

Configurable Satisfiability Propagation for Goal
1

Elena Navarro* Patricio Letelier**, David Reolid* and Isidro Ramos**

*Computing Systems Department, UCLM, EPSA, Campus Universitario
s/n, Albacete, 02071, Spain, [enavarro|dreolid] @info-ab.uclm.es
**Department of Information Systems and Computation, UPV,
Camino de Vera s/n, 46022, Valencia, Spain, [letelier|iramos]@dsic.upv.es

1 Introduction

It is frequently the case that at early stages of the requirements engineering proc-
ess, critical decisions about what the system should provide are taken. Stake-
holders and developers must evaluate alternatives and conflicts among the system
requirements. In addition, a great deal of work must be done through focused
brainstorming, validation, negotiation, and decision-making associated to vague or
not completely defined requirements. In this context, Goal-Oriented modeling
techniques emerge as a suitable way of defining and analyzing requirements, but
also as an effective way to provide the necessary traceability towards other de-
rived software artifacts.

This work aims at introducing a framework for exploiting Goal Models that al-
lows the analyst to customize the analysis mechanisms according to the project
needs. Our approach is based on the propagation algorithm proposed by (Giorgini
et al. 2003), which establishes the essential computation of propagation. Using
metamodeling techniques we provide the analyst with extensibility and customiza-
tion mechanisms to modify the computation according to particular Goal Model
elements, application domain, business rules, etc. These facilities are supplied by
MORPHEUS, a tool we have developed for supporting our proposal.

1 This work has been funded by the Spanish CICYT project DYNAMICA

TIC2003-07776-C02-02.

Models Using Dynamic Compilation Techniques

The remainder of this work is structured as follows. In section 2 a brief intro-
duction to Goal Models and their analysis capabilities for requirements is pre-
sented. Section 3 describes our proposal presenting the integration of metamodel

2 Background

A Goal Model is built as a directed graph by means of a refinement from the sys-
tems goals (or concerns). This refinement lasts until goals have enough granularity
and detail so as to describe an operationalization, i.e., a solution that provides the
target system to meet users’ needs and expectations. This refinement process is
performed by using AND/OR refinement relationships. An AND (OR) relationship
between a goal GoalX and a set of sub-goals G1 … GN is established if the whole
set of (at least one) sub-goals has to be satisfied in order to satisfy GoalX. In addi-
tion, operationalizations are associated to the requirements (leaf goals) by means
of contribution relationships that denote how they collaborate to achieve a goal.

Once a Goal Model is defined mechanisms can be used to analyse its satisfi-
ability. The satisfaction (denegation) of a goal means that it will (will not) be pro-
vided by the system-to-be, i.e., user’s needs and expectations will (will not) be
met. The propagation to carry out this reasoning about goal satisfaction is ad-
dressed by means of two approaches:

Qualitative approach. The idea is to establish positive or negative influence
(for instance, by means of ++, +, #, -, -- symbols) of contributions from
operationalizations to goals in the Goal Model. These operationalizations can
be designs, agents, events on the market, etc., depending on the specific Goal
Model that is being used. In this sense, the degree of satisfaction does not have
a precise interpretation, i.e., it is not based on domain or system properties but
on the analyst criteria. (Chung et al. 2000) and (Giorgini et al. 2003) are
examples of this approach.
Quantitative approach. In this case, weights are set to contribution
relationships describing the satisfaction degrees that goals have among them.
The propagation is performed in a similar way to the previous case, but now a
specific value of satisfiability is achieved. Those weights can be assigned
according to quite different criteria:

1. Subjective assignment where only the analyst criteria is used to decide, as for
instance (Giorgini et al. 2003)’s proposal.

2. Objective assignment, which is based on domain properties. Some proposals
are that presented by (Letier and Lamsweerde 2004) for reasoning about par-

 Elena Navarro et al.

elements in rule description that are used in a propagation algorithm. Section 4
describes MORPHEUS, a tool developed to give support to our framework and
especially an add-in incorporated to exploit the Goal Model by means of satis-
faction/denegation propagation. Eventually, in section 5 conclusions and future
work are presented.

