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Abstract

Some of the major computer vision techniques make use of neural nets. In this paper we
present a novel model based on neural networks denominated lateral interaction in accumulative
computation (LIAC). This model is based on a series of neuronal models in one layer, namely
the local accumulative computation model, the double time scale model and the recurrent lateral
interaction model. The LIAC model usefulness in the general task of motion detection may be
appreciated by means of some signi:cant examples of object detection in inde:nite sequences
of synthetic and real images. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For the purpose of categorisation, computer vision techniques can be divided into
two main groups [46]. (1) Model-based (or top-down) techniques use domain speci:c
knowledge to construct template models of what is expected in an image and then
try to :t the models to the image data. (2) Data-driven (or bottom-up) approaches
that are appropriate when no a priori knowledge of the image contents is available,
when the extent of variation of expected structures in the image can be high, or when
construction of a model is very di@cult. Such techniques exploit, as much as possible,
the data in the image in three general steps. (a) The :rst is image pre-processing to
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highlight useful data in the image and suppress noise or unwanted data. (b) The next
step is segmentation, which results in pixels in the image being grouped together to
form regions that can correspond to structures or structured parts. (c) The :nal step is
image understanding, in which regions are described by an appropriate set of features,
and these descriptions are used to determine correspondences between the segmented
regions and expected structures.
Some of the major computer vision techniques make use of neural nets [3,24]. In

this paper we present a novel model based on neural networks called lateral inter-
action in accumulative computation (LIAC) as well as its usefulness in the task of
motion detection. This paper advances in the generalisation of the algorithmic lateral
inhibition (ALI), introduced by Mira et al. [36] and Delgado et al. [4], by using a model
of accumulative computation over temporal expansions of the input and output
spaces and using a double time scale [11,14]. Furthermore, we explore the validity
of our model for the detection of moving elements in real time and in noisy
environments [12].

2. The LIAC model description

2.1. Inspiration

The usual paradigm in how to interpret the neuronal processes is the computational
paradigm [27,31]. This paradigm begins diEerentiating between environment and sys-
tem. The system’s behaviour is described in terms of a set of inputs (stimuli), a set of
outputs (answers) and a set of computing processes. A neuronal model in one layer is
just a generalisation of the proposal of computation by layers [30,37]. Here, we have
co-operative modules (local inference rules) that sample information in the input and
output spaces according to the size and the shape of their functional receptive :elds
and discharge their results in the corresponding positions of the output space. Fig. 1
shows the general functional diagram of a layer of neurones [34].
The neuronal model presented in this paper is based on an accumulative computation

function [13], followed by a set of co-operating lateral interaction processes performed
on a functional receptive :eld organised as centre–periphery over temporal expansions
of their input spaces [33,40]. The LIAC model is fully inspired in (a) the local accu-
mulative computation model, (b) the double time scale model, and (c) the recurrent
lateral interaction model. These three models are next introduced.
Notably diEerent styles of local computation are present in the cortex. If computa-

tion has to be an appropriate paradigm to describe the nervous system, it should be
distributed along the whole tissue with functional multiplicity in each neurone. The cur-
rent state of the art of knowledge includes, among other, the following computational
properties of a real neurone [34]. (1) There exist quick and slow synapses, allowing the
coexistence of two intercommunication levels (answer and learning). (2) Synapses may
be excitatory or inhibitory, and the whole analytic computation is based on this distinc-
tion (sum and subtract; accumulate and decrement, etc.). (3) The synapses of chemical
nature are selective to diEerent kinds of messengers, allowing the neuronal computation
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Fig. 1. Neural computation scheme in one layer.

