

ISO/IEC JTC1/SC7
Software and Systems Engineering
Secretariat: CANADA (SCC)

Address reply to: ISO/IEC JTC1/SC7 Secretariat
École de technologie supérieure – Departement of Software and IT Engineering

1100 Notre Dame Ouest, Montréal, Québec Canada H3C 1K3
secretariat@jtc1-sc7.org

www.jtc1-sc7.org

ISO/IEC JTC1/SC7 N4098

2008-07-17

Document Type CD

Title
CD 25010.2, Software engineering-Software product Quality
Requirements and Evaluation (SQuaRE)Quality model

Source WG23

Project 25010

Status 2nd CD

References N3803, N4008, N4097

Action ID ACT

Due Date 2008-10-18

Start Date 2008-07-18

Distribution SC7 AG

Medium PDF

No. of Pages 42

Note Please vote using the ISO Electronic Balloting Facilities
(Resolution 937)

ISO/IEC JTC1/SC7/WG6 N

17-Jul-08

TITLE: ISO/IEC CD 25010:
 Software engineering –
 Software product Quality Requirements and Evaluation
 (SQuaRE) – Software and quality in use models

DATE: 17-Jul-08

SOURCE: JTC1/SC7/WG6

WORK ITEM: Project

STATUS: Version 0.55

DOCUMENT
 TYPE: Text for second CD

ACTION: For comment

PROJECT Prof. Motoei AZUMA
EDITOR: Department of Industrial Eng. and Management Systems Eng.
 Waseda University
 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
 FAX: +81-3-3200-2567
 azuma@azuma.mgmt.waseda.ac.jp

DOCUMENT Nigel BEVAN

 EDITOR: nigel@nigelbevan.com

CO-EDITOR: Vipula Godamunne

CO-EDITOR: David Zubrow

CO-EDITOR: Yukio Tanitsu

CO-EDITOR: Markku Tukiainen

Reference number of working document: ISO/JTC 1/SC 7 N
Date: 17-Jul-08

Reference number of document: ISO/IEC CD 25010.2

Committee identification: ISO/JTC 1/SC 7/WG 6

Secretariat: SC7

Software engineering - Software product Quality Requirements
and Evaluation (SQuaRE) – Software and quality in use models

Document type: International standard
Document subtype:
Document stage:
Document language: E

Content

1 Scope .. 7

2 Conformance.. 8

3 Normative references.. 8

4 Terms and definitions ... 9

4.1 asset... 9

4.2 external software quality... 9

4.3 internal software quality.. 9

4.4 level of performance... 9

4.5 software quality .. 9

5 Quality model framework .. 10

5.1 Quality models.. 10

5.2 Software properties .. 11

5.3 Structure used for the quality models ... 12

5.4 Difference between internal, external and quality in use measures 12

5.5 Using a quality model ... 13

6 Software product quality model ... 14

6.1 Functional suitability ... 14

6.2 Reliability .. 15

6.3 Performance efficiency... 16

6.4 Operability .. 16

6.5 Security .. 18

6.6 Compatibility... 19

6.7 Maintainability... 19

6.8 Transferability... 20

7 System quality in use model .. 21

7.1 Quality in use.. 21

7.2 Usability in use ... 22

7.3 Flexibility in use .. 23

7.4 Safety ... 23

Annex A (informative) Comparison with the quality model in ISO/IEC 9126-1 25

Annex B (informative) Example of mapping to dependability.......................... 28

©ISO ISO/IEC CD 25010.2

iii

Annex C (informative) Using the quality model for measurement30

C.1 General ...30

C.2 Software quality measurement model...30

C.3 Approaches to quality ...31

C.4 Software product quality life cycle model..32

C.5 Items to be evaluated..34

Annex D (normative) Terms and definitions ...35

Annex E (informative) Bibliography..39

ISO/IEC CD 25010.2 © ISO

iv

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by
the respective organization to deal with particular fields of technical activity. ISO and
IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards.
Draft International Standards adopted by the joint technical committee are circulated
to national bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may
be the subject of patent rights. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

ISO/IEC 25010 is a part of the SQuaRE series of standards and was prepared by
Joint Technical Committee ISO/IEC JTC 1, information technology, Subcommittee
SC 7, Software and System Engineering

The SQuaRE series of standards consists of the following divisions under the general
title Software product Quality Requirements and Evaluation:

• ISO/IEC 2500n - Quality Management Division,

• ISO/IEC 2501n - Quality Model Division,

• ISO/IEC 2502n - Quality Measurement Division,

• ISO/IEC 2503n - Quality Requirements Division, and

• ISO/IEC 2504n - Quality Evaluation Division.

