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Abstract. Autonomous robot guidance in dynamic environments requires, on 
the one hand, the study of relative motion of the objects of the environment 
with respect to the robot, and on the other hand, the analysis of the depth 
towards those objects. In this paper, a stereo vision method, which combines 
both topics with potential utility in robot navigation, is proposed. The goal of 
the stereo vision model is to calculate depth of surrounding objects by 
measuring the disparity between the two-dimensional imaged positions of the 
object points in a stereo pair of images. The simulated robot guidance algorithm 
proposed starts from the motion analysis that occurs in the scene and then 
establishes correspondences and analyzes the depth of the objects. Once these 
steps have been performed, the next step is to induce the robot to take the 
direction where objects are more distant in order to avoid obstacles. 

1   Introduction 

Perception is a crucial part of the design of mobile robots. We want mobile robots to 
operate in unknown, unstructured environments. To achieve this goal, the robot must 
be able to perceive its environment sufficiently to allow it operate with that 
environment in a safe way. Most robots that successfully navigate in unconstrained 
environments use sonar transducers or laser range sensors as their primary spatial 
sensor [1] [2] [3]. On the hand, autonomous navigation [4] can be divided up into two 
elements: self-localization, and obstacle avoidance [5] [6]. Self-localization is always 
necessary if the target cannot be guaranteed to be in the field of view of the robot's 
sensing device. Self-localization using vision is not the hardest part of navigation 
because only a few visual cues are required. Obstacle avoidance is a lot more 
difficult, because it is in general not possible to guarantee that an obstacle will be 
detected.  



There has been some work on the control strategies to be used where the required 
path is known and obstacle positions are known with some level of uncertainty [7]. 
Most research has concentrated on using the concept of free-space [8]. A free-space 
area is a triangular region with the cameras and a fixated scene feature as its vertices. 
If the robot moves while holding the feature in fixation, a free-space volume will be 
swept out. 

The goal of the stereo vision method with application in mobile robotic is to 
calculate depth to surrounding objects by measuring the disparity between the two-
dimensional imaged positions of the objects points in a stereo pair of images. Since a 
single 3D point will project differently onto a camera’s sensor when imaged from 
different locations, the 3D world position of the point can be reconstructed from the 
disparate image locations of these projections. Many algorithms have been developed 
so far to analyze the depth in a scene. Brown et al. [9] describe a good approximation 
to all of them in their survey article.  

Depth analysis is faced by different methods; but all of them have as a common 
denominator that they work with static images and not with motion information. In 
this paper, we have chosen as an alternative not to use direct information from the 
image, but rather the one derived from motion analysis. This alternative should 
provide some important advantages when working with mobile robots in dynamic 
environments. Autonomous robot guidance in dynamic environments requires, on the 
one hand, the study of relative motion of the objects of the environment with respect 
to the robot, and on the other hand, the analysis of the depth towards those objects.  

In this paper, firstly a stereo vision method is proposed. Then, we present a 
simulation of a robot that uses motion-based and correlation-based stereo vision to 
navigate and explore unknown and dynamic indoor environments. The system uses as 
input the motion information of the objects present in the scene, and uses this 
information to perform a depth analysis of the scene. After estimating the scene depth 
distribution, an algorithm, which imposes the search for maximum depth criteria to 
guide an autonomous robot, is proposed. Keeping this purpose in mind, the algorithm 
tracks those areas where depth is maximal. 

2 Motion-based Stereovision Method 

Our argumentation is that motion-based segmentation facilitates the correspondence 
analysis. Indeed, motion trails obtained through the permanency memories [10] [11] 
charge units are used to analyze the disparity between the objects in a more easy and 
precise way.  

