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Abstract
The problem we are stating is the discrimination of non-rigid objects capable of holding our attention in a scene.
Motion allows gradually obtaining all moving objects shapes. We introduce an algorithm that fuses spots obtained by

means of neuronal lateral interaction in accumulative computation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Problem statement

Obtaining an object’s shape from motion in a sequence of images is an arduous task in computer vision.
Information of its structure may be got using a so-called structure-from-motion algorithm. Structure-from-
motion algorithms are based on the information of temporary disparity using the change in the position of
the moving object or of the observer in two or more successive frames.

A lot of approaches on non-rigid object segmentation have been investigated so far (e.g. Kass et al.,
1988; Terzopoulos and Witkin, 1988; Pentland, 1990; Horowitz and Pentland, 1991; Kervrann and Heitz,
1994; Maurizot et al., 1995). One classical approach is that of Ullman (1979). An orthographic imaging
model is used to estimate the structure and motion of a rigid moving object. The use of perspective
transformations introduce non-linearities and, consequently, the complexity of the problem is substantially
increased (Aggarwal and Nandhakumar, 1988). Roach and Aggarwal (1980) developed an algorithm that
computes structure and motion by considering the perspective transform of the images.

The described methods are able to reduce noise using a great number of matched points in each image.
An alternative way is simply to use a greater number of images. The biggest criticism to most algorithms is
that they assume that there is only one object in motion. This assumption implies that a scene that contains
multiple moving objects has to be segmented in its constituent objects before being able to use any
algorithm.
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The problem that we are stating is the discrimination of a group of non-rigid objects able to
maintain our attention in a scene. These objects are discovered starting from the motion of any of
their parts. In an indefinite succession of images, motion allows to obtain the shape of the moving
elements.

Somehow, the method can be generically included in the image difference models. More concretely, it is
bound to the generic behaviour of the permanency memories (Fernandez and Mira, 1992). Specifically,
we will say that the observer is unable to discern any object unless it starts moving. Therefore, an image
containing only static elements does not offer any interesting information. In other words, the system only
acts on those image pixels where some change in the grey level is detected between two consecutive
frames.

The method is not limited to the observation, detection and pursuit of a single object in the scene, but
rather it is able to segment all objects that offer some kind of motion.

2. Neuronal lateral interaction

A generic model based on a neural architecture is presented. The proposed model is based on an ac-
cumulative computation function (Fernandez and Mira, 1992; Fernandez et al., 1995), followed by a set of
co-operating lateral interaction processes. These are performed on a functional receptive field organised as
centre-periphery over linear expansions of their input spaces (Mira et al., 1993; Mira et al., 1995; Moreno
et al., 1969).

A lateral interaction model (Mira, 1993; Mira et al., 1996) consists of a layer of modules of the same type
with local connectivity, such that the response of a given module does not only depend on its own inputs,
but also on the inputs and outputs of the module’s neighbours. From a computational point of view, the
aim of the lateral interaction nets is to partition the input space into three regions: centre, periphery and
excluded. The following steps have to be done: (a) a processing over the central region, (b) a processing over
the feedback of the periphery zone, (c) a comparison of the results of these operations and a local decision
generation, and (d) a distribution over the output space.

We also incorporate the notion of double time-scale present at sub-cellular micro-computation (Fer-
nandez et al., 1995). So, the following properties are applicable to the model: (a) a local convergent
process around each element, (b) a semi-autonomous functioning, with each element capable of spatio-
temporal accumulation of local inputs in time-scale 7, and conditional discharge, and (c) an attenuated
transmission of these accumulations of persistent coincidences towards the periphery that integrates at
global time-scale z.

Therefore we are in front of two different time-scales: (1) the local time 7, and (2) the global time
t(t =nT). Global time is applicable to steps (a) and (d) of our neuronal lateral interaction model, whereas
steps (b) and (c) use local time-scale 7.

3. Algorithms

Firstly, at step (a), a general accumulative computation present at global time-scale is performed.
Each element (x,y) is capable of processing motion from input grey level value IN(x,y,¢) and its
proper charge value. Let GLS(k,x,y,¢) be the presence or absence of grey level k at element (x,y) at
time ¢,

if IN(x,y,t) #k

otherwise Vk € [0,255].

GLS(k,x,y,t) = { 1_1
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The accumulative computation equation may be formulated as

lgs if GLS(k,x,y,t) = —1,
I if GLS(k,x,y,t) =1 and GLS(k,x,y,t — At) = —1,
max(C(k,x,y,t — At) — Vaee, Lais)

if GLS(k,x,y,¢t) =1 and GLS(k,x,y,t — At) =1,

C(k,x,y,t) =

where C(k, x,y,t) is the charge value at element (x, y) for grey level k, l4; is the discharge or minimum value,
lsa¢ 18 the saturation or maximum value, and v, is the accumulative computation discharge value due to
motion detection.

Note that At determines the sequence frame rate and is given by the capacity of the model’s imple-
mentation to process one input image.

