
Microprocessors and Microsystems xxx (2010) xxx–xxx
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
Virtualizing network-on-chip resources in chip-multiprocessors

Francisco Triviño a,⇑, José L. Sánchez a, Francisco J. Alfaro a, José Flich b

a Department of Computing Systems, University of Castilla-La Mancha, Albacete, Spain
b Parallel Architectures Group, Technical University of Valencia, Valencia, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Available online xxxx

Keywords:
Network-on-chip
Virtualization
Performance evaluation
0141-9331/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.micpro.2010.10.001

⇑ Corresponding author.
E-mail addresses: ftrivino@dsi.uclm.es (F. Triviño

Sánchez), falfaro@dsi.uclm.es (F.J. Alfaro), jflich@disca
1 We have chosen two applications (Blackscholes and

the recently released PARSEC v2.1 benchmark suite.

Please cite this article in press as: F. Triviño e
doi:10.1016/j.micpro.2010.10.001
The number of cores on a single silicon chip is rapidly growing and chips containing tens or even hun-
dreds of identical cores are expected in the future. To take advantage of multicore chips, multiple appli-
cations will run simultaneously. As a consequence, the traffic interferences between applications
increases and the performance of individual applications can be seriously affected.

In this paper, we improve the individual application performance when several applications are simul-
taneously running. This proposal is based on the virtualization concept and allows us to reduce execution
time and network latency in a significant percentage.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In order to continue increasing the computing speed, current
semiconductor manufacturing techniques include multiple cores
on the same chip. The microprocessor industry has chosen multi-
core chips instead of an increasingly powerful uniprocessor [1].
Power usage, heat generation or cost are some of the main reasons
against the latter motivating that decision. Although these cores do
not necessarily run as fast as the highest performing single-core
processors, they all improve the overall performance. Therefore,
chips containing tens or even hundreds of identical cores are ex-
pected in the future. Chip multiprocessors (CMPs) are an excellent
example of these systems [2–6].

To take full advantage of CMPs, it is also expected that several
applications will run simultaneously on such CMP systems. More-
over, as the number of cores is increased, it is expected that the
number of applications to run in the same CMP also increases.
All those applications can be of diverse nature, making the traffic
pattern completely unpredictable because of the very different
program behaviors for different external inputs (e.g. computer
vision, media processing, animation, simulations, data mining,
etc.). As a consequence, the CMP load will also increase, which
may affect the performance of individual applications.

Fig. 1 shows results about several performance metrics both
when there exists only one application1 running in the system,
and when it shares network resources with others which are repre-
sented by stress load in this test. In both cases the applications are
ll rights reserved.
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running with 16 threads where each one is mapped in one core of
a 4 � 4 mesh CMP. We have chosen synthetic traffic set up to 0.3
packet injection rate to represent the stress load. Finally, note that
the results are shown in normalized terms compared with the per-
formance metrics when the application runs alone.

In the figures the execution time increases 37% for the Blacks-
choles application and 25% for the Streamcluster, approximately.
When we apply the stress traffic in the network, not only the exe-
cution time is affected. As we can see, the stress traffic has also a
direct impact on whole CMP resources. For instance, the total
application cache misses are increased by 31% for the Blackscholes
and 21% for the Streamcluster application when both are running
in shared mode.

Therefore, it is necessary to improve the individual application
performance when several applications are simultaneously run-
ning in a CMP system. In this scenario, all resources in the CMP
are shared for the applications. If this is not done in an efficient
way, performance of any individual application can be seriously af-
fected. The work presented here highlights this problem and moti-
vates the performance differentiation desired for the applications.

Our proposal to avoid these problems is based on isolating the
traffic of each application so that the CMP could guarantee the per-
formance requirements that applications need. This results in a
partitioning of the CMP in several regions, each one composed of
a subset of available resources in the CMP system. Fig. 2 shows
an example of applying the virtualization mechanism to a CMP,
where four partitions have been created which only share off-chip
memory. Notice that the size of the partitions can be performed in
order to satisfy the application’s requirements and, therefore, it is
possible to assign applications to partitions with different size. In
this example, the CMP has been partitioned to allow four applica-
tions to run simultaneously with each one allocated in one
different region not having interaction among them. Note that in
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Fig. 1. Effect of stress traffic on two PARSEC applications.

Fig. 2. Example of the virtualization mechanism.
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this scenario it is also possible that more applications than four run
simultaneously in the CMP. Then, several applications would be
allocated to the same region. Only applications belonging to the
same region could interfere among them.

Of course, this technique involves several CMP components and
different actions must be performed. The operating system in close
cooperation with a hypervisor must analyze the requirements of
each application. Based on these requirements and the set of avail-
able resources it must be decided if the application can be run. If
possible, a new partition is created for the application or the appli-
cation is included in an existing one. The system should enable dy-
namic reassignment of cores, caches and memory to different
regions.

Specifically, in this paper we focus on one of these components:
the on-chip network. In CMPs, a requirement for a high-perfor-
mance on-chip interconnect emerges allowing efficient communi-
cation among cores. Networks-on-chip (NoCs) can reduce the
transmission delays to acceptably low values and allow an efficient
communication among cores, cache levels and memory controllers.
These NoCs are required to meet the challenges imposed by the
most advanced chip technologies to become part of future CMP
systems [7–12].

This CMP component has a major impact in performance and is
responsible for much of the miss-latency in all our experiments.
Moreover, we have observed in CMPs that the latency greatly in-
creases as the number of applications running together increases,
and so the NoC has a large impact on the applications performance
(final execution time). This is true even for multithreaded
Please cite this article in press as: F. Triviño et al., Virtualizing network-on-
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cores and applications with large miss rates. The performance of
applications is mainly constrained by latency and, therefore, mini-
mizing latency should be a priority on interconnects for such CMPs.

