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This article investigates and compiles some of the techniques mostly used in the smoothing or suppres-
sion of speckle noise in ultrasound images. With this information, a comparison of all the methods stud-
ied is done based on an experiment, using quality metrics to test their performance and show the benefits
each one can contribute. To test the methods, a synthetic, noise-free image of a kidney is created and later
simulations using Field II program to corrupt it are performed. This way, the smoothing techniques can be
compared using numeric metrics, taking the noise-free image as a reference. Since real ultrasound images
are already noise corrupted images and real noise-free images do not exist, conventional metrics cannot
be used to indicate the quality obtained with filtering. Nevertheless, we propose the use of the tendencies
observed in our study in real images.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Medical images, such as magnetic resonance, X-rays, ultra-
sound, etc. are very useful tools for the diagnosis and study of var-
ious illnesses. Since the birth of Computer Science, this science has
been a great help for Medicine in general and in particular in the
medical image field. This paper focuses on ultrasound images
and specifically on speckle noise suppression. Ultrasound images
are degraded by an intrinsic artefact called ‘‘speckle”, which is
the result of the constructive and destructive coherent summation
of ultrasound echoes.

Several techniques for suppressing speckle noise have been
developed. According to the moment when the speckle reduction
is produced, there are two basic approaches – the compounding
approach and the post-processing approach (Adam, Beilin-Nissan,
Friedman, & Behar, 2006). The compounding approach includes
methods in which the data acquisition procedure has been modi-
fied to produce several images of the same region and combine
them to form a single image (e.g. Behar, Adam, & Friedman,
2003; Jespersen, Wilhjelm, & Sillese, 1998; Stetson, Graham, &
Macovski, 1997; Trahey, Smith, & Van Ramm, 1986). The post-pro-
cessing approach includes many different filtering techniques that
are implemented on the B-mode images after they have been gen-
erated. They are divided mainly into two classes: (i) techniques
that are applied directly in the original image and (ii) techniques
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that are applied in the frequency domain (Stippel, Philips, & Lema-
hieu, 2002).

An example of compound approach Chen, Broschat, and Flynn
(1996) proposes a hybrid phase-insensitive homomorphic process-
ing technique for speckle reduction. Initially, several subimages are
formed using separate portions of the transducer, then a log trans-
form is applied to each subimage to destroy the phase relationship
between the transducer element outputs. A low frequency empha-
sis filter is used to smooth high frequency components, and finally
an exponential function is applied to recover the original signal
level.

In recent years, much interest has been focused on the post-for-
mation filtering methods applied directly in the original image
methods. Approaches in this category include many fixed and
adaptive filters, such as L2-mean filter (Kotropoulos & Pitas,
1992), adaptive filter reduction (ASR) (Bernstein, 1987; Bamber &
Daft, 1986), adaptive weighted median filter (AWMF) (Karaman,
Kutay, & Bozdagi, 1995; Loupas, McDicken, & Allan, 1989), nonlin-
ear diffusion (Abd-Elmoniem, Youssef, & Kadah, 2002; Yu & Acton,
2002), MAP estimation (Sanches & Marques, 2003) and so on.

Adaptive filtering algorithms continue being popular for
speckle reduction. Chen, Yin, Flynn, and Broschat (2003) select a
filtering region size using an appropriately estimated homogene-
ity value for region growth. Homogeneous regions are processed
with an arithmetic mean filter. Edge pixels are filtered using a
nonlinear median filter. More recently, to reduce the blurring in
conventional distance-weighted (DW) interpolation, Huang,
Zheng, Lu, and Chi (2005) proposed an improved method named
as square–distance–weighted (SDW) interpolation, which used
the square of the inverse distance as the weight for each pixel.
And in Huang and Zheng (2006), a new adaptive algorithm based
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on SDW interpolation for volume reconstruction of 3D freehand
ultrasound is introduced. Xiao, Su, and Chen (2004) present a dif-
fusion stick method for speckle suppression in ultrasonic images.
An asymmetric stick filter kernel is firstly defined by decomposing
the rectangle neighbourhood into line segments of variable orien-
tations. Then, the weighted sum of averages along each stick is
used to produce the filtered images.

In the wavelet domain, recently, Thakur and Anand (2005) intro-
duced the comparative study of various wavelet filter based deno-
ising methods according to different thresholding values applied to
ultrasound images. More works on wavelet domain thresholding
may be found in Hao, Gao, and Gao (1999), Rakotomamonjy,
Deforge, and Marche (2000), Zong, Laine, and Geisse (1998), among
others. Also, a soft-threshold denoising method is presented by
Donoho (1995), where the observed signal is decomposed into
the wavelet domain.

