IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 3, MARCH 2010 327

Providing QoS with the Deficit Table Scheduler

Raul Martinez-Morais, Francisco J. Alfaro-Cortés, and José L. Sanchez

Abstract—A key component for networks with Quality of Service (QoS) support is the egress link scheduling algorithm. An ideal
scheduling algorithm implemented in a high-performance network with QoS support should satisfy two main properties: good end-to-
end delay and implementation simplicity. Table-based schedulers try to offer a simple implementation and good latency bounds. Some
of the latest proposals of network technologies, like Advanced Switching and InfiniBand, include in their specifications one of these
schedulers. However, these table-based schedulers do not work properly with variable packet sizes, as is usually the case in current
network technologies. We have proposed a new table-based scheduler, which we have called Deficit Table (DTable) scheduler, that
works properly with variable packet sizes. Moreover, we have proposed a methodology to configure this table-based scheduler in such
a way that it permits us to decouple the bounding between the bandwidth and latency assignments. In this paper, we thoroughly review
the provision of QoS with the DTable scheduler and our configuration methodology, and evaluate the performance of our proposals in a
multimedia scenario. Simulation results show that our proposals are able to provide a similar latency performance than more complex
scheduling algorithms. Moreover, we show the advantages of our decoupling configuration methodology over the usual ways of

configuring this kind of table-based schedulers.

Index Terms—Quality of Service (QoS), scheduling algorithms, table-based schedulers, latency requirements, interconnection

networks, performance evaluation.

1 INTRODUCTION

HE evolution of interconnection network technology has
been constant along the previous decades. The speed
and capacity of various components in a communication
system, such as links, switches, memory, and processors,
have increased dramatically. Moreover, network topologies
have become more flexible, and the efficiency of switching,
routing, and flow control techniques have been improved.
The advent of high-speed networking has introduced
opportunities for new applications. Current packet net-
works are required to carry not only traffic of applications,
such as e-mail or file transfer, which does not require
prespecified service guarantees, but also traffic of other
applications that requires different performance guarantees,
like real-time video or telecommunications [23]. The best
effort service model, though suitable for the first type of
applications, is not so for applications of the other type [25].
Even in the same application, different kinds of traffic (e.g.,
I/0 requests, coherence control messages, synchronization
and communication messages, etc.) can be considered, and
it would be very interesting that they were treated
according to their priority [5].
These are the reasons because the provision of QoS in
computing and communication environments has been the
focus of much discussion and research in academia during

o R. Martinez-Mordis is with the Intel-UPC Barcelona Research Center,
Campus Nord, Building NXII (Nexus II), C. Jordi Girona, 29, Barcelona
08034, Spain. E-mail: raulmm@dsi.uclm.es.

o F.J. Alfaro-Cortés and].L. Sinchez are with the Computer Systems
Department, University of Castilla-La Mancha, Escuela Superior de
Ingeniria Informdtica, Campus Universitario s/n, Albacete 02071, Spain.
E-mail: {falfaro, jsanchez)@dsi.uclm.es.

Manuscript received 21 May 2008; revised 2 April 2009; accepted 9 April
2009; published online 22 April 2009.

Recommended for acceptance by S. Rangarajan.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-05-0199.
Digital Object Identifier no. 10.1109/TPDS.2009.75.

1045-9219/10/$26.00 © 2010 IEEE

the last decades. This interest in academia has been
renewed by the growing interest on this topic in industry
during the last years. A sign of this growing interest in
industry is the inclusion of mechanisms intended to provide
QoS in some of the last network standards like Gigabit
Ethernet [32], InfiniBand (IBA) [13], or Advanced Switching
(AS) [1]. An interesting survey with the QoS capabilities of
these network technologies can be found in [30].

A key component for networks with QoS support is the
output (or egress link) scheduling algorithm (also called
service discipline) [8], [11], [40]. In a packet-switching
network, packets from different flows' will interact with
each other at each switch. Without proper control, these
interactions may adversely affect the network performance
experienced by clients. The scheduling algorithm, which
selects the next packet to be transmitted and decides when
it should be transmitted, determines how packets from
different flows interact with each other. Therefore, the
scheduling algorithm plays an important role in providing
the traffic differentiation that is necessary to provide QoS.

Apart from providing a good performance in terms of, for
example, good end-to-end delay (also called latency) and fair
bandwidth allocation, an ideal scheduling algorithm im-
plemented in a high-performance network with QoS support
should satisfy other important property which is to have a
low computational and implementation complexity [34].
This is because in order to achieve a good performance, the
time required to select the next packet to be transmitted must
be smaller than the average packet transmission time. This
means that the scheduler computation time must be very
small, if we consider the high speed of high-performance
networks. Moreover, alow complexity is required in order to
be able to implement the scheduler in a small silicon area

1. In this paper, we will use the term flow to refer both to a single flow or
to an aggregated of several flows with similar characteristics.

Published by the IEEE Computer Society

328 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

(note that high-performance switches are usually imple-
mented in a single chip). Note that the scenario that we are
addressing here is very different than, for example, IP
routers with QoS support, where these algorithms are
usually implemented by software instead of hardware.

The design of a traffic scheduling algorithm involves an
inevitable trade-off among the above properties. Many
scheduling algorithms have been proposed for that. Among
them, the “sorted-priority” family of algorithms is known to
offer very good delay [37]. However, their computational
complexity is very high, making their implementation in
high-speed networks rather difficult. Table-based schedu-
lers are intended to provide a good latency performance
with a low computational complexity. This approach is
followed in [4] and in two of the last high-performance
interconnection network proposals: AS [1] and IBA [13].
However, as we will see, these schedulers do not work
properly with variable packet sizes, as is usually the case in
current network technologies.

In [20], we proposed a new table-based scheduler that
works properly with variable packet sizes. Moreover, we
proposed a methodology to configure this scheduler in
such a way that it permits us to decouple partially the
bounding between the bandwidth and latency assignments.
We called this new scheduler Deficit Table scheduler, or
just DTable scheduler.

In this paper, we review this new scheduling algorithm
and largely expand the analysis of its behavior and the
discussion on the way of providing QoS. Furthermore, we
present a whole framework to provide QoS in any network
technology that implements a DTable scheduler as the
egress link scheduling algorithm. This framework supports
the coexistence of traffic with explicit requirements based on
bandwidth and latency at the same time that allows several
levels of best effort traffic. Finally, in Section 6, we not only
compare the throughput and latency performance of this
scheduler with the one provided by the well-known Self-
Clocked Weighted Fair Queuing (SCFQ) scheduler [10], as
an example of a “sorted-priority” algorithm, and the Deficit
Round Robin (DRR) scheduler [33], because of its simplicity,
but also we compare our decoupling configuration metho-
dology with the one proposed in [4]. For this performance
evaluation, we have assumed a multimedia scenario using
the IEEE standard 802.1D-2004 [12] traffic types.

The structure of the paper is as follows: Section 2
presents a summary of the best known scheduling algo-
rithms and introduces the table-based schedulers. In
Section 3, we present the DTable scheduling mechanism.
In Section 4, we present our proposal to decouple the
bandwidth and latency assignments. Section 5 presents our
proposal to provide QoS requirements with the DTable
scheduler and its decoupling configuration methodology.
Details on the experimental platform and the performance
evaluation are presented in Section 6. Finally, some
conclusions are given and future work is proposed.

2 FRAME-BASED SCHEDULERS

Scheduling disciplines can be categorized in many ways.
Traditionally, they have been divided into work-conserving
and non-work-conserving disciplines [40]. Another possible

NO. 3, MARCH 2010

classification is based on their internal structure, according
to which there are two main architectures: Sorted priority
and frame based [36].

Sorted-priority scheduling disciplines, like Weighted Fair
Queuing (WFQ) [8], packet-by-packet Generalized Processor
Sharing (GPS) [24], Self-Clock Fair Queuing SCFQ [10], and
Worst Case Weighted Fair Queuing (WF2Q) [3], use a global
variable, often called virtual time (to distinguish it from real
time), associated with the server. The purpose of this variable
is to keep track of the progress of the server and it is usually
updated at packet arrival and departure instants. For each
packet in the system, a time stamp is computed as a function
of this variable. Packets are then sorted based on these time
stamps and served in this order. They differ in the manner in
which they calculate the global virtual time function. They
generally provide good fairness and a low latency but are not
very efficient due to the complexity involved in computing
the virtual time and the complexity of maintaining a sorted
list of packets based in their time stamps.

On the other hand, frame-based scheduling disciplines
use a frame of fixed or variable length which is divided
among different connections/classes based on the reserva-
tions of the connections/resources allocated for the class.
The more resources are allocated for a connection/class, the
larger part of the frame it receives. The frame is split among
the connections/classes in a similar way in each service
round. The simplest examples of this category of schedulers
are the round-robin schemes. They have O(1) per-packet
work complexity, but are well known for their output
burstiness and short-term unfairness. Weighted Round
Robin (WRR), DRR [33], Elastic Round Robin (ERR) [15],
and Carry-Over Round Robin (CORR) [31] are typical round-
robin schedulers. In these kinds of round-robin schedulers,
the schedulers will serve a flow for a continuous period of
time in proportion to the weight of the flow, resulting in a
highly burst scheduling output for each flow. The latency
and fairness of these algorithms depend on the frame length.
The longer the frame is, the higher the latency and the worse
the fairness. In order for DRR to exhibit lower latency and
better fairness, the frame length should, therefore, be kept as
small as possible. Unfortunately, given a set of flows, it is not
possible to select the frame length arbitrarily.

Therefore, these kinds of round-robin schedulers are
considered not suitable to provide QoS in packet networks
and thus, other frame-based scheduling algorithms have
been proposed in order to overcome the latency and
burstiness problem of round-robin schemes, while main-
taining a low complexity. Examples of these approaches are
the Smoothed Round Robin (SRR) [7], the Nested Deficit
Round Robin (Nested-DRR) [16], and the List-based WRR
[4] scheduling algorithms.