In this paper, we propose, discuss and evaluate to isolate the
traffic of different applications in order to reduce as much as pos-
sible the negative effect of the traffic interferences on the applica-
tions performance. Our proposal is based on the effective use of the
LBDR bits as a means to virtualize the NoC. We propose two ways
of isolating the traffic of different applications in order to reduce or
even to eliminate the traffic interferences. We show that enabling
and enforcing a virtualization mechanism is much more effective
for managing the resources than a baseline NoC scheme.

The structure of this paper is as follows: Section 2 presents the
related work. In Section 3 we present our proposal for isolating the
applications traffic in the NoC. Section 4 details the performance
evaluation and Section 5 shows the obtained results. Finally, Sec-
tion 6 presents conclusions and directions for future work.
2. Related work

As we have already shown in Section 1, if traffic isolation is not
enforced by the NoC, the traffic interferences have negative effects
in the performance of the applications. For this reason, the traffic
isolation is the main property a NoC system must achieve in order
to minimize interference among the different applications. In such
a situation, traffic from one application is not allowed to affect
other applications.

On the other hand, virtualization offers an opportunity for
improving the applications performance in the context of multi-
core systems. The recent re-emergence of virtualization has been
applied to different domains like virtual machines, virtual memory,
and virtual servers in data centers. In these scenarios, multiple ser-
ver applications are deployed onto virtual machines (VMs), which
then run on a single, more-powerful server. Many disparate work-
loads are consolidated together and hardware performance isola-
tion [13] becomes a desired feature for running applications with
different priorities identified by the user or system administrator.
On clusters, several studies [14–17] have focused on performance
isolation by contiguous node allocation. The study presented in
[14] focus on job scheduling techniques in conjunction with a con-
tiguous node allocation that improves the run-time jobs (due to re-
duced link contention and lower communication overhead). All the
above studies focus exclusively on allocating parallel jobs on clus-
ters, but do not address the issue of resource management onto the
CMP systems.
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Fig. 3. Communication flows for (a) VR and (b) VD models.
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If we focus on the CMP context, the virtualization model design
is a multifaceted process involving several issues. For instance, vir-
tualization involves the operating system and the different applica-
tions running together in the system. The memory system should
be optimized for minimizing the interference among separate
VMs to isolate better the single-workload of one application. To ad-
dress this problem, Marty et al. proposed a variety of techniques
[18] focused on a CMP memory system for server consolidation.
Another example can be found in [19] where the authors address
isolated cache usage, unmanaged shared caches and different
cache partitions per application based on quality of service
parameters.

Regarding the interconnect system, in [20] the authors intro-
duce the concept of the NoC virtualization and present some
advantages. For instance, they claim that due to the low parallel-
ism level that the current applications provide, the virtualization
of a NoC provides a partitioning mechanism that allows to manage
the resources and assign them to the applications in an efficient
way. Another advantage relies on the yield factor. In a virtualized
scheme failed components can be excluded by a smart partitioning
scheme that logically divides the NoC into different regions. Simi-
larly, cores and interconnect components that are otherwise idling
can be put to sleep mode and excluded at the NoC level thus reduc-
ing power-consumption. As a position paper, authors do not ex-
plain how to perform NoC virtualization and no evaluation is
presented.

Virtual channels (VCs) are often proposed to isolate several clas-
ses of traffic in the network [21–24,12]. The physical channel is
shared by several VCs with independent buffer queues. In this
way, VCs are a partial solution to virtualize the NoC as they isolate
traffic from different applications but they share the physical
channel.

However, using VCs in the NoC context has also important
drawbacks. Their implementation results in an area and power
overhead due to the cost of control and buffer implementation.
In addition, if more traffic classes are considered the number of
necessary VCs increases. Moreover, if we want to guarantee perfor-
mance bounds to applications, VCs are not enough. Indeed VCs are
also used to ensure such guarantees, as well to avoid protocol-level
deadlocks thus leading to a system where the number of required
VCs explodes.

Moreover, if we want to offer different treatment for each appli-
cation, VCs are not enough. A connection admission control, and
virtual output queuing at least at switch level are needed to guar-
antee certain performance levels.

Summing up, a virtualized NoC can improve the CMP perfor-
mance when several applications are running together. A virtual-
ized NoC may be viewed as a network that partitions itself into
different regions, with each region serving different applications
and traffic flows without interferences among applications of dif-
ferent regions. The virtualization concept requires that paths need
to be adapted. As packets are not allowed to cross application
boundaries, the routing algorithm must be adapted. Recently, the
Logic-Based Distributed Routing mechanism (LBDR [25]), which
is an effective method allowing such partitioning at the routing le-
vel, has been proposed. With this mechanism, and using as few bits
per router as 8, the network can be reconfigured in an effective
way. Moreover, VCs are not necessary thereby saving area and
power. However, the way to use those bits for virtualization pur-
poses has not been defined.
2 A node is composed by a local core, a private L1 cache, a shared L2 cache
physically distributed among the nodes of the whole CMP, and a router connecting to
neighbor nodes.
3. NoC virtualization

Generally, a CMP system consists of homogeneous nodes (tiles)
where each one contains a processing element, cache memory and
Please cite this article in press as: F. Triviño et al., Virtualizing network-on-
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the local router which connects the node to the neighboring nodes
building thus the NoC. One packet, when generated in the local
processor, is sent to the router via a network interface. Then, the
packet moves to the next router on its path depending on the rout-
ing algorithm, and the process is repeated until the packet arrives
to its destination.

In this paper we focus on the NoC presenting a technique to iso-
late the traffic of different applications in order to reduce as much
as possible traffic interferences. In this case, applications do not
share cores, caches nor network resources.

When the virtualization mechanism is used several partitions
need to be configured in the CMP. We have, at the network level,
two options. In the first case, as a result of the partitioning process,
messages generated by an application running in a given partition
can only use the network resources belonging to that partition. In
the second case, on the contrary, it is also possible that those mes-
sages are allowed to use NoC resources in other partitions. The first
option enforces partitioning at the network level, while the second
enforces partitioning only at node level.