to be interpreted as message passing and speci:c conditionals. (4) Synapses act in a
co-operative and competitive way. (5) The most usual formulation of competitiveness
is lateral inhibition that diminishes a unit’s answer when its neighbours are active.
(6) Neuronal contacts are plastic and they constitute one of the structural supports
for self-programming (learning) and memory. Biology oEers evidence of very com-
plex local computation modes [33]. Some examples are: (a) a logarithmic translation
in sensors, and a latter computation on that logarithmic representation; (b) a multi-
plicative pre- and post-synaptic inhibition and facilitation; (c) an adaptive threshold
function with absolute and relative refractory periods; (d) a non-analytic computation
that demands the use of conditionals and other control structures; and (e) a sponta-
neous activity and diEerent response kinds. Some of the options presented so far have
led to the local accumulative computation model [13]. Fig. 2 shows a diagram of the
original local accumulative computation model.
Mature neurones are specialised cells in integrating and distributing global states

of excitement in the receptive :elds that respond as action potentials. However, the
diversity of contacts (axon–soma, dendrite–dendrite, dendrite–soma, etc.), together with
the computation speci:city and the complexity made by these contacts, lead us to
think of the existence of a sub-cellular micro-computation [33]. That is to say, there
already exists enough experimental evidence to formulate a synaptic computational
model before arriving to the neurone level. By only considering the existent local
process in the dendrite :eld, we may :nd the following properties [14]: (a) a local
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Fig. 2. Local accumulative computation model.

convergent process around each element, (b) a semiautonomous functioning, with each
element capable of spatio-temporary accumulation of local inputs in time scale T , and
conditional discharge, and (c) an attenuated transmission of these accumulations of
persistent coincidences towards the periphery that integrates at global time scale t.
Therefore, we face two diEerent time scales: (a) the local time T , and (b) the global
time t, T�t. Fig. 3, inspired by Mira et al. [35], shows an appropriate framework to
model co-operative processes at symbolic level and to pick up the two time scales seen
previously.
In lateral interaction models [35], you have a layer of modules of the same type

with local connectivity, such that the response of a given element does not only depend
on its own inputs, but also on the inputs and outputs of the element’s neighbours
(Fig. 4). From a computational point of view, lateral interaction nets divide the input
space into three regions, centre, periphery, and excluded. The following steps have to
be performed: (a) a processing over the central region, (b) a processing over the signals
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coming from the periphery zone, (c) a comparison of the results of these operations
and a local decision generation, and (d) a distribution over the output space.
Graphically, we have the recurrent lateral interaction model as depicted in Fig. 5.
The most interesting point in these kinds of recurrent inhibition connectivity schemes

is that they exist in practically any level of vertebrates and spineless, from the :rst
layers of the sensorial pathway (retina) up to the most central layers of the cerebral
cortex. The other interesting aspect is that lateral interaction networks de:ne compu-
tational families that can be projected according to their nature (analogic, logic or
inferential) when selecting the synaptic “operator”.

2.2. Algorithmic lateral inhibition in perspective

There are some neuronal structures that appear from the neurogenesis up to the
diEerent integration levels (dendro-dendrite contacts, neurones, columns, etc.). Among
these structures, lateral inhibition is probably the one that greater computational ben-
e:ts has oEered as an inspiration source for the design of neural arti:cial networks
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Fig. 4. Lateral interaction: (a) non-recurrent, and (b) recurrent.

able to detect spatio-temporal changes, to :lter adaptively, or to pre-process data in
self-organising networks, for example.
Lateral inhibition is present in neurocomputing since the :rst works of Ernst Mach

on the interdependence of neighbouring elements in the retina and the subjective visual
phenomena, which seemed to fully explain the apparent doubling of the single broad
lines in the spectrogram [43]. The experimental research of Hartline and RatliE on the
composite eye of the limulus, and the precise mathematical formulation of the analytic
lateral inhibition model, lead to explain and to predict the electro-physiological data
observed [17].
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Hubel and Wiesel [23], using the concept of receptive :eld, made an extensive use
of the concept, and Delgado [8,9], Delgado et al. [4] and Mira et al. [38] extended the
concept of lateral inhibition to embrace a wider group of operators than the lineal and
non-lineal analytic one. We are computationally speaking of lateral interaction algo-
rithms, with non-linealities of the type “if–then”, local memory and sequential control.
Finally, lateral interaction turns into a “problem-solving method” in the usual sense of
the arti:cial intelligence [6]. It decomposes classi:cation tasks where there is much
more data than knowledge. This way, a lateral interaction network is a connectionist
method of local calculation with learning capacity and appropriate to solve a wide
family of spatio-temporal problems that need to reduce the dimensionality of the data
to get an e@cient treatment in real time [32].
The more usual algorithmic expression in neuronal calculation are the competitive