One of the main problems when employing an image process-
ing technique – looking for speckle reduction, in this case – is
assessing its performance. The quality of a reconstructed image
could be measured by the traditional distortion measures such as
mean-square error (MSE), peak signal-to-noise ratio (PSNR), and
correlation coefficients between the original and reconstructed
images (Tolba, 2002). Adam et al. (2006) evaluate the effectiveness
of speckle reduction in the ultrasound images for each simulated
image, by statistically estimating three image quality parameters
– contrast-to-noise ratio (CNR), lesion signal-to-noise ratio (LSNR)
and signal-to-noise ratio (SNR), as defined in Chen et al. (1996).
The parameter SNR is used to evaluate the improvements in
smoothing, as observed in homogeneous regions of an image
(speckle region). In Thakur and Anand (2005) the most suitable
wavelet shapes for ultrasound denoising – the DWT and wavelet
packets method – are used according to the statistical significance
test of the efficiency of the particular wavelet. Results are com-
pared with the nonlinear adaptive filter scheme for speckle sup-
pression. The peak signal-to-noise (PSNR) and normalized mean-
square error (NMSE) are used to evaluate the results of the discrete
wavelet methods.

This article investigates and compiles well-known techniques
used in the smoothing or suppression of speckle noise in ultra-
sound images. A comparison of the methods studied is done based
on an experiment, using quality metrics to test their performance
and show the benefits each one can contribute. Similarly to Verho-
even and Thijssen (1993), the investigated digital filters were ap-
plied to computer simulated images.

The remainder of the paper is organized as follows. Section 2
introduces some explanations on digital speckle noise and presents
the types of filters used in this study. Next, the methodology fol-
lowed for assessing the performance on the reduction of speckle
noise by the different approaches is described in Section 3. Section
4 shows the complete set of tests performed on the synthetic im-
age. Lastly, some conclusions leading to finding out general ten-
dencies in speckle noise reduction in ultrasound images are
offered.
2. Speckle noise and some well-known filters

2.1. Types of noise

There are different types of noise in digital images. These are:
impulsive or random noise, Gaussian noise, frequency noise and
multiplicative noise. Impulsive noise can appear when the sensor
that picks up the image is saturated and the value of the pixel
shows a high value or when the signal is lost and the pixel shows
a low value. In this case, the image has too high or too low pixel
values. On the other hand, Gaussian noise shows little variation
in the image for reasons such as different sensor gain, quantization
errors in digitization, etc. At first sight, a noisy image appears to be
the same as the original one but it is very different. Frequency
noise is characterized by the interference of a signal which joins
the image at a certain frequency. Lastly, multiplicative noise is
the result of the multiplication of two signals. In all cases, noise al-
ways implies a sudden change in an image’s intensity level; thus,
noise is considered an image’s high frequency component.

In the images this paper deals with, there is a characteristic type
of noise called speckle noise. The images with this type of noise
display a granular pattern due to the dispersion of the electromag-
netic waves caused by the transducer. When the waves reflected
on the rough texture make an impact on said texture, they create
interferences which cause noise in the registered image. This noise
is very harmful since it limits the detection of injuries, especially in
low contrast images. To perfect the denoising methods, it is impor-
tant to have an accurate and reliable model. This is not an easy
task; however, the following model is considered a good model
for images with speckle noise:

f ðx; yÞ ¼ gðx; yÞ � gmðx; yÞ þ gaðx; yÞ ð1Þ

In the previous formula f ðy; xÞ is the real noisy image, gðx; yÞ repre-
sents an unknown noise-free image, which is what we are aiming
for, gmðx; yÞ and gaðx; yÞ are multiplicative and additive noise func-
tions. Since additive noise is considered to be lower than multipli-
cative noise, Loupas et al. (1989) proposed the following signal-
dependent noise model for speckle specification in ultrasound
images

f ðx; yÞ ¼ gðx; yÞ � gmðx; yÞ ð2Þ
2.2. Types of filters

The filters studied in this paper are:

(1) Median filter. This is a nonlinear filter applied to an image’s
spatial domain. The value of the median filter in suppression
of impulsive noise has long been recognized. Median filter-
ing (a standard pot-filtering technique) is often effective
for speckle reduction. It uses the median intensity in a suit-
able sized and shaped region Wij surrounding the pixel ði; jÞ
of interest as the output pixel value; hence it eliminates any
impulsive artifacts with an area (in pixels) less than half the
region size jjWijjj (Chen et al., 1996).

(2) Adaptive weighted median filter. The adaptive weighted
median filter (AWMF) (Loupas et al., 1989) is an enhanced
median filter. It introduces the concept of weighting coeffi-
cient for the pixels in the window. The coefficient affects
every pixel in such a way that its value appears as many
times as the weight in the estimation of the median indi-
cates. Thus, if the weights are the same, this method will
behave as a typical median filter. However, if the weights
are not the same and they decrease from the centre of the
window to the outer limits, the details and the edges of
the image will be less altered. At the same time, less noise
will be eliminated. Therefore, weight choice means compro-
mising between noise suppression and image preserving.
Bearing this in mind, the algorithm adapts the weights
according to the image’s characteristics in the area inside
the window for each step of the image processing. The char-
acteristics are determined by local statistical properties.

(3) Fourier filtering. Fourier filtering is, naturally, based on
Fourier transform properties. In medical images, our objec-
tive is to find a filter or filtering function which will mini-
mize Fourier transform’s high frequency components. Once
this is done, the output image will be obtained by means
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of the inverse Fourier transform. We will consider two types
of filters. One is known as ideal filter and the other one is
Butterworth filter.