In order to distinguish these two possibilities we introduce the
following definitions:

� Virtual-regions (VR): Virtual regions are partitions which are
composed of a subset of contiguous nodes2 and the links that
interconnect them. These nodes are devoted exclusively to an
application or group of applications sharing these resources. We
group all the resources involved in a virtual region. In this
scheme, traffic from one region is not allowed to traverse other
regions.
� Virtual-domains (VD): Virtual domains are also composed of a

subset of contiguous nodes but, in this case, messages gener-
ated by nodes in a partition can use links (and routers) of the
NoC belonging to other partitions in order to reach their desti-
nations. As in the previous case, these nodes are also devoted to
an application or group of applications that share these
resources. Therefore, this case is equal to the previous one but
without the restriction that messages cannot cross the bound-
aries of the region.

Fig. 3 shows the differences between the VR and VD cases. As
seen in (a), messages generated by nodes in the region (repre-
sented by arrows) only use links that are within the region. In this
particular case and under high rates of packet transmission, links
belonging to the virtual region could be heavily congested.

On the other hand, in the virtual domain case (b), nodes can
communicate via all the links in the NoC and thus distribute the
network load. However, in this case the traffic generated in a given
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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partition is not isolated and can interfere with other traffic gener-
ated in other partitions. On the contrary, in the virtual-regions
case, all traffic is fully isolated and the communication overhead
due to interferences of messages belonging to different regions is
avoided.

Note that the specific communication paths depend on the rout-
ing algorithm used in the network. The routing algorithm is the
only architectural modification needed to support these virtualiza-
tion models at NoC level. The algorithm should be flexible enough
to allow irregularly shaped regions and should be designed taking
into account the tight constraints applied to multicore chips
regarding latency, power-consumption, and area. Recent solutions
such as the LBDR mechanism [26] enable the virtualization concept
in a NoC and allow the allocation of partitions in a mesh topology
with small hardware requirements.

The Logic-Based Distributed Routing (LBDR) mechanism relies
on two sets of bits per output port at every switch and a small logic
block containing several gates. The first set lies in one bit per port
and allows to define the connection pattern of the region. Each out-
put port has a bit, referred to as Cx indicating whether a switch is
connected through the x port. Thus, connectivity bits are Cn, Ce, Cw,
and Cs. The second set lies in two bits per port and defines the set
of turns that are allowed due to the applied routing algorithm. The
bits for the east output port are labeled Ren and Res. They indicate
whether packets routed through the east output port may take the
north port or south port at the next switch, respectively. In other
words, these bits indicate whether packets are allowed to change
direction at the next switch. For output port north the bits are
accordingly labeled Rne and Rnw, for output port west Rwn and
Rws, and for output port south Rse and Rsw.

Fig. 4 shows an example of the LBDR mechanism where the con-
nectivity bits and the routing bits are detailed for switch 6. The
CMP with 16 nodes has been divided into two regions, each one
with eight nodes.
Fig. 4. An example of the LBDR mechanism.

(a) (b)
Fig. 5. Four possible cases fu
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On the other hand, we would like to remark that partitions with
different sizes and shapes are supported by this scheme without
changes in the hardware. This fact offers a great flexibility to the
application scheduler when assigning free resources in the CMP.
Fig. 5 shows different CMP configurations where the partitions
have different sizes. In these cases, we need to carefully compute
the LBDR bits within the network since deadlock and unconnected
nodes may arise. Fig. 5a shows the case where three partitions
have been set. In partitions P1 and P3 the up*/down* [27] routing
algorithm is used while in P2 the configuration is obvious (only
connectivity bits must to be configured). For this example, there
are no differences between VR and VD cases because all the parti-
tions are regular, and the messages have no opportunity to cross
the boundaries of the different partitions.

In Fig. 5b–d other examples are provided. Notice that the parti-
tions have also different sizes. These figures represent examples of
partitions with irregular shapes fully supported by LBDR. Indeed,
the LBDR mechanism is able to support irregular partitions, and
as a consequence, we can obtain a maximization of the system uti-
lization. For these specific cases, there are differences between VR
and VD cases due to the irregular partitions.

To sum up, our proposal is based on the effective use of the
LBDR bits as a means to virtualize the NoC. This fact allows us to
manage different partition sizes at same time without changing
the hardware. We consider two possibilities (configuration of rout-
ing bits and connectivity bits): in the VR model the messages can
only travel through specific regions while in the VD model they
can cross the boundaries.

4. Performance evaluation

In this section, we evaluate the behavior of our proposal using
simulation. We describe the simulation environment (based on a
full-system), the integration of the different tools to obtain the
full-system simulator, the benchmarks used in our experiments
as well as our experimental setup, followed by a detailed discus-
sion of the results obtained.

4.1. Simulation environment

As it is well known, there is a combined effect among all the
parts of a CMP architecture that may impact the obtained results
when a particular component is studied. The simulation environ-
ment we use consists in a full-system simulator that allows us to
simulate realistic workloads instead of synthetic traffic thus taking
into account all the interactions.

Fig. 6 shows a global scheme of all the simulation tools running
together. Our full-system simulator is based on Simics–GEMS. Si-
mics [28] simulates different processors at the instruction-set level
(the top of the figure). The General Execution-driven Multiproces-
sor Simulator (GEMS) [29] is a simulation toolset to evaluate
(c) (d)
lly supported by LBDR.

chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Fig. 6. Global view of the simulation tool.
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multiprocessor architectures using Simics. GEMS is composed of
two main simulation modules: Ruby and Opal. Ruby (in the middle
of the figure) is a simulator of a CMP memory system that models
caches, cache controllers, system interconnect, memory control-
lers, and banks of external memory. Ruby can also use coherence
protocols, designed to preserve the integrity of data distributed
on different levels of the memory hierarchy. Opal allows to simu-
late an out-of-order processor.

