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A framework to provide Quality of Service over
Advanced Switching

Raúl Martı́nez, Francisco J. Alfaro, José L. Sánchez

Abstract— Advanced Switching (AS) is a network technology
that expands the capabilities of PCI-Express adding new features
like peer-to-peer communication. Together, PCI Express and AS
have the potential for building the next generation interconnects.
Furthermore, the provision of Quality of Service (QoS) in
computing and communication environments is currently the
focus of much discussion and research in industry and academia.

In this paper we propose a framework to provide QoS based on
bandwidth, latency, and jitter over AS employing the mechanisms
provided by AS. We also present several implementations forthe
output scheduling mechanism. Finally, we evaluate our proposals
by simulation, comparing the performance of the schedulersthat
we propose and their implementation complexity.

Index Terms— Quality of Service (QoS), Advanced Switching,
scheduling algorithms, application requirements, interconnection
networks, performance evaluation.

I. I NTRODUCTION

A DVANCED Switching (AS) [1] is an open-standard fabric-
interconnect technology based on PCI Express [27]. PCI

Express is already replacing the extensively used PCI bus. The
PCI bus has served industry well for the last years and is currently
used extensively. However, the processors and I/O devices of
today and tomorrow demand much higher I/O bandwidth than PCI
2.2 or PCI-X can deliver. The reason for this limited bandwidth
is the parallel bus implementation. PCI Express eliminatesthe
legacy shared bus-based architecture of PCI and introducesan
improved and dedicated point-to-point interconnect.

AS is an extrapolation of PCI Express, borrowing its lower two
architectural layers from PCI Express, and including an optimized
transaction layer to enable essential communication capabilities
like peer-to-peer communication. The need for AS essentially
comes because computing and communication platforms begin
to converge by exhibiting increasing overlap in terms of the
functions they serve. In this way, AS is intended to proliferate in
multiprocessor, peer to peer systems in the communications, stor-
age, networking, servers and embedded platform environments.
Together, PCI Express and AS have the potential for buildingthe
next generation interconnects [23].

On the other hand, Quality of Service (QoS) is becoming
an important feature for high-performance networks and parallel
machines. The provision of QoS in computing and communication
environments is currently the focus of much discussion and
research in industry and academia. Current packet networksare
required to carry not only traffic of applications, such as e-mail
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or file transfer, which does not require pre-specified service guar-
antees, but also traffic of other applications that requiresdifferent
performance guarantees, like real-time video or telecommunica-
tions [24]. The best-effort service model, though suitablefor the
first type of applications, is not so for applications of the other
type [26]. Even in the same application, different kinds of traffic
(e.g. I/O requests, coherence control messages, synchronization
and communication messages, etc.) can be considered, and it
would be very interesting that they were treated according to their
priority [5].

AS provides mechanisms that can be used to support QoS.
Specifically, an AS fabric permits us to employ Virtual Channels
(VCs), egress link scheduling, and an admission control mech-
anism. Moreover, AS performs a link-level flow control in a
per VC basis. This means that both the scheduling and the flow
control are made at a VC level. These mechanisms allow us to
aggregate traffic with similar characteristics in the same VC and
to provide each VC with a different treatment according to its
traffic requirements.

A key component for providing the VCs with their QoS
requirements in AS, and in any other network with QoS support,
is the output scheduling algorithm, which selects the next packet
to be sent and determines when it should be transmitted, on the
basis of some expected performance metrics. AS defines two
egress link schedulers: The VC arbitration table schedulerand the
Minimum Bandwidth egress link scheduler (MinBW). The main
problem of the AS table scheduler is that it does not work properly
with variable packet sizes. Regarding the MinBW scheduler,AS
does not specify an algorithm or implementation for it, but some
characteristics that it must respect.

In [22] we showed a very first approach to provide QoS in
AS. We examined the AS mechanisms intended for providing
QoS and showed how to provide QoS based on bandwidth and
latency requirements with fixed packet sizes. In [21] we expanded
the basic ideas presented there. Specifically, we showed howto
modify the table scheduler in order to support variable packet
sizes. Moreover, we proposed a new algorithm, the Self-Clocked
Weighted Fair Queuing Credit Aware (SCFQ-CA) algorithm, that
fulfills all the properties that the AS MinBW scheduler must have
In [20] we proposed two new algorithms for implementing the
MinBW scheduler: the Deficit Round Robin Credit Aware (DRR-
CA) and the Weighted Fair Queuing Credit Aware (WFQ-CA).
In [19] we reviewed the three MinBW schedulers and briefly
analyzed their complexity.

In this paper we thoroughly review our previous proposals
to provide applications with QoS based on bandwidth, latency,
and jitter, and we present a full comprehensive version of all
of them. Moreover, we review the four possible scheduling
algorithms that we have proposed for the AS output schedul-
ing mechanism, expanding the analysis of their implementation
complexity. Finally, we deeply evaluate the performance ofall
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our proposals interacting among them. Specifically, we compare
the performance of the modified table scheduler and the three
MinBW implementation possibilities in a multimedia scenario.

The structure of the paper is as follows: Section II presentsa
summary of the general aspects in the AS specification including
the most important mechanisms that AS provides to support QoS.
In Section III, we show the problems of the AS table scheduler
with variable packet sizes and also show how to modify this
scheduler to solve those problems. In Section IV, we presentthe
main considerations that must be made to implement the MinBW
scheduler and we show three possible specific implementations. In
Section V, we comment the complexity of the four schedulers that
we take into account in this paper: the modified table scheduler
and our three MinBW scheduler implementations. In Section VI,
we present our proposal to use the AS mechanisms to provide
applications with QoS and how to configure the table and the
MinBW schedulers in order to provide different QoS require-
ments. Details on the simulation platform and the performance
evaluation are presented in Section VII. Finally, some conclusions
are given and future work is proposed.

II. A DVANCED SWITCHING REVIEW

AS is an extension of PCI Express that includes additional
protocols to support reliable and efficient peer-to-peer communi-
cations. The AS transaction layer, which is built on top of the
physical and link layers of PCI Express, provides a rich set of
capabilities like peer-to-peer communications, protocolencapsu-
lation, flexible topologies, multicasting, congestion management,
redundant paths, and fail-over mechanisms.

A credit-based flow control protocol ensures that packets are
only transmitted when there is enough buffer space at the other
end to store them, making sure that no packets are dropped when
congestion appears. This makes AS a lossless network. Flow
control credits use a 64 bytes granularity. The maximum packet
size of an AS packet is 2176 bytes. An AS fabric permits us
to employ Virtual Channels (VCs), egress link scheduling, and
an admission control mechanism to differentiate between traffic
flows.

