention
problem consists in decomposing the input images of an
indefinite sequence of images into its moving objects, defin-
ing which of these elements are of the observer’s – or user’s
– interest, and keeping attention on those elements through
time. In the system proposed it is mandatory that the
observer may define the features of the objects on which
attention is focused. The commands (or indications) that
the observer introduces into the system in order to adjust
parameters which define the attention focus are of a top-
down modulation. This modulation is included in a static
way during the process of feature election, as well as in a
dynamic form established as a feedback from the attention
focus where parameters which define the interest may be
modified to centre the focus on objects that are of real
interest.
isual
tention
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Our solution defines a model including two kinds of
processes: bottom-up processes, where pixel and object
features are extracted, and top-down processes, where
the observer organizes mechanisms and search parame-
ters to satisfy his expectations with respect to the
attention focus.

The selection of the elements of interest in the scene nec-
essarily starts with setting some criteria based on features
extracted from the elements (Feature Extraction). First,
all the necessary mechanisms to provide sensitivity to the
system are included in order to succeed in centering the
attention. Frame to frame it will be possible to capture
attention (Attention Capture) on elements made up from
image pixels that fulfill the requirements established by
the user. On the other hand, stability has been provided
to the system. This has been gotten by including mecha-
nisms to reinforce attention (Attention Reinforcement), in
such a way that the elements that assemble the user’s pre-
defined requirements are strengthened up to be configured
as the system attention centre. Fig. 2 shows the decompo-
sition into subtasks of the generic Dynamic Visual Selective

Attention task. In this figure, the three previously
introduced subtasks are depicted:

• Feature Extraction: Obtains those features (color,
motion and shape) of the image able to capture
attention.

• Attention Capture: Applies the criteria established by the
user (values provided to parameters) to the extracted
features and obtains the different parts of the objects
of potential interest.

• Attention Reinforcement: Maintains attention on certain
elements, or objects, of the image sequence that are of
real interest.

Moreover, the solution to the problem takes into
account two additional basic factors:

• First, the nature and characteristics of the input signal
has been largely studied. Thus, in this paper the prob-
lematic complexity underlying image processing on
indefinite video sequences coming from real scenarios
is described.
Dynamic Visual
Selective Attention

Attention Capture

Feature Extraction Attention
Reinforcement

Fig. 2. Subtasks of generic ‘‘Dynamic Visual Selective Attention’’ task.
• Second, there is the facet corresponding to the observ-
er’s intentions (or interests). This paper includes all the
necessary mechanisms to attend the user’s commands
that allow directing and keeping attention on scene
objects that fulfill a series of predefined features. At each
image frame a new attention focus is calculated; it may
be the same one as in the previous frame, or it may
change to another object or objects depending on the
changing observer’s desires.

Next each one of these factors is analyzed in detail.

2.1. The input signal

The input information comes from a real scenario where
diverse objects are moving through time in a long-range
series of images. These objects continually change in their
shapes as well as in their three-dimensional spatial position.
Typical examples of such scenarios are traffic scenes, visual
surveillance scenes, and so on.

The first problem in image processing is related to the
conversion of the real scene to information accessible to
the computation world. This conversion is performed by
means of the recording of the scene on a physical support
giving rise to the digitalization. In general, there are two
possibilities in relation to image capture: a recording with
one single camera, or a recording with more than one cam-
era (stereoscopy in the case of two cameras). In this work,
images from a single camera are used. The image is made
up of a determined number of pixels distributed as a
three-dimensional matrix formed by columns, rows and
time.

It is well known that the problems associated with image
processing are vast and complex [17,24]. Next some of the
fundamental problems are mentioned, as they have played
an important role in the evolution of the mechanisms that
have led to the final solution proposed in this paper. In first
place, and in relation to the problems due to digitalization,
let us highlight the problems derived from spatial and tem-
poral sampling. Discreet sampling imposes a series of lim-
itations to motion as well as to the size of the scene objects
that the system may process. Second, passing from a three-
dimensional scenario to a two-dimensional image, added to
the fact of facing moving scenes, also throw their associated
range of problems. The most important of them may be
the fact that even rigid objects in a three-dimensional scene
appear in our image as deformable elements due to the
variations in position or orientation through time or to
occlusions with other objects. There are also the proper
problems associated with motion, such as the well-known
aperture problem, the normal changes in illumination,
and the correspondence problem.

In short, there is very little invariant input information.
Candidates to centre the attention focus have no invariants
in shape, in size and generally even in their illumination
levels or chromaticity. The matter of which decision
features are appropriate for the user is not trivial.
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Fig. 3. Subtasks of ‘‘Feature-Extraction’’ task.
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Next some of the features related to the input image that
may be used to face the problem of selective visual
attention are described. Among this set of features, we will
comment which of them have been used in the Dynamic

Visual Selective Attention system proposed. The features
regarding the input signal have been classified into image
pixel features and scene element (or object) features.

