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Abstract. In this paper a special focus on the relationship between sen-
sitivity and stability in a dynamic selective visual attention method is
described. In this proposal sensitivity is associated to short-term mem-
ory and stability to long-term memory, respectively. In first place, all
necessary mechanisms to provide sensitivity to the system are included
in order to succeed in keeping the attention in our short-term memory.
Frame to frame attention is captured on elements constructed from im-
age pixels that fulfill the requirements established by the user and gotten
after feature integration. Then, stability is provided by including mech-
anisms to reinforce attention, in such a way that elements that accept
the user’s predefined requirements are strengthened up to be configured
as the system attention centre stored in our long-term memory.

1 Introduction

The name dynamic selective visual attention (DSVA) embraces a set of image
processing mechanisms for focusing vision on those regions of the image where
there are relevant local space-time events. These DSVA mechanisms help find,
using an active search process, the relevant information at each moment to per-
form the interaction task with the system [1], [2]. In this paper a special focus
on the behavior of sensitivity and stability in our visual attention method is
pursued. Sensitivity and stability are terms widely expressed in dynamic sys-
tems [3]. In systems associated to image sequences sensitivity and stability have
also been explored due to their importance [4], [5]. Our intention is to introduce
these concepts in dynamic visual attention, associating sensitivity to short-term
memory and stability to long-term memory, respectively. Fig. 1 shows the block
diagram that illustrates the two components of sensitivity and stability of the
DSVA task as studied in this paper.

As also shown in Fig. 1, our solution to DSVA defines a model with two
types of processes: bottom-up processes (based on the scene), which enable to



extract features from the input image and allow to create the elements of in-
terest; and top-down processes (based on the object) by means of which the
features are integrated. The selection of the interest elements of the scene starts
with setting some criteria based on the features extracted from the elements
(Feature Extraction). This way, in first place, all necessary mechanisms to pro-
vide sensitivity to the system are included in order to succeed in capturing the
attention. Frame to frame attention is derived (Attention Building) to elements
constructed from image pixels that fulfill the requirements established by the
user and gotten after a Feature Integration. On the other hand, stability has to
be provided to the system. This has been achieved by including mechanisms to
reinforce attention (Attention Reinforcement), in such a way that elements that
accept the user’s predefined requirements are strengthened up to be configured
as the system attention centre. Thus, the relationship between sensitivity gotten
in the Short-Term Memory (Attention Building) and stability obtained in the
Long-Term Memory (Attention Reinforcement) is developed in our proposal.
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Fig. 1. DSVA block diagram with special emphasis on Attention Building and Atten-
tion Reinforcement

In previous works of our research team some methods based on image segmen-
tation from motion have already been used. These methods are the permanency
effect and the lateral interaction [6]. Based on the satisfactory results of these
algorithms [7], [8], in this paper we propose to use mechanisms of charge and dis-
charge together with mechanisms of lateral interaction to solve the fundamental
aspects of sensitivity and stability in the DSVA task.



2 Short-Term and Long-Term Memory in DSVA Method

Short-term memory and long-term memory are expressions taken from cogni-
tive psychology. Short-term memory (STM) -also called working memory or
functional memory- is the cognitive system that allows keeping active a limited
amount of information for a brief period of time [9], [10], [11], [12]. It was thought
to have two functions: storing material that we have to recall in a few seconds
and providing a gateway to long-term memory (LTM) [13]. LTM contrasts with
STM in that information can be stored for extended periods of time. In standard
theories of memory [13], [14], information can be stored in LTM only after it has
been stored in STM, and even then, storage in LTM is a probabilistic event.
Originally, it was proposed that the probability of storage in LTM is a function
of the time an item was maintained in STM. More recently, Anderson [15] sug-
gested that the probability of storage is a function of the number of times an
item enters STM. LTM has a strong influence on perception through top-down
processing. This is the process by which our prior knowledge affects how we per-
ceive sensory information. LTM influences what aspects of a situation we pay
attention to -allowing us to focus on relevant information and disregard what is
not important [16].

In the DSVA method proposed in this paper all necessary mechanisms neces-
sary to obtain a Short-Term Memory and a Long-Term Memory are explained.
The mechanisms used to generate the Short-Term Memory endow the system of
sensitivity, as it includes elements associated to interest points in the memory at
each frame. But, the Short-Term Memory introduced is noisy, as blobs that are
not of a real interest to the user may appear. In order to generate the Long-Term
Memory, that is to say, in order to provide stability, some cues are included for
inserting into the Long-Term Memory all elements reinforced in the Short-Term
Memory through a persistency measure.

