
Facilitating MAS Complete Life Cycle through
the Protégé-Prometheus Approach

Marina V. Sokolova1,2 and Antonio Fernández-Caballero1

1 Universidad de Castilla-La Mancha, Escuela Politécnica Superior de Albacete &
Instituto de Investigación en Informática de Albacete, 02071-Albacete, Spain

2 Kursk State Technical University, Kursk, ul.50 Let Oktyabrya, 305040, Russia
smv1999@yandex.ru,caballer@dsi.uclm.es

Abstract. The approach of this paper aims to support the complete
multi-agent systems life cycle, integrated by two existing and widely ac-
cepted tools, Protégé Ontology Editor and Knowledge-Base Framework,
and Prometheus Development Kit. A general sequence of steps facili-
tating application creation is proposed in this paper. We propose that it
seems reasonable to integrate all traditional software development stages
into one single methodology. This view provides a general approach for
MAS creation, starting with problem definition and resulting in program
coding, deployment and maintenance. The proposal is successfully being
applied to situation assessment issues, which has concluded in an agent-
based decision-support system for environmental impact evaluation.

Keywords: Multi-agent systems, Software life cycle, Methodologies.

1 Introduction

Nowadays there are many works and approaches dedicated to multi-agent sys-
tems (MAS) development, which pay attention to internal MAS functionality,
reasoning and its coding. Creation, deployment and post-implementation of MAS
as software products is a complex process, which passes through a sequence of
stages forming its life cycle [13][21]. Every step of the life cycle process has to
be supported and provided by means of program tools and methodologies. In
case of MAS development, in our opinion there is still no solution to a unified
approach to cover all the stages. However, there are some previous works dedi-
cated to this issue [2][12]. For instance, de Wolf and Holvoet [2] have introduced
a methodology in the context of standard life cycle model, with accent to decen-
tralization and macroscopic view of the process. The authors offer their approach
on the assumption that the research task has already been defined, omitting the
problem definition and domain analysis stages of MAS development process.
But, a complete software development in case of MAS should be based on the
following steps: (1) domain and system requirements analysis, (2) design, (3)
implementation, (4) verification, and, (5) maintenance [9][12].

Some well known alternative agent-oriented software engineering methodolo-
gies, including MaSE [1] , Gaia [23], MASDK [6], Prometheus [15], Tropos [4],

N.T. Nguyen et al. (Eds.): KES-AMSTA 2008, LNAI 4953, pp. 63–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



64 M.V. Sokolova and A. Fernández-Caballero

INGENIAS [5], among others, support some of the cited stages of MAS life cycle
process. Nonetheless, these methodologies often work under the condition that
the developer has already defined the problem and determined the goals and the
tasks of the system. However, domain analysis is a crucial stage and has to be
scrutinizingly examined and planned. Indeed, the whole deployed system func-
tionality and efficiency depends on how precisely the problem was defined and
the domain ontology was elaborated. In the most general case, when a MAS is
distributed and has to deal with heterogeneous information, the domain analysis
becomes even more important.

Therefore, it seems reasonable to integrate all the software development stages
into one single methodology, which should provide a general approach to MAS
creation, starting with the problem definition and resulting in program coding,
deployment and maintenance. As a tool for the system and domain require-
ments, we suggest using an OWL-language based toolkit, as OWL has become
a standard for ontologies description [14]. The Protégé Ontology Editor and
Knowledge-Base Framework [16] complies a set of procedures for ontology cre-
ation and analysis, offering a set of plug-ins covering viewers, problem-solving
methods, knowledge trees, converters, etc. According to our proposal, ontolo-
gies can be represented by means of Protégé and later may be incorporated into
MAS. In order to provide the following stages with tools we have tested different
methodologies. We came to the conclusion to use the Prometheus Development
Tool (PDT) [17], which provides a wide range of possibilities for MAS planning
and implementation: the system architecture, the system entities, their internals
and communications within the system and with outer entities. The most im-
portant advantages of PDT are an easy understandable visual interface and the
possibility to generate code for JACKTM Intelligent Agents [11]. The proposal
is summed up in Fig. 1.