(4) Wavelet transform. With this transform we also obtain an
input signal frequency representation. With a wavelet trans-
form, we try to express a function in terms of small waves,
thus the name wavelet. We are going to use a processing
which can be carried out without implementing a very com-
plex transform. It consists of eliminating certain frequencies
in order to eliminate any existing noise. Since we know that
when an image is decomposed, the HH, LH, and HL images
contain most of the image’s high frequencies and noise, we
can eliminate the noise by eliminating those very images.
This does not mean that all noise present in the image is
eliminated. Some details in the image may also be lost.
Recently it has been proposed some modifications to the ori-
ginal wavelet filtering (Chen, Bui, & Krzyz̀ak, 2005; Chen &
Kegl, 2007). However although these new techniques seem
promising we are using the standard method.

(5) Homomorphic filtering. Speckle noise present in ultra-
sound images is considered multiplicative noise. This fact
creates gaps in the previous methods since they are created,
mainly, to eliminate random noise which occurs additively.
Therefore, it seems logical to carry out a logarithmic trans-
form on the original image, wherefore speckle noise
becomes additive as is shown in the following equality:
log f ðx; yÞ ¼ log gðx; yÞ þ log gmðx; yÞ ð3Þ
We now have an image without multiplicative noise which can be
processed by traditional methods. At this point, we can choose from
among several options, one of the most common being the applica-
tion of a low pass filter in Fourier’s domain. Fig. 1 shows a diagram
of blocks with the process which is followed in the previous
algorithm.
3. Proposed methodology

Noise suppression methods can be compared in one of two
ways. In one, naturally, the different algorithms are placed in a col-
lection of ultrasound images to obtain the corresponding smooth
image. In this case, since we only have a noise corrupted image
Fig. 1. Sequence of steps in hom

Fig. 2. Algorithm extracted

Fig. 3. Algorithm extracted
and the real noise-free image does not exist, conventional metrics
cannot be used to indicate the quality obtained with filtering. We
try, therefore, to give a subjective visual assessment of the algo-
rithm’s effect on the input image. Another way to compare the dif-
ferent methods consists of creating a synthetic image, taken as a
noise-free image, and later applying the known noise models to
corrupt it. Thus, smoothing techniques can be compared using nu-
meric metrics, taking the noise-free image as a reference.

Another proposal is based on the fact that the current basic
methods which are applied are few. Research relies on looking
for variants and perfecting those techniques. In addition, we are
also working on the combination of different techniques, as can
be seen with homomorphic filtering. As an example of this, see
Figs. 2 and 3, which show the process of the image in a diagram
of blocks. Fig. 2 shows, basically, the diagram of the homomorphic
filtering, but in this case, using the wavelet transform. On the other
hand, Fig. 3 shows a more complex processing. Both methods are
combined here: the AWMF algorithm and the wavelet coefficients
processing. It also has another peculiarity, which is the fact that
there are two ways of processing from one image.

Our purpose, based on these ideas, is to be able to build combi-
nations from an input image with the basic methods. These combi-
nations will be done in two different ways. On the one hand, there
will be a sequence combination which will have a series of meth-
ods where the output of one will be the input of the next one. On
the other hand, there is also a parallel combination made up of sev-
eral sequence combinations. Thus, the resulting image from the
whole process will be calculated as the average image of the result-
ing images of every sequence combination.

Sequence combinations are designed almost exclusively for the
application of homomorphic filtering, performing a logarithmic
transform at the beginning and an exponential transform at the
end. Nevertheless, it is also open to cascading methods. We try
to complement the positive and negative aspects of each sequence
with a parallel combination, since the defects of one side will be
compensated with the advantages of the other side, although each
one’s virtues will also diminish. To obtain the best possible results,
a compromise will have to be made.

In this paper, the Field II (Jensen, 1996) program is used to sim-
ulate ultrasound images. The Field II program can simulate all
kinds of ultrasound transducers and the associated images, and
is extensively being used in other ultrasound image papers (e.g.
omorphic filtering example.

from Zong et al. (1998).

from Hao et al. (1999).



Fig. 4. (a) Reference image for the comparison. (b) Noisy image.

Table 1
Metrics values for noisy image.

MSE SNR PSNR b

1825.285599 3.121050 15.517495 0.012505
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Radulescu, Wójcik, Lewin, & Nowicki, 2003; Wang, Shen, & Wang,
2007; Xiao, Ng, Tsang, & Abeyratne, 2007). As in Adam et al. (2006),
the study is performed by simulations processing B-mode images
of a kidney. The Field program system uses the concept of spatial
impulse responses as developed by Stepanishen (1971) and Tup-
holme (1969). The approach relies on linear systems theory to find
the ultrasound field for both the pulsed and continuous wave case.
This is done through the spatial impulse response. This response
gives the emitted ultrasound field at a specific point in space as
function of time, when the transducer is excited by a Dirac delta
function. The field for any kind of excitation can then be found
by just convolving the spatial impulse response with the excitation
function. The impulse response will vary as a function of position
relative to the transducer, hence the name spatial impulse re-
sponse. The received response from a small oscillating sphere can
be found by acoustic reciprocity. The spatial impulse response
equals the received response for a spherical wave emitted by a
point. The total received response in pulse-echo can, thus, be found
by convolving the transducer excitation function with the spatial
impulse response of the emitting aperture, with the spatial im-
pulse response of the receiving aperture, and then taking into ac-
count the electromechanical transfer function of the transducer
to yield the received voltage trace.