SRR codes the weights of the flows into binary vectors to
form a Weight Matrix, then uses a Weight Spread Sequence,
which is specially designed to distribute the output more
evenly, to schedule packets by scanning the Weight Matrix.
The traversal of these two structures results in a sequence of
slots assigned to each Virtual Channel (VC) that continually
repeats. This sequence tries to emulate the GPS. The
Nested-DRR scheduler has the same objective as the SRR,
overcoming the burstiness problem of the DRR scheduler.

MARTINEZ-MORAIS ET AL.: PROVIDING QOS WITH THE DEFICIT TABLE SCHEDULER 329

In this case, the scheduler modifies the frame-based DRR
scheduler, by creating a nested set of multiple frames inside
each DRR frame. The basic principle of the Nested-DRR is
to split each round in DRR, henceforth called an outer
round, into one or more smaller inner rounds, and then
execute a version of the DRR algorithm over these inner
rounds. The Preorder Deficit Round Robin (Preorder DRR)
[38], as stated in [17], can be interpreted as a Nested-DRR
with a limited and fixed number of outer rounds.

The List-based WRR algorithm can be considered a
generalization of the two previous approaches and other
similar algorithms. In this generalization of the classical
WRR discipline, instead of serving packets of a flow in a
single visit per frame, the service is distributed throughout
the entire frame. For this, a list of flow identifiers, called
“service list,” is maintained. When scheduling is needed,
the list is cycled through sequentially and a packet is
transmitted from the flow indicated by the current entry.
The number of times that a flow identifier appears in the
service list is proportional to its weight, but these appear-
ances are not necessarily consecutive as in the classical WRR
algorithm. Note that, the list-based WRR, as the original
WRR, is intended for environments with fixed packet size.

In [4], three ways of distributing the flow identifiers to
conform the service list are proposed: Simply Interleaved
WRR, Uniformly Interleaved WRR, and WF2Q Interleaved
WRR. These three possible ways of distributing the flow
identifiers result in three different schedulers. In order to
compute any service list for a list-based WRR scheduler, let
be w; the integer weight assigned to each flow ¢,.J the
number of flows, and N = Z%]:1 w; the number of entries of
the service list. The three possibilities presented in [4] are:

1. Simply Interleaved WRR. In order to compute the
service list of this approach, which is the simplest
one, we divide the service list in W,,,,, = maz{ wi};]:]
sets of entries (bins). Session with weight w; registers
itself in the first w; bins. Each bin will have at
maximum one entry assigned to any given flow. A
service list is then computed by listing all the sessions
in the first bin, followed by all those in the second
bin, and so on, up to the W,,,,th bin. Note that this
distribution of the service list entries is the same that
would be obtained with the Nested-DRR algorithm.

2. Uniformly Interleaved WRR. In this approach, the
number of bins equals the least common multiple
(denoted by Wrcas) of {wi}le. Session i registers
itself in every (n x (Wrca/w;))th bin for 1 <n < w;.
A service list is then computed, by listing the
sessions bin after bin. Note that this distribution of
the service list entries is the same that would be
obtained with the SRR.

3. WEF2Q Interleaved WRR. In this approach, the
service list is computed by assuming that all sessions
are always backlogged and determining the se-
quence in which the packets are transmitted in the
WE2Q scheme. The service list is then set equal to
this sequence.

Note that, in all the cases the proportion of entries

associated with each flow indicates the bandwidth assigned
to each flow. Therefore, the difference between the three

schedulers is in the way of distributing the flow identifiers
among the entries. These different forms of interleaving the
flow identifiers result in different latency characteristics for
the three schedulers. All the approaches are able to improve
the performance of the classical WRR. However, the WF2Q
Interleaved WRR approach offers the best properties while
the Simply Interleaved WRR offers the worst ones. Two of
the last high-performance network interconnection propo-
sals: IBA [13] and AS [1] define in their specifications table-
based scheduling mechanisms that can be used to imple-
ment any of the three list-based WRR approaches.

InfiniBand uses VCs to aggregate flows with similar
characteristics and the arbitration is made at a VC level. The
maximum number of unicast VCs that a port can implement
is 16. InfiniBand defines a scheduler that uses two tables,
one for scheduling packets from high-priority VCs and
another for low-priority VCs. The maximum amount of
data that can be transmitted from high-priority VCs before
transmitting a packet from the low-priority VCs can be
configured. Each table has up to 64 entries. Each entry
contains a VC identifier and a weight, which is the number
of units of 64 bytes to be transmitted from that VC. This
weight must be in the range of 0 to 255, and is always
rounded up as a whole packet. When arbitration is needed,
the table is cycled through sequentially, and a certain
number of packets is transmitted from the VC indicated by
the VC identifier depending on the entry weight.

The AS table-based scheduler employs an arbitration
table that consists in a register array with fixed-size entries
of 8 bits. Each entry contains a field of 5 bits with a VC
identifier value and a reserved field of 3 bits. When
arbitration is needed, the table is cycled through sequen-
tially and a packet is transmitted from the VC indicated in
the current table entry regardless of the packet size. If the
current entry points to an empty VC, that entry is skipped.
The number of entries may be 32, 64, 128, 256, 512, or 1,024.

Other interesting algorithm is Stratified Round Robin
[28]. The objective of this scheduling mechanism is to
manage a high number of individual flows with a feasible
complexity in an Internet high-speed router. In order to do
so, those flows with a similar bandwidth assignation are
grouped into the same flow class. Given this, the algorithm
proposes a two-step scheduler. While the first step uses a
deadline mechanism similar to many time-stamp schedu-
lers, the second step is essentially a round-robin scheme.
Therefore, Stratified Round Robin may be considered a
hybrid between sorted-priority and frame-based packet
schedulers. This scheduling algorithm has the advantage of
reducing the complexity of managing a large set of flows to
the complexity of a sorted-priority scheduler and several
DRR schedulers that manage a much reduced set of queues
each one. However, the management of a single queue per
flow is not feasible in the switches of high-performance
networks, which are usually implemented in a single chip.
In fact, real high-performance technologies with QoS
support only consider a reduced number of VCs. With this,
what we state is that the Stratified Round Robin is intended
for a quite different environment than the DTable scheduler
that is presented in this paper. Even so, the DTable

330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

9] 9]
7 256 b; X% 7 256 by XK
5 56 bytes = o 56 bytes -~
g 05 512 bytes »@- I 512 bytes »@-
= 1024 byles = o " 1024 bytes -
2 04 2048 bytes = 57 2 04 2048 bytes 57
E] 03 E]
g g
= =
= 02 i
= =1
N g
= 01 = 01
g g
5 0 5 0
z 08 1 12 14 16 18 zZ 08 1 12 14 16 18
Global Input Load Global Input Load
(@ (b)
256 bytes =Y
05 512 bytes @
1024 bytes —H+

0.4 2048 bytes ~%7

0.1

Normalized throughput per VC

0.8 12 14 1.6 1.8

1 .
Global Input Load
(©

Fig. 1. Performance of several table-based schedulers for flows with
different packet size. (a) Basic table (AS). (b) Weighted table (IBA).
(c) Deficit table (DTable).

scheduler could be used to implement the interclass
scheduling mechanism in a simpler manner.

As a final remark, we must say that, except the Stratified
Round Robin that addresses other issues, the cited frame-
based scheduling algorithms are conceptually more complex
than a table-based scheduler, like that proposed in AS and
IBA, but at the end, what they obtain is a distribution of slots
among the VCs that conforms a scheduling frame that can be
emulated with these table-based schedulers. Therefore,
table-based schedulers are able to obtain at least the same
latency performance, if not better when emulating the WF2Q
algorithm, than any of the previous frame-based schedulers.
However, as we will see, both the AS and IBA table-based
schedulers do not work well in networks with variable
packet sizes. Moreover, in all these scheduling algorithms,
the latency provided to the different flows is completely
dependent on the bandwidth assigned to each flow, which is
the main problem that we address in this paper with the
DTable and our decoupling configuration methodology.

3 THE DTABLE SCHEDULING MECHANISM

The main problem of the table-based schedulers mentioned
in the previous section is that they do not work in a proper
way with variable packet sizes, as is common in actual
traffic. If the average packet size of the flows is different, the
bandwidth that the flows obtain may not be proportional to
the number of table entries [20].

Fig. 1 shows the performance of various table-based
schedulers when there are four VCs in the network. Note
that we use VCs to aggregate flows with similar character-
istics performing the arbitration at a VC level, as it is the
case in AS and IBA technologies. The four VCs have the
same number of assigned table entries (the same bandwidth
reservation). Moreover, we inject an increasing amount of
traffic at the same rate in all the VCs. However, the traffic
injected in each VC has a different packet size. Note that in
the figures we refer to each VC according to the packet size

NO. 3, MARCH 2010

that the flows associated to that VC use. The simulated
architecture is the same as that used for the performance
evaluation in Section 6.

Fig. 1a shows the case of a basic table scheduler similar
to the AS table scheduler, which is cycled through and
when a table entry is selected, a packet from the VC
indicated in that entry is transmitted regardless of the
packet size. As can be observed, when using the basic table
scheduler, the VCs obtain a very different bandwidth
because the traffic that traverses each VC has a different
packet size. Therefore, although the same number of
packets from each flow will be transmitted, the amount of
information will not be the same.