AS VCs provide a means of supporting multiple independent
logical data flows over a given common physical channel.AS
supports up to 20 VCs of three different types: Up to 8 bypassable
unicast VCs, up to 8 ordered-only unicast VCs, and up to 4
multicast VCs. The bypassable VC with the highest identifierin
each network element is called the Fabric Management Channel
(FMC). Note that the link-level flow control is made at a VC
level. This means that each VC has its own credit count for the
credit-based flow control.

The arbitration is also made at a VC level. AS defines two
schedulers to resolve between the up to twenty VCs competing
for bandwidth onto the egress link: The table scheduler and the
MinBW scheduler. A given implementation may choose any of
them or may implement its own proprietary mechanism.

When implementing the egress link scheduler the interaction
with the credit-based flow control must be taken into account.
Packets from VCs that lack sufficient credits must not be sched-
uled. Thus, if the credits for a given VC have been exhausted,
the VC scheduler must treat the corresponding queue as if it
were empty. While this situation persists, the bandwidth ordinarily
given to that queue is considered excess bandwidth and must be

redistributed among queues for which corresponding VC credits
are available.

The VC arbitration table is a register array with fixed-size
entries of 8 bits. Each 8-bit table entry contains a field of 5 bits
with a VC identifier value and a reserved field of 3 bits. When
arbitration is needed, the table is cycled through sequentially and
a packet is transmitted from the VC indicated in the current table
entry regardless of the packet size. If the current entry points to
an empty VC, that entry is skipped. The number of entries may
be 32, 64, 128, 256, 512, or 1024.

The MinBW scheduler is intended for a more precise alloca-
tion of bandwidth regardless of the packet size. This scheduler
consists of two parts: The first mechanism, or outter scheduler,
provides the FMC with absolute priority, ahead of the other VCs,
but with its bandwidth limited by a token bucket. The second
mechanism, or inner scheduler, distributes bandwidth amongst the
rest of the VCs according to a configurable set of weights. AS
does not state a specific algorithm for the inner scheduler, but
it must respect certain properties:Work conserving, bandwidth
metering, not packet metering, minimum bandwidth guarantee,
fair redistribution of unused bandwidth, andmemoryless[1].

The AS specification states that variants of Weighted Fair
Queuing (WFQ) [7] such as Self-Clocked Weighted Fair Queuing
(SCFQ) [10], and variants of Weighted Round Robin (WRR)
[16] such as Deficit Round Robin (DRR) [34] exhibit the desired
properties of the inner MinBW scheduler. The AS specification
also states that commonly employed scheduling algorithms,such
as simple round robin or WRR, do not exhibit the desired
properties of the MinBW scheduler and are, thus, not suitable
for a MinBW scheduler implementation.

Moreover, fabric management software may regulate access
to the AS fabric, allowing new packet flows entry to the fabric
only when sufficient resources are available. Fabric management
software may track resource availability by monitoring AS fabric
congestion and tracking active packet flows and their bandwidth.

III. M ODIFYING THE AS ARBITRATION TABLE TO MANAGE

VARIABLE PACKET SIZES

The main problem of the AS table-based scheduler is that it
does not work in a proper way with variable packet sizes, as
is common in actual traffic. If the average packet size of the
different flows is different, the bandwidth that the flows obtain
may not be proportional to the number of table entries. In [18]
we showed in detail this problem and proposed a new table-based
scheduling algorithm, the Deficit Table (DTable) scheduler, which
works properly with variable packet sizes.

The DTable scheduler defines an arbitration table in which each
table entry has associated a flow identifier and anentry weight.
Moreover, each flow has assigned adeficit counterthat is set to
0 at the start. When scheduling is needed, the table is cycled
through sequentially until an entry assigned to an active flow is
found. A flow is considered active when its queue has at least one
packet and the link-level flow control allows that flow to transmit
packets. When a table entry is selected, theaccumulated weight
is computed. The accumulated weight is equal to the sum of the
deficit counter for the selected flow and the current entry weight.
The scheduler transmits packets from the selected flow untilthe
accumulated weight is smaller than the size of the packet at the
head of the selected flow or the selected flow becomes inactive. In
the first case, the unused accumulated weight is saved in the deficit
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counter, representing the amount of weight that the scheduler
owes the queue. In the second case, the remaining accumulated
weight is discarded and the deficit counter is set to zero. Each
time a packet is transmitted, the accumulated weight is reduced
by the packet size.

In order to keep the computational complexity low, the mini-
mum value that a table entry can have associated is the Maximum
Transfer Unit (MTU) of the network. This is the smallest value
that ensures that there will never be necessary to cycle through
the entire table several times in order to gather enough weight for
the transmission of a single packet. Note that this consideration
is also made in the DRR algorithm definition [34].

In order to adapt the AS table scheduler into the DTable
scheduler we must add the deficit counter mechanism and a
way to associate each table entry with a weight. Note that the
AS specification only considers a VC identifier assigned to each
table entry. Adding the deficit counters associated to the VCs
would require simple hardware modifications of the originalAS
table scheduler. However, this modification does not changethe
interface provided in the AS specification to configure the table
scheduler. Note that these counters are set to zero at the beginning
and are modified dynamically by the scheduler itself during
the scheduling process, and thus they do not require any user
configuration.

In order to be able to also assign a weight to each table entry
without modifying the AS specification, we propose to use a fix
value for all the entries. This weight is the Maximum Transfer
Unit (MTU). This modified version of the table scheduler would
only require quite simple hardware modifications. If we could
change the AS specification, we could employ other approaches
to assign each table entry with a weight, for example: To use the
3-bit reserved field of each table entry, to modify the arbitration
table structure to dedicate two bytes instead of one to each table
entry, and to use the same weight for all the entries of a VC.
These different approaches would provide different properties
regarding, among other, the amount of memory required to store
the arbitration table and the bandwidth assignation granularity.
However, in this paper we focus on improving the AS technology
without modifying its specificaton. Therefore, we employ the fix
value for all the entries option.

Summing up, in this section we have proposed a modification of
the original AS table scheduler that works properly with variable
packet sizes. However, this modification does not change the
structure of the AS arbitration table. In this paper we will refer
to this modified version as DTable. Note, however, that a full
implementation of the original DTable scheduler would consider
a different weight per table entry.

IV. I MPLEMENTING THE INNER M INBW SCHEDULER

Analyzing the properties of the inner scheduler of the MinBW
cited in Section II, we can state that they refer to an ideal fair-
queuing model. In a fair-queuing system, supposing a service rate
R, N flows, with theith flow having assigned a weightφi, during
a given interval of time, the flowi receives a fair share bandwidth
(Bi) proportional to its weight

Bi =
φi

∑V

j=1
φj

∗ R

where V is the set of flows with data in queue (V ≤ N) during
that interval of time.