2.1.1. Features related to image pixels

The only feature of a pixel of coordinates (x,y) of a two-
dimensional image obtained from the recording of a scene
in time instant t is the quantified value of the electric signal.
In the case of monochrome images, there are usually 256
grey levels. In some digital image processing applications
the number of levels is even decreased. The most extreme
level diminishment that still provides information on the
image consists in using only two levels; that is to say, there
will be a binary image.

Considering the spatial relations of a pixel of coordi-
nates (x,y) with respect to its neighborhood environment,
some information might be obtained by applying several
convolution masks. Applying such masks provides discon-
tinuities, isolated pixels, lines, borders, etc. Now, consider-
ing temporal relations the application of filters enables to
obtain information on illumination variation, motion
detection, etc.

2.1.2. Features related to image objects

Features related to objects are those that contain infor-
mation referred to scene elements. Scene elements are to be
understood as a set of connected image pixels that hold a
series of common features. On the one hand, there are fea-
tures associated with the shape of the objects, such as size,
width, height, width–height ratio, eccentricity, compact-
ness and similarity to standard shapes (matching). On the
other hand, there is the information related to the chromat-
ic features, such as grey level, color or brightness. There are
also features associated to the motion of the elements, such
as velocity, acceleration, length-speed ratio [10–12], and so
on.

2.1.3. Other features

There is another family of parameters that may be used to
direct the attention focus, namely those features associated
to an extra-contextual behavior. That is to say, we are look-
ing for pixels or objects – see also parts of objects – with dif-
ferent features from the rest, as, for instance, different grey
level, different texture, different velocity, different shape or
different motion features. The problem of defining the pixels
of interest can be faced from different perspectives. In some
cases, as, for example, in models based only on the scene, the
interest pixels are obtained by distinguishing their features
from those of the surrounding pixels [23].

2.1.4. Selected features

Some of the features pointed out in the previous sections
might have been used alone or combined to select poten-
tially interesting pixels or objects to the observer. It is con-
venient to highlight that features associated to pixels are
easier to obtain than features associated to elements. In
the latter case an additional problem arises, namely the
one of segmenting the objects present in the scene
[7,13,43,44].

Thus, obtaining features associated with image pixels as
well as scene segmentation into different elements are fun-
damental to the solution adopted in this paper. Another
important cue is maintaining the attention focus on a par-
ticular object in a sensitive and stable way. Our research
team’s prior knowledge of the problem has led to the selec-
tion the following features from the ones previously
described:

• At pixel level the chosen features are grey level, motion
detection, velocity and acceleration. This decision is sup-
ported by the fact that these features have largely been
considered as interesting in lots of applications [10–16]
where selection and segmentation are crucial.

• At object level the selection has been much more compli-
cate. In our case, we eventually decided to chose easily
computable features and at the same time providing a
great capacity of classification. In particular, we have
worked with features related to the shape of the objects,
such as, for instance, the size of the objects (number of
pixels that compose the object), the width of the objects
(difference among the highest and lowest row of the
object in the image), the height (difference among the
highest and lowest column of the object in the image),
the width–height ratio (width/height) and the compact-
ness (size/(width * height)).

This set of features is valid for the observer to propose
his search intentions and for the system to process informa-
tion in an efficient way to focus the attention on objects
that are really of interest to the user. Once the selected fea-
tures have been described, we can decompose the Feature-
Extraction task into the subtasks shown in Fig. 3, namely:

• Color Feature Extraction, at image pixel level.
• Motion Feature Extraction, also at pixel level of indefi-

nite image sequences.
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• Shape Feature Extraction, at image object part (spots or
zones of the objects) or total object level.
2.2. The observer

From the observer point of view, the aim of the pro-
posed model is to heed his intentions, which will determine
the features of interest at any time. This way one or several
objects in the scene that respond to the given parameters
are obtained by segmenting scene objects in a continuous
way. Once the focus has been centered on particular
objects, other information systems may use the results
obtained and dedicate to the knowledge extraction tasks,
learning, classification, etc.

The observer commands fix the limits of the different
feature values. The intentions on the attention focus may
be to maintain the focus on the scene object, to abandon
the attention or to expand the focus around the object.
More precisely, the observer may use one of the follow-
ing possibilities to indicate his desires: (1) to centre
attention on the image object that currently holds the
attention focus, (2) to augment the attention focus
around the object that configures the attention focus,
(3) to abandon attention on the object that currently
maintains the attention focus, and (4) to centre attention
on image objects that fulfill a combination of the follow-
ing characteristics: (a) moving image objects, (b) image
objects that contain pixels at given velocities, (c) image
objects that contain pixels moving at defined acceleration
values, (d) image objects with a given size, and (e) image
objects with a given shape.
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Fig. 4. Subtasks controlled by
3. Segmentation of moving objects through dynamic visual

attention

Once the nature of the problem has been analyzed from
the input signal and the observer viewpoints, and attending
to their restrictions of capacities, the solution to the problem
is now introduced. The proposed solution defines a model
with two kinds of processes: bottom-up processes (based
on the scene) to extract scene pixel and object features and
top-down processes, which enable the observer to manage
the search mechanisms and parameters to satisfy his expec-
tations with respect to the attention focus. In Figs. 4 and 5
two schemes of the proposed solution are offered. Particularly,
in Fig. 4 there is a description of the subtasks controlled by
the observer from the Commands Generation subtask. In
Fig. 5 you have the general schema of the proposed solution
where the subtasks that appeared in Fig. 4 are highlighted:

• Motion Feature Extraction,
• Color Feature Extraction,
• Shape Feature Extraction,

which satisfy the task called Feature Extraction, as well
as:

• Attention Capture and
• Attention Reinforcement.