©ISO ISO/IEC CD 25010.2

v

Introduction

Computers are being used in an increasingly wide variety of application areas, and
their correct operation is often critical for business success and/or human safety.
Developing or selecting high quality software products is therefore of prime
importance. Comprehensive specification and evaluation of software product quality
is a key factor in ensuring adequate quality. This can be achieved by defining
appropriate quality characteristics, taking account of the purpose of usage of the
software product. It is important that every relevant software product quality
characteristic is specified and evaluated, whenever possible using validated or widely
accepted measures.

ISO/IEC 9126 (1991): Software product evaluation - Quality characteristics and
guidelines for their use, which was developed to support these needs, defined six
quality characteristics and described a software product evaluation process model.

ISO/IEC 9126 (1991) was replaced in 2001 by two related multipart standards:
ISO/IEC 9126 (Software product quality) and ISO/IEC 14598 (Software product
evaluation).

This International Standard is a revision of ISO/IEC 9126-1: 2001, and incorporates
the same software quality characteristics with some amendments.

• Security has been added as a characteristic, rather than a subcharacteristic of
functionality.

• Portability has been split into transferability and compatibility (including
interoperability).

• The following subcharacteristics have been added: robustness, helpfulness,
technical accessibility, modularity, reusability, and portability.

• Quality in use has been split into usability in use, flexibility in use and safety.

• Several characteristics and subcharacteristics have been given more accurate
names.

Full details are in Annex A.

This International Standard is intended to be used in conjunction with the other parts
of the SQuaRE series (ISO/IEC 25000 – ISO/IEC 25099) of standards, and with
ISO/IEC 14598 until superseded by the ISO/IEC 2502n series of standards.

Figure 1 (adapted from ISO/IEC 25000) illustrates the organisation of the SQuaRE
series representing families of standards, further called Divisions.

The Divisions within SQuaRE series are:

• ISO/IEC 2500n - Quality Management Division. The standards that form this
division define all common models, terms and definitions referred further by all

ISO/IEC CD 25010.2 © ISO

vi

other standards from SQuaRE series. The division provides also requirements
and guidance for a supporting function that is responsible for the management of
software product requirements specification and evaluation.

Figure 1 – Organization of SQuaRE series of standards

• ISO/IEC 2501n - Quality Model Division. The standards that form this division
present detailed quality models for software, quality in use and data. Practical
guidance on the use of the quality model is also provided.

• ISO/IEC 2502n - Quality Measurement Division. The standards that form this
division include a software product quality measurement reference model,
mathematical definitions of quality measures, and practical guidance for their
application. Examples of measures are given for internal software quality,
external software quality and quality in use. Quality measure elements forming
foundations for the latter measures are defined and presented.

• ISO/IEC 2503n - Quality Requirements Division. The standards that form this
division help specifying quality requirements. These quality requirements can be
used in the process of quality requirements elicitation for a software product to be
developed or as input for an evaluation process.

• ISO/IEC 2504n - Quality Evaluation Division. The standards that form this
division provide requirements, recommendations and guidelines for software
product evaluation, whether performed by evaluators, acquirers or developers.
The support for documenting a measure as an Evaluation Module is also present.

• ISO/IEC 25050 – 25099 SQuaRE extension standards. These currently include
Requirements for quality of Commercial Off-The-Self software and Common
Industry Formats for usability reports.