2.1. Accumulative computation for motion detection 

The permanency memories mechanism considers the jumps of pixels between grey 
levels, and accumulating this information as a charge. This representation is also 
called accumulative computation, and has already been proved in applications such as 
moving object shape recognition in noisy environments [12] [13], moving objects 



classification by motion features such as velocity or acceleration [14], and in 
applications related to selective visual attention [15]. The more general modality of 
accumulative computation is the charge/discharge mode, which may be described by 
means of the following generic formula: 
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The temporal accumulation of the persistency of the binary property P[x,y,t] 
measured at each time instant t at each pixel [x,y] of the data field is calculated. 
Generally, if the property is fulfilled at pixel [x,y], the charge value at that pixel 
Ch[x,y,t] goes incrementing by increment charge value C up to reaching Chmax, 
whilst, if property P is not fulfilled, the charge value Ch[x,y,t] goes decrementing by 
decrement charge value D down to Chmin. All pixels of the data field have charge 
values between the minimum charge, Chmin, and the maximum charge, Chmax. 
Obviously, values C, D, Chmin and Chmax are configurable depending on the different 
kinds of applications, giving raise to all different operating modes of the 
accumulative computation.  

Values of parameters C, D, Chmax and Chmin have to be fixed according to the 
applications characteristics. Concretely, values Chmax and Chmin have to be chosen by 
taking into account that charge values will always be between them. The value of C 
defines the charge increment interval between time instants t-1 and t. Greater values 
of C allow arriving in a quicker way to saturation. On the other hand, D defines the 
charge decrement interval between time instants t-1 and t. Thus, notice that the charge 
stores motion information as a quantified value, which may be used for several 
classification purposes. In this paper, the property measured in this case is equivalent 
to “motion detected” at pixel of co-ordinates [x,y] at instant t.  
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 Initially the charge for a pixel is the minimum permitted value. The charge in the 
permanency memory depends on the difference between the current and the previous 
images grey level value. An accumulator detects differences between the grey levels 
of a pixel in the current and the previous frame. When a jump between grey levels 
occurs at a pixel, the charge unit (accumulator) of the permanency memory at the 
pixel’s position is completely charged (charged to the maximum charge value). After 
the complete charge, each unit of the permanency memory goes decrementing with 
time (in a frame-by-frame basis) down to reaching the minimum charge value, while 
no motion is detected, or it is completely recharged, if motion is detected again. Thus, 
“motion detected” may be obtained by means of the following formula: 
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which is easily obtained as a variation in grey level band between two consecutive 
time instants t and t-1. In order to diminish the effects of noise due to the changes in 



illumination in motion detection, variation in grey level bands at each image pixel is 
treated as follows: 
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where GL[x,y,t] is the grey level of pixel (x,y) at t, 
 n is the number of grey level bands, 
 GLmax is the maximum grey level value, and 
 GLmin is the minimum grey level value. 

2.2. Disparity analysis for depth estimation 

The retrieval of disparity information is usually a very early step in image analysis. It 
requires stereotyped processing where each single pixel enters the computation. In 
stereovision, methods based on local primitives as pixels and contours may be very 
efficient, but are too much sensitive to locally ambiguous regions, such as occlusions 
or uniform texture regions. Methods based on areas are less sensitive to these 
problems, as they offer an additional support to do correspondences of difficult 
regions in a more easy and robust way, or they discard false disparities. Although 
methods based on areas use to be computationally very expensive, we introduce a 
simple pixel-based method with a low computational cost. 

In our case, the inputs to the system are the permanency memories of the right and 
left images of the stereo video sequences. When an object moves in the scene, the 
effect in both cameras is similar to the charge accumulated in the memory units. If 
little time has elapsed since an object moved, the charge will be close to the 
maximum value in both permanency memories, and if a lot of time has elapsed since 
it moved, the charge would be much lower or even equal to the minimum value in 
both memories. Thus, we may assume that units with equal instantaneous charge 
values in their permanency memories correspond to the same objects. 