However, the AS specification also states that, when imple-
menting the egress link scheduler, the interaction with thecredit-
based flow control must be taken into account. And thus, as stated
before, if the credits for a given VC have been exhausted, the
VC scheduler must treat the corresponding queue as if it were
empty. This means that the scheduler must have the ability to
enable or disable the selection of a given VC based on the flow
control information. Moreover, the scheduler is not allowed to
“save” bandwidth of inactive VCs for future use. Note that these
requirements do not appear in technologies with a port-based link-
level flow control mechanism like for example Gigabit Ethernet
[33].

The problem of the well-known scheduling algorithms that AS
states as appropriate is that they were designed without taking into
account the existence of a flow control mechanism, and thus, they
do not consider the possibility of disabling a queue based onthe
flow-control information. The reason is that they were originally
proposed for networks that do not have link layer flow control,
for example Internet or ATM.

In this section, we present three newcredit awarealgorithms
for the inner MinBW scheduler based on the well-known WFQ,
SCFQ, and DRR scheduling algorithms. The resulting credit
aware algorithms fulfill all the properties that the inner MinBW
scheduler must have, and thus they can be used to implement this
scheduler.

A. Weighted Fair Queuing Credit Aware

The WFQ algorithm [7] is an approximation of the Generalized
Processor Sharing (GPS) model [25]. GPS is an ideal fluid model
that provides perfect instant fairness in bandwidth allocation.
This ideal model assumes that several packets from different
queues can be simultaneously transmitted. WFQ is a packet-by-
packet algorithm that tries to emulate the GPS model by stamping
each packet that arrives at the egress link with its departure
time (virtual finishing time) in a corresponding GPS system. The
packets are then transmitted in an increasing order of timestamp.
Let F k

i be the virtual finishing time of thekth packet from flow
i,

F
k
i = max{F k−1

i , V (t)} +
Lk

i

φi

whereLk
i is the length of thekth packet andV (t) is the virtual

time of the WFQ system. The WFQ algorithm tracks the set of
queues which are active in each instant and the real time of the
system to calculateV (t).

The WFQ Credit Aware (WFQ-CA) algorithm that we propose
works in the same way as the WFQ algorithm, except in the
following aspects: When a new packet arrives at a VC queue, itis
stamped with itsvirtual finishing timeif there are enough credits
to transmit the packet that is at the head of the VC. Packets are
transmitted in an increasing order of timestamp, but only those
VCs with enough credits to transmit the packet at their head are
taken into account. When a VC is inactive because of lack of
credits and receives enough credits to be able to transmit again,
its packets are restamped, from the head to the tail, as if they had
arrived in that instant.

B. Self-Clocked Weighted Fair Queuing Credit Aware

The SCFQ algorithm [10] defines fair queuing in a self-
contained manner and avoids using a hypothetical queuing system
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as reference to determine the fair order of services. This objective
is accomplished by adopting a different notion of virtual time.
Instead of linking virtual time to the work progress in the GPS
system, it uses a virtual time function which depends on the
progress of the work in the actual packet-based queuing system.
This approach offers the advantage of removing the computation
complexity associated to the evaluation ofV (t) that may make
WFQ unfeasible in high-speed interconnection technologies.

Therefore, when a packet arrives, SCFQ uses the service tag
(finish time in WFQ) of the packet currently in service as the
V (t) to calculate the new packet tag.

The SCFQ Credit Aware (SCFQ-CA) algorithm that we pro-
pose works in the same way as the SCFQ algorithm, except in
the following aspects: When a new packet arrives at a VC queue,
it is stamped with its service tag only if it is at the head of the
VC and there are enough credits to transmit it. When a packet
is transmitted, if there are enough credits to transmit the next
packet, this packet is stamped with its service tag. When a VC
is inactive because of lack of credits and receives enough credits
to transmit again, the packet at the head of the queue is stamped
with its service tag.

Note that Fcurrent ≤ F k−1

i if there is at least one packet
waiting, or being transmitted, in the VC queuei. This permits us
to wait to stamp a packet until it reaches the VC head [32]. This
allows the scheduler to require only a service tag per VC, instead
of a tag per each individual packet like in the WFQ case [31].
Therefore, the SCFQ-CA does not require the restamping process
of the WFQ-CA algorithm, and thus simplifies the scheduling
process.

C. Deficit Round Robin Credit Aware

The DRR algorithm [34] is a variation of the Weighted Round
Robin (WRR) algorithm [16] that works in a proper way with
variable packet sizes. In order to handle properly variablepacket
sizes the DRR algorithm associates each flow with aquantumand
a deficit counter. The quantum assigned to a flow is proportional
to the bandwidth assigned to that flow. The deficit counter is set
to 0 at the beginning. The scheduler visits sequentially each flow
and serves packets in the same way than the deficit mechanism
of the DTable scheduler.

The DRR Credit Aware (DRR-CA) algorithm that we propose
works in the same way as the DRR algorithm, except in the
following aspects: A VC queue is considered active only if it
has at least one packet to transmit and if there are enough credits
to transmit the packet at the head of the VC. When a packet
is transmitted, the next active VC is selected when any of the
following conditions occurs:

• There are no more packets from the current VC or there are
not enough flow control credits for transmitting the packet
that is at the head of the VC. In this case, the current VC
becomes inactive, and its deficit counter becomes zero.

• The remaining quantum is less than the size of the packet at
the head of the current VC. In this case, its deficit counter
becomes equal to the accumulated weight in that instant.

A well-known problem of the WRR and DRR algorithms,
which is shared by the DRR-CA algorithm, is that the latency and
fairness depend on the frame length. The frame length is defined
as the sum of all the quantum values. The longer the frame is, the
higher the latency and the worse the fairness. In order for DRR to

exhibit lower latency and better fairness, the frame lengthshould
therefore be kept as small as possible. Unfortunately, given a set
of flows, it is not possible to select the frame length arbitrarily.
According to the implementation proposed in [34], DRR exhibits
O(1) complexity provided that each flow is allocated a quantum
no smaller than the MTU. As observed in [14], removing this
hypothesis would entail operating at a complexity which canbe
as large asO(N). Note that this restriction affects not only the
weight assigned to the smallest flow, but to the rest of the flows
in order to keep the proportions between them.