The metrics used to experiment with images have been the
well-known mean-square error (MSE), signal-to-noise ratio
(SNR), peak signal-to-noise ratio (PSNR), but also the so-called beta
(b) metric proposed in Hao et al. (1999). The MSE, SNR and PSNR
metrics are defined in the following expressions:

MSE ¼ 1
M � N

XM�1

m¼0

XN�1

n¼0

Iðm;nÞ �bIðm;nÞh i2
ð4Þ

SNR ¼ 10 � log10

1
M�N
PM�1

m¼0

PN�1
n¼0 I2ðm;nÞ

MSE
ð5Þ

PSNR ¼ 10 � log10
2552

MSE
ð6Þ

In these expressions, I is the original image andbI is the estimation of
the original image obtained from a noisy image. The images’ mea-
surements are M � N.

Beta metric is defined as

b ¼
PM�1

m¼0

PN�1
n¼0 DIðm; nÞ � DI
� �

� DbIðm; nÞ � DbIh i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1

n¼0 DIðm; nÞ � DI
� �2 � DbIðm;nÞ � DbIh i2

r ð7Þ

where the D operator means applying a high pass filter to the im-
age. To perform the filtering, the Laplacian operator is used in its
3 � 3 version. Delta is the mean value of the image after the opera-
tor is applied.

The MSE metric indicates how different the images being com-
pared are. Therefore, the lower its value is, the closer the estimated
image is to the original image and the better performance the algo-
rithm, which was used to obtain the estimation, has. However, the
SNR and PSNR metrics show a relationship between the real image
and the estimation error. Here, a high value indicates an improve-
ment. The beta metric is used to evaluate the preservation of the
edges in the estimated image. In this case, an increase of this
parameter also indicates better performance qualities.
Table 2
Metrics obtained when applying the median filter.

Window MSE SNR PSNR b

3 � 3 1652.592804 3.552700 15.949145 0.018514
5 � 5 1528.061813 3.892949 16.289394 0.034675
7 � 7 1459.290619 4.092941 16.489386 0.041750
9 � 9 1413.899063 4.230175 16.626620 0.055058
11 � 11 1384.809921 4.320457 16.716902 0.062093
4. Data and results

To compare the algorithms, we will start with the kidney image
in Fig. 4a. From this image, we have generated a noisy image (see
Fig. 4b) using the Field II program previously described. The values
obtained from the metrics for this image are presented in Table 1.
4.1. Median filter

Different window sizes have been used for this algorithm. To be
exact, we have used sizes 3, 5, 7, 9 and 11 and the values obtained
are those presented in Table 2.

Notice that in the table, according to the metrics, a median filter
with a 3 � 3 window size eliminates noise in such a way that we
obtain a better quality image than the noisy image. In this case,
all values indicate this improvement. This tendency continues as
the window size increases (see Table 2.

This evolution is clearly seen in Fig. 5. In this figure, we see the
images generated with the median filter for each window size. In
(a) the size of the window is 3 � 3, in (b) 5 � 5, in (c) 7 � 7, in
(d) 9 � 9, and in (e) 11 � 11. In this figure, we see, gradually,
how as the window size increases, the image gets smoother and
the colors get more uniform. For example, at a glance, the image
obtained by applying a filter size 11 hardly shows variations in
the background of the white area in the upper left corner of the
image.

In contrast, the damaging effects are more visible. In the first
image, the borders are still well defined. But from image (b) on,
and as the window size increases, the borders get more and more
blurry. This effect increases with every step, especially in the white
central rectangular zone.

To sum up, if we use a small window (3 � 3) with this method,
we can make some of the noise disappear, without losing impor-
tant details. But if the size of the window is increased to eliminate
more noise, we get a counter-productive effect which results in the
loss of edges. Small details in the image can also disappear.

4.2. Adaptive weighted median filter

After testing the median algorithm, we continue with the adap-
tive weighted median algorithm (AWMF). This algorithm is more



Fig. 5. Images after applying the median filter with different window sizes. (a) 3 � 3 window. (b) 5 � 5 window. (c) 7 � 7 window. (d) 9 � 9 window. (e) 11 � 11 window.