The IBA’s arbitration table works in a similar way than
the AS table. However, it adds a weight to each entry. This
weight indicates the amount of information to be
transmitted from the VC associated to the table entry each
time that the entry is selected. This weighted table solves
the problem only partially because it allows a packet to be
transmitted that requires even more weight than the
remainder of a given table entry (exhausting them).
Fig. 1b shows the performance of a weighted table that
works in this way. We have assigned all the entries the
same weight: 2,176 bytes (34 units of 64 bytes). As can be
seen, it presents a better performance than the basic table
scheduler, but not an optimum performance.

In [20], we proposed a new table-based scheduling
algorithm that works properly with variable packet sizes
(as can be seen in Fig. 1c). We called this algorithm Deficit
Table scheduler, or just DTable scheduler, because it is a mix
between the already proposed table-based schedulers and
the DRR algorithm. The DRR algorithm [33] is a variation of
the WRR algorithm that works on a proper way with
variable packet sizes. In order to handle properly variable
packet sizes, the DRR algorithm associates each queue with
a quantum and a deficit counter. The quantum assigned to a
queue is proportional to the bandwidth assigned to that
queue. The deficit counter is set to 0 at the beginning. The
scheduler visits sequentially each queue. For each queue,
the scheduler transmits as many packets as the quantum
allows. When a packet is transmitted, the quantum is
reduced by the packet size. The unused quantum is saved in
the deficit counter, representing the amount of quantum
that the scheduler owes the queue. At the next round, the
scheduler will add the previously saved quantum to the
current quantum. When the queue has no packets to
transmit, the quantum is discarded, since the flow has
wasted its opportunity to transmit packets. Our scheduler
works in a similar way than the DRR algorithm but instead
of serving packets of a flow in a single visit per frame, the
quantum associated to each flow is distributed throughout
the entire frame.

This new table-based scheduler defines an arbitration
table in which each table entry has associated a flow
identifier and an entry weight, which is usually expressed in
flow control credits in networks with a credit-based link-
level flow control (like AS and IBA). Moreover, each flow
has assigned a deficit counter that is set to 0 at the beginning.

When scheduling is needed, the table is cycled through
sequentially until an entry assigned to an active flow is

MARTINEZ-MORAIS ET AL.: PROVIDING QOS WITH THE DEFICIT TABLE SCHEDULER 331

while (There is at least one active flow)

endif

Transmit packet from selectedFlow

accumulatedW eight «— 0

endif
endwhile

if ((selectedF'low is not active) or (selected Flowg; e pirst > accumulatedW eight))
deficitCounterseiected Flow — accumulatedW eight
table Entry < Next table entry assigned to an active flow
selectedFlow <« table Entry. flowIdentifier
accumulatedW eight <« de ficitCountergeiected Flow + table Entry.weight

accumulatedW eight = accumulatedW eight — selectedFlowg; e iy st

if ((There are no packets in the queue of selectedFlow) or
(The flow control does not allow transmitting from selected F'low))

Fig. 2. Pseudocode of the DTable scheduler.

found. A flow is considered active when it stores at least
one packet and the flow control allows that flow to transmit
packets. When a table entry is selected, the accumulated
weight is computed. The accumulated weight is equal to the
sum of the deficit counter for the selected flow and the
current entry weight. The scheduler transmits as many
packets from the active flow as the accumulated weight
allows. When a packet is transmitted, the accumulated
weight is reduced by the packet size.

The next active table entry is selected if the flow becomes
inactive or the accumulated weight becomes smaller than
the size of the packet at the head of the queue. In the first
case, the remaining accumulated weight is discarded and
the deficit counter is set to zero. In the second case, the
unused accumulated weight is saved in the deficit counter,
representing the weight that the scheduler owes the queue.

This behavior is represented in the pseudocode shown in
Fig. 2. Note that when using the scheduling algorithm, the
bandwidth assigned to the ith flow ¢; with an arbitration
table of N entries is

Z,}‘Izo weight;
EQY:U weight“ 7

where] is the set of table entries assigned to the ith flow
and weight is the entry weight assigned to a table entry.

3.1 Complexity Considerations

As stated before, the complexity of a sorted-priority
algorithm is determined by the complexity of calculating
the time stamp, updating the priority list and selecting the
highest priority packet for transmission. The complexity of
time-stamp calculation is dependent on the specific schedul-
ing discipline. For example, in WFQ), the updating of virtual
time is considerably more complex than in the SCFQ.
Moreover, a common problem in the sorted-priority
approach is that tags cannot be reinitialized to zero until
the system is completely empty and all the sessions are idle.
The reason is that these tags depend on a common-reference
virtual clock and are an increasing function of the time. In

b =

other words, it is impossible to reinitialize the virtual clock
during the busy period, which, although statistically finite (if
the traffic is constrained), can be extremely long, especially
given that most communication traffic exhibits self-similar
patterns which lead to heavily tailed buffer occupancy
distributions. Therefore, for a practical implementation of
sorted-priority algorithms, very high-speed hardware is
required to perform the sorting, and floating-point units
must be involved in the computation of the time tags.

On the other hand, the complexity of the DRR algorithm
is quite small. According to the implementation proposed
in [33], DRR exhibits O(1) complexity provided that each
flow is allocated a quantum no smaller than the Maximum
Transfer Unit (MTU). As observed in [18], removing this
hypothesis would entail operating at a complexity which
can be as large as O(N). Note that this restriction affects not
only the weight assigned to the smallest flow, but to the rest
of the flows in order to keep the proportions between them.
Each time a packet is transmitted, the algorithm must
compute if more packets from the same flow can be
transmitted or it must change to the next active flow. This
computation can be performed with simple integer units.

In the case of the DTable scheduler, in order to keep the
computational complexity low, we set the minimum value
that a table entry can have associated to the MTU of the
network. In that case, this is also the smallest value that
ensures that it will never be necessary to cycle through the
entire table several times in order to gather enough weight
for the transmission of a single packet. This means that each
time an entry from an active flow is selected, at least one
packet is going to be transmitted from that flow. Note that,
this consideration is also made in the DRR algorithm
definition. However, in [22], we proposed to use different
MTUs for the different flows. This means that each flow has
a specific MTU equal to or lower than the general MTU of
the network and that we can assign each table entry a
minimum weight equal to the specific MTU of the flow
associated with that table entry. We can assign each flow a
specific MTU by hardware or at the communication library

332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 3, MARCH 2010

TABLE 1
Complexity Comparison Summary

[Algorithm [Tag calculation | Tag shorting | Tag overflow | Computation units | Other considerations

WFQ High Yes Yes +, /, comparison tag per packet

SCFQ Low Yes Yes +, /, comparison tag per packet

DRR - No No +, - -

DTable - No No +, - Arbitration table searching process

level. Note that in IBA this issue is solved by rounding up to
a whole packet the remaining weight in a table entry.

In the case of the DTable scheduler, a list of active VCs
would not be as simple to maintain as in the DRR case,
because VCs must be visited not in a sequential way but in
the order indicated by the table scheduler. Therefore, in this
case, the table must be looked over searching for the next
active entry and skipping those entries that refer to a VC
without packets or credits to transmit. Although the
checking of each entry can be made with very simple
computational units, in the worst case all the table must be
looked over in order to find the next active entry. This kind
of mechanism probably requires very little silicon area to be
implemented, but may last too much time. In order to make
the process faster several entries of the table can be read
simultaneously at the expense of increasing the silicon area
requirements. The size of the table effectively affects the
number of VCs that we can accommodate with an
appropriate degree of flexibility and of course has a big
impact on the area requirements of the scheduling mechan-
ism. Therefore, a trade-off must be made among the
number of VCs supported and the size dedicated to the
egress link scheduler when implementing this algorithm.

Note that, apart from the higher flexibility, the DTable
has the advantage over the Smoothed Round Robin of not
having to traverse the positions of the weight matrix that
are equal to zero because, in the DTable, each entry that
must be traversed has assigned a VC. On the other hand, it
could be interesting to study an approach similar to the one
followed in the SRR scheduler that identifies repeated
patrons on the DTable in order to reduce the number of
table entries required by the scheduler.

Summing up, the DTable algorithm has not the problem
of the increasing tag value and does not need complex
floating point units like in the case of the “sorted-priority”
algorithms. However, the management of the arbitration
table is more complex than the management of the DRR
quantums. Therefore, taking all these things into account,
which are summarized in Table 1, we can say that the
DTable algorithm is simpler than the “sorted-priority”
algorithms but more complex than the DRR algorithm.

4 DECOUPLING THE BANDWIDTH ASSIGNMENT
FROM THE LATENCY REQUIREMENTS

The easiest way of employing the DTable scheduler is by
assigning all the table entries the same weight. This weight is
the general MTU of the network. In this case, the bandwidth
assigned to the ith flow what has assigned n; table entries is
¢; = ni/N,where N is the total number of entries of the table.
Therefore, if we want to provide bandwidth requirements,

we must assign each flow a number of table entries
proportional to the bandwidth that we want to assign to
that flow. Note that if we distribute all the entries belonging
to the same flow in a consecutive way in the arbitration table,
the performance of the scheduler is going to be similar to the
DRR scheduler. As stated before, the DRR algorithm is
known to offer a bad latency performance. Therefore, if we
want to improve the latency performance provided by this
scheduler, we can distribute the table entries as the WF2Q
variant of the list-based Weighted Round Robin proposed by
Chaskar and Madhow [4].

However, following the Chaskar and Madhow approach
we cannot differentiate among different levels of latency
requirements. The WF2Q emulation tries to provide the best
latency performance for all the flows given the amount of
bandwidth that each flow has assigned. On the other hand,
in [2], the approach is different. Instead of having a set of
flows with different bandwidth requirements and trying to
provide all of them with the best possible latency, flows
present different latency requirements and the table is filled
in such a way that their requirements are achieved. In [2], it
is shown (in that case for InfiniBand) that controlling the
maximum separation between any consecutive pair of
entries assigned to the same flow, it is possible to control
the latency of that flow. This is because this distance
determines the maximum time that a packet at the head of a
flow queue is going to wait until being transmitted. Note
that this explains the different latency properties of the list-
based WRR schedulers.