168

Configurable Satisfiability Propagation for Goal Models

tial satisfiability of requirement; or (Hansen et al. 1998) to analyze safety
constraints of system-to-be with fault-trees.

within the European project Environmental Friendly and cost-effective Technol-
ogy for Coating Removal (EFTCOR, 2003). Its aim is to design a family of robots
capable of performing maintenance operations for ship hulls. On the left of the
image, it can be observed how goals are refined from a high level goal (suitability)
towards requirements (operationalizable goals) and operationalizations. For in-
stance, it can be observed that to achieve a suitable system-to-be both “Ap-
proachRobot” and “CatchObject” have to be satisfied; or how “MoveUsingMUC ”
positively contributes to “MoveStepArms”. In addition, on the right side of the im-
age the result of the propagation for that selected operationalizations is shown.
The explanation of the used rules is presented in the next section.

Currently, there is no standard notation for goal-oriented specification but sev-
eral proposals have appeared that address different activities and perspectives in
the Requirements Engineering Process2 . In this sense, Goal Models are mainly

Similarly, the propagation of satisfaction/denegation through the Goal Model
depends on the application domain and the expressiveness of the Goal Model
(provided by its elements such as kinds of refinements, artefacts and associated at-
tributes). Furthermore, the propagation rules could also be specific for the project
or could even be modified in the same project in order to reflect some additional
consideration during the analysis. This required flexibility is missing in the current

Fig. 1. Propagation of Satisfiability/Denegability(Selected Operationalization ,
Satisfied Goal or Requirement , Denied Goal or Requirement)

exploited for evaluating alternative designs such as those described by (Chung
et al. 2000) (Letier and Lamsweerde 2004), business goals (Giorgini et al. 2003),
etc. However, there is no consensus on which the most appropriate mechanism or
proposal should be. For this reason, it is the analyst who finally has to make the
final decision about which should be used for a specific project.

Figure 1 shows a summary example of a Goal Model which has been defined

2 (Kavakli and Loucopoulos 2004) offer a detailed comparative framework

about these proposals and their role in Requirements Engineering

169

Model.

3 Our proposal

Our proposal took shape in the context of the ATRIUM methodology, presented
by (Navarro et al. 2003), that guides the analyst through an iterative process, from
a set of user/system needs to the instantiation of a Software Architecture. This
proposal employs a Goal Model which is based on the (Dardenne et al. 1993) and
(Chung et al. 2000) proposals. This Goal Model was extended by (Navarro et al.
2004) integrating the Aspect-Oriented approach, in order to achieve both the effi-
cient management of crosscutting and the correct organization of the SRS (Soft-
ware Requirement Specification). A set of techniques have been also incorporated
to identify and specify variability, from the requirements stage, so that product
lines and dynamic architectures can be dealt with. In this context, mechanisms for
exploiting the ATRIUM Goal Model had to be defined and developed that do not
only deal with specific expressiveness of the model but customize these tech-
niques according to other specific needs.

In order to facilitate this customization a proposal for requirements metamodel-
ing was developed and introduced in (Navarro et al. 2006). In this work, the most
widely known notation for requirements specification (use cases, goal models, etc)
were studied so as to identify the essential terms and concepts of each of them.
Taking into account this study a metamodel for the essential concepts was defined
that allows one to deal with generic expressiveness. The core concepts and their
relationships are shown in Fig. 2. The first topic to consider was to define the
metamodel is the description of artefacts. It allows one to describe any element to
be included in the SRS. In this sense, any needed artefact can be described by in-
heriting from Artefact metaclass.

In addition to the artefact concept, it is also necessary to establish the artefact
relationship with other artefacts of the SRS. Therefore, two kinds of relationships
were identified. An artefact can be refined through other artefacts, forming a hier-
archical structure. The basic kind of refinement included is Refinement that allows
the analyst to define hierarchies of alternative specializations from the same parent
and to relate one child to more than one parent by multiple inheritance. In addition

Fig. 2. Core Metamodel for Requirements Engineering

 Elena Navarro et al.

proposals and constitutes an important obstacle while applying a specific Goal

170

Configurable Satisfiability Propagation for Goal Models

)(

),(
min

3

2

Gden

Gden

)(

),(
min

3

2

Gsat

Gsat

the dependency relationship has also been included in the metamodel. Perhaps this
is the most conflictive relationship for consensus. For this reason, it is represented
in its most generic form, i.e., by means of Dependency metaclass which is appli-
cable to artefacts in the core. This metamodel has to be tailored according to the
specific needs of expressiveness. With this purpose in mind, several steps were
suggested to adapt and/or extend the metamodel. They need not be applied se-
quentially but in accordance with the analyst’s preferences to describe new kinds
of artefacts, relationships, attributes, constraints, etc, extending that described in
the core.