Next all subtasks are described by means of a simple
running example shown in Fig. 6. The example consists
of a scene where a vehicle (a car) and a pedestrian are
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the observer’s intentions.
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Fig. 5. Schema of the solution proposed.
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Fig. 6. Input sequence. (a) First image. (b) Last image.

602 M.T. López et al. / Image and Vision Computing 25 (2007) 597–613
moving. The sequence is a subset of a test database of the
IEEE International Workshop on Performance Evaluation

of Tracking and Surveillance called ‘‘PETS2001 Datasets,
Dataset 1: Moving people and vehicles’’, and has been
downloaded via ftp://pets.rdg.ac.uk/PETS2001/. The aim
of our running example is to maintain attention on those
objects that fulfill a series of conditions of size and of
dynamics. In the offered example the dynamic conditions
are simply the existence of motion with respect to the pre-
vious time instant, whereas the size conditions are those of
the object ‘‘car’’.

3.1. Color feature extraction

The aim of the Color Feature Extraction subtask, as
shown in Fig. 7, is to get the chromatic features associated
to the image pixels. We work with 256 grey-level input
images and transform them to a lower number of levels.
Good results are usually obtained with eight levels. These
eight-level images are called images segmented into eight
grey-level bands (GLBs).

Let GL [x,y, t] be the grey level of a pixel (x,y) of the
input image at time instant t, GLmax the maximum grey-
level value (generally, 255), GLmin the minimum grey-level
value (generally, 0), n the number of grey-level bands, and,
GLB [x,y, t] the grey-level band of pixel (x,y) at t. Let also
S be the overlap (or minimum value of the difference in the
grey levels between two consecutive time instants required
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Fig. 7. Subtask ‘‘Color Feature Extraction’’.
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to produce a change in the grey-level band of a pixel).
Then:

GLdiff ¼ GLmax � GLmin þ 1 ð1Þ
GLB½x; y; t� ¼

GLB½x; y; t � 1� if max ðGLB½x;y;t�1��1Þ�GLdiff

n � S;GLmin

� �

6 GL½x; y; t� < min GLB½x;y;t�1��GLdiff

n þ S;GLmax

� �
GL½x;y;t��n

GLdiff

j k
þ 1 otherwise

8>>>><
>>>>:

ð2Þ
Eq. (2) checks if grey-level value GL [x,y, t] produces a var-
iation of band in relation to the grey-level band value ob-
tained at t � 1, that is to say, GLB [x,y, t � 1]. For this
aim, the criteria used is to check if GL [x,y,t] has sufficiently
changed in its grey level between time instants t and t � 1
(use of overlap S). The result is 0 if GL [x,y, t] is in the
range established, and 1 in the other case. In Fig. 8 the
parts belonging to each one of the eight bands of one of
the images in the running example are shown.

3.2. Motion feature extraction

The aim of the Motion Feature Extraction subtask is to
calculate the dynamic (motion) features of the image pixels,
that is to say, in our case, the presence of motion, the veloc-
ity and the acceleration. Due to our experience we know
some methods to get that information.

Remember that to diminish the effects of noise due to
the changes in illumination in motion detection, variation
in grey-level bands at each image pixel is performed.
Motion presence Mov [x,y, t] is easily obtained as a varia-
tion in grey-level band between two consecutive time
instants t and t � 1:

Mov½x; y; t� ¼
0 if GLB½x; y; t� ¼ GLB½x; y; t � 1�
1 if GLB½x; y; t� 6¼ GLB½x; y; t � 1�

�
ð3Þ

Velocity and acceleration are obtained by calculating their
respective modules and angles. We start from the memori-
zation along time (accumulation) [10,11] of charge
ChMov [x,y, t] at each image pixel (x,y). Notice that charge
ChMov [x,y, t] stores motion information as a quantified
value.

