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Abstract. Many researchers have explored the relationship between re-
current neural networks and finite state machines. Finite state machines
constitute the best characterized computational model, whereas artifi-
cial neural networks have become a very successful tool for modeling
and problem solving. Recently, the neurally-inspired algorithmic lateral
inhibition (ALI) method and its application to the motion detection task
have been introduced. The article shows how to implement the tasks di-
rectly related to ALI in motion detection by means of a formal model
described as finite state machines. Automata modeling is the first step
towards real-time implementation by FPGAs and programming of ”in-
telligent” camera processors.

1 Introduction

Recently the algorithmic lateral inhibition (ALI) method and its application
to the motion detection task have been introduced [I]-[5]. And, currently our
research team is involved in implementing the method into real-time in order to
provide efficient response time in visual surveillance applications [6]-[7].

In recent years, many researchers have explored the relation between discrete-
time recurrent neural networks and finite state machines, either by showing their
computational equivalence or by training them to perform as finite state recog-
nizers from example [§]. The relationship between discrete-time recurrent neural
networks and finite state machines has very deep roots [9]-[11]. The early pa-
pers mentioned show the equivalence of these neural networks with threshold
linear units, having step-like transfer functions, and some classes of finite state
machines. More recently, some researchers have studied the close relationships
more in detail [I2]-[I3], as well as the combination of connectionist and finite
state models into hybrid techniques [14]-[I5]. During the last decades special-
ized algorithms even have extracted finite state machines from the dynamics of
discrete-time recurrent neural networks [16]-[19].
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The article shows how to implement the tasks directly related to ALI in mo-
tion detection and introduced by means of a formal model described finite state
machines, and the subsequent implementation in hardware, as automata mod-
eling may be considered as the first step towards real-time implementation by
field programmable gate arrays (FPGAs) [20] and programming of ”intelligent”
camera pProcessors.

2 ALI in Motion Detection

The operationalization of the ALI method for the motion detection application
has led to the so-called lateral interaction in accumulative computation [2],[4].
From [2],[4] we cite and reformulate the most important concepts and equations.

Temporal Motion Detection firstly covers the need to segment each input
image I into a preset group of gray level bands (N), according to equation [Il

1,if I(3,j5t) € [288 -k, 288 - (k+ 1) — 1]
0, otherwise

ontigit) = (1)

This formula assigns pixel (i,j) to gray level band k. Then, the accumulated
charge value related to motion detection at each input image pixel is obtained,
as shown in formula 2}

(2)

max(zy (4,5t — At) — vam, Vdis],
if (zx(i,55t) = 1) N (2r(4,5;t — At) = 1)

vais, if o (4, 55t) =0
(i ji ) = { Vsat, if (Tk(i,45t) = 1) N (2 (i, 53t — At) = 0)
The charge value at pixel (4, 7) is discharged down to v4;s when no motion is
detected, is saturated to vs,; when motion is detected at ¢, and, is decremented

by a value v4,, when motion goes on being detected in consecutive intervals ¢
and t — At.

Spatial-Temporal Recharging is thought to reactivate the charge values of
those pixels partially loaded (charge different from vg;s and vg,:) and that are
directly or indirectly connected to saturated pixels (whose charge is equal to
Usat). Values zj are initialized to yy. Formula [l explains these issues, where v,
is precisely the recharge value.

Vdiss if 2k (i, 55t + (1 — 1) - AT) = vg4s
o . _ ) Vsat, if zp (i, 55t 4+ (1 — 1) - AT) = vear
zk(i, Jst+1- Ar) = min[zx (i, j;t + (1 — 1) - AT) + Vpo, Vsar, (3)

if vais < zi(4, 5t + (1 —1) - A7) < vsat

This step occurs in an iterative way in a different space of time 7 < t. The value
of At will determine the number of times the mean value is calculated.