Quality Model
Division

2501n

Quality
Requirements

Division

2503n

Quality
Evaluation

Division

2504n

Quality
Measurement Division

2502n

Product Quality
General Division

2500n

Extension Division

25050 - 25099

© ISO Draft ISO/IEC CD 25010.2

7

Software engineering - Software product Quality Requirements and
Evaluation (SQuaRE) — Software and quality in use models

1 Scope

This International Standard defines:

a) A software product quality model composed of eight characteristics, which are
further subdivided into subcharacteristics that can be measured internally or
externally. These subcharacteristics are manifested externally when the
software is used as a part of a computer system, and are a result of internal
software attributes and computer system behaviour.

b) A system quality in use model composed of three characteristics, which are
further subdivided into subcharacteristics that can be measured when a
product is used in a realistic context of use. When used to specify or measure
the effect of software quality in a particular context of use, quality in use may
be influenced by any of the eight software product quality characteristics.
Although quality in use is described in the context of software product quality,
as it is a property of the whole system, it can also be used to evaluate other
components of the system (including hardware, the user or the environment).

The characteristics of the models are applicable to every kind of software. The
characteristics and subcharacteristics provide consistent terminology for software
product quality. They also provide a set of quality characteristics against which stated
quality requirements can be compared for completeness.

The quality models can be used to support specification and evaluation of software
from different perspectives by those associated with acquisition, requirements,
development, use, evaluation, support, maintenance, quality assurance and audit of
software. They can for example be used by developers, acquirers, quality assurance
staff and independent evaluators, particularly those responsible for specifying and
evaluating software product quality. Activities during product development that can
benefit from the use of the quality models include:

• identify software requirements;

• validate the comprehensiveness of a requirements definition;

• identify software design objectives;

• identify software testing objectives;

• identify quality assurance criteria;

ISO/IEC CD 25010.2 © ISO

 8

• identify acceptance criteria for a completed software product.

ISO/IEC 25012 contains a model for data quality that is complementary to this model.

The quality models can be used in conjunction with the ISO/IEC 12207 processes
associated with requirements definition, verification and validation with a specific
focus on the specification and evaluation of quality requirements. Additionally, the
models may be useful for evaluating a system in operation to characterize it in terms
of quality characteristics.

This International Standard can be used in conjunction with ISO/IEC 15504 (which is
concerned with the software process assessment) to provide:

• a framework for software product quality definition in the customer-supplier
process;

• support for review, verification and validation, and a framework for quantitative
quality evaluation, in the support process;

• support for setting organisational quality goals in the management process.

This International Standard can be used in conjunction with ISO 9001 (which is
concerned with quality assurance processes) to provide:

• support for setting quality goals;

• support for design review, verification and validation.

2 Conformance

Any software product quality requirement, specification or evaluation that conforms to
this International Standard shall either use the characteristics and subcharacteristics
from clauses 6 and 7, giving the reasons for any exclusions, or describe its own
categorisation of software product quality attributes and provide a mapping to the
characteristics and subcharacteristics in clauses 6 and 7.

3 Normative references

The following normative document contains provisions which, through reference in
this text, constitute provisions of this International Standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this International Standard are encouraged
to investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the
normative document referred to applies. Members of ISO and IEC maintain registers
of currently valid International Standards.

None?

© ISO ISO/IEC CD 25010.2

 9

4 Terms and definitions

For the purposes of all parts of this International Standard, the terms and the
definitions contained in ISO/IEC 25000 apply, except where indicated below.

NOTE The essential definitions from ISO/IEC 25000 are reproduced in Annex A.

4.1
asset
anything that has value to the organization

[ISO/IEC 13335-1:2004]

4.2
external software quality
degree to which a software product enables the behaviour of a system to satisfy
stated and implied needs when the system including the software is used under
specified conditions.

NOTE Attributes of the behaviour can be verified and/or validated by executing the software product during testing
and operation.

EXAMPLE The number of failures found during testing is an external software quality measure related to the
number of faults present in the program. The two measures are not necessarily identical since testing may not
find all faults, and a fault may give rise to apparently different failures in different circumstances.

[ISO/IEC 25000:2005 definition, rephrased as “degree to which”]

4.3
internal software quality
degree to which a set of static attributes of a software product satisfy stated and
implied needs when the software product is used under specified conditions.

NOTE 1 Static attributes include those that relate to the software architecture, structure and its components.