In order to allow the analyst to customize the rules to be used during the propa-
gation process an extension to the algorithm proposed by (Giorgini et al. 2003) has
been developed. In this sense, the customization allows the analyst to include any
kind of relationship and artefact along with their attributes to describe the propa-
gation rules.

 132, GGG and 12 GG S 12 GG S 12 GG S
12 GG S

sat(G1)

N sat(G2) N

den(G1) N N sat(G2)

Fig. 3. Qualitative Propagation rules described by (Giorgini et al. 2003), where
S , S

(Giorgini et al. 2003) have described a set of rules to specify how the propaga-
tion has to be compute that Fig. 3 depicts. Sat(Gi) and Den(Gi) specify the satisfi-
ability and deniability, respectively, of the goal Gi, whose value is taken from the
ordered set {“++”,“--”,“+”, “-”, “#”}. For example, let G2 and G3 subgoals of G1
refined by using an AND relationship, the satisfiability of G1 is set to the mini-
mum of satisfiability of its subgoals. This means that G1 is undefined, partially
satisfied or totally satisfied depending on which minimum value between G2 and
G3 is. As can be observed in Fig. 1 “ApproachRobot” is fully satisfied because
each one of its subgoals is satisfied. Regarding contribution relationships, Fig. 3
depicts that an asymmetric propagation is performed. For instance, 12 GG S

means that if G2 is satisfied, then there is some evidence that G1 is satisfied, but if
G2 is denied, then nothing is said about the satisfaction of G1. On the contrary, if
the relationship is 12 GG S then there is some evidence that G1 is denied whether

G2 is satisfied, but if G2 is satisfied, then nothing is said about the satisfaction of
G1. But Giorgini et al.’s have also described the rules for symmetric propagation.
In that case, these rules consider the propagation of both satisfiability and deni-

ability. An example could be the relationship 12 GG that means that if G2 is

satisfied (denied), then there is some evidence that G1 is satisfied (denied).

P

Gsat),(
min 2

P

Gsat),(
min 2

, etc. are describing contribution relationships

171

Table 1. Propagation algorithm based on (Giorgini et al. 2003)’s proposal

Table 1 shows how Giorgini et al.’s algorithm has been modified for customi-
zation purposes, highlighting the added pseudo-code with shadowed text and the
dropped pseudo-code with a grey text. Two main functions were initially de-
scribed by Giorgini et al.’s: “Label_Graph” which iterates through the goal model
until there is no changes in the satisfibiality and deniability; and “Update_Label”
which apply the appropriate rule, from those described in Fig. 3 and depending on
the kind of relationship, to compute the satisfibiality and deniability of each node
of the graph. As can be noticed, the initial proposal only describes the valuation
for two attributes (sat and den) with a fixed set of rules (Fig. 3). However, with
our proposal this set and attributes can be customized according to the specific
needs of the project, as will be described below.

It is shown in Table 1 that whenever a rule has to be applied two steps must be
performed. First, applicable describes which state or situation has to be satisfied in
order to apply a specific rule. Second, valuate specifies the propagation computa-
tion when a rule is applied. In view of this, the grammar for defining both quanti-
tative and qualitative rules is introduced by using the Backus-Naur Form (BNF).
Table 2 and Table 3 show how applicable and valuate can be described, respec-
tively. By using this grammar the rules defined by (Giorgini et al. 2003) can be
easily described as shown in formulae (1) and (3).

 Elena Navarro et al.172

Configurable Satisfiability Propagation for Goal Models

Table 2. BNF for describing condition grammar

<condition> ::= ‘(’<condition>‘)’<relational_op>‘(’<condition>‘)’
 | not ‘(’<condition> ‘)’ | <node> <logic_op> <node>

<node> ::= <identifier>|<expression>| <function>‘(’<identifier> ‘)’
<identifier> ::= <id_kind_artefact>‘.’<id_attribute>
 | <id_ kind_relation>‘.’<id_attribute>
<function> ::= max | min | count | avg
<relational_op>::= ‘&&’ | ‘||’ | ‘%%’
<logic_op>::= ‘>’ | ‘>=’ | ‘=’ | ‘!=’ | ‘<=’ | ‘<’ | ‘>’
<expression> ::= ‘‘’<string>‘’’ | <number>