Table 3
Metrics obtained when applying the adaptive weighted median filter in function of
parameter c1 for a window size of 11 and c2 ¼ 10.

c1 MSE SNR PSNR b

99 1823.777542 3.124640 15.521085 0.012393
50 1805.582321 3.168186 15.564631 0.012814
20 1780.537109 3.228848 15.652930 0.012210
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complex than the previous one because it tries to adapt to the
image’s conditions to minimize noise, as much as possible, without
losing image quality. This also makes its use more difficult since we
have to deal with a three-parameter space to apply the algorithm.
These parameters are the window size and the formula’s c1 and c2

scalar variables

wij ¼ c1 1� c2
d

ðSNRÞ2

 !
ð8Þ

where d is the Euclidean distance from the ði; jÞ position to the cen-
tre of the window, c1 and c2 are weight adjustment constants and
SNR indicates the relationship between the mean and the standard
deviation of the pixels which fall inside the window. The SNR value
is used to find out what the image in the area of the window is like.
If the SNR value is high, it means that the image is very uniform and
the noise in this area is what causes the small variation in the pixels’
values. The weights are, therefore, very similar and are adjusted to
perform a very aggressive filtering, since there is no risk of eliminat-
ing important details from the image. If, on the other hand, SNR has
a low value, it means that the deviation is great, which indicates
that there is an abrupt change in the pixels’ values just like when
there are edges or other small details. In this case, the weights are
big in the centre of the window and decrease at the outer edges,
thus getting a less aggressive filtering which preserves these impor-
tant elements.

To get good use, we must first set the values for those parame-
ters and then, depending on the results, change them according to
what each one means. Just as with the median filter, window size
influences the amount of noise eliminated, as well as the details in
the real image. Variable c2 is used to control the importance of the
distance to the centre of the window. Great values make the far
away pixels seem less important. Variable c1 is applied over all
weights equally, thus its mission is to highlight the differences.
This means that, if this variable increases in a certain situation,
the distances between weights become greater and these weights
will condition the median’s general value the most. For example,
if little noise is eliminated with a configuration, due to the little
consideration given to the outside pixels, when c1 increases less
noise will usually be eliminated. This is so because, if the centre
pixel was already the heaviest, in the new situation it will be even
farther away from the rest.

4.2.1. First series of tests
In Table 3, the values obtained for the tests with the adaptive

weighted median filter are summed up, starting with the values
indicated in Loupas et al. (1989). They are 11 for window size, 99
for c1 and 10 for c2.

Fig. 6 shows the same results in an image.
There is no significant improvement in c1 ¼ 99, although all

metrics improve. At a glance, the processed image really looks like
the noisy image, as could be guessed by the metrics. After this first
approximation, variable c1’s value can continue to decrease up to
50. There is an overall improvement but this improvement contrib-
utes little since the image is almost the same, as we can see in
Fig. 6b. However, since this seems to be a way to reduce noise,
c1’s value can continue to decrease. We now try with value 20
and get the metrics shown in Table 3. The tendency to improve im-
age quality continues concerning metrics about noise reduction
(MSE, SNR and PSNR), however we get a worse value for b metric
so this fact we near an inflexion point and we cannot obtain better
images reducing c1 parameter.

4.2.2. Second series of tests
Instead of keep on reducing c1 parameter we can move onto

other parameter like window size. To do this we have fixed c1 to
20 and c2 to 5, and we have tested two window sizes, 11 and 17.
The resulting images can be seen in Fig. 6d and 6e, and the numeric



Fig. 6. Images after applying the AWMF filter with different configurations. (a) 11-99-10. (b) 11-50-10. (c) 11-20-10. (d) 11-20-5. (e) 17-20-5.
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results are shown in Table 4. Here the numbers say us that increas-
ing window size allow us to remove more noise in the image but
we get worse edges. This conclusion is similar to the one obtained
with Median filter.

4.2.3. Third series of tests
In view of these results, we try to lower parameter c1 much

more to see if the quality improves. c2’s value will also be lowered.
The purpose is to weigh more those pixels farthest away from the
one we are dealing with, in order to eliminate more noise. The re-
sults of these new experiments are shown in Fig. 7a–c and Table 5.

The metrics for the image obtained with the AWMF algorithm,
with parameter size equal to 11, c1 equal to 1 and c2 equal to 1
are shown first. Notice that the predictions were correct and the
Table 4
Metrics obtained when applying the adaptive weighted median filter in function of
parameter window size and c1 ¼ 20 and c2 ¼ 5.

Window MSE SNR PSNR b

11 1743.153946 3.321001 15.717446 0.018874
17 1734.902267 3.341609 15.738053 0.017285

Fig. 7. Images after applying the AWMF filter with differe
noise has been eliminated even more because the MSE metric
has been reduced and the SNR and PSNR metrics have increased.
At the same time, we have not only not lost precision in the edges,
but we have improved them greatly. The image obtained in this
process is shown in Fig. 7a. This image enhances highly according
to the metrics, but visually we can appreciate that the borders ap-
pear blurred. On the other hand, the variations in color, typical of
noise, are not noticeable.

Since these values have proved to yield good results, we can
continue to increase parameter c1 to try to improve further. For in-
stance, we decide to set c1’s value to 2, thus obtaining the metrics.
The resulting image, after applying the algorithm with these
parameters, is shown in Fig. 7b. Visually this new image and the
nt configurations. (a) 11-1-1. (b) 11-2-1. (c) 11-3-1.