1. Domain and System 

Requirements Analysis 

2. Design 

3. Implementation 

4. Verification 

5. Maintenance 

Protégé Ontology Editor 
(creation of metaontology 

and private ontologies)

Prometheus Design Toolkit
(system elements analysis, 

MAS design, skeletton code 

generation)

JACK 
(MAS coding, testing and 

support)

Fig. 1. The Protégé-Prometheus approach applied to the MAS life cycle



Facilitating MAS Complete Life Cycle 65

The paper is organized as follows. In section 2 the metaontology creation
realized in Protégé is described and in section 3 the MAS designed in PDT is
introduced. In section 4 our intention to implement the ideas for further usage
of the integrated methodology are briefly explained.

2 Domain and MAS Requirements in Protégé

Ontology creation may be viewed as a crucial step in MAS design as it determines
the system knowledge area and potential capabilities [7]. In the first part of
this article a model of distributed metaontology that serves as a framework for
MAS design is proposed. Its components - private ontologies - are described in
extensive with respect to an application area and in terms of the used semantics.

When defining an ontology O in terms of an algebraic system, we have the
following three attributes:

O = (C, R, Ω) (1)

where C is a set of concepts, R is a set of relations among the concepts, and Ω
a a set of rules. The principal point of MAS is to determine the rules Ω and to
evaluate them. Formula (2) proposes that the ontology for the domain of interest
(or the problem ontology) may be described by offering proper meanings to C,
R and Ω.

The model of the metaontology that we have created consists of five compo-
nents, or private ontologies: the “Domain Ontology”, the “Task Ontology”, the
“Ontology of MAS”, the “Interaction Ontology” and the “Agent Ontology”.

In first place, the “Domain Ontology”, includes the objects of the problem
area, the relations between them and their properties. It determines the compo-
nents C and R of expression (2), which is detailed as:

OD =< I, C, P, V, Rs, Rl > (2)

where the set C (see formula (2)) is represented by two components: Individuals
(I) and Classes (C), which reflect the hierarchical structure of the objects of the
problem area; P - are class properties; V - are the properties values; Rs - are
values restrictions; Rl embodies the set R, and includes rules which state how
to receive new individuals for the concrete class.

The “Task Ontology” contains information about tasks and respective meth-
ods, about the pre-task and post-task conditions, and informational flows for
every task. The “Task Ontology” has the following model:

OT =< T, M, In, Ot, R > (3)

where T is a set of tasks to be solved in the MAS, and M is a set of methods
or activities related to the concrete task, In and Ot are input and output data
flows, R is a set of roles that use the task. Component R is inherited from
the “Ontology of MAS” through the property belong to role. The tasks are
shared and accomplished in accordance with an order.



66 M.V. Sokolova and A. Fernández-Caballero

The “Ontology for MAS” architecture is stated as:

OA =< L, R, IF, Or > (4)

where L corresponds to the logical levels of the MAS (if required), R is a set of
determined roles, IF is a set of the corresponding input and output information
represented by protocols. Lastly, the set Or determines the sequence of execution
for every role (orders).

The interactions between the agents include an initiator and a receiver, a
scenario and the roles taken by the interacting agents, the input and output
information and a common communication language. They are stated in the
“Interaction Ontology” as:

OI =< In, Rc, Sc, R, In, Ot, L > (5)

Actually, as In and Rc Initiator and Receiver, respectively, of the interaction
we use agents. The component Sc corresponds to protocols. R is a set of roles
that the agents play during the interaction. In and Ot are represented by in-
formational resources, required as input and output, respectively. Language L
determines the agent communication language (ACL).