V. COMPLEXITY CONSIDERATIONS ABOUT THE SCHEDULERS

An ideal scheduling algorithm implemented in a high perfor-
mance network with QoS support should provide a good end-to-
end delay (also called latency). The end-to-end delay is defined
as the sum of the transmission delay, the propagation delay,and
the queuing delay experienced at each network node. The last
component is by far the most significant. In some applications
if a packet experiences a latency higher than a certain value, the
value of the packet information may be greatly diminished or
even worthless. Moreover, a larger delay bound implies increased
burstiness of the session at the output of the scheduler, thus
increasing the buffering needed at the switches to avoid packet
losses [36]. Thus, a good scheduling algorithm should guarantee
acceptable queuing delay.

However, the end-to-end delay that a scheduler is able to
provide is not the only parameter that must be taken into account
when deciding which is the best scheduler in a high performance
network with QoS support. The second main property that a
scheduling mechanism should satisfy is a low complexity. This is
because in order to achieve a good performance, the processing
overheads must be some orders of magnitude smaller than the
average packet transmission time. This means that the time needed
to decide the next packet to be transmitted must be very small,
if we consider the high speed of high performance networks.
Moreover, a low complexity is required in order to be able to
implement the scheduler in a small silicon area (note that high-
performance switches are usually implemented in a single chip).

In this section we comment the complexity of the four sched-
ulers that we have presented in this paper: the DTable scheduler
and the three possible implementations of the MinBW scheduler.

A. The WFQ-CA and the SCFQ-CA schedulers

“Sorted-priority” algorithms, like WFQ and SCFQ, are known
to offer very good delay [36]. However, this family of algorithms
suffers from two major problems. The first problem is that these
algorithms require processing at line speeds for tag calculation
and tag sorting. In other words, each time a packet arrives at
a node, its time tag is calculated and the packet is inserted at
the appropriate position in the ordered list of packets waiting for
transmission. This means that these algorithms require at least the
complexity of a search algorithm in the list of queued packets:
O(log(N)), whereN is the maximum number of packets at the
queue, or if the buffers are not shared,O(log(J)), where J is the
number of active flows.

The second problem that may happen in the sorted-priority
approach is that, since the time tag is an increasing function
of the time and depends on a common-reference virtual clock,
which in turns reflects the value of the time tag of previously



5

served packets, the virtual clock cannot be reinitialized to zero
until the system is completely empty and all the sessions are
idle. In other words, it is impossible to reinitialize the virtual
clock during the busy period, which, although statistically finite
(if the traffic is constrained), can be extremely long, especially
given that most communication traffic has been shown to exhibit
self-similar patterns which lead to heavily tailed buffer occupancy
distributions.

Therefore, for practical implementation of sorted-priority al-
gorithms, very high-speed hardware needs to be designed to
perform the sorting, and floating-point units must be involved
in the computation of the time tags. As stated before, the SCFQ
algorithm avoids the emulation of a GPS system to maintain the
virtual time. This reduces the computational complexity of the tag
calculation. Therefore, the computational complexity of the SCFQ
algorithm is lower than the complexity of the WFQ algorithm.

When considering the complexity of the WFQ-CA and SCFQ-
CA algorithms, it must be taken into account that in AS the
scheduling is made at a VC level. This involves, for example,
that the tag sorting process is much more simpler than in other
environments, where each flow is considered separately. In AS,
the scheduler must consider only the packets at the head of each
active VC. Only when a packet from a given VC is transmitted,
the next packet in the same VC may be inserted in the sorted list
of eligible packets (if they have enough credits to be transmitted).
Therefore, in AS the maximum number of packets that the
scheduler must consider is twenty, which is the maximum number
of VCs. Note that, in those environments where the scheduling is
made at a flow level, the maximum number of packets that must
be considered would be extremely higher.

Moreover, if we compare the complexity of the WFQ-CA and
SCFQ-CA algorithms, apart from the complexity of the emulation
of the GPS system, which is inherent to the WFQ algorithm,
the WFQ-CA algorithm adds the complexity of the restamping
process, which may be a very costly process.

B. The DRR-CA scheduler

The complexity of the DRR algorithm is quite small. Provided
that each flow is allocated a quantum no smaller than the MTU
and if a list of active flows is maintained, the algorithm can cycle
through the list knowing that it is always possible to transmit at
list one packet from each flow or, which is the same, that there
will never be a need to cycle through the entire table severaltimes
in order to gather enough weight for the transmission of a single
packet. Each time a packet is transmitted, the algorithm must
compute if more packets from the same flow can be transmitted or
it must change to the next active flow. However, this computation
can be performed with simple adder and subtractor units. Note
that the WFQ-CA and the SCFQ-CA schedulers require complex
divisor units to calculate the time tags.

In the case of the DRR-CA algorithm the number of queues is
equal to the number of VCs instead of the number of flows, and
thus the complexity is even smaller. The only added complexity
remains in taking into account the flow control in order to consider
active or inactive a VC. This is clearly the simplest algorithm
considered in this paper.

C. The DTable scheduler

In the case of the AS table scheduler, a list of active VCs
would not be as simple to maintain as in the DRR case, because

VCs must be visited not in a sequential way but in the order
indicated by the table scheduler. Therefore, in this case the table
must be looked over searching for the next active entry and
skipping those entries that refer to a VC without packets or
credits to transmit. Although the checking of each entry canbe
made with very simple computational units, in the worst case
all the table must be looked over in order to find the next active
entry. This kind of mechanism probably requires very littlesilicon
area to be implemented, but may last too much time. In order
to make the process faster several entries of the table can be
read simultaneously at the expense of increasing the silicon area
requirements. However, this algorithm has not the problem of the
increasing tag value and does not need floating point units like
in the case of the SCFQ and WFQ algorithms.

The deficit mechanism added to the AS table scheduler to
implement the DTable scheduler only requires simple integer
units, like adders and subtractors, to be implemented. Moreover,
the memory requirements for this algorithm over the original table
scheduler are the memory needed to store the deficit counter for
each VC. The MTU is 2176 bytes (34 credits of 64 bytes) in
a generic case for AS, and thus, the maximum deficit counter
value is 33. We need at least 6 bits to represent this number.
Therefore, in the more general case of 20 VCs this means
20 ∗ 6 = 120 bits per egress link. Taking all these things into
account the DTable algorithm is probably simpler than the WFQ-
CA and SCFQ-CA algorithms but more complex than the DRR-
CA algorithm. Table I summarizes the different complexity issues
that we have considered to performe this comparison among the
four schedulers.

VI. PROVIDING QOS OVER AS

As was stated in Section II, AS provides several mechanisms
that can be used to provide QoS. However, the AS specification
does not indicate how to use these mechanisms. In this section,
we propose a way of using some of the above-presented AS
mechanisms in order to provide QoS.