nets, of the gradual or of the winner take all (WTA) type, previous, for example,
to the mechanisms of self-organising learning [20,19]. Here, the maximum selection
operator (“hard competition”) and the corresponding “if–then” are the instantiation of
the algorithmic character of lateral inhibition (“soft competition”).

2.3. The lateral interaction in accumulative computation model

All general notions previously considered are incorporated in the model proposed.
Common biological notions such as accumulative computation, lateral interaction and
double delay are included.
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Remember that at a symbolic level, we have representational input and output
spaces and a set of co-operating processes that primarily perform local inference func-
tions over data of a functional receptive :eld organised as centre–periphery and in-
terchanging basic information given and received by each process in the dialogue
area. After individual and local inference, a recurrent use of dialogue and consen-
sus algorithms is performed comparing individual opinions with those of the periphery
neighbours.
Our model is restricted to the following characteristics: (1) Application of accumu-

lative computation to each central element starting from the charge value of the own
element and the input coming from the previous layer. (2) Application of lateral in-
teraction mechanisms (lateral inhibition) of recurrent type from periphery, where all
neighbours have the same weight in lateral interaction, on the centre (x; y) by us-
ing speci:c channels incorporating the possibility of opening and closing themselves.
(3) Global time scale t is used (a) for reading from the input of the previous layer,
(b) during the process of accumulative computation, and (c) for writing of the output
to the following layer. (4) Local time scale T�t is used in all lateral co-operative
interaction mechanisms.
This set of speci:c characteristics permit to unite the computational functions of the

local accumulative computation model, the double time scale model and the recurrent
lateral interaction model to produce the lateral interaction in accumulative computation
model in one layer. These characteristics lead to a model where each module (x; y)
in a layer may be represented as showed in Fig. 6. Graphically, we can represent the
lateral interaction in accumulative computation model as shown in Fig. 7.
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Fig. 7. Lateral interaction in accumulative computation neuronal model.

The co-operative process carried out by a functional group of neurones is charac-
terised at symbolic level by the following parameters:

〈G; I(x; y; t); O(x; y; t); C(x; y; t); Fg; Fl; vdis; vsat ; 
〉;
where G is the global function at knowledge level; to de:ne, in each case, when using
the lateral interaction in accumulative computation model applied to a speci:c problem,
I(x; y; t) the input from the previous layer into element (x; y) at instant t, O(x; y; t)
the output toward element (x; y) of the following layer at instant t; discharge value,
C(x; y; t) the charge value of element (x; y) at instant t, Fg the spatial accumulation
function in global time scale t; this function is domain dependent of the global function
G at knowledge level, Fl the spatio-temporal accumulation function in local time space
T ; this function is also domain dependent of the global function G at knowledge
level, vdis the minimum charge value; discharge value, vsat the maximum charge value;
saturation value, and 
 the minimum discharge threshold value.
Global function G may easily be understood if thinking in a generic neuronal net-

work, with classi:cation functions, organised in diEerent functional groups that calculate
in a concurrent and=or sequential manner, as at least so many types of neurones as
layers. This way, the diEerent layers would be associated to the decomposition of the
problem in diEerent tasks, as, for example, characteristics extraction, distance measures,
maximum selectors, etc.
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Particular mention deserves the learning method. In this co-operative model it allows
rede:ning all parameters, depending on the global function G. In our lateral interaction
in accumulative computation model, the parameters that modify their value during the
learning phase are vdis; vsat and 
. The inMuence of threshold variability has largely been
studied [5,25]. Other parameters with learning capacities will appear as consequence
of the use of concrete Fg and Fl functions.
The concept of adaptive neighbourhood, widely used in arti:cial vision (e.g. [41,47])

