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Abstract. A model for dynamic visual attention is briefly introduced in this 

paper. A PSM (problem-solving method) for a generic “Dynamic Attention 

Map Generation” task to obtain a Dynamic Attention Map from a dynamic 

scene is proposed. Our approach enables tracking objects that keep attention in 

accordance with a set of characteristics defined by the observer. This paper 

mainly focuses on those subtasks of the model inspired in neuronal 

mechanisms, such as accumulative computation and lateral interaction. The 

subtasks which incorporate these biologically plausible capacities are called 

“Working Memory Generation” and “Thresholded Permanency Calculation”. 

1   Introduction 

Visual attention models may be classified as space-based models – e.g., spotlight 

metaphor [12] and zoom-lens metaphor [1] - and object-based models – for instance, 

discrete objects [11, 14]. Our approach falls into the models based in objects, where 

visual attention always focuses on discrete objects or coherent groups of visual 

information. In order to select an object that captures our attention, we previously 

have to determine which image features should be combined to obtain the object. This 

process is carried out in two stages. Firstly, obtaining features to generate simple 

shapes, and, secondly, combining these simple shapes into more complex ones. Once 

the objects have been obtained, the next process –attention based on objects– consists 

in selecting one of the shapes generated. 

Vecera [14] introduced a model to obtain objects separated from the background in 

static images by combing bottom-up (scene-based) and top-down (task-based) 

processes. The bottom-up process gets the borders to form the objects, whereas the 

top-down process uses known shapes stored in a database to be compared to the 

shapes previously obtained in the bottom-up process. 

A first plausible neuronal bottom-up architecture was proposed by Koch and 

Ullman [9]. Their approach is also based in features integration [13]. In Itti, Koch and 



Niebur [10] a visual attention system inspired in the neural architecture of the early 

visual system and in the architecture proposed by Koch and Ullman [9] was 

introduced. This system combines multi-scale image features in a unique saliency 

map. The most salient locations of the scene are selected from the highest activity of 

the saliency map using a winner-take-all (WTA) algorithm. 

Another example based in the saliency map idea is the guided search (GS) model 

proposed by Wolfe [15]. This model incorporates two visual selection stages. The first 

one, the pre-attention stage, with a great spatial parallelism, performs the computation 

of simple visual features. The second stage is performed spatially in a sequential way, 

using more complex visual representations – including the combination of features - to 

perform the calculations. The value of the features obtained is a combination of 

bottom-up and top-down knowledge. Attention is directed to the location that shows 

the highest value in the Dynamic Attention Map. The guided search ends if the 

location contains the target looked for. If this is not the case, the search continues in 

the Dynamic Attention Map in a descending order, finishing when the target is found 

or when attention falls under a threshold. 

In this paper we introduce a model of dynamic visual attention that combines 

bottom-up and top-down processes. Bottom-up is related to the first step of the 

architectures proposed, where the input image is segmented using dynamic criteria by 

means of neurally inspired accumulative computation [2-4] and lateral interaction [5-

8]. The observer may indicate how to tune system parameters to define the attention 

focus using top-down processes. These processes are of a static nature, during the 

configuration of the features selection and the attention focus processing, or dynamic, 

when the observer modifies parameters to centre the focus on the interest elements. 

2  Model of dynamic visual attention 

Our approach defines a PSM for the generation of a Dynamic Attention Map on a 

dynamic scene, which is able to obtain the objects that will keep the observer’s 

attention in accordance with a set of predefined characteristics. Figure 1 shows the 

result of applying our model to the “Dynamic Attention Map Generation” task, where 

attention has been paid on moving elements belonging to class “car”. 

Fig. 1. Input and output of the “Dynamic Attention Map Generation” task 

The different subtasks proposed to obtain the Dynamic Attention Map are 

depicted on figure 2, whilst figure 3 shows the inferential scheme of the model 

introduced. Next these subtasks are briefly described: 
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Fig 2. Decomposition of the “Dynamic Attention Map Generation“ task into subtasks

a) Subtask “Segmentation in Grey Level Bands” is thought to segment the 256 grey 

level value input images into n (static role) grey level bands.  

b) Subtask “Motion Features Extraction” calculates for each pixel a set of dynamic 

features, e.g. the presence or absence of motion, the speed, or the acceleration.  

The output of this subtask is formed by those pixels that deserve some dynamic 

features. Parameters Mi (static roles) indicate the range of values for motion 

features that pixels must possess to be marked as activated at the output of the 

subtask.  

c) Now, subtask “Shape Features Extraction” calculates certain shape features such 

as the size, the width, the height, the relation width to height, the value 

size/(width*height), and so on. It obtains those elements that deserve a set of 

predefined features. Parameters Si (static roles) indicate the range of values for 

shape features that elements must possess to be labelled as activated at the 

output of this subtask. The elements that do not have the features defined will be 

marked as inhibited. All the rest of pixels which do not belong to elements are 

labelled as neutral.

d) The idea of subtask “Motion & Shape (M&S) Features Integration“ is to 

generate a unique Motion and Shape (M&S) Interest Map by integrating 

motion features and shape features in accordance with the criteria defined by the 

observer. These criteria correspond to Ci (static role).  

e) Subtask “Working Memory Generation” segments the image in regions 

composed of connected pixels whose brightness pertains to a common interval. 