Table 3. BNF for describing valuation grammar

<valuation>::=id_kind_artefact>‘.’<id_kind_enum_attr>‘=’ <val_enum>
 | <id_kind_artefact>‘.’<id_ kind_numb_attr> ‘=’ <val_ numb>
<val_enum> ::= <id_kind_artefact>‘.’<id_ kind_enum_attribute>
 |<expression_enum>
 |<funct_enum>‘(’<id_kind_artefact>‘.’<id_ kind_enum_attribute> ‘)’
<funct_enum> ::= max | min
<val_ numb>::=‘(’<val_numb>‘)’<op_numb>‘(’<val_numb>‘)’| <ident_num>
 | <funct_num> ‘(’ <ident_num> ‘)’| <expression_num>
<funct_num> ::= max | min | count | avg | sum | prod
<ident_num> ::= <id_kind_numbered_artefact>‘.’<id_attribute>
 | <id_ kind_relation>‘.’<id_attribute>
<op_numb> ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

For instance, considering how the CONTRIBUTION relationship (12 GG label)

is evaluated by Giorgini et al. we can appreciate that both the state of this relation-
ship and the Goal source (GS) are used to determine if the rule can be applied or
not. In this sense, the condition could be described as: GS(satisfied) && label=--S,
i.e., GS has an attribute that describes if GS is satisfied. It is similarly applied to
label, i.e., CONTRIBUTION relationship needs an attribute for specifying --S as
its current state. In these terms, the best alternative is to represent these attributes
following a syntax as described in Table 2 for <identifier>, i.e., by prefixing the
attribute name with the name of the artefact or the relationship (see (1)).

In addition, when refinement relationships are considered, for instance an AND
relationship (

D
and

n GGG1
), some functions may be needed to determine the

condition being applied to the set of artefacts G1 to Gn. For this reason, an easy
alternative is to use group functions as <function> describes in Table 2.

Furthermore, it is worthy of note that conditions can be combined to express
other more complex ones. This will be described by using relational operations.
This means that it would be possible to describe conditions such as:

173

In a similar maner, the syntax for the valuation is described by using the BNF
(Table 3). As was stated in section 2, both quantitative and qualitative valuation
should be described. For this reason, we have to distinguish between the two in
order to make the peculiarities inherent in both kinds of valuations available.
While describing qualitative valuations only enumerated attributes are made
available to the analyst. This restriction is straightforward so that possible
valuations are always constrained to a set of values. For instance, when
considering the satisfiability, as described by Giorgini et al., the set {Full, Partial,
None} is used. It also facilitates the valuation of this kind of attributes by
describing functions for enumerations (<function_enum>). This requires that the
set be defined as an ordered set in order to be able to properly apply these
functions (min and max). This means that the valuation for an AND relationship
(Fig. 3) could be easily described as appears in (3).

Related to the artefacts involved in a refinement relationship, aggregated
functions (<function_num>) can be used for its treatment as described in:

Some specific rules had to be introduced since ATRIUM Goal Model was de-
fined to facilitate the analysis of variability. For instance, it has to be considered
that whenever a variation point is described, its multiplicity must be defined, i.e.,
how many variants must exist at the same time in a product or architecture when
the variability is being removed. Table 4 shows how rule OR relationship has been
modified for dealing with variability.

Table 4. Defining rules for variability analysis

-S ION.label)(CONTRIBUT and)Full.satisfied(GoalS

2)Full.satisfiedmin(Goal

 and)High.priority(Goal and)Peformance.type(Goal

i

ii

).satisfiedmin(Goal .satisfiedGoal iD (3)

).satisfiedprod(Goal -).satisfiedsum(Goal .satisfiedGoal iiD (4)

 Relationship Condition Valuation
Giorgini
 et al.

Satisfiability
(ORGn GD…G1)

 GoalD.Sat =
max(Goali.Sat)

Variability Satisfiability
(ORGn GD…G1)

(count(Goali.Sat== +S”) +
count(Goali.Sat== ++S”)) >=
OR.multiplicity.min) &&
(count(Goali.Sat== +S”) +
count(Goali.Sat== ++S”)) <=
 OR.multiplicity.max)

GoalD.Sat =
max(Goali.Sat)

 Elena Navarro et al.