Table 5
Metrics obtained when applying the adaptive weighted median filter in function of
parameter c1 for a window size of 11 and c2 ¼ 1.

c1 MSE SNR PSNR b

1 1380.900772 4.332734 16.729179 0.052046
2 1388.240372 4.309712 16.706157 0.051380
3 1716.154694 3.388794 15.785239 0.019028



7792 J.L. Mateo, A. Fernández-Caballero / Expert Systems with Applications 36 (2009) 7786–7797
last one look similar, however, with this change, we have lost a lit-
tle of quality in every aspect, from noise suppression to edge
improvement, but the difference is hardly notable. Although it
seems that increasing c1 yields poorer results we try another con-
figuration with c1 ¼ 3. With this configuration, we have obtained a
very different image as can be seen in Fig. 7c. In this case, the met-
rics values shown that this last configuration is worse, the filter has
removed much less noise.

After seeing the results of the AWMF algorithm on this image,
we can deduce that the best way to obtain the best image after pro-
cessing is the 11-1-1 configuration. The reason is that the resulting
image is the most similar to the original image, since it has the
lowest MSE metric value and a very high beta metric value. If we
interpret the meaning of c1 and c2, when we set these two param-
eters to 1 the filter behaves quite similar like Median filter with the
same window size. This is corroborated by the results and taking
that into account we can conclude that AWMF cannot improve
the results of the Median filter for the same window size.

4.3. Fourier filtering

4.3.1. Ideal filter
We now go on to evaluate the Fourier filtering using an ideal fil-

ter. The evaluation process is now easier because we have to move
only through one parameter, which is the cutoff frequency. The re-
sults are shown in Fig. 8 and Table 6.

First, the cutoff frequency will be set at 10%. By looking at the
metric values, we can already tell that this image is of much better
Fig. 8. Images after applying the Fourier ideal filter with different cutoffs. (a) 10%.
(b) 20%. (c) 30%. (d) 40%.

Table 6
Metrics obtained when applying the Fourier ideal filter.

Cutoff (%) MSE SNR PSNR b

10 1466.367798 4.071930 16.468374 0.073053
20 1591.829346 3.715394 16.111839 0.033076
30 1685.922241 3.465983 15.862428 0.025595
40 1748.550690 3.307576 15.704021 0.020017
quality than the noisy image because all values indicate so. Looking
at the image, we see that the noise in some parts of the background
is smoother but the objects contours have become blurred and
there is a wave effect around the line and the rectangle. This is
known as the Gibbs effect. If the algorithm cutoff off value were
lowered even more, we would get greater smoothness but we
would also lose sharpness in the image and the Gibbs effect would
become more significant. That is why we do not lower the cutoff
value any more. On the contrary, it will be raised to avoid these
damaging effects.

Thus, situating the cutoff value at 20%, the values indicate that
there has been improvement with regard to the noise image but, of
course, not with the previously filtered image, as you may appreci-
ate by the big descent (about a 50%) of the b value. In Fig. 8b, this
new image is shown and we notice that we have obtained some
sharpness with regard to the previous one and the Gibbs effect is
slightly lower. On the negative side, we see that there is less color
uniformity. The cutoff value will now be set at 30%. Just as we ex-
pected, the data show that there is an improvement in image qual-
ity with respect to the noisy image. The MSE metric has increased
with regard to the previous image. Looking at the image in Fig. 8c,
we see that the Gibbs effect has now disappeared. This means a
higher contrast or, in other words, a higher frequency. If we apply
a filter with a 40% cutoff value, the quality of the filtered image is
worse than before. This is corroborated by the metric values.

4.3.2. Butterworth filter
These previous results belonged to an ideal filter, which means

a sharp cut off in the frequencies. The Butterworth filter tries to
smooth this cut off and eliminate the Gibbs effect and the excessive
minimizing of high frequency image details at the expense of los-
ing noise elimination capacity. Table 7 shows the metrics for the
images generated with this filter (Fig. 9).

As we have done previously, the Butterworth filter will be first
set at a cutoff value of 10% to start evaluating its results. This im-
age, shown in Fig. 9a, has better metrics than the noisy image and
even more so than the image obtained with an ideal filter with the
same cutoff value, except for b parameter. Here b is reduced
although the Gibbs effect does not appear. This is so, because there
is not sharp cut off in the frequency coefficients, as with an ideal
filter. A negative side of this is that the objects are a little blurred.
This effect was not as evident in the previous images because it
was masked by the Gibbs phenomenon.

As before, we will analyze that it is not possible to obtain more
quality by raising the cutoff value, and in this case, setting it at 20%.
According to the MSE, SNR and PSNR metrics, with this cutoff va-
lue, you get a worse image than the previous one and, relatively
speaking, the loss in quality is similar to that obtained with an
ideal filter with the same cut off values.

Nevertheless, there is something which does not seem logical
for a beta parameter, which is edge deterioration. This does not
fit in accord with reality because in Fig. 9b this image is shown
and the objects are better defined and less blurred. This lack of
agreement between the numeric data and observation can only
be explained by the fact that increasing the cutoff value allows
more noise to enter the image, which in turn, affects the edges.
Thus, the increase in sharpness is compensated with the greater
Table 7
Metrics obtained when applying the Butterworth filter.

Cutoff (%) MSE SNR PSNR b

10 1423,568420 4,200575 16,597020 0,040237
20 1510,383530 3,943486 16,339931 0,025541
30 1580,116333 3,747468 16,143913 0,019615
40 1632,239960 3,606519 16,002964 0,016608



Fig. 9. Images after applying the Butterworth filter with different cutoffs. (a) 10%.
(b) 20%. (c) 30%. (d) 40%.