Spatial-Temporal Homogenization aims in distributing the charge among
all connected neighbors holding a minimum charge (greater than vg;s) - now, Oy,
is initialized to z. This occurs according to the following equation.
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1
1+ 68i—1,5 +6it1,5 +6ij—1+ 6ij+1
x[Ok (i, j5t 4+ (m — 1) - A7) +
8i—1,5 - Or(i—1,5;t+(m—1) - At) +
Sit1,5-Op(i+ 1,45t + (m—1) - A7) + 4
8ij—1 - Ok(i,j — Lt +(m—1)- AT) +
Sij+1 - Ok (3,5 + 15t + (m — 1) - AT)]

Or(i, st +m- Ar) =

where
1, if Og(a, Bit + (m —1) - AT) > va4s

Vi, f)elix1,j£1], 605 = { 0, otherwise

(5)

Lastly, we take the maximum value of all outputs of the k& gray level bands to
show the silhouette of a moving object:

O(i, j; t) = argmax Ok (4, j; ) (6)

3 Formal Model for ALI in Motion Detection

The control knowledge is described in extensive by means of a finite automaton
in which the state space is constituted from the set of distinguishable situations
in the state of accumulated charge in a local memory [5]. Thus, we distinguish
N + 1 states Sy, S1, ..., SN, where Sy is the state corresponding to the totally
discharged local memory (vg;s; in general vg;s = 0), Sy is the state of complete
charge (vsq: = 7) and the rest are the N — 1 intermediate charge states between
Vgis and vVsqs.

Let us suppose, without loss of generality, that it is enough to distinguish
eight levels of accumulated charge (N = 8) and, consequently, that we can
use as a formal model of the control underlying the inferential scheme that
describes the data flow corresponding to the calculation of this subtask an 8
states automaton (Sp, S1, ..., S7), where Sy corresponds to vg;s and S7 to vsat.
Let us also suppose that discharge (vgm = 2) and recharge (v, = 1) initially
take the values corresponding to the descent of two states and to the ascent of
one state. This way, the state transition diagram corresponds to a particular
kind of reversible counter (“up-down”) controlled by the result of the lateral
inhibition (dialogue among neighbors).

To complete the description of the states, together with the accumulated
charge value, v (vg;s < v < Vgqt), it is necessary to include come binary signals,
Ap and Ac = 0,1. When Ap = 1, a pixel tells its neighbors that it has detected
a mobile, or that some neighbor has told him to have detected a mobile. A¢x
indicates that motion has been detected on the pixel.

3.1 ALI Temporal Motion Detecting

The task firstly gets as input data the values of the 256 gray level input pixels
and generates N = 8 binary images, x(4,7;t). The output space has a FIFO
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memory structure with two levels, one for the current value and another one for
the previous instant value. Thus, for N bands, there are 2N = 16 binary values
for each input pixel; at each band there is the current value z(i,j;t) and the
previous value xy (i, j; t — At), such that:

S 1, ifI(i,5t) € [32 -k, 32 (k+1) — 1]
ok (i, J3t) = { 0, otherwise )

Thus, a pair of binarised values at each band, xy(i,j;t) and 2 (4, j;¢ — At),
constitutes the input space of the temporal non recurrent ALI. The output space
is the result of the individual calculus phase in each calculus element. The inputs
are observables xy (i, j;t) and x (i, j;t — At) and the current charge value that
initially is at state Sy. It also receives the comparison rule and the numerical
coding of the different discrepancy classes (D1, D2, D3). The output is the class
of discrepancy selected at this time, D(t).

D2, if (zy(3,55t) = 1) N (xk(s,5;t — At) = 0)
D(t) = { ) =1

D3, if (zr(3,55t) = 1) N (zk(e,j;t — At
D1, otherwise

(®)

This class is now an input in charge of filtering a specific charge value (before
dialogue) from a set of potential values. These potential values are vg;s, Vsqr and
maz|xg(i,j;t — At) — Vgm, vais). The output of subtask ALI Temporal Motion
Detecting constitutes the accumulated charge value, yi (i, j;t), complemented by
label Ac. Remember that Ac = 1 denotes the fact that a movement has been
locally detected by this pixel.

