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Abstract. Segmentation from optical flow calculation is nowadays a
well-known technique for further labeling and tracking of moving ob-
jects in video streams. A likely classification of algorithms to obtain
optical flow based on the intensity of the pixels in an image is in (a)
differential or gradient-based methods and (b) block correlation or block
matching methods. In this article, we are going to carry out a qualitative
comparison of three well-known algorithms (two differential ones and a
correlation one). We will do so by means of the optical flow obtaining
method based on accumulated image differences known as accumulative
computation.
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1 Introduction

One of the most interesting and productive techniques in the field of image
sequence motion analysis is the technique known as optical flow [7]. Indeed,
segmentation from optical flow calculation is nowadays a well-known technique
for further labeling and tracking [10],[15],[17],[11] of moving objects in video
streams, as motion is a major information source for segmenting objects per-
ceived in dynamic scenes. Optical flow can be defined as the apparent displace-
ment of the pixels in the image when there is relative motion between the camera
and the objects under focus. Another possible definition is considering optical
flow as the 2-D motion field obtained from the projection of the velocities of
the three dimensional pixels, corresponding to the surfaces of a scene, onto the
sensor’s visual plane [8].

A possible algorithm classification to obtain optical flow [2] based on pixel in-
tensity in the image would be (a) differential methods and (b) block correlation
methods (matching). In this article, we are going to carry out a qualitative com-
parison of three well-known algorithms with our optical flow obtaining method,
known as accumulative computation [6],[16]. Our method presents a new way of
looking at optical flow and describes it as a measure of the time elapsed since
the last significant change in the brightness level of each pixel in the image [12].
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Differential Methods are also called gradient-based methods. These tech-
niques calculate the flow from the space-time derivatives of the intensities in the
image, through the expression known as the brightness constancy equation of
the optical flow computation. This method has become the most frequent ap-
proximation used in computer vision applications because of its swiftness and
its good velocity estimation.

Horn and Schunck [9] propose a method based on first order derivatives and
add a smoothness condition on the flow vectors to the general conditions. They
assume that object motion in a sequence will be rigid and approximately con-
stant, that a pixel’s neighborhood in said objects will have similar velocity, there-
fore, changing smoothly over space and time. Nevertheless, this condition is not
very realistic in many cases and it yields bad results [14] since the images’ flow
has a lack of continuity, especially in the boundaries between different objects.
Therefore the results obtained in these areas will not be correct. Poor results
are also obtained in the sequences where there are multiple objects, each having
different motion.

Barron, Fleet and Beauchemin [2] suggest a modification where a Gaussian
space-time pre-smoothing is done to the images and where the derivatives are
calculated using the differential method with a coefficient mask. On the other
hand, they introduce a gradient thresholding method in algorithm implementa-
tion and decide whether a velocity will be accepted or rejected. This decision
is taken based on the gradient module; when it does not exceed the threshold
value, the velocity in said pixel will be rejected. A great number of inaccurate
results can be eliminated this way.

Lucas and Kanade’s algorithm [13] is similar to Horn and Schunck’s. Horn
and Schunck use a global approach, whereas Lucas and Kanade use a local
approach to an environment. The algorithm devised by Lucas and Kanade adds
a flow smoothing constraint in local neighborhoods to the intensity conservation
restraint. The method expects the velocities to be constant in a relatively small
environment basing this on the fact that it is logical to expect pixels from the
same object to have identical velocities.

Block Correlation Methods, also known as a block matching-based method,
assume that the distribution of the intensity for the region which surrounds the
pixel, whose motion is to be evaluated, is maintained. Thus, for each pixel whose
flow is to be computed at a certain time, a window of pixels which surrounds that
pixel is created. The purpose, in the following time, is to look for the maximum
correspondence between said window and a set of windows of equal resolution
within a neighborhood defined by a higher window, called a search a window in
the following time.

Anandan’s algorithm [1] fits into the matching methods. It proposes that, in
a discrete case, the sum of the squared differences (SSD) is closely related to
the correlation coefficient. To attain sub-pixel accuracy and to avoid problems
due to aperture or great displacements, Anandan used a hierarchical scheme
based on Gaussian or Laplacian pyramids, estimating velocity from the lowest
to the highest resolution level. This way, sub-pixel displacements are estimated in
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two different phases. Anandan also proposes smoothing the resulting velocities,
since it is expected for velocities present in a sequence to be fairly homogenous.
In the final algorithm, a matching and smoothing of the resulting velocities is
carried out for each level in the pyramid created, from the lowest to the highest
resolution level.