The interconnection network allows to communicate among
cache, memory controllers and processors. We have replaced the
interconnection model included in Ruby with other NoC simulator
called Noxim [30] (represented on the bottom of the figure). The
Noxim kernel is based on SystemC and simulates a NoC in detail
up to the micro-architecture level. Noxim provides flexibility to
specify many different properties of a NoC such as the routing algo-
rithm (deterministic or adaptive), arbitration policies, buffer size,
etc. In Noxim a wormhole switching router is modeled. We have
modified the Noxim simulator to implement the LBDR mechanism
needed to evaluate our virtualization proposal.

In addition, architectural power estimation is extremely impor-
tant in order to verify that power budgets are approximately met
by the different components of a certain design, and evaluate the
effect of the different proposals. For this reason, we have integrated
the Orion 2.0 [31] power model inside the Noxim simulator in or-
der to estimate the energy and area consumption of the simulated
NoCs.

4.2. System integration

Much of the work developed for obtaining the full-system sim-
ulator is the inclusion of a new model of interconnection network
inside of the Simics–GEMS system. To include the Noxim network,
we have developed the INetwork interface. This interface also al-
lows to include any network simulator in a simple way, and is
highly independent of the Noxim simulator.

Ruby uses a queue-driven event model to simulate timing.
Although many buffers are used in a strictly FIFO manner, the buf-
fers are not only restricted to FIFO behavior. The simulation pro-
ceeds by invoking the wakeup() method for the next scheduled
event on the event queue. The INetwork class produces events that
Please cite this article in press as: F. Triviño et al., Virtualizing network-on-
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are injected in the queue-driven event of the Ruby module, and
these events implement the wakeup() method for our purpose.

In a global view, the transactions (load/store) are produced as
consequence of the application execution in Simics. To satisfy a
load or a store, each transaction is composed by several Ruby mes-
sages. When a transaction occurs, the driver sends a wait signal to
Simics. The next step consists in simulating the messages over the
CMP modeled through the Noxim network and the Ruby memory
hierarchies. Finally, after that, the obtained latency (due to mem-
ory and network) must be returned to Simics. The process contin-
ues with other transaction and so on.

The wakeup() algorithm can be seen in Algorithm 1. For each in-
put port, and for each message that needs to be simulated in the
network, the wakeup() method is the responsible to extract the
message (line 3), and transform the ruby message to a Noxim packet
(line 4). Then, the packet is injected in the Noxim network (line 6),
but previously the packet id is stored in the system (line 5) while
the packet is simulated in the Noxim network.

Algorithm 1. [wakeup(noximNetwork) pseudocode.]

1: for all input ports do
2: for all message in the port do
3: message get message from ruby
4: packet transform(message)
5: stored packet id
6: inject into noxim network (packet)
7: end for
8: end for
9: put on noxim signal clock (1 cycle)
10:for all node of the CMP do
11: for all received packet do
12: packet get packet from noxim
13: id get id (message)
14: inject into ruby (id)
15: end for
16:end for
17: ruby event queue noximNetwork event

The next step consists in executing one cycle the Noxim net-
work and, subsequently, the wakeup() method performs the in-
verse process described above. That is, for each node of the
simulated CMP, and for each received packet from Noxim, the wa-
keup() method extracts the id of the received packet from the cor-
responding node (lines 12 and 13), and informs to ruby of its
reception in the simulated network. Finally, the noximNetwork
event is injected in the global ruby queue.

Finally, we have extended the Noxim simulator with the Orion
2.0 model [31] in order to provide the power and area estimated
from a given simulation. The result is a new NoC simulator that
provides the typical evaluation measurements such as the
throughput, latency, as well as the area and power-consumption.
The integration consists in merging both simulators. On the one
hand, the Noxim simulator must account for all the actions involv-
ing energy consumption, for instance, to transmit a flit over the
links, to forward a flit in one router, to store a flit in the input/out-
put ports, etc. On the other hand, the Orion simulator estimates the
energy and the area consumption depending on the configurable
parameters such as the technology, operating frequency, and oper-
ating voltage.

4.3. The CMP model

We model a homogeneous CMP with in-order cores. The CMP is
structured in a number of nodes (tiles), each with a processing
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Table 2
Overview of the on-chip network configuration.

Parameter Configuration(s)

Topology 2D-mesh regular 4x4
Routing algorithm LBDR with SR
Flit size 4 bytes
Buffer queue size 4 flits
Flow control ABP flow control
Network frequency The NoC works at the same

frequency as the processors
Process technology 32 nm
Transistor type LVT for high

performance router
Operating voltage 1.2
Wire layer type Intermediate
Wire layer length 100 lm
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element, a router, a private L1 cache, a shared L2 cache, a memory
directory bank, and a memory controller. The L2 cache is physically
distributed but logically shared at the chip level. In addition, the
memory directory bank is directly connected to the node. Coher-
ence between L2 and L1 is kept using a directory-based MOESI pro-
tocol. We assume 3D-stacking [32] and so each node has a memory
controller with a single DDR-2 memory channel. Finally, in order to
avoid the interference among the L2 cache of nodes of different re-
gions, we use a mapping distributed through OS-level page alloca-
tion [33] that forces the use of the L2 cache blocks that belong to
the region where the application is mapped. Fig. 7 shows a general
view of the CMP model. In Tables 1 and 2, we include the simula-
tion parameters modeling the complete CMP architecture.

Regarding the on-chip network, we use a mesh topology which
has all the links among nodes of the same size and width. Specifi-
cally, flit size is equal to the network link width, and we use a 4-
byte flit size. Since cache lines are 64 bytes, we model 8-byte con-
trol request messages and 72-byte responses, so that requests are 2
flits long and responses 18 flits long. We use the LBDR mechanism
for creating the region and domain definitions in the mesh, as it is
shown in Fig. 4. We also use the Segment-Based Routing algorithm
(SR [34]) in order to easily prevent cyclic dependencies in each vir-
tual region.
4.4. Workload

As workload we have used the PARSEC v2.1 benchmark suite
[35]. This benchmark suite contains emerging applications and
Node 0

Node 15

Shared
L2

Mem
Ctrl

Directory

Router

Network Interface

L1
Data

L1
InsProcessing

Element

Fig. 7. The general scheme of a CMP with 16 nodes.