For each frame of the sequence, the right permanency memory is fixed in a static 
way, and the left permanency memory will be displaced pixel by pixel on the epipolar 
restriction basis over it, in order to analyze the disparities of the motion trails. By 
means of this functionality, for all possible displacements of one permanency 
memory over the other, the correspondences between motion trails are checked and 
the disparities are assigned. In order to know up to what extent we have to displace 
one image over the other looking for correspondences, we have to take into account 
the disparity restriction. This restriction tells us that motion trails cannot raise a 
disparity value greater than a maximum permitted disparity.  

Once the last displacement according to the disparity restriction has been 
calculated, each unit analyzes which is the displacement value where the value of its 
charge variable has been maximal. This displacement value is assumed the most 
confident disparity value for the pixels that form the region containing the pixel. This 
way the unicity restriction is imposed, as for each processing unit the final value has 
only one unique disparity value. This is a constraint based in the geometry of the 



visual system and in the very nature of the objects of the scene. It tells us that to any 
pixel of the right image there is only one corresponding pixel on the left image. This 
means that, if there are several pixels candidates to correspondents, we have to 
choose the most confident one. Once motion trails of the moving objects that appear 
in the stereo sequence provide the correspondences, from their disparity and the 
system’s geometry it is possible to estimate the depth of the elements in the scene. 

3 Simulation for Autonomous Robot Navigation 

For sure, the precision of the depth estimation is not too accurate due to the horizontal 
and vertical discreetization of the cameras, but the information is good enough for the 
autonomous navigation task. From this perception, a system capable of analyzing the 
depth of the situation of an object enables controlling the traction system to direct it 
towards the region more far away from the cameras. 

The robot guidance algorithm proposed starts from the motion analysis that occurs 
in the scene and then establishes correspondences and analyzes the depth of the 
objects, as described in the previous sections. Once these steps have been performed, 
the next step is to induce the robot to take the direction where objects are more 
distant, in order to avoid obstacles. 

The algorithms have been tested in a simulated scenario, a square corridor (see 
figure 1). On the external walls of the corridor, there are some square figures 
simulating windows and doors, whilst on the interior walls there are only doors. The 
reason for the inclusion of doors and windows is to have some objects moving when 
the cameras advance on the robot. In this scenario, the robot walks through the 
interior of the corridor.  

 

  
(a)     (b) 

Fig. 1. Corridor scenario. (a) Aerial view. (b) In the interior of the corridor. 

The corridor scenario is composed of 500 image stereo frames. 125 pairs of frames 
are enough for studying a straight stretch and a turn on one corner. We have 
separately analyzed the straight stretches and the turns. The values of the main 
parameters used in this simulation were number of grey level bands n = 8, maximum 
charge value Chmax = 255, minimum charge value Chmin = 0, and charge decrement 
interval D = 16. 
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Fig. 2. Results for the turns in the corridor scenario (frames 350 to 380). (a) Input images of the 
right camera. (b) Images segmented in grey level bands. (c) Motion information in right 
permanency memory. (d) Scene depth. 
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Fig. 3. Results for the straight stretch in the corridor scenario (frames 265 to 350). (a) 
Input images of the right camera. (b) Images segmented in grey level bands. (c) 
Motion information in right permanency memory. (d) Scene depth. 

 



3.1. Analysis of the turns in the three-dimensional environment 

Figure 2 shows the result of applying our algorithms in the moment when the robot 
has to turn one of the corners. In column (a) some input images of the right camera 
are shown, in column (b) we have the images segmented in grey level bands, in 
column (c) motion information as represented in the right permanency memory is 
offered, and in column (d) the final output, that is to say, the scene depth as detected 
by the robot, is presented. 