However, setting the distances among the table entries
depending on the latency requirements faces the problem of
bounding the bandwidth assignment to the latency require-
ments. If a maximum separation between any consecutive
pair of table entries of a flow (or aggregated of flows with
the same maximum separation requirement) is set, a certain
number of them are being assigned, and hence a minimum
bandwidth, to the flow in question. If the flow requires
more bandwidth, we can assign more entries. However, to
assign to the most latency-restrictive flows, a small amount
of bandwidth is not possible because lower distances must
be used for them. This can be a problem because the most
latency-restrictive traffic does not usually present a high-
bandwidth requirement.

Therefore, both approaches have the problem of bound-
ing the bandwidth and latency assignments. In [20], we
proposed a methodology to configure the DTable scheduler
to decouple, at least partially, this bounding, and being
able, until a certain degree, to provide bandwidth and
latency requirements with a certain independence among
them. With this methodology, we set the maximum distance
between any consecutive pair of entries assigned to a flow

MARTINEZ-MORAIS ET AL.: PROVIDING QOS WITH THE DEFICIT TABLE SCHEDULER 333

TABLE 2
Arbitration Table Parameters

mazd; | Maximum bandwidth assignable to the i"" flow
ming; | Minimum bandwidth assignable to the :*" flow

di Bandwidth actually assigned to the i*" flow

N Number of entries of the arbitration table

n; Number of entries assigned to the it flow
GMT General Maximum Transfer Unit
MTU; | Specific Maximum Transfer Unit of the i*" flow

M Maximum weight per table entry

pool Bandwidth pool
k Bandwidth pool decoupling parameter
w Maximum weight decoupling parameter

depending on its latency requirement. Moreover, we set the
weights of the table entries assigned to a flow depending on
its bandwidth requirement. With this methodology, we can
assign the flows with a bandwidth varying between a
minimum and a maximum value that depends not only on
the number of table entries assigned to each flow, but also
on other configuration parameters.

Supposing an arbitration table with N entries in a
network with a certain general MTU GMTU, and suppos-
ing the ith flow has assigned n; table entries in order to
fulfill its latency requirements, we would like to be able to
assign the ith flow with a certain bandwidth ¢; in the most
flexible possible way. This means that we would like the
minimum bandwidth ming; that can be assigned to that
flow to be as small as possible, and the maximum
bandwidth maxz¢; that can be assigned to that flow to be
as large as possible. Table 2 shows all the involved
parameters in the following statements.

Given the maximum weight M that can be assigned to a
single table entry, the maximum total amount of weight that
can be distributed among all the table entries is M x N.
However, we are going to fix in advance this total weight to
a lower value. We are going to call this value bandwidth pool,
or just pool, and will be determined by one of the
decoupling configuration parameters as we will see later.
Note that the value of M is going to be given by the size of
the table entry weight field, which is hardware implemen-
tation dependent. However, we can always reduce this
value by software, in order to accommodate it to our
requirements. Moreover, as shown in [22], we can assign
each flow a specific MTU MTU;. In this situation, the
bandwidth assigned to the ith flow is

Z'j]:o weight;

¢ = pool

where] is the set of table entries assigned to the ith flow
and weight is the entry weight assigned to a table entry.
Therefore, the minimum and maximum bandwidth that can
be assigned to the ith flow is

. n; X]\/[TUZ
ming; = —————,
pool
magjqﬁlzntXA[
pool

Let’s define M and pool in function of the GMTU and
two configuration parameters w and k:

M =GMTU x w,
pool = N x GMTU X k.

Note that £ < w because the bandwidth pool cannot be
larger than N x M. In this way, we can see that the
minimum and maximum bandwidth that can be assigned to
a flow depends not only on the proportion of table entries n;
that it has assigned, but also on the w and k parameters and
the proportion between its specific MTU and GMTU:

NxGMITUxk N GMITU kK’
niXGMTUXU]:EXE
NxGMTU xk Nk

Note that varying the w and k parameters affects the
minimum and maximum bandwidth that can be assigned to
all the flows. However, assigning a specific MTU to a flow
smaller than the GMTU only affects the minimum band-
width of that flow. When choosing the value of these
parameters some considerations must be made. Note that
the objective for this methodology is to decrease the
minimum bandwidth and to increase the maximum band-
width that can be assigned to a flow. In order to be able to
assign a small amount of bandwidth to a flow with a high
proportion of table entries, we can use a high value for the k
parameter or decrease the MTU for that flow. However, the
higher k is, the smaller the maximum bandwidth that can be
assigned, and thus, the flexibility to assign the bandwidth
decreases. We can solve this by increasing the value of w.
However, increasing the value of the w parameter has two
disadvantages. First of all, the memory resources to store
each entry weight are going to be higher. Second, the latency
of the flows is going to increase because each entry is
allowing more information to be transmitted, and thus, the
maximum time between any consecutive pair of table entries
is higher. Using different MTUs for the different flows
allows us to assign a smaller amount of bandwidth to those
flows with a smaller specific MTU than the general MTU.
However, as we show in [22], each specific MTU must be
assigned taking into account the characteristics of the traffic
flow in order to not worsen the performance of that flow.

Summing up, with this decoupling configuration meth-
odology we can configure the DTable scheduler in order to
provide a flow with latency and bandwidth requirements in
a partially independent way. Depending on the character-
istics and bandwidth and latency requirements of the
different flows, the network manager must choose the most
appropriate k,w, and specific MTU values, and distribute
properly the bandwidth pool among the table entries, in
order to provide the flows with their latency and
bandwidth requirements in the most efficient way.

ming; =

maxop; =

5 PRoOVIDING QOS IN HIGH-PERFORMANCE
NETWORKS WITH THE DTABLE SCHEDULER
In this section, we propose how to configure the DTable

scheduler, which would be located in each egress link of the
network, of both network interfaces and switches, in order

334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

to provide QoS in a high-performance network. Note that
the trend in the last high-performance technologies pro-
posed, like IBA or AS, is to employ link-level flow control
mechanisms that make the network lossless and to
aggregate flows with similar characteristics into a reduced
number of VCs.

5.1 Traffic Classification

In order to provide QoS in a high-performance network, a set
of Service Classes (SCs) with different requirements must be
specified. Specifically, we must specify one SC per available
VC. When various flows obtain access to the network, they
will be assigned an SC depending on their characteristics.
From a networking perspective, the general QoS provision-
ing parameters are throughput, latency, jitter, and loss rate.
The degree of sensitivity to each of these parameters varies
widely from one application to another. For example,
multimedia applications are usually sensitive to latency
and jitter, but many of them can tolerate packet losses to
some extent. For a further discussion about different
applications and their requirements, see [9]. Note that the
loss rate is not taken into account in lossless networks.

In order to define the different SCs, we propose a traffic
classification based on three network parameters: Band-
width, latency, and jitter. In this way, this classification is
similar to the one presented by Pelissier [26]. We distin-
guish between three broad categories of traffic:

e Network Control traffic: High-priority traffic to
maintain and support the network infrastructure.
One SC will be dedicated to this kind of traffic.

e QoS traffic: This traffic has explicit minimum
bandwidth, maximum latency, and/or jitter require-
ments. Various QoS SCs can be defined with
different specific requirements. This category can
be divided into two groups:

- Traffic which requires a given minimum band-
width and must be delivered with a maximum
latency and/or jitter in order for the data to be
useful. Examples of such data streams include
video conference, interactive audio, and video
on demand.

- Traffic which requires a given minimum band-
width but is not particularly sensitive to latency
or jitter.

e Besteffort traffic: This traffic accounts for the majority
of the traffic handled by data communication net-
works today, like file and printing services, web
browsing, disk backup activities, etc. This traffic tends
to be bursty in nature and largely insensitive to both
bandwidth and latency. Among the best effort traffic,
we can set different SCs which are only characterized
by the differing priority among each other.

The schedulers must be properly configured at the
different network elements to provide the different SCs
with a differentiated treatment. Specifically, we are going
to configure the schedulers in order to provide just
bandwidth or bandwidth and latency simultaneously.
Note that, although they are not totally correlated, if we
limit the maximum latency performance, we are indirectly

NO. 3, MARCH 2010

limiting the maximum jitter performance and thus, we can
translate any maximum jitter requirement into a maximum
latency requirement.

5.2 Configuring the DTable Scheduler

As stated in Section 4, the simplest way of implementing
the DTable scheduler, and solving the AS table problem
with variable packet sizes, is to assign each table entry a
fixed constant weight. In this case, the minimum band-
width assigned to an SC is proportional to the number of
entries assigned to that SC. We can improve the latency
performance provided in this way by distributing the table
entries as the WF2Q variant of the list-based Weighted
Round Robin proposed by Chaskar and Madhow [4]. This
approach tries to improve the latency performance of all
the SCs by emulating the order of transmission if the
WE2Q would be implemented. Employing our decoupling
configuration methodology, we can optimize the resources
by providing a better latency to those SCs that really
require it and at the same time providing them their
bandwidth requirements.