In our approach BDI agents [3], which are represented by the “Agent On-
tology”, are modeled. Hence, every agent is described as a composition of the
following components:

Agent =< B, D, I > (6)

Every agent has a detailed description in accordance with the given ontology,
which is offered in a form of BDI cards, in which the pre-conditions and post-
conditions of agent execution and the necessary conditions and resources for the
agent successful execution are stated. Evidently, B, D and I stand for Believes,
Desires and Intentions, respectively.

Metaontology is a specification for further MAS coding; it provides the neces-
sary details about the domain, and describes system entities and functionality.
It includes five components:

MO =< OD, OT, OA, OI, Agent > (7)

where OD stands for the ”‘Domain Ontology”’, OT for the “Task Ontology”,
OA “Ontology for MAS” architecture, OI is the “Interaction Ontology”, and,
Agent is the “Agent Ontology”.

Private ontologies mapping is made through slots of their components. So,
the “Agent Ontology” has four properties:

1. has intentions - which contains individuals of the methods “M” class from
the “Task Ontology”.

2. has believes - which contains individuals from the “Domain Ontology”.
3. has desires - which contains individuals from the “Task Ontology”.
4. has type - which contains variables of String type.



Facilitating MAS Complete Life Cycle 67

There is a real connection between the “Task Ontology” and the “Domain
Ontology”. The OT , in turn, refers to the “Ontology of MAS” (OA), which is
formally described by four components. The first two

– level value
– order

contain values of Integer type, which determine the logical level number and
the order of execution for every role. Roles (R) are the individuals of the named
ontology. The next two properties

– has input
– has output

refer to individuals of the “Interaction Ontology”; in particular, to protocols,
which manage communications. Their properties are of type String:

– has scenario,
– language,
– roles at scenario.

The “Interaction Ontology” slots named has initiator and has receiver
are the individuals of the “Agent Ontology” (Agent). Thus, agents are linked

Fig. 2. Metaontology as a result of private ontologies mapping



68 M.V. Sokolova and A. Fernández-Caballero

to the proper protocols within the MAS. The OD, by means of its individuals -
which contain data records - is connected to Agent, which uses the knowledge on
the domain area as its believes. This way, the proposed metaontological model
realized in Protégé covers the first four steps of the software development life
cycle. The “System Elements Analysis” phase is covered by establishing the
terminological basis for the further design.

3 System Design with Prometheus Development Tool

In order to validate the second step of our approach, we introduce a running ex-
ample, consisting in an agent-based decision support system (ADSS) dedicated
to monitoring environmental pollution information, analyzing this data, simu-
lating with respect to health consequences, and making decisions for responsible
system users [8][10].

Fig. 3. An example of Protégé and Prometheus agent internals integration



Facilitating MAS Complete Life Cycle 69

Following the orientations described in section 2 for metaontology and private
ontologies creation, the ADSS has been modeled as a logical three layer MAS
architecture. The first layer is named Information Fusion and it acquires data
from diverse sources, and preprocesses the initial information to be ready for
further analysis. The second layer is named Data Mining and there are three
roles at this level, dedicated to knowledge recovering through modeling, and
calculation impact of various pollutants upon human health. The third layer,
Decision Making, carries out a set of procedures including model evaluation,
computer simulation, decision making and forecasting, based on the models cre-
ated in the previous level. At every level of the system certain goals and tasks
have to accomplished [18][19].

The system resembles a typical organizational structure. The agents are
strictly dedicated to working with the stated sets of data sources. They solve
the particular tasks and are triggered when all the necessary conditions are ful-

Table 1. Mapping between Protégé and Prometheus entities

Protégé Entity Prometheus Entity Prometheus View

“Domain Ontology” Data Data Coupling
“Task Ontology”

Tasks Goals Goal Overview
Methods Actions System Roles

Input Data Data Coupling
Output Data Data Coupling
Roles Roles System Roles

/Agent-Role Grouping
“Ontology of MAS” structure

Levels - System Overview
Roles Roles System Overview

/Agent-Role Grouping
Information Flows Protocols System Overview

Order - System Overview
”Interaction Ontology”