2 Optical Flow Through Accumulative Computation

Accumulative computation is based on the allocation of charge levels assigned to
every image pixel related to the history of a studied feature of the pixel. The gen-
eral formula which represents the charge in an image pixel, due to accumulative
computation [5],[4] is:

Ch[x, y, t] =
{

min(Ch[x, y, t − Δt] + C, Chmax), if ”property is fulfilled”
max(Ch[x, y, t − Δt] − D, Chmin), otherwise

(1)
In the LSR mode of operation (length-speed ratio) [3], C = CMov is called a

charge increase value. The idea behind is that if there is no motion in pixel (x, y),
which is estimated as a change in the grey level between two consecutive times,
charge value Ch[x, y, t] increases up to a maximum value Chmax. And if there is
motion, there is a complete discharge (a minimum value Chmin is assigned). In
general, Chmax and Chmin take values of 255 and 0, respectively. Notice that
charge value Ch[x, y, t] represents a measure of the time elapsed since the last
significant change in the image pixel’s (x, y) brightness.

Ch[x, y, t] =

⎧⎨
⎩

Chmin, if ”motion is detected in (x, y) in t”
min(Ch[x, y, t − 1] + CMov, Chmax),

otherwise
(2)

Once the image’s charge map is obtained for the current time t, the optical flow
considered as the velocity estimated from the stored charge values is obtained
as detailed next. (1) Ch[x, y, t] = Chmin: Motion is detected in pixel (x, y) in t.
The map’s value is the minimum charge value. (2) Ch[x, y, t] = Chmin + k · C <
Chmax: Motion in pixel (x, y) is not detected in t. Motion was last detected in
t−k ·Δt. After k increments, the maximum charge has not yet been reached. (3)
Ch[x, y, t] = Chmax: Motion is not detected in pixel (x, y) in t. It is not known
when motion was last detected. The map’s value is the maximum charge value.

It is important to point out that the velocity obtained by these means is not
the velocity of an object pixel, which is occupied by pixel (x, y) in time t, but
the velocity of an object pixel responsible for motion detection when it went by

pixel (x, y) k =
Ch[x, y, t] − Chmin

CMov
units of time ago. Therefore, a given charge

has the same value in all pixels where motion was detected at the same time.
Now then, velocity is calculated in axis x, vx, as well as in axis y, vy. To

calculate velocity in x, the charge value in (x, y), which an object is currently
crossing, is compared to the charge value of another coordinate in the same image



450 A. Fernández-Caballero et al.

row (x+l, y), where the same object is crossing. At best, that is when both values
are different to Chmax, the time elapsed from the last motion detection in (x, y)
to the time when motion is detected in t − k(x+l,y) · Δt en (x + l, y) can be
calculated as:

Ch[x, y, t] − Ch[x + l, y, t] =
= (Chmin + k(x,y) · CMov) − (Chmin + k(x+l,y) · CMov) =
= (k(x,y) − k(x+l,y)) · CMov

(3)

Obviously, this cannot be calculated if either of the values is equal to Chmax,
since it is not known how many time intervals have elapsed since the last motion
detection. Therefore, for valid charge values, we have:

Δt =
(k(x,y) − k(x+l,y)) · CMov

CMov
= k(x,y) − k(x+l,y) (4)

From equations (3) and (4):

Δt =
Ch[x, y, t] − Ch[x + l, y, t]

CMov
(5)

Since vx[x, y, t] =
δx

δt
=

l

Δt
, we finally have:

vx[x, y, t] =
CMov · l

Ch[x, y, t] − Ch[x + l, y, t]
(6)

Velocity is calculated in the same way in y from values stored as charges:

vy[x, y, t] =
CMov · l

Ch[x, y, t] − Ch[x, y + l, t]
(7)

3 Data and Results

Once the methods have been described, we go on to present the results obtained
in the qualitative comparison of the different algorithms: (a) Barron, Fleet and
Beauchemin, (b) Lucas and Kanade, (c) Anandan and (d) accumulative compu-
tation. For this experimental level comparison, different image sequences have
been selected for each algorithm. The results show in a qualitative manner those
pixels where some velocity different from zero is obtained.