to select a working scale at each point of the image and for each computation level,
is of great interest in the lateral interaction in accumulative computation model. The
idea is that the size and the pattern of the periphery depend on the characteristics of
the image data through parameters that de:ne the homogeneity measure of each pixel.
The dynamic adaptation (learning) of diEerent peripheries allows estimating diEerent
properties. Evidently, any similarity concept should be injected as external knowledge
in the design of the net.
At last, let us face the stability of the model proposed. Stability is related to dynamic

systems that incorporate nodes with positive feedback. But this it is not the case of
our model, where the local dynamics is under the control of :nite state automata and
the dynamic range of the variables is enclosed between two saturation values. There
are no coupled oscillators, in the sense of Terman and Wang [48], like in LEGION
(locally excitatory globally inhibitory oscillator network) system [7].

2.4. The model’s formulation

There are three general steps associated to the lateral interaction in accumulative
computation model, as shown in Fig. 8. These are a spatial accumulation at global
time scale, a spatio-temporal accumulation at local time scale, and a distribution at
global time scale.

2.4.1. Step 1: Formulation at global time scale t
In :rst place, the global accumulative computation function computes the charge

value of any of the central elements (x; y) at global time instant t, C(x; y; t), from the
charge value at the preceding instant, C(x; y; t−Nt), and the input value I(x; y; t), into
the interval [vdis; vsat].

C(x; y; t) = Fg[C(x; y; t −Nt); I(x; y; t)]

if C(x; y; t)¿ vsat then C(x; y; t) = vsat

if C(x; y; t)6 vdis then C(x; y; t) = vdis:

This way, we have obtained the value of the individual opinion of element (x; y)
starting from the input value to the element and the history (FIFO memory) of the
state of the own element.

2.4.2. Step 2: Formulation at local time scale T
At local time scale T we have an iterative phase of upgrading the charge value from

the lateral interaction of each element (x; y) with its four closest neighbours. This step
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Fig. 8. General steps of the computational model.

takes place only if the central element (x; y) possesses a su@cient charge between
limits vdis and vsat. Note that global time t = nNt is frozen during the dialog, but not
local time T = kNT .
A re-charge of module (x; y) is carried out, starting from the available information

in the module’s periphery.

∀(�; �)∈ [x ± 1; y ± 1]; C(x; y; T ) = Fl[C(x; y; T −NT ); C(�; �; T −NT )]

if C(x; y; T )¿ vsat then C(x; y; T ) = vsat

if C(x; y; T )6 vdis then C(x; y; T ) = vdis:

This is the way each individual opinion is compared to that of its closest neighbours.

2.4.3. Step 3: Formulation at global time scale t
Lastly, back at global time scale t, the output O(x; y; t) takes place. The output is a

result of:

O(x; y; t) =

{
C(x; y; t) if C(x; y; t)¿
;


 otherwise;
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where 
 is a threshold function. This output is the result of a consensus algorithm
that has produced a new charge value starting from the combination of all the aEected
co-operative elements.

3. Application of LIAC model to motion detection

3.1. Problem statement

Detection of moving elements has been largely studied over the past decades. Sereno
[44], and more recently CP esmeli and Wang [7] have performed an excellent classi:-
cation of computational models in pattern motion. Models of local motion detection
are gradient models [10,22,28,29], correlation models [1,4,18,50] and image diEerence
models [15,45], whereas models of pattern motion measurement can be divided into
models that incorporate multiple motion constraints [10], matching models [42,49],
and models that use a smoothness constraint [21,22,26,51]. In particular, the studies on
non-rigid object motion are among the most important cues in motion analysis [39].
The growing interest is motivated by their use in a great number of applications in
areas as diEerent as medicine or surveillance.
As stated by CP esmeli and Wang [7] the three major challenges in computational