Initiators Agents Agent Acquaintance
Receivers Agents Agent Acquaintance
Scenarios Scenarios Scenarios

Roles at Scenario - -
Input Data Data Coupling

Output Data Data Coupling
Language - -

”Agent Ontology”
Believes Data Data Coupling

Perceptions Analysis Overview
Desires Goals Goal Overview

Intentions Actions System Overview
/System Roles



70 M.V. Sokolova and A. Fernández-Caballero

filled, and there are positive messages from previously executed agents [22]. The
system includes a set of roles, correlated with the main system functions and a
set of agents related to each role. Actually, mostly every agent is associated to
one role; only in case of “Function Approximation” role, there are two agents,
one for data mining, and the other one for validation.

In Fig. 3 there is an illustration of the integration between metaontological
concepts (and their properties) in Protégé and the Prometheus entities in the
context of the agent internals. The “Data Aggregation agent” uses “Domain On-
tology” and “Task Ontology”, which are parts of the metaontology previously
realized in Protégé. In order to closely analyze the integration of these method-
ologies, the mapping of the Protégé entities into Prometheus ones is shown in
Table 1. For instance, Table 1 states similarities between entities of OD (“Do-
main Ontology”) in Protégé and “Data” in Prometheus, which can be observed
in the “Data Coupling diagram”. The components of OT (see equation (3)) are
converted into Prometheus entities and can be displayed as well. Some compo-
nents of OA, such as Levels and Order do not have equivalents, as well as Roles
at Scenario and Language components of OI, which serves more for a researcher
during the MAS planning stage.

4 Conclusions

The integration of two existing and widely accepted tools, Protégé Ontology Ed-
itor and Knowledge-Base Framework, and Prometheus Development Kit, into a
common methodology has been introduced in this paper. The Protégé Ontology
Editor complies a set of procedures for ontology creation and analysis, offering a
set of plug-ins such as viewers, problem-solving methods, knowledge trees, con-
verters, and so on. To provide the following stages with tools, we have tested
different methodologies, and finally decided to use the Prometheus Development
Tool, which offers a wide range of possibilities for MAS planning and implemen-
tation, namely the system architecture, the system entities, their internals and
communications within the system and with outer entities.

As the Prometheus methodology has been developed in collaboration with
Agent Oriented Software, and a modified version of the Prometheus modeling
language has been partially implemented in their JACK Intelligent AgentsTM

development environment as a tool for visual modeling of the architectural de-
sign and plans, the next logical step of our approach is to implement under
this environment. The JACK Design Tool is a software package for agent-based
applications development in Java-based environment JACK.

Thus, the integrated approach covers all the stages of MAS planning and im-
plementation, supporting them with tools and frameworks. The proposed fusion
of methodologies, Protégé and Prometheus, was chosen because of the wide range
of functions offered and their conformance to international standards. We be-
lieve that the common use of Protégé and Prometheus in complex developments
would prevent researchers and developers from numerous misunderstandings. It
should greatly help in domain requirements description, facilitating the complete



Facilitating MAS Complete Life Cycle 71

MAS development life cycle. However, other combinations of agent-oriented tools
could be used, whenever it helps getting the same result and support during MAS
development, deployment and maintenance.

Acknowledgements

Marina V. Sokolova is the recipient of Postdoctoral Scholarship 0000253836,
Program II.E (Becas MAE) awarded by the Agencia Española de Cooperación
Internacional of the Spanish Ministerio de Asuntos Exteriores y de Cooperación.

This work is supported in part by the Spanish Ministerio de Educación y Cien-
cia TIN2004-07661-C02-02 and TIN2007-67586-C02-02 grants, and the Junta de
Comunida-des de Castilla-La Mancha PBI06-0099 grant.