5.2.1 Providing Latency Requirements

As a general rule, in order to provide each SC its latency
requirements, we must first assign the table entries taking
into account the maximum distance between any consecu-
tive pair of entries devoted to the SCs with latency
requirements (network control and QoS SCs with latency
requirements) [2], assigning a lower maximum distance to
those SCs with higher latency requirements. The rest of
table entries can be distributed among those SCs that do not
have latency requirements. We can assign those entries
consecutively in the remaining gaps or can interleave the
entries of the various SCs like in the list-based Weighted
Round Robin in order to improve the latency performance.
However, although it is possible to obtain the maximum
distance between consecutive table entries assigned to a VC
required to provide its SC with specific hard latency
requirements (taking into account the maximum weight
assigned to each table entry, the network diameter, the
routing and switching time, the packet size, the waiting
time in intermediate switches, etc.), the objective of this
paper has been to provide soft latency requirements based
on a preestablished set of SCs with latency properties
provided by maximum distance between consecutive
entries assigned “a priory.” Specifically, in Section 6, the
approach that we have followed has been to assign each SC
maximum distances in a power of two steps. With this “a
priory” table entry distribution in mind, we can assign each
flow to the most appropriate VC based on the flow latency
requirements. After that, the bandwidth assignment is
performed assigning each entry the appropriate weight.

5.2.2 Providing Bandwidth Requirements

The bandwidth that each VC should be assigned depends
on the requirements of the SC it has assigned. We should
provide the network control SC with enough bandwidth to
manage the maximum expected amount of control traffic.
QoS VCs should be assigned at least a bandwidth equal to
the minimum bandwidth requirements of the QoS SCs.
Finally, the bandwidth intended for the best effort SCs

MARTINEZ-MORAIS ET AL.: PROVIDING QOS WITH THE DEFICIT TABLE SCHEDULER 335

should be assigned among them according to their different
priority in order to provide them with a differentiated
performance. This bandwidth assignment to VCs can be
established statically or dynamically (as the different flows
are established).

However, note that, as it is well known, interconnection
networks are unable to achieve 100 percent global through-
put. Therefore, not all the bandwidth can be distributed
among the VCs, thereby requiring a certain bandwidth to be
left unassigned. We propose to assign the network control
VC with this bandwidth that should be left unassigned.
Moreover, we propose not to assign best effort VCs with all
the bandwidth that is intended for this class of traffic. We
propose instead to assign them only a small amount of
bandwidth proportional to their relative priority. The rest of
the best effort bandwidth will also be assigned to the
network control VC. In this way, the network control VC
will have been assigned more bandwidth than it actually
requires. However, by doing so, we achieve a better
performance of the network control traffic. We also achieve
a better performance and a better resilience against
unexpected transient congestion due to bursty traffic of
the QoS VCs. Note that the bandwidth unused by the
control and QoS VCs is redistributed by the scheduler
among the rest of VCs, including the best effort VCs, and
thus they are going to take advantage of the bandwidth left
over by the other VCs.

In order to assign a given SC with a minimum
bandwidth, the amount of weight units from the bandwidth
pool assigned to the SC table entries must accomplish with
the proportion of desired egress link bandwidth. Therefore,
when we know the maximum distance between two
consecutive table entries, and thus, the number of entries,
and the amount of bandwidth that we want to assign to
each SC, we must choose the w and k parameters that make
possible that distribution of bandwidth among the various
SCs. Moreover, we can limit the MTU of some VCs in order
to have a smaller minimum bandwidth for those SCs and
for being able to use smaller % values. Note that those SCs
that have high latency requirements and, thus, require more
table entries, usually have small bandwidth requirements
and use small packets. An example of these configuration
process can be found in Section 6.

5.3 Admission Control

In a lossless network, congested packets are not thrown
away and as such the loss rate due to congestion is zero.
This has the advantage of avoiding retransmissions that
would severely affect the latency and jitter performance of
the flows. On the case of applications with packet loss
resilience, it would allow to reduce the overhead due to the
encoding techniques used to minimize the impact of errors.
On the other hand, lossless networks have other problems,
being the most important the formation of congestion (or
saturation) trees [27]. These congestion trees may produce
dramatic network performance degradation, affecting not
only the flows traversing the original point of congestion,
but other flows that share common upstream links.

A common approach to avoid this problem is by using
an admission control (AC) mechanism. The AC decides
whether a new connection is accepted or rejected and

ensures that the entry of additional traffic into a network
cannot create congestion. Many AC schemes have been
proposed. In [29], the implementation and comparison of
several possible approaches is presented.

We propose to apply the AC mechanism only to those
VCs employed by the QoS SCs and not to the control SC or
the best effort SCs. Note, that the QoS SCs are the ones
which actually have specific QoS requirements. In addition,
the latency constraints of the control traffic are not so clear.
Moreover, we can assume that the amount of control traffic
that is going to traverse the network is going to be quite
small. And thus, taking into account the maximum amount
of expected control traffic, the scheduling algorithm can
assign the network SC with an a4 priory amount of
bandwidth. As a first approximation, a bandwidth broker
based on the average bandwidth value required per each
flow [19] is used in Section 6.

6 PERFORMANCE EVALUATION

In this section, we evaluate the latency performance of the
DTable scheduler in a multimedia scenario. For this
purpose, we have developed a detailed simulator that
allows us to model the network at the register transfer level,
following the AS specification. Note, however, that we only
use AS for assuming the AS network parameters, and that
our proposals can be applied to any interconnection
network technology.

Our purpose is to compare the DTable scheduling
mechanism employing our decoupling configuration meth-
odology with the one proposed in [4], specifically the WF2Q
emulation approach, which is the best scheduler of the
algorithms proposed in [4]. Moreover, we compare the
throughput and latency performance of our proposal (the
DTable scheduler employing our decoupling configuration
methodology) with the one provided by the well-known
SCFQ algorithm, and the DRR scheduler. We have chosen the
SCFQ algorithm as an example of “sorted-priority” algo-
rithm, and the DRR algorithm because of its very small
computational complexity. In order to simulate these algo-
rithms we use the credit aware versions of both algorithms
(SCFQ Credit Aware and DRR Credit Aware, respectively)
that we proposed in [21] for being used in networks with a
link-level flow control network like AS. For this performance
evaluation we have assumed a multimedia scenario using the
IEEE standard 802.1D-2004 [12] traffic types.

6.1 Simulated Architecture

We have used a perfect-shuffle Bidirectional Multistage
Interconnection Network (BMIN) with 64 end points
connected using 48 eight-port switches (three stages of 16
switches). In AS any topology is possible, but we have used
a MIN because it is a common solution for interconnection
in current high-performance environments. The switch
model uses a combined input-output buffer architecture
with a crossbar to connect the buffers. Virtual output
queuing has been implemented to solve the head-of-line
blocking problem at switch level.

In our tests, the link bandwidth is 2.5 Gb/s but, with the
AS 8b/10b encoding scheme, the maximum effective
bandwidth for data traffic is only 2 Gb/s. We are assuming

336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 3, MARCH 2010

TABLE 3
Set of SCs Considered

IEEE 802.1D-2004 traffic types suggestion Simulated traffic pattern

| Type SC | Description Traffic pattern | Packet size
Control Network control (NC) | Supports the network infrastructure. Bursts1 up to 256B
QoS Voice (VO) Limit of 10 ms for latency and jitter. 64 Kb/s CBR connections | 160B
QoS Video (VI) Limit of 100 ms for latency and jitter. | 3 Mb/s MPEG-4 traces up to 2048B
QoS Controlled load (CL) Explicit bandwidth requirements. 750 kb/s CBR connections | 2048B
Best-effort | Excellent-effort (EE) Preferential best-effort traffic. Bursts60 up to 2048B
Best-effort | Best-effort (BE) LAN traffic as we know it today. Bursts60 up to 2048B
Best-effort | Background (BK) It should not impact other flows. Bursts60 up to 2048B

some internal speedup (x1.5) for the crossbar, as is usually
the case in most commercial switches. AS gives us the
freedom to use any algorithm to schedule the crossbar, so
we have implemented a round-robin scheduler. The time
that a packet header takes to cross the switch without any
load is 145 ns, which is based on the unloaded cut-through
latency of the AS StarGen’s Merlin switch [35].

A credit-based flow control protocol ensures that packets
are only transmitted when there is enough buffer space at the
other end to store them, making sure that no packets are
dropped when congestion appears. VCs are used to aggregate
flows with similar characteristics and the flow control and the
arbitration is made at VC level. The MTU of an AS packet is
2,176 bytes, but we are going to use 2,048 bytes (a power of
two) for simplicity but without losing generality. The credit-
based flow control unit is 64 bytes, and thus, the MTU
corresponds to 32 credits.

The buffer capacity is 32,768 bytes (16 x MTU) per VC at
the network interfaces and 16,384 bytes (8 x MTU) per VC
both at the input and at the output ports of the switches. If
an application tries to inject a packet into the network
interface but the appropriate buffer is full, we suppose that
the packet is stored in a queue of pending packets at the
application layer.

6.2 Traffic Model

The IEEE standard 802.1D-2004 [12] defines seven traffic
types, or SCs, at Annex G, which are appropriate for this
study. Table 3 shows each traffic type and its requirements.
In this classification, we can differentiate one SC for control
traffic, three SCs with explicit QoS requirements, and three
SCs for best effort traffic with different levels of priority
among each other.

The packets from each traffic type are simulated accord-
ing to different distributions, as can be seen in Table 3. VO,
VI, and CL SCs are composed of point-to-point connections
of the given bandwidth. VO and CL SCs are generated
following a Constant Bit Rate (CBR) distribution. In [39],
several payload values for voice codec algorithms are
shown. These values range from 20 bytes to 160 bytes. We
have selected a payload of 160 bytes for the VO SC traffic. In
the case of VI SC, MPEG-4 traces are used to generate the
size of each frame. Each frame is injected into the network
interfaces every 40 ms. If the frame size is bigger than the
MTU, the frame is split into several packets which are
injected all along the frame time. The traffic of the best effort
SCs is generated according to a Bursts60 distribution [6].

This traffic is composed of bursts of 60 packets heading to
the same destination. The packets’ size is governed by a
Pareto distribution, as recommended in [14]. In this way,
many small size packets are generated, with an occasional
large size packet. The periods between bursts are modeled
with a Poisson distribution. The Bursts60 pattern models
worst-case real traffic scenarios. The NC SC is generated in
the same way than the Burst60 traffic but with only one
packet burst. For all the cases, the destination pattern is
uniform in order to fully load the network.