investigation of motion perception are the aperture problem [2], the blank wall prob-
lem [45] and the motion transparency problem [16]. These challenges are faced by our
model applied to motion detection, as well as a fourth one, which arises when work-
ing with real moving non-rigid objects. This is deformation processing which is very
expensive, just as motion may be highly complex and the object’s shape is usually
uncertain.
The problem we are putting forward is the discrimination of a set of objects capable

of holding our attention in a scene. These objects are detected from the motion of any
of their parts. Detected in an inde:nite sequence of images, motion allows obtaining
the silhouettes of the moving elements. If any element stops moving, it does not get
any attention. This way, interest on that particular silhouette declines, so that it does
not belong to the discriminated objects.
As it has already been mentioned, the way these elements are obtained will only

provide information of existent motion in the scene. This is a characteristic problem
of motion analysis. Up to some extent, the method can be generically classi:ed into
the models based on image diEerence. More concretely, it is linked to the generic
behaviour of permanence memories [13]. Speci:cally, we will say that the observer is
unable to discern any object unless it goes on moving. Therefore, an image where all
the elements are static does not contribute to provide any information. In other words,
the system will only pay attention to those pixels of an image of 512× 512 pixels in
which a variation in their grey level is detected.
In real scenes, all the components of the object do not have to move at the same

time. For example, the human body (the object, in this case) is made up of a great
number of members that do not move simultaneously. This way, a person sitting in
front of the computer writing a letter will move his hands, part of his arms, his head,
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etc., but will be able to have his legs perfectly still. The system is able to detect
those parts of the object in movement. That is to say, the object’s silhouette is only
composed of the hands, the arms and the head. Nevertheless, if other parts of the same
object set in motion, it will be fundamental to be able to associate them to the parts
previously detected, obtaining the object as one whole through the pertinent association
mechanisms. This way, the proposed system is able to detect and even to associate all
the parts of a moving object.
The problem is not limited to the observation, detection and pursuit of a single object

in the scene, but rather it will be able to diEerentiate among all the objects that present
some motion. Our particular solution for the detection of moving elements using the
model presented is next illustrated.

3.2. Lateral interaction in accumulative computation model application

Firstly, the general accumulative computation equation present at global
time scale has to be reformulated for the speci:c motion analysis problem we are
facing.
We need k layers, one for each grey level present at the raw image to work with.

Each element (x; y) at any of the sub-layers is capable of processing the motion of
pixel I(x; y; t), starting from its grey level and its charge value. The eEect of function
Fg on the algorithm for this :rst step is as follows:

Ck(x; y; t) = Fg[Ck(x; y; t −Nt; I(x; y; t)]

=



vdis if I(x; y; t) �= k;
vsat if I(x; y; t) = k and I(x; y; t −Nt) �= k;
Ck(x; y; t −Nt)− vacc if I(x; y; t) = k and I(x; y; t −Nt) �= k;

if Ck(x; y; t)¿ vsat then Ck(x; y; t) = vsat ;

if Ck(x; y; t)6 vdis then Ck(x; y; t) = vdis;

where vacc is the accumulative computation discharge value due to motion detection.
This eEect may be explained the following way:

(a) element (x; y) at grey level k is completely discharged if pixel I(x; y; t) is not at
grey level k,

(b) element (x; y) at grey level k gets the complete charge (saturation) if pixel I(x; y; t)
has changed to grey level k from instant t −Nt to instant t,

(c) element (x; y) at grey level k is partially discharged by a value of vacc if pixel
I(x; y; t) is at grey level k and has not changed since t −Nt.