A. Traffic classification

As stated before, the AS output scheduling mechanism is
applied not over flows but over VCs. Therefore, in order to
provide QoS over AS, a set of Service Classes (SCs) with different
requirements must be specified. When various flows obtain access
to the AS fabric, they will be assigned a SC depending on their
characteristics. If there are enough VCs we will devote a separate
VC to the aggregated traffic of each existing SC. However, if the
network that we are using does not have as many VCs as SCs
we have defined, more than one SC should be assigned to the
same VC and the scheduler should provide to each VC the most
restrictive QoS requirements of the SCs that it has assigned.

From a networking perspective the general QoS provisioning
parameters are throughput, latency, jitter, and loss-rate. Through-
put is the effective number of data units transported per time
unit, while latency is the time interval between the departure of
a packet from the source to its arrival at the destination. Jitter
represents the variance in latency and can be calculated as the
difference between the latencies of consecutive packets belonging
to a given flow. Finally, loss-rate is the percentage of packets that
is not delivered to their destination.

The degree of sensitivity to each of these parameters varies
widely from one application to another. For example, multimedia
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TABLE I

COMPLEXITY COMPARISON SUMMARY.

Algorithm Tag calculation Tag shorting Tag overflow Computation units Other considerations
WFQ-CA High Yes Yes +, /, comparison tag per packet, restamping process
SCFQ-CA Low Yes Yes +, /, comparison tag per VC
DRR-CA - No No +, - -
DTable - No No +, - Arbitration table searching process

applications are usually sensitive to latency and jitter, but many
of them can tolerate packet losses to some extent. However, the
severity of the effect of loss on the quality of these applications
is also influenced by parameters such as the compression and
encoding techniques used, loss pattern, transmission packet size,
and the error recovery technique implemented [39]. For a further
discussion about different applications and their requirements, see
[9].

In order to define the different SCs, we propose a traffic
classification based on three network parameters: Bandwidth,
latency, and jitter. In this way, this classification is similar to
the one presented by Pelissier [28]. We distinguish betweenthree
broad categories of traffic:

• Network Control traffic: High-priority traffic to maintain and
support the network infrastructure. One SC will be dedicated
to this kind of traffic.

• QoS traffic: This traffic has explicit minimum bandwidth,
maximum latency, and/or jitter requirements. Various QoS
SCs can be defined with different specific requirements. This
category can be divided into two groups:

– Traffic which requires a given minimum bandwidth and
must be delivered with a maximum latency and/or jitter
in order for the data to be useful. Examples of such data
streams include video conference, interactive audio, and
video on demand.

– Traffic which requires a given minimum bandwidth but
is not particularly sensitive to latency or jitter.

• Best-effort traffic: This traffic accounts for the majority of
the traffic handled by data communication networks today,
like file and printing services, web browsing, disk backup
activities, etc. This traffic tends to be bursty in nature and
largely insensitive to both bandwidth and latency. Best-effort
SCs are only characterized by the differing priority among
each other.

B. Admission control

In a loss-less network like AS, congested packets are not
thrown away and as such the loss-rate due to congestion is zero.
This has the advantage of avoiding retransmissions that would
severely affect the latency and jitter performance of the flows.
On the case of applications with packet loss resilience, it would
allow to reduce the overhead due to the encoding techniques
used to minimize the impact of errors. On the other hand, loss-
less networks have other problems, being the most importantthe
formation of congestion (or saturation) trees [29]. This congestion
trees may produce a dramatic network performance degradation,
affecting not only the flows traversing the original point of
congestion, but other flows that share common upstream links.

A common approach to avoid this problem is by using an
admission control (AC) mechanism. The AC decides whether
a new connection is accepted or rejected and ensures that the
entry of additional traffic into a network cannot create congestion.

Many AC schemes have been proposed. In [30] an implementation
and comparison of a probe, a statistical, and a bandwidth broker
approach is presented.

AS specification just cites AC as a possible mechanism to be
used, but does not give any indication of how to implement it.We
propose to use a bandwidth broker, which is an AC scheme that
makes the decisions based on the bandwidth that is expected to
consume the new flow. This solution assumes that both topology
and routing information about network is available. Moreover, the
flows must use the same path during all their life. This is possible
in AS due to its source-based routing.

The bandwidth broker algorithm must maintain a graph of
the network egress links reporting the available free bandwidth
on each link. When a new connection tries to get access to
the network, the bandwidth broker checks if there is enough
bandwidth available all along the path of that connection. If all the
links have enough bandwidth, the amount of required bandwidth
is subtracted from the available bandwidth of those links and
the new connection is accepted. If any of the links have not
enough bandwidth to accommodate the new flow the connection
is rejected.

One of the main problems of the bandwidth broker AC
mechanism is the connection establishment procedure overhead.
Applying this mechanism when trying to initiate every single flow
can produce an excessive overhead. However, as stated before,
AS defines the credit-based flow control and the scheduling
mechanisms at the VC level. This provides a certain degree of
isolation to the traffic traversing one VC regarding the traffic of
the rest of VCs. Specifically, it allows devoting a certain minimum
proportion of the link bandwidth to each VC. Therefore, thisal-
lows us to apply the bandwidth broker mechanism over a reduced
subset of VCs in order to avoid the appearance of congestion trees
within those VCs. Even in the case that congestion trees appear
in the rest of VCs, the traffic of the brokered VCs will not be
affected.

Therefore, we propose to apply the AC mechanism only to
those VCs employed by the QoS SCs and not to the control SC
or the best-effort SCs. Note, that the QoS SCs are the ones which
actually have specific QoS requirements. In addition, the latency
constraints of the control traffic are not so clear. Moreover, we
can assume that the amount of control traffic that is going to
traverse the network is going to be quite small. And thus, taking
into account the maximum amount of expected control traffic,the
scheduling algorithm can assign the network SC with ana priory
amount of bandwidth.

Note that the AS source-based routing allows this AC approach
to not need specific flow information in the switches in order
to make sure that each flow uses always the same path through
the network. Switches must only maintain the configuration of
the output schedulers at a VC level. In this way, this AC
approach is an end-to-end mechanism that can be implemented
in a centralized manner, which has all the brokering information
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in a single host, or in a distributed manner, like in [11]. As a
first approximation, a centralized bandwidth broker1 based on the
average bandwidth value required per each flow is used in the
performance evaluation section.

C. Scheduler configuration

The schedulers must be properly configured at the different
network elements to distribute the bandwidth among the different
VCs but also to provide the traffic traversing each VC with a
differentiated treatment.