3 Sensitivity through Attention Building

The purpose of Attention Building is to select and to label zones (blobs) of
the objects (figures) to pay attention on. See, therefore, that after processing
Attention Building, not the complete figures are classified, but each one of the
blobs, understood as homogeneous connected zones that form the figures, are
marked with different labels. Obviously, the blobs are built from image points
that fulfill the requisites established by the guidelines of the observer (points
of interest). Fig. 2 shows a process scheme for Attention Building. The output
of Attention Building is precisely called Short-Term Memory. In our case, only
blobs constructed in the Short-Term Memory will potentially form the figures of
the system’s Long-Term Memory.

In our proposal the blobs of the Short-Term Memory are built from the infor-
mation provided through the so called Interest Map and from the input image
divided into Grey Level Bands. The Interest Map is obtained by performing
feature integration, both of motion and shape features. For each image pixel, in
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Fig. 2. Attention Building process scheme

the Interest Map the result of a comparison among three classes - ”activator”,
”inhibitor” and ”neutral”- is stored. The interest points are those points of the
Interest Map labeled as ”activator” points.

3.1 Classification in Grey Level Bands

Classification in Grey Level Bands transforms the 256 grey level input images
into images with a minor number of levels. These new images are called images
segmented into Grey Level Bands (GLB). The reason to working with grey level
bands is twofold. (1) Some traditional methods of motion detection are based
on image differencing. The noise level diminishes for little changes in grey level
(or luminosity) of a same object between two consecutive images, when joining
a range of grey levels into a single band. (2) On the other hand, a decrease of
the computational complexity is achieved, bearing in mind the great parallelism
used in the algorithms of the proposed model. We now calculate in parallel in
the order of magnitude of grey level bands n, and not of grey levels N , where
N > n.

The calculus of the grey level band of pixel [x, y] at t, GLB[x, , y, t], is ex-
pressed in Equation 1. As you may notice, this is just an easy scale transforma-
tion.

GLB[x, y, t] =
GL[x, y, t] · n

GLmax − GLmin + 1
+ 1 (1)

where n is the number of grey level bands in which the image is split, GLmax

is the maximum and GLmin are the minimum grey levels, respectively, of the
input image.

3.2 Short-Term Memory Generation

The objective of Short-Term Memory Generation is firstly to select and to label
(to classify numerically) image blobs associated to pixels of interest -pixels that



possess dynamic features in predefined numerical intervals. Secondly, it elimi-
nates the blobs whose shape features do not correspond with the pre-established
ones. In order to achieve these aims, the images in Grey Level Bands are seg-
mented into regions composed of connected points whose luminosity level belongs
to a same interval (or grey level band) and to select only connected regions that
include some ”activator” point (or, point of interest) in the Interest Map. Each
region or zone of uniform grey level is a blob of potential interest in the scene.

The idea consists in overlapping, as with two superposed transparencies, the
Grey Level Bands image of the current frame (t) with the Interest Map image
built at the previous frame (t − 1). At t, only blobs of the Grey Level Bands
image are selected where at least one point of interest fell at t−1 in the Interest
Map. Nevertheless, not the total blob is taken; pixels that coincide with points
of the Interest Map classified as ”inhibitors” are eliminated. The computational
model used to perform the preceding steps incorporates the notion of lateral
interaction, which enables that the points of interest flood their zones of uniform
grey levels whilst eliminating all points classified as ”inhibitors”. In order to
achieve the aims of Short-Term Memory Generation, the processes shown in
Fig. 3 are performed.
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Fig. 3. Short-Term Memory Generation process scheme

Division in Bands. Division in Bands obtains from an image in grey level
bands, GLB[x, y, t], n binary images GLBi[x, y, t] (one image for each band).
Each one of these images, GLBi[x, y, t], stores a value of 1 for a pixel whose grey
level band is i and a 0 in the opposite case. That is to say (Equation 2):

GLBi[x, y, t] =
{

1, if GLB[x, y, t] = i
0, otherwise (2)