Secondly, in local time scale T , and in an iterative way, the charge value is homoge-
neously distributed among all the elements that have the same grey level stripe value.
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Four are the neighbours taken into account, namely those four surrounding element
(x; y).
A homogeneous distribution may obviously be obtained by calculating the mean

value of the :ve charge values. This is possible establishing the following formula for
function Fl:

∀(�; �)∈ [x ± 1; y ± 1]; ��;� =

{
1 if Ck(�; �; T −NT )¿vdis;

0 otherwise;

Ck(x; y; T )

= Fl[Ck(x; y; T −NT ); Ck(�; �; T −NT )]

=
1

1 + �x−1;y + �x+1;y + �x;y−1 + �x;y+1

×



Ck(x; y; T −NT )

+�x−1;yCk(x − 1; y; T −NT ) + �x+1;yCk(x + 1; y; T −NT )

+�x;y−1Ck(y − 1; y; T −NT ) + �x;y+1Ck(x; y + 1; T −NT )


 :

In this way, attention can be maintained on the charged elements that are connected
to saturate elements.
The last step consists now in distributing output values. We take the maximum value

of all outputs of the k sublayers to show the silhouette of a moving object.

Ok(x; y; t) =

{
Ck(x; y; t) if Ck(x; y; t)¿
;


 otherwise;

O(x; y; t) = max
k

[Ok(x; y; t)]:

4. Data and results

The performance of the model applied to motion detection is demonstrated on two
sets of image sequences. The :rst set includes synthetic scenes to test the model’s
behaviour in front of the aperture, the blank wall, and the motion transparency. The
second set shows a real scene from a tra@c control system, illustrating the deformation
problem present in most scenes.

4.1. Synthetic images

The three synthetic image sequences are similar to those used by CP esmeli and Wang
[7]. The main and important diEerence is that our image sequences are inde:nite,
composed of more than three frames. The parameter values used in all these sequences
are explained next. The number of grey level bands used is 8. The parameters for
accumulative computation are vsat = 255; vdis = 0; vacc = 95.
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Fig. 9. Application of the model to a synthetic image sequence, illustrating the solution to the aperture
problem: (a) test images series, (b) result after global accumulation, and (c) result after distribution.

The :rst sequence is depicted in Fig. 9. A textured rectangular region is moving
two pixels per frame rightward on a homogeneous background as shown in Fig. 9a.
Fig. 9b shows the method’s output after accumulative computation, whereas Fig. 9c
shows the output after lateral interaction. The moving element in Fig. 9b is composed
of several charge values due to motion detection. Fig. 9c oEers only two charge values
for the whole image, namely black for those pixels considered not to have moved and
a grey value for the pixels where motion has been detected. Now, it is this common
charge value that faces the aperture problem successfully. The moving element is given
a same charge value equivalent to a common “velocity” parameter to all pixels of the
object.
In Fig. 10, two homogeneous rectangular regions are moving on a homogeneous

background. The larger rectangle is moving two pixels per frame rightward and the
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smaller one is moving three pixels per frame downward, occluding the former
(Fig. 10a). Results of global accumulation and distribution are again shown in Fig.
10b and c, respectively. Notice that under these conditions the blank wall problem
cannot be solved. Fig. 11 shows the same situation, but using textured rectangles.
Now, the blank wall problem disappears. To our opinion, the real world is composed
of elements where texture is widely present, for moving elements as well as for back-
grounds. Thus, the blank wall problem is limited in our model for very special and
unusual situations.
Lastly, in the third synthetic scene shown in Fig. 12, two random-dot rectangular

regions (Fig. 12b1 and b2) are moving horizontally two pixels per frame in oppo-
site directions (Fig. 12c) on a random-dot noise background (Fig. 12a). During this
motion sequence, there is an overlapping area where both motions are simultaneously
perceived. Our method perfectly segments moving regions. When both regions are sep-
arate, they appear with diEerent charge values. But when they are perceived simulta-
neously, they get a single common charge value. There is no possibility to diEerentiate
them when superimposed.