Table 1
Overview of the CMP configuration.

Parameter Configuration(s)

OS Solaris 10
CPU 16 � UltraSparc III processor

L1 cache Instructions & Data
64 bytes block size
2-way associativity, 256 banks
32 Kbytes per core and 2 cycles latency

L2 cache 64 bytes block size
4-way associativity, 512 banks
1 Mbyte/core, 10 cycles latency

Main memory 2 Gbytes total, 250 cycles latency
Coherence protocol MOESI-CMP-Directory

Please cite this article in press as: F. Triviño et al., Virtualizing network-on-
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commercial solutions that cover a wide area of working sets and
allows current CMP technologies to be studied more effectively
[36]. The new version consists of nine applications and three ker-
nels where each one has been parallelized and focused on emerg-
ing workloads. The workloads are diverse and were chosen from
many different areas such as computer vision, media processing,
computational finance, enterprise servers, and animation physics.

Each one of the workloads defines six input sets with different
properties. The input sets Test and Simdev are intended for testing
the basic functionality of the workload. Simsmall, Simmedium and
Simlarge define different size for simulations. Finally, Native is
the largest input set and corresponds with the real application
execution.

We have evaluated the NoC virtualization proposals using all
the applications from the PARSEC v2.1 benchmark, but due to the
lack of space, we only show results for two sets of applications.
Table 3 shows the application domain and the computational
workload to run each application. In both sets, the Blacksholes
application is running together with the Fluidanimate and Body-
track applications for the first set, and with Swaptions and Stream-
cluster applications for the second set, all of them configured with
Simmedium inputs. However, the results for other combinations
obtained from the rest of applications and input sets are similar.
The last row of each set of applications (Table 3) shows the syn-
thetic traffic used to stress the network.

The stress traffic is only composed of artificial messages in the
network but they do not represent any computational workload
in the processing elements, not even cache usage. We use the
stress traffic in order to show the tendency in the application’s per-
formance when the traffic interferences increase due to different
network load. For this stress traffic, we have selected three differ-
ent packet injection rates (PIR). This value represents a constant
message generation rate at the nodes. For instance, a PIR value of
0.1 means that a flit will be injected in the interconnection
Table 3
Selected workloads.

Set Application Domains Simmedium Input

One Blackscholes Financial analysis 16,384 options
Fluidanimate Animation 100,000 particles, five frames
Bodytrack Computer vision 2000 particles, four cameras,

Five annealing layers
Traffic stress Traffic model 0.1, 0.2, 0.3 PIR

Two Blackscholes Financial analysis 16,384 options
Swaptions Financial analysis 32 swaptions, 10,000 simulations
Streamcluster Data mining 8192 input points,

64 point dimensions
Traffic stress Traffic model 0.1, 0.2, 0.3 PIR
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network each 10 cycles, assuming a peak bandwidth of 1 flit per
cycle. The pair source–destination will be calculated randomly as
well as the message size (from 8 to 72 bytes). For the low-medium
rates (0.1 and 0.2) this traffic could represent one or more applica-
tions while for high rates (0.3) could represent an application that
overloads the network.

This traffic also permits us to analyze the trend in the results
when the network load increases. When we enable the virtualiza-
tion mechanisms, the stress traffic is only generated in the nodes
that form the region/domain. In the VR proposal the traffic is
bounded to its region in order to eliminate the interferences
among applications. On the other hand, in the VD proposal the
messages of the stress traffic can cross the boundaries of its
domain.
4.5. Scenarios

In order to evaluate our proposals, we have considered different
scenarios. All of them assume the CMP model described in Section
4.3. In each scenario, three different PARSEC applications run
simultaneously in the CMP, together with the stress workload. In
order to avoid the effect of the scalability/parallelization degree,
we have configured the three applications with four threads each
one, as well as the stress traffic is mapped on four nodes. In this
case, the scenarios only differ in the way they use the CMP re-
sources. Note that our mechanism could manage different region
sizes at same time without changing the hardware.

The first scenario we have considered is a baseline NoC with no
mechanism to isolate the traffic of applications. In the baseline sce-
nario (BL) each application uses the entire NoC and it will be allo-
cated with four threads. The threads of each application will be
distributed among the nodes through a random distribution. In this
experiment, the traffic in the NoC generated by an application is af-
fected by the traffic generated by the other applications and the
stress traffic because all of them share and use the whole network.
Fig. 8 shows an example of how the applications and the stress
traffic are randomly mapped onto the whole CMP for both sets of
workloads.

In the second scenario we enable the VR mechanism to create
regions (VR). In this scenario, we assume the same CMP configura-
Fig. 8. Baseline scenario (BL).
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tion than the BL scenario but, in this case, we have divided the NoC
in four partitions. Fig. 9 shows different ways to divide a NoC in
four regions. These and other different shapes can be obtained in
the CMP as result of applying the VR mechanism in a more general
dynamic scenario, when many applications enter and leave contin-
uously the CMP system. In these scenarios each application is as-
signed to one region. Note that each region has the same number
of resources but different shape. The applications are assigned with
4 threads, one per each node of the CMP, as in the BL scenario. In
these schemes (Fig. 9a–d), traffic from one region is not allowed
to traverse other regions. In these cases the stress traffic will be
also isolated into the regions. The destinations of the messages
can only be nodes inside the region.

Finally, we have considered the Virtual-domains scenarios (VD)
for the same cases of the VR scenario. We called these scenarios as
follow: A-VD, B-VD, C-VD, and D-VD. In these cases, the applica-
tions and the CMP are configured in the same way as in the VR sce-
narios. That is, for each scenario, the four applications are isolated
in different domains that contain the same amount of resources.
However, the messages belonging to one domain can cross the
boundaries of its domain to reach their destinations. Fig. 10 shows
how the VD mechanism is used in the B-VD case. Thus, the network
load is distributed in a better way. Finally, as in the previous case,
the stress traffic generates messages between nodes belonging to
the same region. The stress traffic can only be nodes from the stress
domain (domain number 4 for the set-1, and domain number 3 for
the set-2). Note that in Fig. 10b each application has assigned the
same nodes than in the B-VR case (Fig. 10a), although the messages
generated by these applications can go around the dotted areas of
Fig. 10b (minimal paths are assumed). Finally, although the other
corresponding VD scenarios are not shown in the figure, we will
take them into account in the evaluation results.