Blobs Generation. For each GLBi[x, y, t], the different connected regions that
include an ”activator” point in the Interest Map and that do not correspond to
”inhibitor” points in the Interest Map are labeled. Thus, Blobs Generation gets



and labels for each grey level band, pixels belonging to connected regions that
include any ”activator” point in the Interest Map but do not correspond with
”inhibitor” points of the Interest Map. Its output, Short-Term Memory for Grey
Level Band i, STMi[x, y, t], stores for each pixel the label corresponding to the
generated blob if it belongs to the blob, or the value 0. Let us define vactivator

as the value given to the points of interest (”activators”) of the Interest Map,
vneutral as the value for the ”neutral” points of the Interest Map, and vinhibitor

as the value for the ”inhibitor” points of the Interest Map. Let also NR be the
number of rows of the image, and NC the number of columns of the image.
Firstly, all points where GLBi[x, y, t] = 1 are assigned an initial and provisional
label value as shown in Equation 3:

STMi[x, y, t] =

⎧⎨
⎩

x ∗ NC + y + 1, if GLBi[x, y, t] = i ∧ IM [x, y, t] = vactivator

NR ∗ NC + 1, if GLBi[x, y, t] = i ∧ IM [x, y, t] = vneutral

0, otherwise
(3)

where IM [x, y, t] is the value of the Interest Map at pixel [x, y]. This value
corresponds to (x ∗NC + y + 1) when IM [x, y, t] = vactivator , to a greater value
than NR∗NC when IM [x, y, t] = vneutral and to value 0 in the rest of the cases.
In other words, if pixel [x, y] belongs to the grey level band and corresponds to
a point of interest of the Interest Map, the tentative value for it is a function
of its proper coordinate. Now, if the pixel belongs to the grey level band but
corresponds to a ”neutral” point of the Interest Map, the provisional value given
to it is a value greater than any possible value of the coordinate function. In any
other case, the value is 0. This initial value assignment to all pixels serves to get
an agreement in the labels of the blobs after a negotiation (consensus) period.
The label value for each pixel [x, y] is iteratively calculated as the minimum
value of the proper value of the pixel and the value of its 8 surrounding pixels.
Of course, there will only be collaboration among neighboring pixels that possess
an initial value greater than 0. The iterative calculus up to obtaining a common
value for all pixels of a same blob is shown in Equation 4.

STMi[x, y, t] = min(STMi[α, β, t]), ∀[α, β] ∈ [x ± 1, y ± 1] (4)

whenever 0 ≤ STMi[α, β, t] ≤ NR ∗ NC + 1.
Thus, blobs are labelled with the ordinal corresponding to the point with the

lowest coordinate (if taking as origin the superior left image pixel).

Blobs Summation. Lastly, Blobs Summation gets the Short-Term Memory,
STM [x, y, t], as the result of summing up all blobs computed at each of the n
Short-Term Memories for Grey Level Band i, STMi[x, y, t], where i = 1, 2, ..., n.
The final value for each pixel [x, y] is the maximum value of the n STMi[x, y, t].
Only values that possess a label value less than NC ·NR + 1 are considered, as
shown in Equation 5.

STM [x, y, t] = maxiSTMi[x, y, t]), ∀i ∈ [1..n]|STMi[x, y, t] < NR∗NC+1 (5)
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Fig. 4. Short-Term Memory for a couple of images

Notice that this maximum selection operation has to be performed for all
elements of matrixes STMi[x, y, t] to obtain the corresponding element in a
single matrix of blobs, STM [x, y, t]. This way all blobs of all grey level bands
have been united and labeled with a common value. Fig. 4 shows the contents
of the Short-Term Memory after processing all steps of Attention Building.

See also the sensitivity of the task through the contents of the Short-Term
Memory in two consecutive frames as shown Fig. 4 taken from the picture ”The
Living Daylights”. The input sequence has been captured by a camera in con-
stant translational movement following the motion of the horse riders. Elements
of the Short-Term Memory are composed of connected pixels that are not drawn
in black color. The attention focus pursued in this case is the set of horses and
horsemen. As you may notice, all interest elements are really detected. Neverthe-
less, other elements appear that neither are of the user’s interest. The example
shows the necessity for stability.

4 Stability through Attention Reinforcement

The mechanisms used to generate the Short-Term Memory endow the system
of sensitivity, as it includes elements associated to interest points (”activators”)
in the memory at each frame. Unfortunately, in the Short-Term Memory scene
blobs whose shape features do not correspond to those defined by the observer
may appear at a time instant t. This is precisely because their shape features
have not yet been studied. But, if these blobs shape features really do not seem
to be interesting for the observer, they will appear as ”inhibitors” in t+1 in the
Interest Map (now, in t + 1, their shape features will have been obtained). And,
this means that in t + 1 they will disappear from the Short-Term Memory.