There are two possible ways of configuring the schedulers.
The first possibility is to configure the schedulers in advance,
assigning each VC with a specific weight in the case of the
MinBW scheduler, or assigning each table entry with a given VC
identifier, in the table scheduler case. This distribution would be
made taking into account the requirements and expected amount
of traffic of the SCs that traverse each VC [30].

The second possibility is to configure the schedulers in ac-
cordance with the connection requirements in a dynamic way.
With this approach, the scheduler configuration may be modified
both when a new connection is accepted and when a previously
established connection ends [2].

In the following sections we will show how to configure the
two normative AS schedulers, the MinBW scheduler and the table
scheduler, to provide the flows aggregated in the different VCs
with bandwidth and latency requirements. Note that the maximum
jitter performance is intimately linked to the maximum latency
performance, and thus, we can translate any maximum jitter
requirement into a maximum latency requirement.

1) Configuring the MinBW scheduler:Providing minimum
bandwidth requirements to a VC with the MinBW scheduler is
as easy as assigning to that VC a weight equal to the proportion
of the egress link bandwidth that it needs. The control SC will be
assigned to the FMC in order to achieve the maximum priority,
and thus no bandwidth will be assigned explicitly to this SC.

Parekh and Gallager [25] analyzed the performance of a
queuing network with fair queuing service discipline and derived
upper bounds on the end-to-end delays when the input traffic
streams conform to the leaky bucket characterization. As a first
approximation, we are not going to conform the traffic to a given
pattern, but on the basis of that study, we assign a higher amount
of bandwidth than is needed to those VCs with high latency
requirements, in order to obtain a better average and maximum
latency performance.

In order to distribute the link bandwidth between the VCs,
several things must be taken into account. First of all, it is
well-known that interconnection networks are unable to achieve
100% global throughput. Therefore, not all the bandwidth can be
distributed among the SCs, thereby requiring a certain bandwidth
to be left unassigned. Moreover, a certain amount of bandwidth
must be reserved to the control SC according to its expected
traffic. Secondly, QoS traffic may be bursty (for example a video
transmission) and may require, during short periods of time, more
bandwidth than average. Therefore, when configuring the MinBW
scheduler, not all the bandwidth that is intended to be assigned to
best-effort SCs will in fact be assigned to them, but rather only a
small amount of bandwidth proportional to their relative priority.

1The use of a centralized or distributed AC does not affect thesimulation
results obtained in this paper.

The rest of the best-effort bandwidth will also be added to this
unassigned traffic. Note that the bandwidth unused by the control
and QoS SCs would be redistributed by the MinBW scheduler
among the best-effort SCs.

2) Configuring the Table scheduler:The main advantage of the
table is that it allows us to configure not only the number of table
entries assigned to each queue or VC, but also the distribution of
the entries assigned to each queue. In [3], we explained how to
configure this kind of arbitration table (in that case for InfiniBand)
to provide bandwidth and latency guarantees.

In order to provide traffic of a given VC with a minimum
bandwidth, the number of table entries assigned to that VC must
accomplish with the proportion of desired egress link bandwidth.
In order to provide maximum latency requirements to the traffic
of a VC, the maximum separation between any consecutive pair
of entries devoted to that VC must be fixed. Controlling the
maximum separation between any consecutive pair of entries
assigned to the same VC, it is possible to control the latencyof
that VC. This is because this distance determines the maximum
time that a packet at the head of a flow queue is going to wait until
being transmitted. If for example, we assign a VC a maximum
separation of 2, that VC is going to be given the possibility to
transmit after any other VC has been selected to do so and thus,
the waiting time at the egress queue is going to be very short.

This way of assigning the entries of the table faces the problem
of bounding the bandwidth and latency assignments. If one sets
a maximum separation between two consecutive table entries
of a VC, a certain number of them are being assigned, and
hence a minimum bandwidth, to the VC in question. This can
be a problem because the most latency-restrictive traffic does not
usually require a high bandwidth reservation. This is usually the
case of, for example, the control traffic. However, in this case,
we can prevent this problem by assigning the control SC the
bandwidth that, as it has been previously said, should be left
unassigned in the MinBW case.

VII. PERFORMANCEEVALUATION

In our previous work [22], [21], [20], [19], we have evaluated
first approaches of our proposals and compared the performance
of subsets of our proposed schedulers. In this paper, we evaluate
thoroughly our proposals, comparing the performance of thefour
possible scheduling mechanisms that we have proposed for AS:
the DTable scheduler and the three possible implementations of
the MinBW scheduler. Specifically, we compare their throughput,
average and maximum latency, and average and maximum jitter
performance. For this purpose, we have developed a detailed
simulator that allows us to model the network at the register
transfer level following the AS specification.

A. Simulated architecture

We have used a perfect-shuffle Bidirectional Multi-stage Inter-
connection Network (BMIN) [8] with 64 end-points connected
using 48 8-port switches. In AS any topology is possible, butwe
have used a BMIN because it is a common solution for inter-
connection in current high-performance environments [37]. The
switch model uses a combined input-output buffer architecture
with a crossbar to connect the buffers. Virtual output queuing has
been implemented to solve the head-of-line blocking problem at
switch level [4]. However, all the queues of a VC share the same
credit count.
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TABLE II

SET OF SCS CONSIDERED.

IEEE 802.1D-2004 traffic types suggestion Simulated traffic pattern
Type SC Description Traffic pattern Packet size
Control Network control (NC) Supports the network infrastructure. Bursts1 up to 256B
QoS Voice (VO) Limit of 10 ms for latency and jitter. 64 Kb/s CBR connections 168B
QoS Video (VI) Limit of 100 ms for latency and jitter. 3 Mb/s MPEG-4 traces up to 2176B
QoS Controlled load (CL) Explicit bandwidth requirements. 750 kb/s CBR connections2176B
Best-effort Excellent-effort (EE) Preferential best-effort traffic. Bursts60 up to 2176B
Best-effort Best-effort (BE) LAN traffic as we know it today. Bursts60 up to 2176B
Best-effort Background (BK) It should not impact other flows. Bursts60 up to 2176B

In our tests, the link bandwidth is 2.5 Gb/s but, with the 8b/10b
encoding scheme, the maximum effective bandwidth for data
traffic is only 2 Gb/s. We are assuming some internal speed-up
(x1.5) for the crossbar, as is usually the case in most commercial
switches [15], [17]. The time header takes to cross the switch
without any load is 150 ns, which is the same unloaded cut-
through latency of the AS StarGen’sMerlin switch [35].

B. Traffic model

The IEEE standard 802.1D-2004 [12] defines 7 traffic types
at the Annex G, which are appropriate for this study. We will
consider each traffic type as a SC. Table II shows each SC and
its requirements. In this way, the workload is composed of 7 SCs
and each one of them will be assigned to a different VC, the NC
SC being assigned to the FMC.