Table 8
Metrics obtained when applying the wavelet filter in function of the band eliminated
with a decomposition level of 1.

Band MSE SNR PSNR b

HL 1821.261490 3.130636 15.527081 0.013653
LH 1720.212020 3.378463 15.774908 0.019281
HH 1823.779022 3.124637 15.521081 0.014292

Table 9
Metrics obtained when applying the wavelet filter in function of the bands and the
decomposition level.

Level/bands MSE SNR PSNR b

2/HL 1813.258606 3.149761 15.546206 0.014232
2/LH 1596.462051 3.702773 16.099218 0.014953
2/HH 1814.264099 3.147254 15.543799 0.014793
2/LH,HH 1583.939026 3.736974 16.133419 0.019704
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irregularity given by noise. At any rate, the beta metric value indi-
cates an improvement with regard to the unprocessed image,
which was expected.
Fig. 10. Images after applying the wavelet filter for different configurations. (a) 1 level an
(e) 2 levels and band LH. (f) 2 levels and band HH. (g) 2 levels and bands LH and HH.
Continuing with the process of raising the cutoff value, the next
step is to set it at 30%. We obtain this table with the metrics. The
same changes as before take place here. That is, MSE, SNR and
PSNR metrics indicate a loss in image quality and a continuation
in the decrease of the beta metric. The image belonging to this con-
figuration is shown in Fig. 9c.

We will now test this filter with a cutoff value of 40%. The table
shows the same evolution in the numbers. Fig. 9d shows the image
for this test. Here, it is not possible to see, at a glance, any point
which differs from the previous image.

After taking a look at these cases with a Fourier filter, we can
say that an ideal filter is not very satisfactory, since the Gibbs effect
appears. This effect distorts the image very much, more so, the
lower the cutoff value is. On the other hand, this effect does not ex-
ist with a Butterworth filter and the image can be smoother. Even
so, the results obtained with an AWMF algorithm can be improved
with this filter.

4.4. Wavelet filtering

4.4.1. First series of tests
Next, we will take a look at the wavelet filtering. The results of a

first series of tests are shown, as a table, in Table 8 and as images in
Fig. 10a–c.

As a first approach to this algorithm, we will only eliminate
bands in a single decomposition level with at least one high fre-
quency component (HL, LH and HH). Theoretically these bands
contains more noise, specially band HH. The filtered images are
shown in Fig. 10a, b and c. According with the metrics the best
d band HL. (b) 1 level and band LH. (c) 1 level and band HH. (d) 2 levels and band HL.



Table 11
Metrics obtained when applying the homomorphic filter to the Fourier filter.

MSE SNR PSNR b

Ideal 10% 1326.001465 4.508919 16.905364 0.076284
Ideal 20% 1516.865936 3.924887 16.321332 0.031131
Ideal 30% 1654.623245 3.473670 15.943812 0.022885
Ideal 40% 1746.871048 3.311750 15.708195 0.015925

Butterworth 10% 1185.161743 4.996582 17.393027 0.038180
Butterworth 20% 1358.763123 4.402921 16.799366 0.024359
Butterworth 30% 1470.699249 4.059120 16.455565 0.018131
Butterworth 40% 1549.100906 3.833562 16.230007 0.016088

Table 10
Metrics obtained when applying the homomorphic filter to the AWMF filter.

MSE SNR PSNR b

11-90-10 1826.764069 3.117534 15.513979 0.009380
11-50-10 1826.797424 3.117455 15.513900 0.009319
11-20-10 1824.668442 3.122519 15.518964 0.009911
11-20-5 1828.368851 3.113731 15.510165 0.008657
17-20-5 1830.939178 3.107620 15.504064 0.017923
11-1-1 1384.809921 4.320457 16.716902 0.062093
11-2-1 1384.809921 4.320457 16.716902 0.062093
11-3-1 1817.576874 3.139431 15.535876 0.010062
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way to improve the noisy image is to remove LH band. Looking at
the images we can see that in images processed with HL and HH
bands appears some white spots which are not in the original im-
age, so this fact deteriorate the metric results.

In other hand we know that band LH contain high frequency for
horizontal edges and the tested image has more vertical edges than
horizontal (although most of the lines are diagonal), so if we re-
move this band we remove lot of noise but not much edges
information.
Fig. 11. Images after applying the homomorphic filter to the AWMF algorithm with

Fig. 12. Images after applying the homomorphic filter to the AWMF a
4.4.2. Second series of tests
Since the best choice, up to now, is to eliminate the LH band but

in one decomposition level, we can try now with a second level.
The results are shown in Table 9 and Fig. 10d–g.

In this table we can see that we get better results compared
with one level processing, specially with LH band but not with b
metric which has decreased a lot. Looking at the image we can
guess that this fact can be explained because now appear the white
spots.
parameters (a) 11-90-10, (b) 11-50-10, (c) 11-20-10, (d) 11-20-5, (e) 17-20-5.

lgorithm with parameters (a) 11-1-1, (b) 11-2-1, and (c) 11-3-1.
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We have tested a new filtered image obtained by removing
band LH and HH in the second level. The metrics results are also
in Table 9, which shown that this combination gets a better image
specially in b metric, however in the image still appear the white
spots.