In order to obtain at each frame only blobs with the desired features, Atten-
tion Reinforcement performs an accumulative mechanism followed by a thresh-
old. Accumulation is realized on pixels that have a value different from 0 (pixels
that do not belong to labeled blobs) in the Short-Term Memory. The result of
this accumulative process followed by a threshold offers as output the Long-Term
Memory, LTM [x, y, t]. More concretely, pixels that appear with a value different
from 0 in the Short-Term Memory reinforce attention, whilst those that appear



with a value 0 diminish the attention value. The process manages to keep acti-
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Fig. 5. Scheme for ”Attention Reinforcement”

vated in a stable way a set of pixels that belong to a group of objects (figures)
of the scene that are interesting for the observer. Fig. 5 shows the decomposi-
tion of Attention Reinforcement into Attention Charge Memory Calculation and
Long-Term Memory Calculation.

4.1 Attention Charge Memory Calculation

Attention Charge Memory Calculation performs an accumulative computation
on the Short-Term Memory to get the Attention Charge Memory Ch[x, y, t].
The idea underlying Attention Charge Memory Calculation is that pixels that
belong to a blob of the Short-Term Memory through time reinforce attention
whilst all other ones decrease attention. The accumulative computation [1], [6],
[7] takes the form of Equation 6, based on the more general charge/discharge
accumulative computation mode [17].

Ch[x, y, t] =

⎧⎪⎪⎨
⎪⎪⎩

max(Ch[x, y, t − 1] − D, Chmin),
if STM [x, y, t] = 0

min(Ch[x, y, t − 1] + C, Chmax),
if NC ∗ NR + 1 > STM [x, y, t] > 0

(6)

where Chmin is the minimum and Chmax is the maximum value, respectively,
that the values stored in the Attention Charge Memory can reach, and C and D
are the charge increment and decrement, respectively, in the memory computa-
tion. The charge value Ch[x, y, t] goes incrementing up to Chmax, if pixel [x, y]
belongs to a blob of the Short-Term Memory, and goes decrementing down to
Chmin if the pixel does not. Charge value Ch[x, y, t] represents a measure of the
persistency of a blob in the Short-Term Memory on each image pixel [x, y].

4.2 Long-Term Memory Calculation

Long-Term Memory Calculation produces, starting from the Attention Charge
Memory, the points that configure the Long-Term Memory, labeling the figures



obtained. The focus is in form of figures, obtained by the union of the connected
blobs that have appeared successively in the Short-Term Memory and whose
value in the Attention Charge Memory is greater or equal to a given threshold,
θ. In the output, the label corresponding to the figure is stored; value 0 is assigned
to all pixels that do not belong to any figure. Firstly, the Long-Term Memory
at pixel [x, y] is assigned an initial and provisional value (yet not agreed with
the neighbours) corresponding to a function of the coordinate of the pixel, if the
charge value overcomes threshold θ (see Equation 7):

LTM [x, y, t] =
{

x ∗ NC + y + 1, if Ch[x, y, t] > θ
0, otherwise (7)

Next, in an iterative way up to reaching a common value for all pixels of a
same figure (by calculating the minimum value of each pixel and its 8 surrounding
neighbours), a calculation is performed according to Equation 8:

LTM [x, y, t] = min(LTM [α, β, t]), ∀[α, β] ∈ [x± 1, y ± 1]|0 < LTM [α, β, t] (8)

Fig. 6 now shows the contents of the Long-Term Memory after processing all
steps of Attention Reinforcement. Notice that we got the desired stability.

Image at t-1

Image at t

Fig. 6. Long-Term Memory for a couple of images

5 Conclusions

In this paper the relationship between sensitivity and stability in our particular
DSVA method has been described. In the proposal sensitivity has been associated
to Short-Term Memory and stability to Long-Term Memory, respectively. The
generation of the Short-Term Memory, and hence the coming out of sensitivity,
is related to task Attention Building, whereas Long-Term Memory is obtained
after Attention Reinforcement, getting the desired stability to visual attention.

As described, Attention Building is achieved by means of two main steps,
namely Classification in Grey Level Bands and Short-Term Memory Generation,
getting as output figure blobs in the Short-Term Memory in a noisy way. On the
other hand, Attention Reinforcement is divided into Attention Charge Memory
Calculation and Long-Term Memory Calculation, and obtains persistent figures
through time in a stable Long-Term Memory.
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