ChMov½x; y; t� ¼

Chmin

if Mov½x; y; t� ¼ 1

minðChMov½x; y; t � 1� þ CMov;ChmaxÞ
if Mov½x; y; t� ¼ 0

8>>><
>>>:

ð4Þ
Eq. (4) shows how charge at pixel (x,y) gradually increases
through time (frame to frame) in a quantity CMov (charge
constant due to motion) up to a maximum charge or satu-
ration Chmax, while motion is not detected. At the opposite,
charge decreases to a minimum of charge Chmin, when mo-
tion is detected at pixel (x,y). To calculate the module
j~v½x; y; t�j and the angle b [x,y, t] of the velocity, first,
velocities in directions x, vx [x,y, t], and y, vy [x,y, t], at each
pixel are computed.

vx½x; y; t� ¼
CMov

ChMov½x; y; t� � ChMov½xþ 1; y; t� ð5:1Þ

vy ½x; y; t� ¼
CMov

ChMov½x; y; t� � ChMov½x; y þ 1; t� ð5:2Þ

b½x; y; t� ¼ arctan
vy ½x; y; t�
vx½x; y; t�

ð5:3Þ

j~v½x; y; t�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx½x; y; t�2 þ vy ½x; y; t�2

q
ð5:4Þ

In a similar way, the module j~a½x; y; t�j and the angle
a [x,y, t] of the acceleration at each image pixel (x,y) are
computed from accelerations in directions x, ax [x,y, t],
and y, ay [x,y, t]:

ax½x; y; t� ¼
CMov � ðvx½x; y; t� � vx½xþ 1; y; t�Þ
ChMov½x; y; t� � ChMov½xþ 1; y; t� ð6:1Þ

ay ½x; y; t� ¼
CMov � ðvy ½x; y; t� � vy ½x; y þ 1; t�Þ
ChMov½x; y; t� � ChMov½x; y þ 1; t� ð6:2Þ

a½x; y; t� ¼ arctan
ay ½x; y; t�
ax½x; y; t�

ð6:3Þ

j~a½x; y; t�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax½x; y; t�2 þ ay ½x; y; t�2

q
ð6:4Þ

Fig. 9 shows the result of calculating the presence of
motion in our running example. In this concrete case, this
is the only dynamic feature that has been indicated by the
observer. In the output of this subtask (see Fig. 9), a pixel
drawn in white color means that there has been variation in
the grey-level band of the pixel in instant t with respect to
the previous instant t � 1.

3.3. Attention capture

The objective of the Attention-Capture subtask is to
select image zones (or patches) included in objects of inter-
est. It has been decided to construct these patches from
image pixels that fulfill the requirements established by
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the observer’s commands. In Fig. 10, a scheme of the
Attention-Capture subtask is given.

The output of this subtask has been called Working Mem-

ory. The term Working Memory has been chosen due to the
similarity with the same concept used in Psychology, where
the working memory, also called functional or short-term
memory, stores and processes during a brief time the
selected information coming from the sensorial paths.
In our case, only those elements which appear in the
Working Memory will potentially convert into the sys-
tem’s attention focus.

Some research lines to solve the problem of defining
what are the elements that decompose the scene [38] are
based on border extraction and obtain complex objects
from more simple ones by looking for families of shapes.
Our approach starts by obtaining the object’s parts from
their grey-level bands. Later on these objects parts (also
called zones, patches or spots) will be treated as whole
objects.

In previous papers from our research team some algo-
rithms for the segmentation of the image in different
objects have been proposed based on the detection of
motion, the permanency effect and lateral interaction
[13,26]. Thus, based on the satisfactory results of the
algorithms commented, we propose, in order to solve the
current problem, to incorporate mechanisms of charge
and discharge (based on the permanency effect), as well
as mechanisms of lateral interaction. These mechanisms
are good enough to segment the scene into moving objects
and background.
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In this proposal, the patches present in the Working

Memory are constructed from the so-called Interest Map.
The Interest Map is obtained, as it will be seen later on,
by performing a Feature Integration of pixel motion and
spot shape features. Spot shape features are those con-
cerned with scene object parts. Thus, first, we will introduce
how patches present in the Working Memory are obtained
from the Interest Map. Then, we will explain how Feature
Integration is performed.
3.3.1. Working memory generation

The aim of this subtask is to construct object spots from
image pixels that possess the requirements established by
the observer. First, the image is segmented into Grey-Level

Bands in regions composed of connected pixels whose illu-
mination level belongs to a common interval (grey-level
band). Second, only those connected regions that include
an ‘‘active’’ pixel in the Interest Map are selected. Each
one of these regions (or silhouettes) of a uniform grey-level
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band is defined as a scene spot belonging to a potentially
interesting object.

In order to obtain the patches that contain ‘‘active’’ pix-
els in the Interest Map, the process consists in overlapping,
just as done with superimposed transparencies, the image
vi½x; y� ¼
ðx � NC þ yÞ þ 1 if BNG½x; y; t� ¼ i ^ IM ½x; y; t� ¼ vactive

vmax if BNG½x; y; t� ¼ i ^ IM ½x; y; t� ¼ vneutral 8i 2 ½0::n�
vmin otherwise

8><
>: ð8Þ
segmented in grey-level bands of the current frame (at t)
with the image of the Interest Map constructed in the pre-
vious frame (at t � 1).