The packets from each SC are generated according to different
distributions, as can be seen in Table III. VO, VI, and CL SCs are
composed of point-to-point connections of the given bandwidth.
VO and CL SCs are generated following a Constant Bit Rate
(CBR) distribution. In [38] several payload values for voice codec
algorithms are shown. These values range from 20 bytes to 160
bytes. We have selected a payload of 160 bytes for the VO
SC traffic. In the case of VI SC, MPEG-4 traces are used to
generate the size of each frame. Each frame is injected into
the network interfaces every 40 ms. If the frame size is bigger
than the MTU, the frame is split into several packets which are
injected all along the frame time. The traffic of the best-effort
SCs is generated according to a Bursts60 distribution [6]. This
traffic is composed of bursts of 60 packets heading to the same
destination. The packets’ size is governed by a Pareto distribution,
as recommended in [13]. In this way, many small size packets
are generated, with an occasional large size packet. The periods
between bursts are modeled with a exponential distribution[13].
The Bursts60 pattern models worst-case real traffic scenarios. The
NC SC is generated in the same way than the Burst60 traffic
but with only one packet burst. For all the cases, the destination
pattern is uniform in order to fully load the network.

Our intention is to show that with an AC mechanism for
controlling the QoS traffic and a relatively small amount of
control traffic (as is usually the case), the QoS requirements of
the different SCs are met, whatever the load of best-effort traffic.
For that purpose, we inject a fixed amount of control traffic (NC)
and QoS traffic (VO, VI, and CL) all the time, and we gradually
increase the amount of best-effort traffic (EE, BE, and BK). The
amount of QoS traffic to be injected is the maximum allowed by
the AC. Table III shows the proportion of traffic of each SC that
each node injects regarding the link bandwidth.

Note that the traffic model that we use in this performance
evaluation is based on a multimedia environment. AS is intended

TABLE III

INJECTED TRAFFIC AND SCHEDULER CONFIGURATION.

Injected traffic Table C. MinBW C.
SC Min. Max. # Entr. Dist. Weight
NC 0.01 0.01 16 4 -
VO 0.1875 0.1875 16 4 0.25
VI 0.1875 0.1875 12 6 0.1875
CL 0.1875 0.1875 12 (6) 0.1875
EE 0 0.1425 5 (16) 0.078125
BE 0 0.1425 2 (32) 0.03125
BK 0 0.1425 1 (64) 0.015625

Total 0.5725 1 64 0.75

to be used in very different kind of environments, and probably
in some of them the multimedia traffic is not the most suitable
one. However, we use a wide range of traffic behaviors, and thus
the results obtained with this kind of traffic can be generalized
to other AS environments with other kind of traffic with QoS
requirements.

C. Scheduler configuration

The configuration of the DTable and the MinBW schedulers is
shown in Table III. In order to compare the two schedulers we
have assigned in both cases the same amount of bandwidth to
each SC.

1) Best-effort SCs.We want to reserve 25% of link bandwidth
to best-effort traffic. However, we have only assigned best-
effort SCs 12.5% of bandwidth, because we do not need
more to establish the preference between them.

2) NC SC. We have assigned the NC SC with 25% of
bandwidth (rest of best-effort bandwidth + expected amount
of control traffic + expected amount of lost network band-
width). Note that the bandwidth assigned to the NC SC in
the table case is left unassigned in the MinBW case.

3) QoS SCs.The remaining bandwidth has been distributed
between the QoS SCs. We will inject the same amount
of traffic of the three QoS SCs considered. However, in
the MinBW case the way of providing a better latency to
a SC is assigning a higher amount of bandwidth than is
actually required to fulfill its bandwidth requirements [25].
Therefore, we have assigned 33% more bandwidth to VO
SC due to its higher latency requirements.

For the sake of simplicity, a table of 64 entries has been
used in the simulations. In order to fill in the table with the
VC identifiers we have assigned the table entries minimizing
the distance between any consecutive pair of entries for theNC,
VO, and VI SCs, which are the SCs with latency requirements.
Therefore, we have assigned a maximum distance of 4 to the NC
and VO SCs, which have 16 entries each one, and a maximum
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distance of 6 to the VI SC, which has 12 entries. For the CL SC
and the best-effort SCs this is not necessary and we could have
assigned the entries sequentially in the free gaps of the table, but
to achieve better latency results for these SCs we have assigned
their entries minimizing the distance between entries. Figure 1
shows the final distribution of the table entries among the VCs.

Fig. 1. Arbitration table configuration.

D. Simulation results

The figures of this section show the average values and the
confidence intervals at 90% confidence level of ten different
simulations performed at a given input load. For each simulation
we obtain the average throughput, the average packet latency, the
maximum packet latency, the average jitter, and the maximum
jitter of each flow. No statistics on packet loss are given because,
as it has been said, AS has a credit-based flow control mechanism
to avoid dropping packets. We obtain statistics per SC aggregating
the throughput of all the flows of the same SC, obtaining the
average value of the average latency and jitter, and the maximum
latency and jitter of all the flows. Note that the maximum latency
and jitter shows the behavior of the flow or flows with the worst
performance.

Figure 2 gives a general overview of the performance when
using the WFQ-CA variant of the MinBW scheduler. We do not
show similar figures for the rest of schedulers due to lack of space.
However, although the specific values are different, the general
tendencies for the other mechanisms are the same. And thus, the
comments that we are going to make based on this figure can be
generalized to the rest of schedulers. If we compare the injection
and the throughput results, we can see that that the NC and the
QoS SCs obtain all the bandwidth that they inject. However, when
the network load is high (around 75%), the best-effort SCs do
not yield a corresponding result. From that input load, these SCs
obtain a bandwidth proportional to their priority.

Regarding the latency performance, Figure 2 shows that the
average and maximum latency of the control and QoS SCs grow
with the load until they reach a certain value. Once this value is
reached the latency remains more or less constant. This is because
when the load is low the number of conflicts between packets
from different VCs is also low, and thus the latency of all the
SCs is also low. However, the average latency of best-effortSCs
continually grows with the load. Furthermore, it can be seenthat
best-effort SCs obtain different average and maximum latency
according to their different priority. In that sense, for example, the
BK SC obtains a worse latency and starts to increase its latency
sooner than the BE and EE SCs. Note that although the control
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Fig. 2. Performance per VC with the WFQ-CA scheduler.
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Fig. 3. Latency performance comparison for the NC SC.

and QoS SCs employ separate VCs, the growing best-effort traffic
slightly affects their performance.