As a final consideration, the shapes of the regions for the VR and
VD scenarios (Figs. 9 and 10) have been chosen as an example to
show the possible interferences of different applications running
together, except for the scenario A which presents no differences
between VR and VD mechanisms. We have also performed tests
with other region shapes but we have obtained similar results.
5. Experimental results

In this section, we show the experimental results obtained in
the evaluation process. We have considered static scenarios where
three applications and the stress traffic are present at the same
time in the system. In a more realistic scenario, the system would
dynamically allocate the resources to the applications. When an
application ends, the network resources it maintained would be
freed, and so the system would reallocate them to new applica-
tions, maybe reallocating the still running applications in order
to form regions with other shapes. In our static baseline scenario
(threads randomly scattered through the nodes of the CMP) when
the first application finishes, its resources would be used by the
other applications still running in the same system, taking advan-
tage of having more available resources. This would be unfair in or-
der to compare the behaviors for the different scenarios. So, in
order to avoid this effect, in all the experiments, we have collected
statistics since the applications start until the end of the first
application.

We have repeated three times the simulation of each scenario,
varying the packet injection rate (PIR) of the stress traffic to eval-
uate the loss in performance due to the interaction of the messages
of different applications at different load levels. This permits us to
measure the application’s performance when traffic load increases.
Moreover, each value shown in the figures is the average of 30 dif-
ferent simulations, and the confidence interval has been set to 95%.
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Fig. 9. (a) A-VR scenario, (b) B-VR scenario, (c) C-VR scenario, and (d) D-VR scenario.
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On the other hand, in the BL scenario the application’s threads
are mapped in a random way. For this reason, we have
repeated the simulations of this scenario 30 times with different
mappings.

As already mentioned, we take statistics when the first applica-
tion ends, and in our case this application is Blackscholes for both
applications sets. As also mentioned before, we have repeated
these tests with other applications, but we have obtained similar
results.
5.1. Execution time

To begin with, it is interesting to analyze how the execution
time evolves. Fig. 11 shows the normalized execution time of
Please cite this article in press as: F. Triviño et al., Virtualizing network-on-
doi:10.1016/j.micpro.2010.10.001
the different scenarios for both applications sets. The x-axis repre-
sents the obtained values for the BL scenario and for the virtual-
ization scenarios from A-VR, A-VD to D-VR, D-VD. The cases A–
D correspond with the shapes shown in the Fig. 9. The scenarios
X-VR represent the virtual-regions mechanism applied to the
shape X, and X-VD the Virtual-domains mechanism applied to
the shape X. The figure represents the normalized execution time
for three different PIR values (0.1, 0.2, and 0.3 PIR) of the stress
traffic. Results are shown in normalized terms with respect to
the execution time of the BL case for a 0.1 PIR value. That is, this
value represent 100% and the rest of values are normalized con-
sidering this value.

In the BL case, all the applications must compete for
the network resources as all of them are spread over the
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Fig. 10. The same shapes for the four regions in the CMP of the scenario B: (a) B-VR scenario and (b) B-VD scenario. Note that in (b) the messages belonging to one domain can
cross the boundaries of its region in order to reach their destinations.
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CMP,3 thus sharing the network. Consequently the interferences af-
fect all the applications, including Blackscholes. In that sense, we
obtain a chaotic behavior as traffic interferences always occur
among the applications. When multiple applications share the net-
work, the communication cost due to the interferences among
messages affects the performance of individual applications.

Note that as PIR value increases there are no variations on the
execution time in the VR cases because all the applications and
the stress traffic are isolated in different virtual-regions. Note also
that there are no variations on the execution time between the A-
VR and A-VD scenarios for any PIR value. This is because due to the
shapes of the scenario A in these cases the regions/domains com-
pletely isolate the application and the stress traffic and so there
are no opportunity to cross messages belonging to different
domains.

Specifically, the execution time of the Blackscholes application
is increased by 24% approximately from 0.1 to 0.3 PIR value as seen
from Fig. 11a which corresponds with the set-1 of applications.
Regarding the Fig. 11b (set-2), this increment is 18%. As expected,
when we use the virtualization approaches the traffic has lower
interferences and so the performance is much better and stable.
For instance, if we take the best virtualization case (A-VR and A-
VD) as a reference, the figure shows a reduction of 25% in the exe-
cution time compared to the BL case, when the PIR value is set to
0.1. Moreover, as the PIR value is increased the difference between
both cases (BL vs. VR/VD) increases.

In the other cases (B–D), the execution time differences among
virtualization scenarios depend on the region/domain shapes and
the stress load. For instance, as PIR value increases there are no
variations on the execution time in the VR cases because all the
applications and the stress traffic are isolated in different regions.
There is a little difference between the VR and VD cases shown
in Fig. 11a (set-1). In this case, due to the assignment of the appli-
cations to the domains (see Fig. 9), the final execution time of the
3 The four threads of each application are randomly distributed in the CMP.
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Blackshcoles application is only affected by the traffic of the Body-
track application (its packets can cross the boundaries of its region)
but not by the stress traffic (in the set-1). For this reason, the exe-
cution time of the Blackscholes application for the VD case is high-
er than that obtained in the VR case, and this value does not vary
for different PIR values. This is not true for the set-2 of applications
because, in this case, the stress traffic is mapped in the domain 3
and the execution time of the VD cases varies for different PIR
values.

On the other hand, due to the particular characteristics of the
synthetic traffic, one could think if the stress traffic is altering
the obtained results and they would be different just with real
applications. For this reason, we have performed a simulation only
with real applications in order to show the trend from a simulation
without synthetic traffic.