The accumulative computation equation may be explained the following way:

(a) element (x,y) at grey level k is completely discharged if pixel IN(x, y, ) is not at grey level k;

(b) element (x,y) at grey level k is set to the complete charge (saturation) if pixel IN(x, y, ) has changed

to grey level k from instant 1 — Af to instant ¢;

(c) element (x,y) at grey level & is partially discharged by a value of v, if pixel IN(x, y, ) is at grey level k

and has not changed since ¢ — At.

The input to steps (b) and (c) is obtained by taking the maximum value of all charge values corre-
sponding to all possible grey levels.

C(x,y,t) = max(C(k,x,y,t)) Vk € [0,255].
Secondly, corresponding to steps (b) and (c), in local time-scale 7, and in an iterative way, the charge value

is homogeneously distributed among all connected charged elements (C(x,y,T) > l4s). An acceptable
equation for this lateral interaction is

1
B 1 + 5x—l,y + 5x+l,y + 5x7y—1 + 5x,y+1

Clx,»,T) Clx,y,T—AT)+ 0,1, C(x —1,y,T — AT)

+ 01, Cx + 1,0, T — AT) + 6,1 C(x,y = 1, T — AT) + 6,11 Clx,y + 1, T — AT) |,

where

5 — 1 if C(OC,B,T—AT) > ldi57
“# =10 otherwise.

Note that the neighbours taken into account are four, namely the four surrounding elements (x,y). The

homogeneous distribution has been obtained by performing a recursive calculus of the mean value of up to

five charge values. The value of AT will determine the number of times the mean value is calculated.
Lastly, at step (d), the charge value C(x, y, ) of each module (x,y) is distributed as the model’s output.

4. Data and results

Firstly, we offer in this paper the results obtained for the traffic intersection sequence recorded at
the Ettlinger-Tor in Karlsruhe by a stationary camera, copyright © 1998 by H.-H. Nagel, Institut fir
Algorithmen und Kognitive Systeme, Fakultat fiir Informatik, Universitidt Karlsruhe (TH), Postfach 6980,
D-76128 Karlsruhe, Germany.

Fig. 1 shows two images of the sequence. You may observe the existence of 10 cars and one bus driving
in three different directions. At the bottom of the image there is another car, but this one is still. The
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Fig. 1. Two images of the traffic intersection sequence: (a) image number 1; (b) image number 26 and (c) result of applying the
neuronal lateral interaction mechanisms.

parameter values for this experiment are At = 0.42 s, At = 064 AT, lgs = 0, [y = 255, and v, = 32. Only
three frames are needed to obtain accurate segmentation results. Fig. 1(c) shows the result of applying our
model to some images of the traffic intersection sequence. As you may observe, the system is perfectly
capable of segmenting all the moving elements present in Fig. 1. Note that the output image has been
coloured to highlight the resulting output charge values.
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A second example is presented next (Fig. 2). Here we used the image sequence TwoWalkNew down-
loaded from University of Maryland Institute for Advanced Computer Studies, copyright © 1998 Uni-
versity of Maryland, College Park. This sequence, used to test the real-time visual surveillance system W*
(Haritaoglu et al., 1998) shows two people walking trough a scene. Column (a) shows two images from the
original sequence, column (b) shows the result of applying our model to the sequence, and column (c) offers
the superposition of the result and the input images. The parameter values for this experiment were
At =0.35s, At = 064 AT, Iy = 0, I, = 255, and v, = 108. Note again that our model perfectly detects the
moving non-rigid objects in this very simple manner.

5. Conclusions

A model based on a neural architecture close to biology has been proposed in this paper. A simple
algorithm of lateral interaction in accumulative computation is capable of segmenting all rigid and non-
rigid objects in an indefinite sequence of images in a robust and coherent manner.

Our method may be compared to background subtraction or frame difference algorithms in the way
motion is detected. Then, a region growing technique is performed to define moving objects. Fig. 3 shows
that our method (Fig. 3(e)) is much stronger than simple image difference (Fig. 3(c)), and even cumulative
image difference (Fig. 3(d)). Compared to both algorithms, our lateral interaction in accumulative com-
putation model offers more accurate and less noisy results.

In contrast to similar approaches, no complex image pre-processing has to be performed, no reference
image has to be offered to our model, and no high-level knowledge has to be inferred to obtain accurate
results.

We also have to highlight that our proposed model has no limitation in the number of non-rigid objects
to differentiate. Our system facilitates object classification by taking advantage of the object charge value,
common to all pixels of a same moving element. This way, all moving objects are clearly segmented. Thanks
to this fact, any higher-level operation will decrease in difficulty.

We conclude affirming that the proposed neuronal lateral interaction in accumulative computation
mechanisms offer an excellent tool for image segmentation as a first approach to pattern recognition.
Currently, we are studying the usefulness of our algorithms to very different real world applications such as
traffic monitoring, people surveillance, and medical imaging.
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