When looking at the results offered on figure 2, we may make some remarks. 
Firstly, between frames 350 and 365, as the robot is turning, all objects of the 
environment appear displaced in the image, offering long trails in the permanency 
memory. These motion trails are analyzed to calculate the object’s depths in the 
output image. In frames around the 370, the end of the corridor appears again. This 
issue causes a great impact in the permanency memory. This effect is interpreted by 
the algorithm to provide the depth of the scene, which gives very high values as it 
may be appreciated at the output image. From frame 375 on, the corridor does not 
move in horizontal direction any more. Nevertheless, the effect of the previous turn is 
still present in the permanency memory. Thus, the depth may still be calculated 
easily. Between frames 375 and 380, the horizontal movements of the end of the 
corridor are losing strength in the permanency memory. Nevertheless, the algorithm 
contains sufficient information to estimate its depth. From frame 380 on, we are in the 
situation of straight stretches.  

3.2. Analysis of the straight stretches in the three-dimensional environment 

In this case, the walking of a robot through a straight-line corridor is simulated. The 
proper movement of the robot enables considering the static objects in the scenario as 
elements moving towards the cameras. Figure 3 shows the results of applying the 
algorithms to the straight stretch in the simulated three-dimensional environment.  

In frame 265, although in the input image the first door present in the straight 
stretches of the corridors does not appear any more, its presence is still under 
consideration in the permanency memory. This is why its depth is calculated in the 
output image. Also in the output image corresponding to frame 265, the end of the 
corridor appears with a much lower illumination due to its remoteness. Associated to 
frame 280, the central smooth walls do not offer any motion information. That is the 
reason why there is no information in the permanency memory and in the output 
image. Again, in this frame the doors and the windows of the end appear in dark grey 
color. Gradually, from frame 300 to frame 350, the color of the objects at the end gets 
clearer due to the approach motion to the cameras. 

3.3. General remarks 

From the results obtained in figures 2 and 3, there are several general conclusions and 
remarks we may consider. Firstly, motion analysis in the z-axis, obtained by 
accumulative computation from motion detection and disparity analysis from depth 



estimation, enables knowing which objects are approaching the cameras or moving 
away. This is really important in autonomous robot navigation, and especially for the 
obstacle avoidance task. In second place, our system enables the generation of a sort 
of three-dimensional map of the robot’s environment. This way, objects that are static 
by nature are detected due to the relative motion of the cameras with respect to the 
environment. 

4    Conclusions 

In this paper, we have introduced a method for robot navigation that uses motion-
based and correlation-based stereo vision to explore unknown and dynamic indoor 
environments. The method uses as input the motion information of the objects present 
in the scene, and uses this information to perform a depth analysis of the scene. For 
the purpose of autonomous robot navigation, we have chosen the alternative not to 
use direct information from the image, but rather to exploit all information derived 
from motion analysis. This alternative provides some important advantages when 
working with mobile robots in dynamic environments. The idea of stereo and motion 
computation on grouped grey level regions may be compared to the work of Matas on 
maximally extremal regions [16], which has proved to be very effective. 

Firstly, through motion information it is easier to use correspondences than by 
grey level information of the frames. The results are also more accurate and robust. 
This is due to the instantaneous motion features, such as position, velocity, 
acceleration and direction of the diverse moving objects that move around the robot. 
Thus, motion information of an object will be different from any other moving 
object’s one. Nonetheless, when observing motion features of a concrete object in 
both stereo sequences at the same time instant, we appreciate that these features are 
extremely similar. This is the reason why it is easy and robust to establish 
correspondences between the motion information of an object at the right image 
respect to the object at the left image. There exist very few ambiguity possibilities. A 
second advantage of using motion information relates to the nature of static objects. 
A translation or turn movement of the proper robot makes that walls or furniture 
move in relation to the robot, and of course respect to the observing cameras. This 
relative motion is different if the objects are close to or far away from the robot. 
Therefore, it will be very easy to discriminate among objects in the scene far away or 
close to the robot. The method proposed takes the advantage of algorithms based on 
pixels, as its output is a dense map of disparities. Besides, it also takes the advantage 
of algorithms based on higher level primitives by putting into correspondence 
complete regions of the image – see, permanency memories - and not only pixels.  
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