Note that the traffic model that we use in this
performance evaluation is based on a multimedia environ-
ment. Our proposal is intended for being used in any
environment where flows with different QoS requirements
coexist in the network. However, the multimedia environ-
ment is the most straightforward one. In any case, in this
scenario, we use a wide range of traffic behaviors, and thus
the results obtained with these kinds of traffic can be
generalized to other environments with other kind of traffic
with QoS requirements.

6.3 Simulated Scenario and Scheduler
Configuration

We suppose a scenario in which the goal is to dedicate
around 2-8 percent of the egress link bandwidth to voice
traffic (a lot but low-bandwidth requiring connections), 40-
50 percent of bandwidth to video traffic (a lot and high-
bandwidth requiring connections), around 20-25 percent of
bandwidth to controlled load, and 10-20 percent bandwidth
to best effort traffic. Moreover, we expect that the maximum
network control bandwidth to be around 1 percent. These
percentages are intended to represent a multimedia
scenario with a realistic combination of traffic from
applications with very different requirements. In order to
provide a differentiated treatment to the considered SCs, we
are going to configure the schedulers according to the
different SCs requirements.

As stated in the previous section, we are going to
suppose an admission control mechanism that ensures that
the VO, VI, and CL VCs are not oversubscribed. This means
that the sum of the average injection rate of the flows that
traverse these VCs is equal to or smaller than the
bandwidth that these VCs have reserved. In the case of
the VI VC we are going to allow a smaller amount of
bandwidth than it has reserved because of the high degree
of burstiness of the video traffic. On the other hand, we do
not make any assumption about best effort traffic.

MARTINEZ-MORAIS ET AL.: PROVIDING QOS WITH THE DEFICIT TABLE SCHEDULER

TABLE 4
Application of the Decoupling Methodology

VC | Dist. | #entr. | %entr. | MTU; | ming; | maxre; |

NC 2 32 50 192 0.093 2
VO 4 16 25 192 0.046 1
VI 8 8 12.5 2048 0.250 0.5
CL 16 4 6.25 2048 0.125 0.25
EE 32 2 3.125 1024 0.031 0.125
BE 64 1 1.562 1024 0.015 0.062
BK 64 1 1.562 1024 0.015 0.062
Total 64 100 0.578 4

N =064,GMTU =32,w=2,k=0.5

In the case of the DTable scheduler configured with our
decoupling methodology, which is referred just as DTable
scheduler, we are going to distribute the table entries
among the VCs according to their different levels of latency
requirements. In this way, we have assigned a maximum
distance of two to the VC that accommodates the NC SC,
and a maximum distance of 64 to the BK VC. Table 4 shows
the maximum distances that we have assigned to each VC.
This table also shows the number of table entries and the
proportion of table entries that these maximum distances
entail for a table of 64 entries. In order to have a higher level
of flexibility to distribute the bandwidth among the VCs, we
have assigned each VC an specific MTU as small as the
expected packet sizes of each SC allow. Specifically, we
have assigned an MTU of 192 bytes for VCs that accom-
modate the NC and VO SCs traffic, an MTU of 2,048, which
is the maximum, for VI and CL VCs, and an MTU of 1,024
for the best effort VCs.

The next step to configure the DTable scheduler is to
choose a proper value for the w and k parameters. We have
chosen the value of these parameters taking into account
mainly that we want to assign the VI VC a bandwidth
several times higher than the actual proportion of table
entries assigned. Moreover, we want to assign the NC VC,
which has assigned a very high proportion of table entries, a
quite small proportion of bandwidth. However, we want to
assign a value to the w parameter as small as possible in
order to obtain a good latency performance. We have finally
chosen a value of 2 for k and a value of 0.5 for w. This
combination allows assigning each VC a bandwidth in the
desired range, except for the NC VC to which we must
assign at least 9 percent bandwidth. However, note that this

337

amount of bandwidth is not going to be wasted because it is
well known that interconnection networks are unable to
achieve 100 percent global throughput. Therefore, we could
change the w and k parameters to be able to assign this VC a
lower amount of bandwidth, but it is not necessary because
we assume 8 percent to be an appropriate percentage of
unused bandwidth. In any case, the bandwidth left by the
network control traffic is going to be distributed among the
rest of VCs, specifically, the best effort SCs. Table 4 shows
the minimum and maximum bandwidth that we can assign
to each VC with this configuration.

In order to configure the DTable scheduler employing the
WE2Q emulation, which we are going to refer as DTable-
WE2Q, the DRR scheduler, and the SCFQ scheduler, we only
can specify the bandwidth assigned to each VC. In the case
of the DTable-WF2Q scheduler, all the entries must have the
same weight assigned, in this case 32. This means that each
time an entry is selected, the corresponding VC will be able
to transmit 32 x 64 bytes, which corresponds with the AS
MTU. The proportions of assigned bandwidth entail a
number of entries per VC that are distributed in the table
emulating the WF2Q algorithm. Table 5 shows the amount
of bandwidth ¢; that we have actually assigned to each VC.
This table also shows the configuration of the two DTable
possibilities and the SCFQ and the DRR schedulers.
Specifically, in the case of the DTable scheduler, this table
shows the total weight (T. W.) that we have distributed
among the table entries of each VC and the weight assigned
to each table entry (E. W.) of each VC. In the case of the SCFQ
algorithm, we have assigned each VC a weight proportional
to the bandwidth allocation. To configure the DRR algo-
rithm, we have assigned the VC with the minimum
bandwidth requirement a quantum in credits equal to its
specific MTU, and a proportional quantum to the rest of
VCs. Note that in this way all the VCs have been assigned a
quantum equal to or greater than their specific MTUs.

Finally, in the scenario that we are simulating, we are
going to inject a fixed amount of control traffic (NC) and
QoS traffic (VO, VI, and CL) all the time, and we gradually
increase the amount of best effort traffic (EE, BE, and BK).
The amount of QoS traffic to be injected is the maximum
allowed by the admission control mechanism. Table 5 and
Fig. 3 show the normalized injection rate of each VC. Note
that we can obtain the specific injection rates by multiplying
this normalized values by 2.5 Gb/s, which is, as stated

TABLE 5
Bandwidth Configuration of the Different Scheduling Algorithms

Scheduler configuration
Injection DTable DTable-WF2Q SCFQ DRR
[VC | & Min. | Max. | #entries [EEW. | T. W. | #entries | E.W. | T. W. | Weight | Quantum

NC 0.093 | 0.015 | 0.015 32 3 96 6 32 192 0.093 96
VO | 0.046 | 0.046 | 0.046 16 3 48 3 32 96 0.046 48
VI 0.500 | 0.453 | 0.453 8 64 512 32 32 1024 0.500 512
CL | 0.203 | 0.203 | 0.203 4 52 208 13 32 416 0.203 208
EE 0.093 | 0.015 | 0.093 2 48 96 6 32 192 0.093 96
BE 0.046 | 0.015 | 0.093 1 48 48 3 32 69 0.046 48
BK | 0.015 | 0.015 | 0.093 1 16 16 1 32 32 0.015 16
Total 100 0.76 1 64 1024 64 2048 1 1024

338

0.5 : : : :
, 04 [NC ~A- EE -3-]
2 VO =X~ BE 8
g VI BK &
S 03O]
£ 02 @O OO O OO QOO
2

0.8

0.85 0.9
Global Input Load

0.95

Fig. 3. Normalized injection rate per SC.

before, the assumed link bandwidth. Note also that the
injection value of 0.453 assigned to VI VC traffic (lower than
its reserved bandwidth) is due to the option of allowing a
smaller amount of bandwidth for VI because of the high
burstiness degree exhibited by video traffic.

6.4 Simulation Results

In this section, the throughput and latency performance of
our proposals is shown. No statistics on packet loss are
given because, as it has been said, we assume a credit-based
flow control mechanism to avoid dropping packets. For each
simulation we obtain the throughput, the average packet
latency, and the cumulative distribution function (CDF) of
latency of each SC. The CDF represents the probability of a
packet achieving a latency equal to or lower than a certain
value. The figures of this section show the average values
and the confidence intervals at 90 percent confidence level of
10 different simulations performed at a given input load.
Note that although the maximum latency statistic is valuable
for some kind of applications, the maximum latencies
obtained may vary a lot and, thus, are not very useful. For
that reason, we use a quantile, the 99th percentile.

Note also that we do not take into account the
computational complexity in the simulation infrastructure
(all the schedulers take the same time to process a packet
when it arrives at an egress queue and have the same
arbitration time). Therefore, we are being in fact pessimistic
in our evaluation of the DTable scheduler when compared
with the SCFQ scheduler.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 3, MARCH 2010

Fig. 4 gives a general overview of the performance when
using the DTable scheduler. It shows the throughput,
average latency, and the 99th percentile of latency. We do
not show similar figures for the rest of schedulers due to
lack of space. The throughput performance is the same for
all the schedulers. However, although the specific latency
values are different, the general tendencies for the other
mechanisms are the same, and thus, the comments that we
are going to make based on this figure can be generalized to
the rest of schedulers. If we compare the injection (Fig. 3)
and the throughput results, we can see that the NC and the
QoS SCs obtain all the bandwidth they inject. However,
when the network load is high (around 85 percent), the best
effort SCs do not yield a corresponding result. From that
input load, these SCs obtain a bandwidth proportional to
their priority.