4.5. Homomorphic filtering

The same tests, with the same parameters have been used with
each algorithm using the homomorphic filtering diagram, except
Fig. 13. Images after applying the homomorphic filter to the ideal Fourier filter (a) 10
Butterworth filter (a) 10%, (b) 20%, (c) 30%, (d) 40%.

Fig. 14. Images after applying the homomorphic filter to the wavelet filter (a) 2 levels an
and HH.
for the median filter diagram. This exception has been made be-
cause using the homomorphic filtering with the median filter as
a nucleus would not change anything, as opposed to applying only
the median filter, since it is based on the existing order relationship
between the pixels in an image. Thus, applying the logarithm to
each one would not change this specific order.

4.5.1. AWMF filter
We will now go on to the AWMF filter. The results for the met-

rics obtained in each case for this filter are shown in Table 10. In
%, (b) 20%, (c) 30%, (d) 40%. Images after applying the homomorphic filter to the

d band HL. (b) 2 levels and band LH. (c) 2 levels and band. (d) 2 levels and bands LH



Table 12
Metrics obtained when applying the homomorphic filter to the wavelet filter.

MSE SNR PSNR b

Level 1/HL 1821.985611 3.128909 15.525354 0.012872
Level 1/LH 1702.802963 3.422715 15.819160 0.017351
Level 1/HH 1823.531799 3.125225 15.521670 0.013359
Level 2/HL 1817.533997 3.139533 15.535978 0.014185
Level 2/LH 1530.535309 3.885925 16.282370 0.018517
Level 2/HH 1817.079117 3.140620 15.537065 0.013741
Level 2/LH,HH 1510.758530 3.942408 16.338853 0.022574
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this table, the results are shown in the same order as when the
AWMF filter was shown. If this table is compared with the results
shown previously, we see that practically all metrics are worse, ex-
cept for the configuration 11-2-1. The images generated with these
parameters are shown in Figs. 11 and 12.

It seems that using a homomorphic filtering with this algorithm
is not a good choice. The reason is that by transforming the input
image with the logarithm function, the distance between the
image’s intensity values is reduced and it is more difficult to distin-
guish between noise and borders. Besides, it is needed to use a con-
figuration of parameters more aggressive in order to obtain similar
results without homomorphic filter. This could be the reason why
there is no use of homomorphic filtering with the AWMF filter in
the bibliography.

Nevertheless, it is very common to find the Fourier filtering
being used as the nucleus of the homomorphic filtering. This is ex-
pected to work well and it can be seen in our experiments, as
shows Table 11, where we see the metrics for the images obtained
using a homomorphic filtering with the Fourier filtering (see also
Figs. 13). Better results are obtained in every case, opposite as be-
fore. Only it has to be pointed out that, apart from ideal filter with
10% as cut off, in all cases b values are worse.

4.5.2. Wavelet filtering
Now, the only thing left is to test the homomorphic filtering

with the wavelet filtering. Table 12 shows the results obtained in
this case. The corresponding images may be found in Figs. 14. Here,
if we compare the results with the ones shown earlier for the
wavelet filtering, we notice that there are some cases where homo-
morphic filter gets better results and some others which are the
opposite. However we can see that the cases where we can get bet-
ter results with homomorphic filter are those which previously
were better (1/LH, 2/LH and 2/LH,HH).
5. Conclusions

In this paper, we have tried to deal with the biggest problem
regarding the processing of medical images: noise. Images in the
medical field, such as magnetic resonance imaging, X-rays, ultra-
sound images, etc. are a very significant tool for the diagnosis and
study of various illnesses. Given the growing importance of their
use, these images have to be as sharp as possible. Even so, in some
cases all the help possible is needed to interpret the images. This
paper has focused on ultrasonic images or ultrasound images and
more specifically, on the suppression methods of the characteristic
noise in this type of images: the so-called speckle noise.

In this respect, this paper has compared some of the different
algorithms and methods currently used to smooth the existing
noise in medical images obtained through ultrasound images. We
have explained a whole series of methods used in this field. The
comparative study of noise suppression methods in ultrasound
images was carried out on a noise-free synthetic image. We have
used the Field II software to corrupt the image, adding the typical
noise in ultrasound images. Afterwards we have shown some of
the most common smoothing techniques over this image using nu-
meric metrics, taking the noise-free image as a reference.

The first conclusion is that the best quality images are obtained
with Fourier filter. The others can provide some improvement, but
not that much. Besides, using Fourier filter is much more simple
than any of the others because it only takes one parameters. How-
ever, AWMF has three parameters and it does not yield results as
good as Fourier filter does.

The wavelet filtering, as we have seen, does not seem recom-
mendable with real ultrasound images. It not only does not elimi-
nate a lot of noise, but when the bands are eliminated, an effect
with white dots appears that distorts the image very much. The
homomorphic filtering should be only used with Fourier filter,
however with the other filters it is not that useful.
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