Regarding the jitter performance, Figure 2 shows only the
performance of the QoS SCs because this is the connection
oriented traffic and the jitter metric is only relevant for this kind
of traffic. The tendency is similar to the latency case. The jitter
slightly grow with the load until they reach a certain value.

Figures 3 and 4 show a more detailed comparison between
the different schedulers for the control and QoS SCs. We do
not show the performance comparison for the best-effort SCs
because the relevant aspect of these SCs is not the actual latency
and jitter values but that they obtain a differentiated performance
among them. In this sense, the four schedulers provide this
differentiation.

Regarding the control SC, Figure 3 shows that the three possi-
bilities for the MinBW scheduler provide a similar performance,
which is better than the provided by the DTable scheduler. This
is because, as stated before, the MinBW scheduler employs a
strict priority mechanism to schedule the FMC, which is the VC
that we have assigned to the control SC. However, in the DTable
scheduler case the control traffic does not have strict priority and
it must compete with the other traffic.

Regarding the QoS SCs, Figure 4 shows that the DRR-CA
variant of the MinBW provides the worst latency and jitter
performance of the four schedulers. Specifically, the latency and
jitter values offered by this scheduler are around the double than
in the other cases. Note also that the performance of this scheduler
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Fig. 4. Latency and jitter comparison for the QoS SCs.
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Fig. 5. Percentage of degradation in the performance at maximum traffic load.

depends on the frame length, and thus, in other scenarios, the
performance could be even worse. If we compare the WFQ-CA
and the SCFQ-CA MinBW variants, and the DTable scheduler,
we can see that the WFQ-CA provides the best performance and
the DTable the worst. However, the differences are actuallyvery
small. In some cases, we can even see that the different lines
and/or confidence intervals are overlapped.

Figure 5 shows the percentage of degradation in the latency
and jitter performance at maximum traffic load for the control
and QoS SCs of the SCFQ-CA, the DRR-CA, and the DTable
scheduler over the WFQ-CA scheduler, and the DTable scheduler
over the SCFQ-CA scheduler. This figure shows that the SCFQ-
CA scheduler entails only a maximum of 35% of degradation if
compared with the WFQ-CA scheduler. This slight degradation
may not justify the use of the WFQ-CA, which, as stated
before, has much more computational complexity. On the other
hand, the DRR-CA algorithm provides for this scenario up to
300% degradation. And thus, this scheduler despite its very
low computational complexity does not seem appropriate for
providing latency and jitter requirements. Finally, we cansee
that the DTable scheduler provides a degradation for the NC
SC of 70%-80% on the average latency but only 30% on the
maximum latency. Regarding the QoS SCs it provides a maximum
degradation of 60% if compared with the WFQ-CA algorithm
and 25% if compared with the SCFQ-CA algorithm. Therefore,
although the performance of this scheduler is worse than both

the WFQ-CA and the SCFQ-CA algorithms, it can be a good
alternative for being used as the output scheduler mechanism if we
take into account its relatively low complexity. Moreover,in this
performance evaluation, in order to perform a fair comparison, we
have considered the same scheduling time for all the schedulers.
Note that if we would consider the computational complexityof
each algorithm, the arbitration times would be probably different,
and the difference between the WFQ-CA and the SCFQ-CA,
and between the SCFQ-CA and the DTable schedulers would be
probably even smaller.

VIII. C ONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a framework to provide QoS
requirements over AS. Specifically, we have proposed to define
a reduced set of SCs with different bandwidth, latency, and jitter
requirements. After that, we have proposed how to take advantage
of the VCs, the link level flow control, the output scheduling,
and the admission control mechanisms provided by AS in order
to efficiently provide the different SCs with their requirements.
In order to provide a differentiated treatment to the SCs we have
proposed three specific implementations for the MinBW scheduler
and the DTable scheduler as a modification to the table scheduler
stated in the AS specification.

We have evaluated the performance of our proposals in a
multimedia scenario using the IEEE standard 802.1D-2004 traffic
types. Simulation results show that our proposals are able to
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provide the SCs with their requirements in the test scenario: the
network control SC obtains a good latency; the SCs with band-
width requirements obtain the amount that they need; the SCswith
latency or/and jitter requirements do not exceed the maximum
allowed; the best-effort SCs obtain a different bandwidth and
latency performance in accordance with their different priority.
Although the simulation results obtained cannot prove thatour
proposals are going to be able to provide QoS requirements in
every other environment or architecture. We believe that they
provide a very good insight in their posibilities.

Moreover, analyzing the simulation results and the complexity
of the different schedulers we can conclude that the WFQ-CA
MinBW variant provides the best performance, but its complexity
is excessive. The DRR-CA MinBW variant is not adequate to
provide latency and jitter requirements. The SCFQ-CA variant is
probably the best MinBW option due to its good performance and
lower complexity than the WFQ-CA variant. Finally, the DTable
scheduler is a good option due to its low complexity and relatively
good performance.

As future work we are focusing our attention on offering a more
accurate model to configure the schedulers and the admission
control in order to provide the aggregated of flows with their
requirements. This implies to choose how much bandwidth of
each VC can be permited into the network by the admission
control mechanism. On the other hand, with respect to the
scheduler, it should be determined the weights to assign to each
VC in the case of the MinBW and the maximum distance and
number of entries in the DTable case.

Moreover, a deeper study on the complexity of the algorithms
that we propose may allow us to offer hardware estimates. In
fact, we are performing an study about the arbitration time and
the silicon area that each algorithm would require. We are taking
into account different values for some design parameters. We have
considered the number of VCs and the MTU in all the cases.
Moreover, for the DTable scheduler we have also considered the
size of the table in terms of table entries and the parallelization
grade, which is the number of table entries that we read each
cycle. Preliminary results show that the cost of modifying the
original AS table to handle in a proper way variable packet sizes
is very small (around 10% increment in silicon area). Moreover,
the DTable scheduler can be a simpler option, at least in terms of
silicon area, when a small number of table entries is implemented
(32-256) if compared with the SCFQ-CA scheduler.

Moreover, we are also working on obtaining mathematical
expressions to characterize the QoS properties such as latency
bounds of the different schedulers. We can find in the literature
such expression for the well-known scheduling algorithms that
are the base of the credit aware versions that we present in this
paper. However, those expressions were obtained with studies
that usually considered lossy networks. Therefore, a full study
on the effect of the link-level flow control mechanism over the
analytical models proposed for well-known scheduling algorithms
should be performed. Furthermore, completely new expressions
should be obtained for the DTable scheduler, because, as faras
we know, there is no formal study on the properties of table-based
schedulers.
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