Regarding the latency performance, Fig. 4 shows that the
latency (average 99th percentile) of the NC and QoS SCs
grows with the load until they reach a certain value. Once
this value is reached, the latency remains more or less
constant. However, the average latency of best effort SCs
continually grows with the load. Furthermore, it can be seen
that best effort SCs obtain different average and maximum
latency according to their different priority. In that sense,
for example, the BK SC obtains a worse latency and starts to
increase its latency sooner than the BE and EE SCs. The
behavior of the best effort traffic is the same in all the
schedulers and thus, no more comments are going to be
done regarding these SCs.

Figs. 5, 6, 7, and 8 show a more detailed latency
performance comparison between the different schedulers
for the NC and QoS SCs. These figures show statistics on
average latency, the 99th percentile of the latency, and the
CDF of latency for the point of maximum load. We do not
show the performance comparison for the best effort SCs
because the relevant aspect of these SCs is not the actual
latency values but that they obtain a differentiated
performance among them. In this sense, the four schedulers
provide this differentiation.

Regarding the NC SC, Fig. 5 shows that the SCFQ
scheduler provides the best performance. However, the
DTable scheduler provides a very similar performance. The
DRR scheduler provides the worst performance and the
DTable-WF2Q scheduler provides a better performance than
the DRR scheduler, but worse than the SCFQ and DTable
schedulers. Regarding the VO SC, Fig. 6 shows that the SCFQ
and DTable schedulers and the DTable-WF2Q and DRR
schedulers provide almost the same performance. The

0.5 1000 — 1000 —
NC »&- EE NC & EE ~ PPN
Z 04 [NC-A- EE - Z 100 A BR s O 2 100 i BR G .
‘gn VO BE £ CL ~O- ®® £ CL O =
g 03 VI BK ,...<>..(g Q p @ &
s & g " & PR ==
é 02 OO QD DDt DO E)n . @e? S § .
gl g g 0009 O DD D@
il o £ £
0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1

Global Input Load

Fig. 4. Performance per SC of the DTable scheduler.

Global Input Load

Global Input Load

MARTINEZ-MORAIS ET AL.: PROVIDING QOS WITH THE DEFICIT TABLE SCHEDULER

339

2

DTable-WF2Q-+v-

160 bl WF0-A o 600 bl WE20 A L
140} SCRQ -~ . o0 sl SCFQ <~ T e
2 DRR @~ @...--G) q DRR * 0.8
> DTable = . 3 DTable = A @@
z 120 able e = 400 Ll e OO ® 2 06
g 100 je) anal § © 5
o @ el g 300 g
gn 80 @»"‘“@ A,,..A-""'A - & Aot £ 04 DTable-WF2Qu-reev. |
2 o0 Qas £ 200 ol SCFQ
9 - DRR
T 100 [f / DTable
08 085 09 095 1 08 08 09 095 1 ° g 8 8 8 8
Global Input Load Global Input Load Latency (us)
Fig. 5. Latency performance comparison for the network control SC.
L DTable-WF2Q--A-: o 600 DTable-WF2Q--Ac: 1
140 SCFQ
e 2 0 DTDI}}IR s o
T 120 = able)
) = 400 | U 00O 0@ B .
g 100 | E O QEAAAA A F
5 w0 Ad-e e £ o4]
:gf = 200 o _ a DTable-WE2Q--rs
S 2 %] ' SCFQ
< g & 02 DRR -
40 |~ 100 0) DTable ——
08 085 09 095 1 08 08 09 095 1 e 8 e 8 8 8
Global Input Load Global Input Load Latency (us)
Fig. 6. Latency performance comparison for the voice SC.
160 DTable-WF2Q A 2 DTable-WF2Q A
140 SCFQ
3 3 500 DRR -
< 120 3 DTable ~=
& 2 400 2
8 100 £ z
W 2 300 £ |
::;ﬂ = & DTable-WF2Q-wwon
Z 60 82 SRR
40 100 DTable
08 085 09 095 1 08 08 09 095 1 ° g g g] 8
Global Input Load Global Input Load Latency (us)
Fig. 7. Latency performance comparison for the video SC.
600 o oble-WF2G- A 1
SCFQ
) 7 0 o DRR o it 08
3 S able @) o -
oy 2 400 SR £ 06
g 2 T = 0.
H g S
. 2 300 8
& g £ 04
g £
z EN

8

0.8

0.85 0.9 0.8 0.85

Global Input Load

0.95 1

Fig. 8. Latency performance comparison for the controlled load SC.

latency provided by the SCFQ and DTable scheduler is better
than the latency provided by the other two schedulers.
Regarding the VI SC, Fig. 7 shows that all the schedulers
except the DRR scheduler provide a similar performance,
offering the DRR mechanism the worst performance.
Regarding the CL SC, Fig. 8 shows that the DTable-WF2Q
scheduler provides the best performance and the DRR the
worst. The DTable and the SCFQ schedulers provide a similar
and intermedium performance. Summing up, the DRR
scheduler provides the worst latency performance, the SCFQ
scheduler provides the best latency performance except for a
slightly worse latency in the CL case, and the two DTable
possibilities provide a better performance than the DRR
scheduler.

Global Input Load

=] g g
N o < vy
Latency (ps)

0.9 0.95 1

Figs. 9, 10, and 11 show the percentage of improvement in
the latency, at three different levels of load, for the NC and
QoS SCs of the DTable scheduler over the DRR, SCFQ, and
DTable-WF2Q schedulers. Specifically, Fig. 9 shows that the
DTable scheduler provides a much better latency than the
DRR scheduler. Note that the level of improvement can be up
to 190 percent on average latency and up to 260 percent on the
99th percentile, which indicates that the maximum latency in
the DTable case is much more limited than in the DRR case.
Note also that the performance of the DRR scheduler
depends on the frame length and, thus, in other scenarios,
the performance could be even worse. Therefore, although
the DRR scheduler has a lower complexity than the DTable

340 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

g

w
=3
1S3

[
53
=

200 fC!

>
S

w
=)

Average latency improvement (%)
8

99th percentile improvement (%)
@
=]

=
S}

0.77 0.9 1
Global Input Load

Global Input Load

Fi

g. 9. Improvement of the DTable scheduler over the DRR scheduler.

scheduler, in our opinion, is not appropriate for providing
QoS based on latency requirements.

Fig. 10 shows that the performance provided by the
SCFQ scheduler is, in general, always slightly better than
that provided by the DTable scheduler. Specifically, the
latency degradation of the DTable scheduler over the SCFQ
scheduler is less than 10 percent. Therefore, in our opinion,
this slightly better performance does not justify employing
the much more complex SCFQ scheduling algorithm.

Finally, Fig. 11 shows the comparison on latency
performance that provides our decoupling configuration
methodology over the WF2Q emulation configuration. Our
methodology approximately provides up to 80 percent
improvement over the WF2Q emulation variant for the NC
and VO SCs, which are the most latency demanding.
Moreover, it only entails up to 10 percent degradation for
the VI and CL, which have less strict latency requirements.
Therefore, with our decoupling methodology, we can
provide a better latency performance to those applications
that really need it.

7 CoONCLUSIONS AND FUTURE WORK

A key component for networks with QoS support is the
output scheduling algorithm, which selects the next packet to
be sent and determines when it should be transmitted. An
ideal scheduling algorithm implemented in a high-perfor-
mance network with QoS support should satisfy two main
properties: good latency and simplicity. In this paper, we
have thoroughly addressed the issue of providing QoS
employing the DTable scheduler. This new table-based
scheduler, which works properly with variable packet sizes,
has a hardware complexity higher than the DRR scheduler,
but lower than the SCFQ and other “sorted-priority”
algorithms. We have presented a configuration methodology
that allows us to decouple at least partially the bandwidth
and latency assignments. This allows us to make an
optimized use of the resources. Moreover, we have pre-
sented a general framework that employs this scheduling
mechanism to support the coexistence of traffic with explicit

>

=]

o
o

=
=

|
o

|
o

ge latency improvement (%)
percentile improvement (%)

Avera
99th

|
S

i
=)

0.77 0.9 1 0.77 0.9 1
Global Input Load Global Input Load

Fig. 10. Improvement of the DTable scheduler over the SCFQ

scheduler.

NO. 3, MARCH 2010

g

VI i
CL

Average latency improvement (%)
5

99th percentile improvement (%)

0.77 0.9 1 0.77 0.9 1
Global Input Load Global Input Load

Fig. 11. Improvement of the DTable scheduler over the DTable-WF2Q
scheduler.

requirements based on bandwidth and latency at the same
time that allows several levels of best effort traffic.

Finally, in Section 6, we have evaluated the performance
of our proposals in a multimedia scenario using the IEEE
standard 802.1D-2004 traffic types. We have not only
compared the throughput and latency performance of this
scheduler with the one provided by the SCFQ and the DRR
scheduler, but also we have compared our decoupling
configuration methodology with the one proposed in [4].
Simulation results show that our proposal provides a much
better latency performance than the DRR scheduler and a
similar performance to the one provided by the more
complex SCEQ algorithm. Moreover, we have shown that
our decoupling methodology is able to provide a better
performance to those applications that really need it,
independently of their bandwidth requirements. In this
way, we have shown the advantages of our configuration
methodology over the emulation of some “sorted-priority”
algorithm like the WEF2Q algorithm. Therefore, we can
conclude that the DTable scheduler configured with our
decoupling methodology is able to provide a good latency
performance with a low hardware complexity.

In this paper, we have considered the complexity of the
DTable scheduler and the rest of schedulers considered in a
rather general way. As future work, we are focusing our
attention on performing a deeper hardware study in order to
offer estimates about the silicon area and the arbitration time
that they would require. Moreover, we are also working on
obtaining mathematical expressions to characterize the QoS
properties such as latency bounds of the DTable scheduler.
We can find in the literature such expression for many well-
known scheduling algorithms. However, completely new
expressions should be obtained for the DTable scheduler,
because, as far as we know, there is no formal study on the
properties of table-based schedulers.