_ [ 1, if D(t) = D2
Ac = { 0, otherwise 9)
Vdiss it D(t) = D1
yr(i, Jit) = § Vsat, if D(t) = D2 (10)
max(xy (2, J; t — At) — Vam, vass], if D(t) = D3

The following situations can be observed in Fig. [l (see discrepancy class D):

1.z (i, j;t — At) = 0,1, 2 (4, j;t) = 0 (corresponding to discrepancy class D1)
In this case the calculation element (7, j) has not detected any contrast with
respect to the input of a mobile in that band (2 (i, 7;t) = 0). It may have
detected it (or not) in the previous interval (g (7, j;t — At) = 1,2, (4, 5;t) =
0). In any case, the element passes to state Sp[v = v4is, Ac = 0], the state
of complete discharge, independently of which was the initial state.

2. zx(i, 45t — At) = 0,2,(4,j; t) = 1 (corresponding to discrepancy class D2)
The calculation element has detected in ¢ a contrast in its band (z (4, j;t) =
1), and it did not in the previous interval (xy (i, j; ¢ — At) = 0). It passes to
state S7[v = vsat, Ac = 1], the state of total charge, independently of which
was the previous state. Also Ac passes to 1, in order to tell its potential
dialogue neighbors that this pixel has detected a mobile.

3. x(i,5;t — At) = 1,24(i,5;t) = 1 (corresponding to discrepancy class
D3). The calculation element has detected the presence of an object in
its band (xx(i,7;t) = 1), and it had also detected it in the previous in-
terval (wzg(i,7;t — At) = 1). In this case, it diminishes its charge value
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Fig. 1. Control automaton that receives inputs zx (4, j; t — At) and zx (4, 5; t), and pro-
duces three outputs, coincident with its three distinguishable charge states (So = vais,
S7 = Usat, and Vint)

in a certain value, vg,,. This discharge - partial discharge - can proceed
from an initial state of saturation S7[vse:, Ac = 1], or from some inter-
mediate state (Sg, ..., S1). This partial discharge due to the persistence of
the object in that position and in that band, is described by means of
a transition from S;7 to an intermediate state, Sint[vint, Ac = 0,1], with-
out arriving to the discharge, So[va;s, Ac = 0]. The descent in the ele-
ment’s state is equivalent to the descent in the pixel’s charge, such that
(as you may appreciate on Fig.[]) only the following transitions are allowed:
57 — 55756 — 54,55 — 53,54 — 52,53 — 51,52 — S(), and Sl — So.

3.2 ALI Spatial-Temporal Recharging

In the previous task the individual “opinion” of each computation element has
been obtained. But, our aim is also to consider the “opinions” of the neighbors.
The reason is that an element individually should stop paying attention to mo-
tion detected in the past, but before making that decision there has to be a
communication in form of lateral inhibition with its neighbors to see if any of
them is in state S7 (vsqt, maximum charge). Otherwise, it will be discharging
down to Sp (v4;s, minimum charge), because that pixel is not bound to a pixel
that has detected motion. The output is formed after dialogue processing with
neighboring pixels by the so called permanency value, z(4, j;t).

The values of charge accumulated before dialogue are written in the central
part of the output space of each pixel (C*) that now enters in the dialogue phase.
The data in the periphery of receptive field in the output space of each pixel (P*)
contains now the individual calculi of the neighbors. Let v (t) = yx (¢, j; t) be the
initial charge value at this subtask. Each pixel takes into account the set of in-
dividual calculus, vo(t + k - A7), A;, by means of the logical union of the labels:

Aps(m) =J A5 (1) (11)
i
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This result, Ap~, is now compared with A¢, giving rise to one of two dis-
crepancy classes (recharge or stand-by).
stand — by(vais), if ve(t+ 1+ AT) = vgis

D(t+1- A7) = stand — by(vsat), if ve(t+1- AT) = vat (12)
recharge, if (vgis < vo(t+ 1 AT) < vgar) N (Apx = 1)

Subsequently, the class activated plays the role of selection criteria to output
the new consensus charge value after dialogue, zj (i, j; t + At), with At = k- Ar,
being k the number of iterations in the dialogue phase, a function of the size
of the receptive field. Notice that 7 is a parameter that only depends on the
size of the objects we want to detect from their motion. So, the purpose of this
inference is to fix a minimum object size in each gray level band. The whole
dialogue process is executed with clock 7, during k intervals Ar. It starts when
clock t detects the configuration yy (4, j;t — At) = yx (i, 4;t) = 1 and ends at the
end of ¢, when a new image appears.