Each of these regions or silhouettes of a uniform grey level represents an element 

of the scene.  



f) In subtask “Thresholded Permanency Calculation“ firstly the persistency of its 

input is accumulated. Then, a further threshold is performed. Pi are the static 

roles for this subtask. 
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Fig 3. Inferential scheme of the model

From now on, this paper focuses on the generation of the working memory and the 

Dynamic Attention Map from the image segmented in grey level bands and the 

Motion and Shape Interest Map. As already mentioned the Motion and Shape 

Interest Map is calculated frame to frame, and is composed of activated pixels 

pertaining to pixels or elements of interest, inhibited pixels included in pixels or 

elements of no interest, and neutral pixels. In other words, this paper will show the 

processes related to lateral interaction and accumulative computation, whose neuronal 

basis has already been demonstrated in some previous papers of the same authors [2-

8]. Hence, these subtasks may be implemented with a neural inspiration. Next section 

is devoted to describe in extensive both subtasks. 



3  Accumulative computation and lateral interaction subtasks 

3.1  Subtask “Working Memory Generation” 

The process of obtaining the Working Memory consists in superimposing, just as 

done with superimposed transparencies, the image segmented in grey level bands of 

the current frame (at time instant t), that is to say, Grey Level Bands (dynamic role of 

inference “Segmentation in Grey Level Bands”) with image Motion and Shape 

Interest Map (dynamic role of inference “Motion and Shape Features Integration”) 

constructed at the previous frame (at time instant t-1). Thus, in the Working 

Memory, at time instant t all scene elements associated to pixels or elements of 

interest will appear. This process may be observed in more detail in figure 4, where in 

image Motion and Shape Interest Map a black pixel means neutral, a grey pixel 

means inhibited and a white pixel means activated.

Coming from the image segmented in bands, some processes are performed in 

parallel for each band. So, there will be as many images as number of bands the image 

has been segmented in. These images, Bi(x,y,t), are binary: 1 if the brightness of the 

pixel belongs to band i, and 0 if it does not belong to band i.

For each one of the binary images, Bi(x,y,t), a process is carried out to fill the 

shapes of any band that includes any value activated in the classified Motion and 

Shape Interest Map, MS(x,y,t). For it, initially Si (x,y,t), the value of the filled shape 

at band i for coordinate (x,y) at time instant t, is obtained as explained next. It is 

assigned the value of the band if the corresponding coordinate in the Motion and 

Shape Interest Map is activated: 
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Afterwards, by means of lateral interaction, the same value i is assigned to all 

positions connected to Bi(x,y,t), - using a connectivity of 8 pixels -, whenever its value 

in the Motion and Shape Interest Map does not indicate that it belongs to a non 

valid shape.  
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Finally, to generate the Working Memory, all obtained images are summed up, as 

in: 
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Notice that, in a given time instant t, scene elements whose shape features do not 

correspond to those defined by the observer may appear in the Working Memory.

This may be due to the fact that these elements have not yet been labelled. But, if the 



features of these elements do not correspond to those indicated as interesting by the 

observer, these elements at t+1 will appear as inhibited in the Motion and Shape 

Interest Map. This way, at t+1 these elements will disappear from the Working 

Memory. In order to only obtain elements that really fulfil features defined by the 

observer, some accumulative computation mechanisms are introduced, as explained in 

section 3.2. 

Fig. 4. Subtask “Working Memory Generation”

3.2  Subtask “Thresholded Permanency Calculation”  

Subtask “Thresholded Permanency Calculation” uses as input the Working Memory 

and gets as output the final Dynamic Attention Map. This subtask firstly calculates 

the so called permanency value associated to each pixel. If the value of the Working 

Memory is activated, the charge value is incremented at each image frame by a value 

of  δ c up to a maximum. If this is not the case, the charge value is decremented by a 

value of δ d down to a minimum. In a second step, the charge values are thresholded 

to get the Dynamic Attention Map. Thus, the Dynamic Attention Map will only 

have activated those pixels which have been activated in the Working Memory

during various successive time instants, namely “threshold / charge” (see figure 5). 

This is shown by means of the following formulas: 
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where δ c is the charge constant, δ d is the discharge constant, Qmax is the maximum 

charge value, Qmin is the minimum charge value, θ is the threshold value and A(x,y,t) is 

the value of the Dynamic Attention Map at coordinate (x,y) at time instant t.

Fig.5. Subtask “Thresholded Permanency Calculation” 

The accumulative computation process, followed by the threshold stage, enables to 

maintain active in a stable way a set of pixels which pertain to a group of scene 

elements of interest to the observer. Thus, the state of this “memory” defines the 

attention focus of the system, and is the input to the observer’s system. The observer 

will modify the parameters that configure the mechanisms of extraction and selection 

of shapes and/or pixels of interest. 

4 Conclusions

A model of dynamic visual attention capable of segmenting objects in a scene has 

been introduced in this paper. The model enables focusing the attention at each 

moment at shapes that possess certain characteristics and eliminating shapes that are 

of no interest. The features used are related to motion and shape of the elements 

present in the dynamic scene. The model may be used to observe real environments 

indefinitely in time. 

In this paper we have highlighted those subtasks of the generic “Dynamic Attention 

Map Generation” task related to plausible biologically inspired methods. These 

mechanisms, namely accumulative computation and lateral interaction, have so far 

Thresholded 

Permanency 

Calculation

δ c, δ d 

Qmax , Qmin

θ



been proven to be inherently neuronal. The subtasks which incorporate these 

biologically plausible capacities, called “Working Memory Generation” and 

“Thresholded Permanency Calculation”, because of the fact of making use of 

accumulative computation and lateral interaction processes, enable maintaining a 

stable system of dynamic visual attention. 
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