4.2. Real images

We have to highlight that our model applied to motion detection is really useful
when used in real scenes. And this usefulness is even increased, as we are able to face
deformation processes, and not only translational motion. Let us remember again that
the number of images in a sequence is unlimited. In order to show all these advantages
of the neuronal model for lateral interaction in accumulative computation in motion
detection we have used a series of real scene test images as shown in Fig. 13, column
(a). This sequence shows a road tra@c scene. Column (b) of Fig. 13 shows the charge
values as an output image after accumulative computation has taken place. Column (c),
on the other hand, shows the output value after recursive tasks have been performed.
In the second column of that :gure a black background can be appreciated where

no motion is detected (elements set to value vdis), as well as the conventional result
of image diEerence in white colour. Image diEerence systems are capable of detect-
ing pixels where motion occurs. See that precisely these pixels are the ones set to a
permanence value of vsat in our model. Any other colour appearing in Fig. 13 column
(b) or (c) corresponds to one grey level value. So, the elements of Fig. 13, column
(b) in any colour diEerent from white or black are those taking an intermediate value
between vdis and vsat. The third column of the :gure oEers more information on the
object’s shape. This column illustrates the result of applying the complete model on
the images. It shows the :nal results of the use of accumulative computation followed
by lateral interaction of maximally charged pixels on partially charged pixels.
So it can be appreciated how the silhouette rapidly appears after the model has

been working with only three input images. Note that the model continues performing

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 10. Application of the model to a synthetic image sequence, illustrating the blank wall problem: (a)
test images series, (b) result after global accumulation, and (c) result after distribution.



358 A. Fern
andez-Caballero et al. / Neurocomputing 50 (2003) 341–364



A. Fern
andez-Caballero et al. / Neurocomputing 50 (2003) 341–364 359

Fig. 12. Application of the model to a synthetic image sequence, illustrating the solution to the motion trans-
parency problem: (a) test images series, (b) result after global accumulation, and (c) result after distribution.

excellent results through time. This example shows the functionality of the model,
demonstrating that the presented mechanisms are adequate for moving object detection.
In comparison with other approaches, we have to highlight that the most signi:cant

contribution of our model is that it is capable of detecting all elements moving in
an inde:nite sequence of images with any kind of motion type. The most important
limitation of the model applied to motion detection is the impossibility to diEerentiate
among objects that are seen as a whole due to occlusions.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 11. Application of the model to a synthetic image sequence, illustrating the solution to the blank wall
problem: (a) test images series, (b) result after global accumulation, and (c) result after distribution.
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Fig. 13. (a) Test images series. (b) Result after global accumulation. (c) Result after distribution.

5. Conclusions

We have proposed in this paper a model for lateral interaction in accumulative
computation and its application to motion detection in a neural architecture. This model,
which can be considered as biologically plausible, is based on a series of neuronal
models in one layer, namely the local accumulative computation model, the double
time scale model and the recurrent lateral interaction model. The model applied to
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motion detection is capable of holding our attention on all moving objects in a scene
composed of an inde:nite sequence of images.
Our model is a 2-D approach to motion estimation. In these kinds of approaches,

motion estimates are obtained from 2-D motion of intensity patterns. In these methods
there is a general restriction: the intensity of the image along the motion trajectory
must be constant, that is to say, any change through time in the intensity of a pixel
is only due to motion. This restriction does not aEect our model at all. This way,
our algorithms are prepared to work with lots of situations of the real world, where
changes in illumination are of a real importance.
The gradient-based estimates have become the main approach in the applications of

computer vision. These methods are computationally e@cient and satisfactory motion
estimates of the motion :eld are obtained. Unfortunately, the gradient-based methods
always present some restrictions, but our method does not. The disadvantages common
to all methods based on the gradient also arise from the logical changes in illumination.
Obviously, a way of solving the former limitations of gradient-based methods is to

consider image regions instead of pixels. In general, these methods are less sensitive to
noise than gradient-based methods. Our particular approach takes advantage of this fact
and uses all available neighbourhood state information as well as the proper motion
information. On the other hand, our method is not aEected by the greatest disadvantage
of region-based methods. Our model does not depend on the pattern of translation
motion. In eEect, in region-based methods, regions have to remain quite small so that
the translation pattern remains valid.
Thus, we can conclude that the proposed model seems promising for many diEerent

applications related to image processing. And, as it is a more generally applicable
model, we are optimistic on future applications in other neurocomputing :elds.
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