In Fig. 11, the inputs and the output of the Working

Memory Generation subtask are shown. The inputs are
the image in Grey-Level Bands, GLB [x,y, t], and the Inter-

est Map, IM [x,y, t]. The Interest Map contains ‘‘active’’
pixels (in white color), ‘‘neutral’’ pixels (in black color),
and ‘‘inhibited’’ pixels (in a different grey-level color).
The output of the subtask is the Working Memory,
WM [x,y, t]. The Working Memory stores for each pixel
belonging to a selected spot a number given to the spot
(the label of the spot). Value 0 is for the rest of the pixels,
that is to say, to pixels that do not belong to a patch of
interest.

As the model works with n grey-level bands, the value at
each pixel of the Working Memory will be the maximum
value of the Working Memory calculated at each grey-level
band:

WM ½x; y; t� ¼ arg max
i

WM i½x; y; t� 8i 2 ½1::n� ð7Þ

Next the way in which the Working Memory is obtained
for each grey-level band is explained. The initial value
(patch label) for each pixel (x,y) at grey-level band i is
the pixel’s position within the image (coordinate x multi-
plied by the number of image columns + coordinate y)
whenever the pixel is in ‘‘active’’ state in the Interest

Map. A maximum value (vmax = number of col-
umns * number of rows + 1) is assigned if the pixel is
labeled as ‘‘neutral’’ and a minimum value (vmin = 0) if
the pixel is ‘‘inhibited’’.
This initial value is compared to the neighbors’ values that
are at the same grey-level band i in an iterative way up to
reaching a common value for all the pixels of a same
element:

vi½x; y� ¼

vmin if vi½x; y� ¼ minðvi½a;b�Þ ¼ v min

minðvi½a; b�Þ if vmin < minðvi½a;b�Þ < vi½x; y� 6 vmax

vi½x; y� if vmin < vi½x; y� < minðvi½a;b�Þ 6 vmax

vmax if vi½x; y� ¼ minðvi½a;b�Þ ¼ vmax

8>>><
>>>:

8½a;b� 2 ½x� 1; y � 1�j0 < vi½a;b� 6 vmax

ð9Þ

Finally, the value established by consensus is assigned to
the Working Memory at each grey-level band:

WMi½x; y; t� ¼

0

if ðvi½x; y� ¼ vminÞ _ ðvi½x; y� ¼ vmaxÞ
vi½x; y�

otherwise

8>>><
>>>:

ð10Þ
3.3.2. Feature integration

The output of the Feature Integration subtask is the Inter-

est Map obtained by integrating Motion Features and Shape

Features. The Interest Map stores for each image pixel
the result of the comparison with three discrepancy classes:
‘‘active’’, ‘‘inhibited’’ and ‘‘neutral’’. This classification is
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performed following the observer’s commands or inten-
tions. The states of ‘‘active’’ or ‘‘inhibited’’ are reserved
for those pixels where motion presence has been detected
at current time t (information available in Motion Features),
or for pixels belonging to an object – or object spot – of inter-
est at time instant t � 1 (information found in Shape Fea-
tures). Now, ‘‘neutral’’ pixels are the rest of the image
pixels. ‘‘Active’’ pixels are those that fulfill the requirements
imposed by the user, whilst ‘‘inhibited’’ pixels do not fulfill
the requirements.

IM ½x; y; t� ¼
vactive if \discrepancy class 1"

vinactive if \discrepancy class 2"

vneutral if \discrepancy class 3"

8><
>: ð11Þ

In the running example which we are using to explain our
solution to the problem, let us assume that the criteria used
by the observer are to ‘‘activate all moving vehicles’’ and to
‘‘inhibit all objects that are not cars’’. The output should be
as shown in Fig. 12, white color for ‘‘active’’ pixels, grey
color for ‘‘inhibited’’ pixels and black color for the rest
of pixels (‘‘neutral’’).

3.4. Shape feature extraction

The Shape Feature Extraction subtask extracts different
shape features of the elements stored in the Working Mem-
ory, WM [x,y, t], (the size s_WM [vlabel], the width
w_WM [vlabel] and the height h_WM [vlabel]). Let us remem-
ber that the labels in the Working Memory have been
obtained by grey-level bands. Thus, as we have already
explained, a moving object is formed by a set of spots with
different labels. We call this the Spot Shape Feature

Extraction.

s WM ½vlabel� ¼ countðWM ½x; y; t�ÞjWM ½x; y; t� ¼ vlabel ð12:1Þ
w WM ½vlabel� ¼ maxðyÞ �minðyÞjWM ½x; y; t� ¼ vlabel ð12:2Þ
h WM ½vlabel� ¼ maxðxÞ �minðxÞjWM ½x; y; t� ¼ vlabel ð12:3Þ
In a similar way, the features of the objects stored in the
AttentionFocus,AF [x,y, t],areobtained(thesize s_AF [vlabel],
the width w_AF [vlabel], the height h_AF [vlabel], the
width–height ratio hw_AF [vlabel] and the compactness
c_AF [vlabel]). These are now complete objects united by a
common identifying label. So, let us talk about an Object