ACKNOWLEDGMENTS

This work has been jointly supported by the Spanish MEC
and European Commission FEDER funds under grants
“Consolider Ingenio 2010 CSD2006-00046" and “TIN2009-
14475-C04-03,” and by the Junta de Comunidades de
Castilla-La Mancha under Grant PCC08-0078-9856. Ratul
Martinez was with the University of Castilla-La Mancha
when the main ideas of the paper were developed.

REFERENCES

[1] Advanced Switching Interconnect Special Interest Group, Ad-
vanced Switching Core Architecture Specification, Revision 1.0, Dec.
2003.

MARTINEZ-MORAIS ET AL.: PROVIDING QOS WITH THE DEFICIT TABLE SCHEDULER

(2]

(3]
(4

(5]

o]

(71

(8]
]

(10]
(1]
(12]
[13]

[14]

(15]

(0]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]
[20]

(27]

(28]

EJ. Alfaro, J.L. Sinchez, and]. Duato, “QoS in InfiniBand
Subnetworks,” IEEE Trans. Parallel and Distributed Systems,
vol. 15, no. 9, pp. 810-823, Sept. 2004.

J. Bennett and H. Zhang, “WF2Q: Worst-Case Fair Weighted Fair
Queueing,” Proc. IEEE INFOCOM, 1996.

H.M. Chaskar and U. Madhow, “Fair Scheduling with Tunable
Latency: A Round-Robin Approach,” IEEE/ACM Trans. Network-
ing, vol. 11, no. 4, pp. 592-601, Aug. 2003.

L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian,
and].B. Carter, “Interconnect-Aware Coherence Protocols for
Chip Multiprocessors,” Proc. Int’l Symp. Computer Architecture
(ISCA), pp. 339-351, 2006.

N. Chrysos and M. Katevenis, “Multiple Priorities in a Two-Lane
Buffered Crossbar,” Proc. IEEE Globecom ‘04, Nov. 2004.

G. Chuanxiong, “SRR: An O(1) Time Complexity Packet Scheduler
for Flows in Multi-Service Packet Networks,” Proc. ACM
SIGCOMM, pp. 211-222, 2001.

A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulations
of a Fair Queuing Algorithm,” Proc. ACM SIGCOMM, 1989.
M.A. El-Gendy, A. Bose, and K.G. Shin, “Evolution of the Internet
QoS and Support for Soft Real-Time Applications,” Proc. IEEE,
vol. 91, no. 7, pp. 1086-1104, July 2003.

S.J. Golestani, “A Self-Clocked Fair Queueing Scheme for Broad-
band Applications,” Proc. IEEE INFOCOM, 1994.

A.G. Greenberg and N. Madras, “How Fair is Fair Queuing,”
J. ACM, vol. 39, no. 3, pp. 568-598, 1992.

IEEE, 802.1D-2004: Standard for Local and Metropolitan Area
Networks, http://grouper.IEEE.org/groups/802/1/, 2004.
InfiniBand Trade Association, InfiniBand Architecture Specification
Volume 1, Release 1.0, Oct. 2000.

R. Jain, The Art of Computer System Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modeling. John
Wiley and Sons, Inc., 1991.

S.S. Kanhere, A. Parekh, and H. Sethu, “Fair and Efficient Packet
Scheduling in Wormhole Networks,” Proc. Int’l Parallel and
Distributed Processing Symp. (IPDPS), pp. 623-631, May 2000.

S.S. Kanhere and H. Sethu, “Fair, Efficient and Low-Latency
Packet Scheduling Using Nested Deficit Round Robin,” Proc. IEEE
Workshop High Performance Switching and Routing, pp. 6-10, May
2001.

S.S. Kanhere and H. Sethu, “On the Latency and Fairness
Characteristics of Pre-Order Deficit Round Robin,” Computer
Comm., vol. 27, no. 7, pp. 664-678, 2004.

S.S. Kanhere, H. Sethu, and A.B. Parekh, “Fair and Efficient Packet
Scheduling Using Elastic Round Robin,” IEEE Trans. Parallel and
Distributed Systems, vol. 13, no. 3, pp. 324-336, Mar. 2002.

E.W. Knightly and N.B. Shroff, “Admission Control for Statistical
QoS: Theory and Practice,” IEEE Network, vol. 13, no. 2, pp. 20-29,
Mar./Apr. 1999.

R. Martinez, F.J. Alfaro, and].L. Sanchez, “Decoupling the
Bandwidth and Latency Bounding for Table-Based Schedulers,”
Proc. Int’l Conf. Parallel Processing (ICPP), Aug. 2006.

R. Martinez, F.J. Alfaro, and J.L. Sanchez, “Implementing the
Advanced Switching Minimum Bandwidth Egress Link Schedu-
ler,” Proc. IEEE Int'l Symp. Network Computing and Applications
(NCA '06), July 2006.

R. Martinez, F.J. Alfaro, and J.L. Sanchez, “Improving the
Flexibility of the Deficit Table Scheduler,” Proc. Int’l Conf. High
Performance Computing (HiPC), Dec. 2006.

P.L. Montessoro and D. Pierattoni, “Advanced Research Issues for
Tomorrow’s Multimedia Networks,” Proc. Int’l Symp. Information
Technology (ITCC), 2001.

A K. Parekh and R.G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,” IEEE/ACM Trans. Networking, vol. 1, no. 3,
pp- 344-357, June 1993.

K.I. Park, QoS in Packet Networks. Springer, 2005.

J. Pelissier, “Providing Quality of Service over Infiniband
Architecture Fabrics,” Proc. Eighth Symp. Hot Interconnects, Aug.
2000.

G. Pfister and A. Norton, “Hot Spot Contention and Combining in
Multistage Interconnection Networks,” IEEE Trans. Computers,
vol. 34, no. 10, pp. 943-948, Oct. 1985.

S. Ramabhadran and J. Pasquale, “Stratified Round Robin: A Low
Complexity Packet Scheduler with Bandwidth Fairness and
Bounded Delay,” Proc. ACM SIGCOMM, Aug. 2003.

(29]

(30]

[31]

(32]
(33]

(34]

(35]

(30]

(371

(38]

(39]

(40]

341

S.A. Reinemo, F.O. Sem-Jacobsen, T. Skeie, and O. Lysne,
“Admission Control for Diffserv Based Quality of Service in
Cut-Through Networks,” Proc. 10th Int’l Conf. High Performance
Computing, Dec. 2003.

S.A. Reinemo, T. Skeie, T. Sedring, O. Lysne, and O. Trudbakken,
“An Overview of QoS Capabilities in Infiniband, Advanced
Switching Interconnect, and Ethernet,” IEEE Comm. Magazine,
vol. 44, no. 7, pp. 32-38, July 2006.

D. Saha, S. Mukherjee, and S. Tripathi, “Carry-Over Round Robin:
A Simple Cell Scheduling Mechanism for ATM Networks,” IEEE/
ACM Trans. Networking, vol. 6, no. 6, pp. 779-796, Dec. 1998.

R. Seifert, Gigabit Ethernet: Technology and Applications for High-
Speed LANs. Addison-Wesley Longman Publishing Co., Inc., 1998.
M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using
Deficit Round Robin,” Proc. ACM SIGCOMM, pp. 231-242, 1995.

V. Sivaraman, “End-to-End Delay Service in High Speed Packet
Networks Using Earliest Deadline First Scheduling,” PhD thesis,
Univ. of California, 2000.

StarGen, StarGen’s Merlin Switch, http://www.stargen.com/
products/merlin_switch.shtml, 2004.

D. Stiliadis, “Traffic Scheduling in Packet-Switched Networks:
Analysis, Design, and Implementation,” PhD thesis, Univ. of
California, 1996.

D. Stiliadis and A. Varma, “Latency-Rate Servers: A General
Model for Analysis of Traffic Scheduling Algorithms,” IEEE/ACM
Trans. Networking, vol. 6, no. 5, pp. 611-624, Oct. 1998.

S-C. Tsao and Y-D. Lin, “Pre-Order Deficit Round Robin: A New
Scheduling Algorithm for Packet-Switched Networks,” Computer
Networks, vol. 35, nos. 2/3, pp. 287-305, 2001.

A. Tyagi,] K. Muppala, and H. de Meer, “VoIP Support on
Differentiated Services Using Expedited Forwarding,” Proc. IEEE
Int’l Performance, Computing, and Comm. Conf. (IPCCC), Feb. 2000.
H. Zhang, “Service Disciplines for Guaranteed Performance
Service in Packet-Switching Networks,” Proc. IEEE, vol. 83,
no. 10, pp. 1374-1396, Oct. 1995.

Raul Martinez-Morais received the MS degree
in computer science in 2003 and the PhD degree
in 2007 from the University of Castilla-La
Mancha. He is currently a researcher at the Intel
Barcelona Research Center. His research inter-
ests include high-performance local area net-
works, QoS, design of high-performance
switches, multicore architectures, thread-level
parallelism, and dynamic binary optimization.

Francisco J. Alfaro-Cortés received the MS
degree in computer science from the University
of Murcia in 1995 and the PhD degree from the
University of Castilla-La Mancha in 2003. He is
currently a professor of computer architecture
and technology in the Computer Systems De-
partment at the Castilla-La Mancha University.
His research interests include high-performance
local area networks, QoS, design of high-
performance routers, and design of on-chip

interconnection networks for multicore systems.

José L. Sanchez received the PhD degree from
the Technical University of Valencia, Spain, in
1998. Since November 1986, he is a member of
the Computer Systems Department (formerly
Computer Science Department) at the University
of Castilla-La Mancha. He is currently an associ-
ate professor of computer architecture and
technology. His research interests include paral-
lel architectures and parallel programming, QoS
in high-speed networks, and networks on chip.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