‘ ’ ‘ ’

‘ ’

‘ ’

‘ ’

(1)

(2)

“
“

“
“

174

Configurable Satisfiability Propagation for Goal Models

4 Morpheus: Using dynamic compilation techniques

With the aim of supporting this proposal a tool called MORPHEUS has been used.
Due to the fact that it has to manage each model defined by ATRIUM (Require-
ments Model, Scenarios Model and Software Architecture Model) three different
environments are provided by MORPHEUS (Fig. 4). Related to the Requirements
Model, MORPHEUS is able not only to define both new kinds of artefacts and re-
lationships but also to instantiate and exploit them, in such a way Goal Models
with different expressiveness can be defined. For this reason, the Requirements
Model environment has been split into two different working contexts. The first
one allows analysts to establish the requirements metamodel to be used by means
of the Metamodel Editor; and the second provides analysts with facilities for mod-
elling according to the defined metamodel by using the Model Editor.

Fig. 4. Describing MORPHEUS capabilities MORPHEUS capabilities

In addition, MORPHEUS has been developed with capabilities to extend its
functionality with analysis techniques. The main reason is that as new metamodels
are defined, their related techniques can also be included and exploited. An exam-
ple of this capability has been the development and integration of an add-in for
Goal Model analysis based on satisfability propagation. Fig. 5 shows how this
add-in has been designed. It has been split into three main components: a Rules
Editor, a Code Compiler and a Propagation Processor.

Fig. 5. A sketched view of the propagation add-in

175

For its development several alternatives were evaluated. However, the usability of
the proposal was one of the main characteristics to be achieved. For this reason, a
user interface (Rule Editor in Fig. 5) that allows the analyst to introduce the rules
in a simple and comprehensible manner was developed. The Rule Editor is split
into three main parts: a browser, a rules descriptor and an editor. The browser al-
lows one to navigate through the relationships and the artefacts connected by
them. The rules descriptor displays the applicable rules, for a selected relationship
and source and destination artefacts. It can be appreciated that the when text box
describes the condition and next to it appears the valuation. Below the rules de-
scriptor, a visual control permits to edit the condition and the valuation. This pro-
vides the analyst with several buttons and capabilities that prevent him from
knowing any detail about how his/her metamodel is described in the repository or
how rules are internally implemented.

Fig. 6. MORPHEUS while loading the Rule Editor

In addition, a syntactic checking is performed when a rule is being defined
thanks to the capabilities provided by (GOLD 2005). This is a free parsing system
that can be used to develop one’s own programming languages, scripting lan-
guages and interpreters by previously writing your grammar using BNF. The
BNF, which was described for the condition (Table 2) and the valuation (Table 3),
was introduced in GOLD. Then, the GOLD Parser Builder was used to analyze
this grammar and create the Compiled Grammar Table file (CGT) used by a com-
pilation engine. It uses this CGT file to generate a C# skeleton program with a
custom parser class that acts as a template for parsing any source satisfying the
BNF grammar. By means of this template, the specific compilation to the objec-
tive code can be described. In this case, a translation to C# code was performed to
make available artifacts and relationships from the repository, and that computa-

 Elena Navarro et al.

Figure 6 shows what MORPHEUS looks like whenever the Rule Editor is loaded.

176

Configurable Satisfiability Propagation for Goal Models

tion which was needed for both condition and valuation. So, for each rule its
valuation and condition description along with their respective compilation to C#
is stored in a XML rules file to be lately used for the Code Compiler. The per-
formance could have been seriously compromised due to the necessity of repre-
senting these rules as code for its use in run-time. For this reason, the approach of
dynamic compiling, while it is more complex, provides us with a proper solution.
Microsoft .NET Code Document Object Model technology, as described by
(Harrison 2003), has been used for this purpose for the implementation of the
Code Compiler.

By using Code Compiler (Fig. 5) a set of assemblies, containing both the rule
code and other functionality, is generated at run time. For each rule, which is
saved in a XML rule file, a C# class is generated which inherits from IRule. It is
an abstract class with two abstracts methods to override for each inherited class:
applicable function, which checks if the rule can be applied; and valuate function,
which performs the propagation computation. This class also has a set of functions
to perform the minimum, maximum, etc. So, while generating code, each rule C#
class is going to override the abstract methods with that code stored in the XML
rule file. Other classes are also used for the management of the generated classes
which are previously pre-compiled to speed up this process.