Shape Feature Extraction.
Fig. 12. Output of subtask ‘‘Feature Integration’’.
s AF ½vlabel� ¼ countðAF ½x; y; t�ÞjAF ½x; y; t� ¼ vlabel ð13:1Þ
w AF ½vlabel� ¼ maxðyÞ �minðyÞjAF ½x; y; t� ¼ vlabel ð13:2Þ
h AF ½vlabel� ¼ maxðxÞ �minðxÞjAF ½x; y; t� ¼ vlabel ð13:3Þ

hw AF ½vlabel� ¼
h AF ½vlabel�
w AF ½vlabel�

ð13:4Þ

c AF ½vlabel� ¼
s AF ½vlabel�

h AF ½vlabel� � w AF ½vlabel�
ð13:5Þ
3.5. Attention reinforcement

The mechanisms used to generate the Working Memory

endow the system with sensitivity, as it enables resources to
include elements related to interest pixels in the memory.
Unfortunately, in the Working Memory scene object patches
whose shape features do not correspond to those defined by
the observer may appear at time instant t. This is precisely
because their shape characteristics have not yet been
obtained. But, if these spots shape features really do not
seem to be interesting for the observer, they will appear
as ‘‘inhibited’’ in t + 1 in the Interest Map (now, in t + 1
their shape features will have been obtained). And, this
means that in t + 1 they will disappear from the Working

Memory. Thus, the Working Memory has to be considered
as a noisy memory. Scene object spots appear and disap-
pear at each input image frame, as they fulfill or do not ful-
fill the desired spot shape features. In the same way that we
have gotten sensitivity, we need some mechanism to endow
the system with stability.

In order to provide stability to the system, that is to say,
in order to obtain at each frame only objects with the
desired features, we have to provide Attention Reinforce-
ment by means of accumulative mechanism followed by a
threshold. Accumulation is performed on pixels that have
a value different from 0 (pixels that do not belong to
labeled zones) in the Working Memory. The result of this
process offers as output the Attention Focus, AF [x,y, t].

Moreover, to obtain the Attention Focus, an intermedi-
ate memory called Attention Map, AM [x,y, t], is used. In
particular, pixels that appear with a value different from
0 in the Working Memory reinforce attention in the Atten-

tion Map, whilst those that appear as a 0 decrement the
attention value. This accumulative effect followed by a
threshold maintains ‘‘active’’ a set of pixels that belong
to a group of scene object of interest to the observer.
Hence, this is a charge/discharge process similar to the
one explained in motion detection:

AM ½x; y; t� ¼

maxðAM ½x; y; t � 1� � DAM ;ChminÞ
if WM ½x; y; t� ¼ 0

minðAM ½x; y; t � 1� þ CAM ;ChmaxÞ
if WM ½x; y; t� > 0

8>>><
>>>:

ð14Þ

where DAM and CAM are the attention-map-discharge
constant and the attention-map-recharge constant, respec-
tively. Now, based on the information provided by the
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Fig. 13. Subtask ‘‘Attention Reinforcement’’.
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Attention Map, objects need to be labeled in the Attention

Focus. This is performed using an initial value at each pixel
of the Attention Focus as shown in the following equation:

v½x; y� ¼
ðx � NC þ yÞ þ 1 if AM ½x; y; t� > h

0 otherwise

�
ð15Þ

This initial value is contrasted with the values of the neigh-
bors until a common value for all pixels of a same moving
object is reached:
v½x; y� ¼
0 if v½x; y� ¼ minðv½a; b�Þ ¼ 0

minðv½a; b�Þ if 0 < minðv½a; b�Þ < v½x; y�
v½x; y� if 0 < v½x; y� < minðv½a; b�Þ

8><
>: 8½a; b� 2 ½x� 1; y � 1�j0 < v½a; b� ð16Þ
Finally, the value agreed is assigned to the Attention Focus:

AF ½x; y; t� ¼ v½x; y� ð17Þ
Fig. 13 shows the result of the accumulative computation
on the Attention Focus and the later threshold. In this
figure, pixels drawn in white color on black background
represent image elements where attention has been focused.
4. Data and results

To test the performance of the proposed model, two
image sets have been used. These sets are thought to show
the versatility of our Dynamic Visual Attention model in
object segmentation in indefinite sequences of video
images. Therefore, we show the results of applying our
model to scenes captured by a still and a moving camera.
Notice that the method is dependent on the specific chosen
scenario, in the sense that the parameters have to be tuned
for the scenario and for each class of object to pay atten-
tion on. Fortunately, this parameter tuning does not
depend on each different situation stored in a video
sequence taken from the camera, but only on the prede-
fined attention focuses. And this operation has only to be
performed once.

The static scene, composed of 42 image frames of size
256 · 256 pixels, is the famous ‘‘Traffic intersection
sequence’’ recorded at the Ettlinger-Tor in Karlsruhe by
a stationary camera, copyright � 1998 by H.-H. Nagel,
downloaded from the Institut für Algorithmen und Kogni-
tive Systeme (H.-H. Nagel und Mitarbeiter) web pages.
Now, to illustrate the usefulness of the model with a
moving camera a scene called ‘‘Horses’’ belonging to the
movie ‘‘The Living Daylights’’ copyright � 1987 by
MGM/UA has been used. This scene is composed of 80
frames of 122 · 512 pixels.