Fig. 12 shows again the normalized execution time for the
applications set-2 when the stress traffic is configured as 0.1 and
0.2 PIR values, again in normalized terms compared with the ob-
tained value for the BL case when it uses a 0.1 PIR value. Moreover,
in this figure, we have added the results of one simulation whose
workload is composed of four PARSEC applications instead of three
applications and the stress traffic configured at 0.3 PIR like in
Fig. 10. That is, we have replaced the stress traffic by the Fluidan-
imate application. Therefore, the selected applications are Blacks-
choles, Swaptions, Streamcluster, and Fluidanimate. We have
referred these results in the figure as ‘‘Four Applications”.

The results for this experiment show the similarity with the re-
sults obtained in the stress traffic cases. In the new scenario, for the
BL case, we can see an increment of 4% compared with the 0.1 PIR
case, and a decrement of 5% compared with the 0.2 PIR case. For
the virtualization cases, the trend in the results is also maintained.
As can be seen, when running four applications simultaneously,
the results are quite similar to configure the stress traffic between
0.1 and 0.2 PIR values. As a final consideration, we have tested this
experiment with other sets of applications and the results are quite
similar.
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Fig. 11. Normalized execution time.
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Therefore, these results strengthen our conclusions showing
that real applications disturb neighboring applications as if we
were using stress traffic of 0.1 or 0.2 PIR values, depending on
the application. So, our methodology of using stress traffic is
perfectly correct and permits us to check the trend when traffic
load increases. In the following sections only this methodology
Please cite this article in press as: F. Triviño et al., Virtualizing network-on-
doi:10.1016/j.micpro.2010.10.001
will be used: three applications and the stress traffic because
no differences are obtained when four real applications are
used instead of three real applications and the stress traffic.
Moreover, the use of different PIR values of stress traffic permits
us to study the trend of the results when network load
varies.
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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5.2. Network latency

Although the execution time is the most important metric when
we use real applications, in the interconnection networks domain
other important metrics as the network latency and the network
throughput are used. Fig. 13 shows the network latency for both
applications sets, again in normalized terms compared with the
obtained value for the BL case when it takes a 0.1 PIR value. In
the set-1 case (Fig. 13a), as the PIR value increases, the latency ob-
tained for the BL case increases (29% from 0.1 to 0.3 PIR), but in the
VR and VD cases the latency keeps constant. As expected, in the
set-2 case (Fig. 13b) the latency is also increased for the BL scenario
(33% from 0.1 to 0.3 PIR) while the latency for the VD scenario does
not keep constant (it increases) due to the fact that the stress traffic
affects the Blackscholes traffic because both traffics are sharing
network resources (only in the VD scenarios). As a consequence,
the interferences affect the obtained latency of the blackscholes
application.

The VR/VD cases get lower latency values compared with the BL
scenario (a reduction of 32% in the set-1 and of 19% for the set-2 for
the A-VR cases), because they divide the network into different re-
gions/domains and the average message distance is significantly
reduced. Thus, the traffic of each application has a very low la-
tency, which is also one of the reasons of obtaining a lower execu-
Please cite this article in press as: F. Triviño et al., Virtualizing network-on-
doi:10.1016/j.micpro.2010.10.001
tion time. When source and destination nodes are not placed
adjacent to each other on the network, a packet needs to travel sev-
eral intermediate nodes until reaching the destination. When the
number of hops increases the probability of interference with other
packets also increases, which turns in an increment of the latency.
Finally, note that the latency does not vary when we increase the
PIR value in the set-1, but it does for the set-2 again because in that
case the stress traffic affects the Blackscholes execution.

Finally, as can be observed in the figure, the trend for the net-
work latency is the same that the trend showed for the execution
time.

5.3. Network throughput

Fig. 14 shows the network throughput, again in normalized
terms compared with the obtained value of the BL case when it
takes a 0.1 PIR value. We measure the throughput in flits per cycle.
In the BL scenario we observe that the throughput slightly de-
creases. When PIR value increases we must consider two facts.
The first one is that the execution time increases considerably (as
we can see in the Fig. 11), therefore, this fact should reduce the
network throughput in a significant amount. However, when the
PIR value increases both the interferences among messages and
the cache miss rate also increase (as it was shown in Fig. 1), and
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Fig. 14. Normalized network throughput.
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as a consequence the total amount of flits to transmit increases too.
Therefore, the important increase of the execution time is compen-
sated by the increase in the amount of flits being transmitted due
to the higher miss rate. As can be observed, as the PIR value in-
creases the throughput obtained for the BL case slightly decreases,
being this decrement of 8% for the case of 0.3 PIR value for the
applications set-1 and of 6% for the applications set-2.

On the other hand, the network throughput is lower for the vir-
tualization approaches than in the BL case: the A-VR/A-VD cases
compared to the BL case show a reduction of 18%, approximately.
This is due to the different amount of transmitted flits in both cases
(BL and A-VR/A-VD). Regarding the B-VD, C-VD, and D-VD cases
compared to the corresponding VR cases, the interferences in the
VD cases are increased because part of the network is shared be-
tween the Blackscholes and the Bodytrack workloads in the set-1
of applications (Fig. 14a). As a consequence the number of misses
increases and this generates more traffic for the same applications
and for this reason the throughput is slightly higher than in the VR
case. This behavior also occurs for the set-2 of applications
(Fig. 14b) but, in this case, the network is shared between the
Blackscholes application and the stress traffic.

5.4. Energy consumption

Fig. 15 shows the network energy consumption obtained from
the Orion power simulator taking into account the application traf-
Please cite this article in press as: F. Triviño et al., Virtualizing network-on-
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fics as well as the stress traffic. As can be seen, the BL scenario has a
higher energy consumption. The reason can be found in the fact
that the BL scenario has a higher utilization of the network re-
sources and that the simulation takes more time to finish the
Blackscholes execution when we increase the PIR value. Therefore
the Blackscholes application is running in the CMP more time and
thereby the energy consumption is increased. Note also that in the
VR and VD scenarios the unused links are switched off. For the
same shapes of the regions/domains the number of unused links
is lower in the VD scenarios than in the VR scenarios due to the fact
that in the VD cases the messages can cross the boundaries of their
region.