Afterwards, these assemblies are accessed by the Propagation Processor to per-
form the propagation on a specific goal model and generate the results. In terms of
integration, Propagation Processor makes use of the MORPHEUS API to access
the model and will pass through the relations and artefacts retrieved from the re-
pository.

5 Conclusions and further work

Goal Models are a very promising technique to improve requirements elicitation.
Thanks to their special capabilities to analyze goals/requirements, they can be
used at early stages of requirements engineering process, when alternatives are
explored, conflicts are identified and, in general, the project is in the phase of re-
quirement negotiation. However, Goal Model techniques must face a common ob-
stacle in requirements engineering: the diversity of proposals with an evident lack
of integration; and the specific needs of the project (or domain), which usually re-
quires a customization of the requirement method and its notation.

We have presented a framework to cope with the integration and customization
problem in requirements engineering techniques. In this work, we have used our
framework to provide customizable support in Goal Model propagation analysis.
We have illustrated how the propagation rules can be defined according to a spe-
cific metamodel. In this way, we can not only establish propagation rules for
analysis but also redefine the propagation rules whenever it is necessary. This
functionality was provided by means of dynamic compilation techniques using
CodeDom. MORPHEUS, a tool we have developed to give support to our approach,

177

Following this line of research, our ongoing work covers several issues. First,

6 References

Chung L, Nixon B A, Yu E and Mylopoulos J (2000) Non-Functional Require-
ments in Software Engineering, Kluwer Academic Publishing.

Dardenne A, Lamsweerde A van, and Fickas S (1993) Goal-directed Require-
ments Acquisition. Science of Computer Programming, 20, pp 3-50.

Giorgini P, Nicchiarelli E, Mylopoulous J, and Sebastiani R (2003) Formal rea-
soning techniques for goal models. Journal of Data Semantics, 1: 1-20.

GOLD Parsing System, http://www.devincook.com/GOLParser/ index.htm, 2005.
Hansen K M, Ravn A P, Stavridou V (1998) From Safety analysis to software re-

quirements. IEEE Tran. on Software Engineering, 24(7):573-584.
http://

www.ondotnet.com/pub/a/dotnet/2003/02/03/codedom.html.
Kavakli E and Loucopoulos P (2004) Goal Driven Requirements Engineering:

Analysis and Critique of Current Methods. In: Krogstie J, Halpin T and Siau

Lamsweerde A van (2000) Goal-Oriented Requirements Engineering: A Round-
trip from Research to Practice. In: Proc 12th IEEE International Requirements
Engineering Conference, IEEE Computer Society, Los Alamitos, pp 4-7.

Letier E and Lamsweerde A van (2004) Reasoning about Partial Goal Satisfaction
for Requirements and Design Engineering. In: Taylor R N, Dwyer M B (eds)
Proc of 12th ACM International Symposium on the Foundations of Software
Engineering, ACM Press, New York, pp 53-62.

Navarro E, Letelier P, Mocholí, J.A. Ramos I (2006) A Metamodeling Approach
for Requirements Specification. Journal of Computer Information Systems,
46(5): 67-77, Special Issue on Systems Analysis and Design.

Navarro E, Letelier P and Ramos I (2004) Goals and Quality Characteristics:
Separating Concerns, Early Aspects 2004: Aspect-Oriented Requirements En-
gineering and Architecture Design Workshop, collocated to OOPSLA.

 Elena Navarro et al.

associated to the established metamodel and perform their computation.
was extended with an add-in which allows the analyst to define propagation rules

we intend to go more deeply into the analysis and exploitation of Goal Models
using the specification of the goal/requirements itself apart from its attributes and
relationships with other goals/requirements. This entails working with formal spe-
cifications of requirements (at least at some level of formalization) to perform a
deeper verification and provide some automated support for the Goal Model speci-
fication. Other interest is to improve the mechanisms for analyzing the propaga-
tion, including graphical visualization (apart from tabular representation) and
predefined report analysis. Finally, we are working on the establishment of pre-
cedence mechanisms for solving conflicts when more than one rule is applicable.

K (eds) Information Modeling Methods and Methodologies, 102-124.

Harrison N (2003) Using the CodeDOM. O’Reilly Network,

178

Configurable Satisfiability Propagation for Goal Models

Navarro E, Ramos I and Pérez J (2003) Software Requirements for Architectured
Systems. In Proc of 11th IEEE International Requirements Engineering Con-
ference, IEEE Computer Society, Los Alamitos, pp 365-366 (position paper).

179