4.1. Results from static camera

This scene introduces some moving vehicles. Our aim is
initially to capture attention on all moving objects of car
class, independently of their velocities. That is to say, atten-
tion is focused on vehicles of an upper limited size. This
way the bus present in the scene should not be classified
as belonging to the attention focus. From frame 6 on,
attention will be fixed on only one of the cars, performing
this way a tracking task. Thus, the selection mode is chan-
ged at that frame.

First, parameters to detect and results of selecting the
cars in motion in the scene as the attention focus are
shown. In this case, the overlap has been S = 8. Table 1
shows the parameters used (as well as their values) to get



Table 1
Spot shape features used in Working Memory

Parameter Value (number of pixels)

Spot maximum size: s_WMmax 90
Spot maximum width: w_WMmax 30
Spot maximum height: h_WMmax 30

Table 2
Object shape features used in Attention Focus

Parameter Value
(in pixels)

Value
(ratios)

Object minimum size: s_AFmin 50
Object maximum size: s_AFmax 200
Object minimum width: w_AFmin 5
Object maximum width: w_AFmax 80
Object minimum height: h_AFmin 5
Object maximum height: h_AFmax 50
Object minimum width–height ratio: hw_AFmin 0.1
Object maximum width–height ratio: hw_AFmax 5
Object minimum compactness: c_AFmin 0.3
Object maximum compactness: c_AFmax 1.0

Table 3
Parameters of the Attention Map

Parameter Values

Charge constant: CAM 50
Discharge constant: DAM 250
Threshold: h 200
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the patches’ shapes in the Working Memory. Similarly, in
Table 2 we show the parameters and values for the object’s
shapes in the Attention Focus. Lastly, the parameters used
to calculate the Attention Map are offered in Table 3.
Results are shown in Fig. 14.

In this figure you may notice some images of the
sequence of selective attention on moving cars in different
time instants. In row (a) some input images of the ‘‘Ettlin-
ger-Tor’’ sequence are shown, namely at time instants
t = 3, t = 5, t = 6, and t = 42. As it can be observed in
Fig. 14, in row (b) ‘‘Active’’ pixels in the Interest Map, pix-
els where motion has been detected between two consecu-
tive time instants, are shown. This is the result of
calculating the presence of motion in the example. Remem-
ber that, in the output of this subtask, a pixel drawn in
white color means that there has been variation in the
grey-level band of the pixel in instant t with respect to
the previous instant t � 1. There are pixels belonging to
the desired objects, as well as to other parts of the image
due to some variations in illumination in the scene. In
the same figure, we have drawn in black color the ‘‘inhibit-
ed’’ pixels as well as the ‘‘neutral’’ pixels. In column (c) you
can see the contents of the Working Memory, and in col-
umn (d) the Active Attention Focus. Lastly, on column (e)
the Active Attention Focus has been overlapped with the
input image. Fig. 14d shows the result of the accumulative
computation on the Active Attention Focus and the later
threshold. In this figure, pixels drawn in white color on
black background represent image elements where atten-
tion has been focused and reinforced through time.

The silhouette of the tracked car (new mode) corre-
sponds to the pixels of interest at t = 6. The Working Mem-

ory at t = 6 is composed of all the elements that include
pixels of interest. So, in this particular case, part of the
road appears apart from the tracked vehicle. As it can be
observed, in the Attention Focus at t = 6 only the selected
car appears, as the attention has been focused on this
precise object.

In this example, we may notice that the attention focus
really corresponds to the observer’s intentions. First, atten-
tion is paid on all the moving cars. This example is very
helpful to highlight some pros and cons of the described
method. First, it is able to discriminate moving objects in
an indefinite sequence into different classes of objects. This
has been shown by the elimination of the bus in the scene
through shape features parameterization. But some prob-
lems related to working with grey-level bands affect our
method. This is why the bus is incorrectly decomposed into
a priori smaller cars.

Table 4 shows the time spent to process each frame in
our simulation environment, a Pentium IV personal com-
puter running at 2.4 GHz and with a 512 MB memory
under operating system Windows XP. The simulation has
been programmed under Visual C++ version 6.0. Image
size is a very important factor in our system, as well as
working mode, as you may note on Table 4. To be compet-
itive and to be able to process in real time the images can-
not be too large or we have to consider the possibility to
compute in specialized hardware.

It is important to notice that it is necessary to process a
minimum number of frames to obtain the attention focus.
This number of frames is related to parameters CAM, the
attention charge constant, and h, the attention threshold.
The value of h is always greater than CAM to enable the
analysis of the shape of the elements of the Working Mem-

ory. Thus, it is necessary to process at least two transitions,
that is to say, three frames, to get the Attention Focus.