As mentioned before, the VR/VD cases have a lower energy con-
sumption compared to the BL case. Specifically, the energy con-
sumption is decreased by 13% approximately as seen from
Fig. 15a which corresponds with the set-1 of applications and by
10% for the set-2 of applications (Fig. 15b) in comparison to the
best virtualization case. This was expected as the VR/VD scenarios
finish the Blackscholes application earlier. Between the VR and VD
scenarios the differences are also based on the differences on the
execution time and the different way of using the network re-
sources. Note that for all the VD scenarios, the energy consumption
is higher than for the VR cases because they involve more traffic.
The increment of energy consumption is related to the geometries
of the regions/domains and also to the unused links. In the partic-
ular case of an injection rate of 0.3 PIR and the set-1 of applications,
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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the energy consumption of the B-VR case has increased 12% over
the B-VD case, and 9% for the C-VR compared to the C-VD case,
approximately.
5.5. Link utilization

Finally, we are also interested in studying how the network traf-
fic is distributed among the links that compose the NoC. Since we
have modeled a 2D 4 � 4 mesh, the number of links is 40. The 24
global links are used for connecting the routers, and the remainder
(16 internal links) are used to interconnect the cores with the rou-
ters. We show the utilization percentage of each link for each sce-
nario from the start of the simulation until the simulation stops.
Thus, this information shows the percentage of cycles that the links
have been used. Since we have repeated the simulation of each sce-
nario 30 times (where we have only changed the seed), we show
the mean of each link usage. We use frequency histograms in order
to summarize these results. These histograms contain the link per-
centage of usage taking into account all the traffic generated by the
applications and the stress traffic.

Fig. 16 shows the link usage for all the different schemes with a
0.2 PIR value4 for the stress traffic, and for the set-1 of applications.
Finally, the x-axis represents the utilization percentage per ranges of
4 A 0.2 PIR value represents a middle load for the links that the stress traffic uses.
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10% from 0% to 100%, while the y-axis represents the number of links
that have a determined utilization shown in the x-axis.

As can be seen, the link utilization is higher for the BL configu-
ration. There are no links with a frequency between 0% and 10%
and most of the links are in the range of 30–40% of utilization. It
seems logical since all the links in the CMP can be used in this case
and paths can also be longer, so increasing the utilization. In con-
trast, some links are unused in the virtualization approaches, and
so the average utilization decreases. The VR scenarios present the
lowest link utilization level because a large number of links are be-
tween 0% and 10% of utilization. Some of them correspond with
links that are not used because of the virtualization process, and
thereby have a null utilization. For the VD scenarios, as a packet
can cross the boundaries of its domain, some of these links are used
and the utilization slightly increases. However, the differences be-
tween the virtualization models (VR and VD) are minimal because
these cases are very restricted due to the shape of the regions. If
the CMP size would be larger and there would be a greater number
of regions, this difference would be higher.
6. Conclusions and future work

This paper aims to improve the performance of the applications
that are running simultaneously in a CMP. Applications share CMP
resources and performance of individual application can be
chip resources in chip-multiprocessors, Microprocess. Microsyst. (2010),
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Fig. 16. Utilization of the links under 0.2 PIR stress traffic for the set-1 of applications. There are 40 links, 16 internal links connecting each processing element with the router
and 24 links to communicate among routers.
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seriously affected. If we put our attention only in the interconnec-
tion network, we can see that traffic interferences affect the net-
work performance and as a consequence the CMP performance.
To address this issue, the network needs a mechanism to isolate
the traffic in order to reduce or even eliminate the communication
cost due to the interferences among messages belonging to differ-
ent applications.

First of all, we have observed that for the baseline scenario (all
the applications sharing the network of the CMP) the execution
time and the network latency increase when the traffic load in-
creases. Regarding the network throughput, for this baseline sce-
nario it decreases when the traffic load increases. In contrast, for
both virtualization approaches the execution time, the network la-
tency and the network throughput keeps almost constant when
the network traffic load increases.

In particular, we have shown that the best of our two virtualiza-
tion approaches reduces by 25% the execution time of the Blacks-
choles application and 32% the network latency when compared
to a NoC baseline configuration. Similar values are obtained for
other applications that we have tested. This fact is due to two rea-
sons: the elimination of the interferences among messages belong-
ing to different applications and the lower average message
distance in the virtualized approaches.

Regarding the network throughput, we obtain lower values for
the virtualization approaches than for the baseline scenario (the
VR/VD cases compared to BL show a reduction of 18%, approxi-
mately). The main reason is the difference between the execution
time and the total amount of transmitted flits in both cases (VR/
VD) compared to the baseline case. Although the execution time
is reduced considerably, the total amount of transmitted flits is
also reduced due to the elimination of the interferences among
applications.

Again, the network energy consumption is reduced consider-
ably in the virtualization approaches. Due to the fact that the base-
line scenario has a higher utilization of the network resources and
the execution time is higher than in the virtualization approaches,
the virtualization cases get lower values of energy consumption.

Regarding the link utilization, the percentage of unused links
due to the virtualization increases as more regions or domains
are created. Instead of seeing that as a negative point, we think that
can be seen as something positive if the rest of the links maintain
far of saturation as it is this case. In this sense, the virtualization
approaches offer an important advantage because the interconnect
components that are unused can be switched off in order to reduce
the power-consumption.

There are still open questions. In this work, we have per-
formed static experiments. Future work is needed to evaluate
strategies for assigning the total amount of resources in a dy-
namic way that simulates a real behavior. In a real scenario, the
applications enter and leave the system, therefore the virtualiza-
tion mechanism needs a resources manager which could form the
regions/domains in a dinamic way and reconfigure them. We be-
lieve that, in order to meet the application requirements the re-
gions must be dynamic and may change the total amount of
their resources in real time.
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