References

1. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering.
International Journal of Software Engineering and Knowledge Engineering 11, 231–
258 (2001)

2. de Wolf, T., Holvoet, T.: Towards a full life-cycle methodology for engineering de-
centralised multi-agent systems. In: Proceedings of the Fourth International Work-
shop on Agent-Oriented Methodologies, pp. 1–12 (2005)

3. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The Belief-Desire-
Intention model of agency. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL
1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)

4. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos software development
methodology: Processes, models and diagrams. In: Third International Workshop
on Agent-Oriented Software Engineering, pp. 162–173 (2002)

5. Gómez-Sanz, J., Pavon, J.: Agent oriented software engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

6. Gorodetsky, V., Karsaev, O., Konushy, V., Mirgaliev, A., Rodionov, I., Yustchenko,
S.: MASDK software tool and technology supported. In: International Conference
on Integration of Knowledge Intensive Multi-Agent Systems, pp. 528–533 (2005)

7. Guarino, N., Giaretta, P.: Ontologies and knowledge bases: Towards a terminolog-
ical clarification. In: Towards Very Large Knowledge Bases, pp. 25–32. IOS Press,
Amsterdam (1995)

8. International Classification of Diseases (ICD) home page,
http://www.who.int/classifications/icd/en/

9. ISO/IEC 12207 home page, http://www.iso.org/iso/
10. ISO 14031:1999 home page. Environmental management - Environmental perfor-

mance evaluation - Guidelines, http://www.iso.org/iso/
11. JackTM Intelligent Agents home page,

http://www.agent-software.com/shared/home/
12. Konichenko, A.V.: Distribution Information Systems Design Management. Rostov-

Don Press, Russia (2005)
13. Maŕık, V., McFarlane, D.: Industrial adoption of agent-based technologies. Intelli-

gent Systems 20, 27–35 (2005)

http://www.who.int/classifications/icd/en/
http://www.iso.org/iso/
http://www.iso.org/iso/
http://www.agent-software.com/shared/home/


72 M.V. Sokolova and A. Fernández-Caballero

14. OWL Web Ontology Language home page. (2004),
http://www.w3.org/TR/owl-features/

15. Padgham, L., Winikoff, M.: Prometheus: A pragmatic methodology for engineering
intelligent agents. In: Proceedings of the Workshop on Agent Oriented Methodolo-
gies (Object-Oriented Programming, Systems, Languages, and Applications), pp.
97–108 (2002)

16. Prometheus Design Tool home page, http://www.cs.rmit.edu.au/agents/pdt/
17. Protégé home page, http://protege.stanford.edu/
18. Sokolova, M.V., Fernández-Caballero, A.: A multi-agent architecture for environ-

mental impact assessment: Information fusion, data mining and decision making.
In: 9th International Conference on Enterprise Information Systems, ICEIS 2007,
vol. AIDSS, pp. 219–224 (2007)

19. Sokolova, M.V., Fernández-Caballero, A.: An agent-based decision support system
for ecological-medical situation analysis. In: Mira, J., Álvarez, J.R. (eds.) IWINAC
2007. LNCS, vol. 4528, pp. 511–520. Springer, Heidelberg (2007)

20. Schelfthout, K., Holvoet, T.: ObjectPlaces: an environment for situated multi-
agent systems. In: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 1500–1501 (2004)

21. Vasconcelos, W.W., Robertson, D.S., Agusti, J., Sierra, C., Wooldridge, M., Par-
sons, S., Walton, C., Sabater, J.: A lifecycle for models of large multi-agent systems.
In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222,
pp. 297–318. Springer, Heidelberg (2002)

22. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial In-
telligence. The MIT Press, Cambridge (2000)

23. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3, 285–312 (2000)

http://www.w3.org/TR/owl-features/
http://www.cs.rmit.edu.au/agents/pdt/
http://protege.stanford.edu/

	Facilitating MAS Complete Life Cycle through the Prot´eg´e-Prometheus Approach
	Introduction
	Domain and MAS Requirements in Protégé
	System Design with Prometheus Development Tool
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