Yosemite Sequence. This is a complex case in the synthetic sequence bank
used in numerous benchmarks. It shows a virtual flight over the Yosemite valley.
The clouds on the upper right of the image move at a velocity of 2 pixels/frame
from left to right. The rest of the flow is divergent, with velocities of up to
5 pixels/frame in the lower left corner. This is an interesting sequence since
it displays different types of motion, slightly different boundaries and it can
resemble a real situation. In Fig. 1, we see the result of applying each of the four
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(a) (b)

(c) (d)

Fig. 1. Results obtained in the Yosemite sequence. (a) Barron, Fleet and Beauchemin’s
(BFB) method. (b) Lucas and Kanade’s (LK) method. (c) Anandan’s (A) method. (d)
Accumulative computation (AC) method.

methods to the Yosemite sequence. In the first place, we are struck by Anandan’s
method’s poor performance. It detects much more (and inaccurate) flow than
other methods. We can also verify that both Barron’s and the accumulative
computation methods are able to detect cloud motion as opposed to Lucas and
Kanade’s which cannot.

Hamburg Taxi Sequence. This sequence is a classic in the computer vision
field. There are four objects in motion: (1) the white taxi turning the corner,
(2) a dark car in the lower left corner, moving from left to right, (3) a van,
also dark, moving from right to left, and, (4) a pedestrian, who is fairly far
away from the camera, in the upper left corner. In the foreground and slightly
to the right, we see tree branches. The approximate velocity for each object
is: 1.0, 3.0, 3.0 and 0.3 pixels/frame, respectively. The fields obtained for the
Taxi sequence (Fig. 2) in general show all the displacements mentioned in its
description, with the exception of the pedestrian’s movement which can only
be obtained with accumulative computation-based algorithm. This method also
“outlines” objects better than others. In every case there is a lot of noise in the
scene. We are also struck by the fact that the vehicles are not excessively well
segmented (this would belong to an advanced level analysis). The vehicle closest
to the right hand side is detected the worst because it is partially hidden by part
of a tree.

Rubik’s Cube Sequence. Another well-known sequence is this Rubik’s cube
rotating counter-clockwise. The velocity field caused by the cube’s rotation is
less than 2 pixels/frame. The surface on which the cube is placed has a motion
between 1.2 and 1.4 pixels/frame. Good results are obtained, in general, in the
Rubik’s cube sequence (Fig. 3), obtaining the velocity of the cube’s sides as well
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(a) (b)

(c) (d)

Fig. 2. Results obtained in the Hamburg Taxi sequence. (a) BFB method. (b) LK
method. (c) A method. (d) AC method.

(a) (b)

(c) (d)

Fig. 3. Results obtained for the Rubik’s Cube sequence. (a) BFB method. (b) LK
method. (c) A method. (d) AC method.

as that of the rotary base. The cube’s shadow motion is detected in Barron-Fleet-
Beauchemin’s and Anandan’s algorithms and it is best filtered with Lucas and
Kanade’s method and with the accumulative computation-based method. The
latter algorithms offer the best results for this sequence, qualitatively speaking.
We see at a first glance that the accumulative computation algorithm eliminates
the most noise from the scene. Again, Anandan offers poor results.

SRI Trees Sequence. This time, the camera moves from right to left, parallel
to the plane in front of the group of trees. This is a complex sequence since it
has a great number of occlusions, as well as low resolution. The velocities are
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(a) (b)

(c) (d)

Fig. 4. Results obtained for the SRI Tress sequence. (a) BFB method. (b) LK method.
(c) A method. (d) AC method.

greater than 2 pixels/frame. The SRI Trees sequence is very complex. Barron et
al’s algorithm performs better than the rest since it outlines the trees (Fig. 4).
Other methods seem to be inefficient when working with movable cameras on
static scenes. This is essentially so in the accumulative computation method.

4 Conclusion

In this work, we have presented a qualitative comparison of the different tradi-
tional optical flow computation methods with our new accumulative computa-
tion technique. Other methods have high computational costs as opposed to our
accumulative computation method, based on simple additions and subtractions.

In this paper, accumulative computation is based on the allocation of charge
levels assigned to every image pixel related to the history of motion presence
detection of the pixel. Our accumulative computation method is new in the
sense that it calculates the optical flow as a measure of the elapsed time since
the last significant change in the brightness level for each pixel in the image.

In the results obtained in the segmentation of the shape of figures due to the
motion inherent to he camera capture, we see that for most of the sequences
tested, specifically Yosemite and Hamburg Taxi, the accumulative computation
method offers similar or better quality than the other methods. We are currently
working to offer a quantitative comparison of the results obtained, with regard
to execution time and success rate in the results.
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