Ag = { (1)2 ;ft}i(rtwtsé - A1) = {stand — by(vsqr) U recharge} (13)
vais, if D(t+1- A7) = stand — by(vais)

Ol R i o m
if (D(t+1- A7) = recharge

Ac =0, if D(t+ (I - 1) - A7) = {stand — by(vsat) U recharge} (15)

In each dialogue phase (in other words, in each interval of clock Ar), the
calculation element only takes into account values yi (7, j; t — At), yr(i,7;t) and
Ac(t) present in that moment in its receptive field. To diffuse or to use more
distant information, new dialogue phases are necessary. That is to say, new in-
hibitions in [ - At (1 <l < k) are required. This only affects to state variable
Ac(7), as yx(i, j; t — At) and yi (i, j; t) values remain constant during the inter-
vals used to diffuse 7 and to consensus the different partial results obtained by
the calculation elements. Notice that the recharge may only be performed once
during the whole dialogue phase. That is why Ac = 0, when a recharge takes
place. Lastly, the output will be:

zk (2, 3t + At) = ve (t + At) (16)

In the corresponding state transition diagram the following situations have to
be distinguished:

1. yr(d, j;t — At) = 0,1, yx(i,5;t) =0
In any case, independently of the pixel’s dialogue with the neighbors, at the
end of At the pixel passes to state So[v = vg;s, Ac = 0].
2. yr(i,5;t — At) =0,y (i, 5;t) = 1
Again, independently of the dialogue phase, the pixel’s state will be S7[v =
Vsats AC = 1]
3. yk(d, gyt — At) = Ly(i, jst) = 1
(a) Local memory is in Sp[vgis, Ac = 0]. Pixels in state Sy are not affected
by lateral recharge due motion detection in their periphery. Thus, the
pixel maintains the same state Sp.
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Fig. 2. Detail of the dialogue where diffusion of motion detection is shown through
“transparent” pixels (j + 2 and j + 1), while pixel j deserves an “opaque” behavior

(b) Local memory is in S7[vset, Ac = 1]. Pixels in state S7 are maximally
charged. So, they can not be recharged. They also maintain the state.

(¢) Local memory is in Sint[vint, Ac(t)]. Depending on their four neighbors’
charge values, it can stay in Sj,. if all neighbors have variable A; = 0 or
transit up to S7 if it finds some neighbor with variable A; = 1.

i

ii.

Transit from S; to S;;1. After recharge, the calculation element is
now in S;y1. It sends Ac = 1 and waits up to the end of At. In a
second clock cycle Ar, Ac = 1 is potentially used by its neighbors
to increment their charge values. Thus, the dialogue extends in steps
of size the receptive field. Pixels with are said to be “transparent”
if they allow information on motion detection by some neighbor (in
state S7) of their receptive field to cross them.

Remain in S;. If none of its neighbors has transmitted 4; = 1, the
pixel stays in S;, without recharging in the first Ar. In this case, it
maintains its proper Ac~ = 0, and its behavior is called “opaque”.
However, if in a later A7 and inside the dialogue interval it does
receive any A; = 1, it will pass to S;;1. Fig. @ illustrates this diffu-
sion mechanism through “opaque” and “transparent” pixels of the
receptive field.

3.3 ALI Spatial-Temporal Homogenization

Now, the aim of this task is to obtain all moving patches present in the scene.
The subtask considers the union of pixels that are physically together and at a
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Fig. 3. Dialogue to average the charge values that overcome a threshold inside each
gray level band

same gray level band to be a component of an object. A set of recurrent lateral
inhibition processes are performed to distribute the charge among all neighbors
that possess a certain minimum charge (“permanency value”, zx(i, j; t), of pre-
vious task), that is to say, those pixels in states S; to S7, and are physically
connected. A double objective is aimed:

1. To dilute the charge due to the image background motion among other points
of the own background, so that only moving objects are detected. To dilute
the charge due to the image background motion does not mean that we are
dealing with moving cameras. Instead of it, we are facing the problem of
false motion detected where moving objects are just leaving pixels that now
pertain to the background.