4.2. Results from moving camera

In this second example, the camera that captures the
scene is continuously performing a translation motion to
follow the movement of the horses. Again two different
applications have been done. The aim of the first one is
to get all the moving horses on the scene as the focus of
attention. The second application’s objective is to track
one determined element.

Next parameters (Tables 5–8) and results (Fig. 15) are
shown when all the horses are the attention focus of the
system. When changing the working mode to restrict to
the tracking of one single element as determined by the
attention focus, we get the results offered at Fig. 16.

Again, Table 8 shows the time spent to process each
frame in our simulation environment. To highlight that
the size of the objects paid attention on is also relevant



Fig. 14. Sequence of selective attention on car(s) in different time instants. (a) Input image. (b) ‘‘Active’’ pixels of the Interest Map. (c) Working Memory.
(d) Attention Focus. (e) Attention Focus overlapped with input image.

Table 4
Performance

Size (in pixels) Mode Time/frame (in s)

256 · 256 Attention to multiple objects 2.2
256 · 256 Object tracking 0.6
128 · 128 Attention to multiple objects 0.25
128 · 128 Object tracking 0.08

Table 5
Spot shape features used in Working Memory

Parameter Value (in number of pixels)

Spot maximum size: s_WMmax 500
Spot maximum width: w_WMmax 40
Spot maximum height: h_WMmax 40
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Table 6
Object shape features used in Attention Focus

Parameter Value
(in pixels)

Value
(ratios)

Object minimum size: s_AFmin 300
Object maximum size: s_AFmax 4000
Object minimum width: w_AFmin 20
Object maximum width: w_AFmax 110
Object minimum height: h_AFmin �20
Object maximum height: h_AFmax 100
Object minimum width–height ratio: hw_AFmin 0.4
Object maximum width–height ratio: hw_AFmax 1.3
Object minimum compactness: c_AFmin 0.2
Object minimum compactness: c_AFmax 0.9

Table 7
Parameters of the Attention Map

Parameter Values

Charge constant: CAM 50
Discharge constant: DAM 200
Threshold: h 201

Table 8
Performance

Size (in pixels) Mode Time/frame (in s)

122 · 512 Attention to multiple objects 3.7
122 · 512 Object tracking 2.6
66 · 256 Attention to multiple objects 0.45
66 · 256 Object tracking 0.29

t=5

a

b

c

d

e

Fig. 15. Sequence of selective attention on all horses in different time instant
Memory. (d) Attention Focus. (e) Attention Focus overlapped with input ima
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to the processing time. In comparison to the ‘‘Ettlinger-
Tor’’ sequence, processing time of the ‘‘Horses’’ sequence
is much higher. This is precisely due to the size of the
objects tracked.
5. Conclusions

A model of dynamic visual attention capable of seg-
menting and tracking objects in a real scene has been intro-
duced in this paper. The model enables to focus the
attention in every moment on objects that possess certain
features and to eliminate objects that are not of interest.
The features used are related to the color, motion and
shape of the elements present in the dynamic scene. The
model may be used to monitor real environments indefi-
nitely in time. Elements are considered to be of interest
depending on the observer’s commands. That is to say, a
same scene may obtain different elements of interest just
by changing the intentions.

On the opposite to computational models based on the
space (spotlight, zoom), where attention is paid on one
zone of the image, this paper proposes an object-based
computational model, which enables to capture attention
on one or various objects of the image. One of the mostly
referenced selective attention models based on the spotlight
metaphor is the Koch and Ullman model [25]. Its main
advantage is that the model is biologically plausible.
t=80

s. (a) Input image. (b) ‘‘Active’’ pixels of the Interest Map. (c) Working
ge.
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Fig. 16. Sequence of selective attention on one horse in different time instants. (a) Input image. (b) ‘‘Active’’ pixels of the Interest Map. (c) Working
Memory. (d) Attention Focus. (e) Attention Focus overlapped with input image.
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Unfortunately, its disadvantage is that it is restricted to
static images. In dynamic environments the model of Back-
er and Mertsching [1] is of great interest to us. Indeed, the
model proposed in our paper offers some important con-
ceptual similarities with the recently described model by
these authors [1], although our approach is quite different.

Similarly to [1], in our approach there is a feature extrac-
tion and integration step. In our model for each input
image pixel grey-level band, motion presence, velocity
and acceleration is extracted. For each element present in
the Working Memory width, height and size features are
calculated. And, for each object in the Attention Focus

width, height, size, height-width relation and compactness
features are obtained. All these features are integrated into
the resulting Interest Map.

Again, there is a similarity in the use of selection phases
as done by Backer and Mertsching. In our model the first
selection is performed in the Working Memory Generation

task, where elements that include ‘‘active’’ pixels of the
Interest Map are selected. The second selection is obtained
by means of the Attention-Reinforcement task. Accumula-
tive computation on elements generated at each time
instant in the so-called Working Memory is the result of
this operation, incrementing this way the computational
capacity of our approach.

Two examples to show the performance of our Dynamic

Visual Attention model have been offered in this paper. And
satisfactory results in scenes captured by a static camera as
well as by a moving camera have been presented.
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