2. To obtain a parameter common to all pixels of the object those belong to
the same gray level band (simple classification task).

Charge values, z(i,j;t + At) are now evaluated in the center and in the pe-
riphery. Now, let v be the initial charge value. The result of the individual
value (C') is compared with the mean value in (P) - notice that in P* we have
the average of those neighbors that have charge values different from 6,,,;,, the
so called “permanency threshold value” - and produces a discrepancy class ac-
cording with threshold, 6,,;,, and passes the mean charge values that overcome
that threshold. After this, the result is again compared with a second threshold,
namely 0,4z, eliminating noisy pixels pertaining to non-moving object.
D1, if vo = Omin

D(t+ At) =< D2, if (0pmin < ve < Vsat) N (Omin < vp < Vsat) (17)
D3, if (Omin < vo < Vsat) N (vp = Omin)

Omin, if ve = Omin

o ) (ve +vp)/2,
Ok (it + At) = { if (Bumin < Ve < Vsar) N (Omin < Vp < Vsar) (1s)

vc, if (Gmin <wve < vsat) n (UP = Gmin)

Ok (i, §5t + At) = va;s, if Ok(i, 53t + At) > Omaw (19)
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Fig. @ illustrates the dialogue scheme and the description of the control au-
tomaton where the transitions among the initial state S;(t) (whenever S;(¢) dif-
ferent from Sy) and the final state S;(t + At) state are carried out in agreement
with rule:

Sifinal = /Nkt1(Sisnipia1 + Z ) (20)
RF},
where the sum on sub-index j extends to all neighbors, v;, belonging to the
subset of the receptive field, RF}, such that its state is different from Sy, and
Ny, is the number of neighbors with state different from Sy.

4 Data and Results

In order to test the validity of our proposal, in this section the result of applying
88 ALI modules on specific areas of a well-known benchmark image sequences is
shown. Figuredlshows the first and the last images of the Ettlinger-Tor sequence.
The treated 64 x 64-pixel zone of the benchmark is marked.

@ ' )

Fig. 4. Ettlinger Tor sequence. (a) Frame number 1. (b) Frame number 40.

() (b) ©

Fig. 5. Ettlinger Tor sequence ground truth and result. (a) After frame number number
1. (b) After frame number 20. (c) After frame number 30. (d) After frame number 40.

(C)
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Figure [l shows the result on some frames. After a few frames, the cars are
perfectly segmented, as you may appreciate by comparing with the ground truth
provided. Again, like in the previous sequence, you may appreciate that there
must be enough motion to detect the moving objects. And, concerning the
searched real-time performance, let us highlight that the results for 8«8 modules
have been obtained at a frequency of 0.966 MHz (1.035 us). When extrapolating
to usual 512 % 512 pixel images, which need 4096 8 x 8 ALI modules, the re-
sults should be obtained after 4.24 ms. This performance may be considered as
excellent, as in order to work in real-time we have up to 33 ms per image frame.

5 Conclusions

This paper starts from previous works in computer vision, where our algorithmic
lateral inhibition method applied to motion detection has proven to be quite
efficient. We have shown in this article how the algorithmic lateral inhibition
model, based in recurrent neural networks, has been modeled by means of finite
state automata, seeking for real-time through an implementation in FPGA-based
reconfigurable hardware.

The design by means of programmable logic enables the systematic and effi-
cient crossing from the descriptions of the functional specifications of a sequential
system to the equivalent formal description in terms of a @)-states finite state
automata or a N-recurrent-neurons neuronal network, where @ < 2V. Starting
from this point, a hardware implementation by means of programmable logic
is very easy to perform. This kind of design is especially interesting in those
application domains where the response time is crucial (e.g. monitoring and
diagnosing tasks in visual surveillance and security).
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