NOTE 2 Static attributes can be verified by review, inspection and/or automated tools.

EXAMPLE Complexity measures and the number of faults found in a walk through are internal software
quality measures made on the product itself.

[ISO/IEC 25000:2005 definition, rephrased as “degree to which”]

4.4
level of performance
set of criteria for measures of quality characteristics

4.5
software quality
degree to which the software product satisfies stated and implied needs when used
under specified conditions

NOTE This definitions differs from the ISO 9000:2000 quality definition because the software quality definition
refers to the satisfaction of stated and implied needs, while the ISO 9000 quality definition refers to the
satisfaction of requirements.

[ISO/IEC 25000:2005 definition, rephrased as “degree to which”]

ISO/IEC CD 25010.2 © ISO

 10

5 Quality model framework

5.1 Quality models

The quality of a system is the result of the quality of the system elements and their
interaction. Software quality is the degree to which the software product satisfies
stated and implied needs when used under specified conditions. The software
quality model in clause 6 defines eight software quality characteristics: functional
suitability, reliability, performance efficiency, operability, security, compatibility,
maintainability and transferability.

The quality in use model in clause 7 defines three characteristics at the system level:
usability in use, flexibility in use and safety in use that can be used to specify and
evaluate requirements for the effect of software quality in specified contexts of use.

The quality characteristics have defined subcharacteristics and the standard allows
for user-defined sub-subcharacteristics in a hierarchical structure. The defined quality
characteristics can be used as a checklist for ensuring a comprehensive coverage of
quality.

Quality in use is a measure of the overall quality of the system in its operational
environment for specific users, for carrying out specific tasks. From a software
perspective, quality in use can be used to measure the capability of the software to
enable quality in use in its operational environment, for carrying out specific tasks by
specific users.

External software quality provides a black box view of the software and addresses
properties related to the execution of the software on computer hardware and an
operating system. Internal software quality provides a white box view of software
and addresses properties of the software product that typically are available during
the development. Internal software quality is mainly related to static properties of the
software. Internal software quality has an impact on external software quality, which
again has an impact on quality in use. Figure 2 shows the different types of quality
measures. Data quality is described in ISO/IEC 25012.

© ISO ISO/IEC CD 25010.2

 11

Figure 2 – Scope of quality measures

The quality models serve as a framework to ensure that all aspects of quality are
considered from the internal, external, and quality in use point of view.

5.2 Software properties

Some software properties are inherent in the software product; some software
properties are system dependent; some are assigned to the software product. The
quality of a software product in a particular context of use is determined by its
inherent properties.

NOTE 1 “Inherent” means existing in something, especially as a permanent characteristic or feature.

NOTE 2 Examples of inherent properties are number of lines of code and the accuracy of a numeric calculation
provided by the software. Examples of assigned properties are the owner of a software product and the price of a
software product.

Inherent properties can be classified as either functional properties or quality
properties. Functional properties determine what the software is able to do. Quality
properties determine how well the software performs. In other words, the quality
properties show the degree to which the software is able to provide and maintain its
specified services. Quality properties are inherent to a software product and
associated system. An assigned property is therefore not considered to be a quality

Data
Quality

Model

Computer systems

System

Software
Quality

Model

Internal
Software
Quality

Measures

External
Software
Quality

Measures

QUALITY MODELS

Goals and

human
processes

Mechanical
system

Computer
hardware

Other
Software

Target
Software

Other
Data

Computer system 1

Computer system n Commun
-ication

Target
Data

System
Quality in

Use Model

Operators

Users
Stakeholders

Physical and
social

Environment

measures of measures of Nigel Bevan 08-5-24 11:36

Mis en forme: Police :8 pt

Nigel Bevan 08-5-24 11:36

Mis en forme: Police :8 pt

ISO/IEC CD 25010.2 © ISO

 12

characteristic of the software, since it can be changed without changing the software.
Figure 3 illustrates this classification of software properties.

Figure 3 – Software properties

5.3 Structure used for the quality models

The SQuaRE quality models categorise product quality into characteristics which are
further subdivided into subcharacteristics and quality attributes (Figure 4).

The SQuaRE quality model consists of two parts, the model for External and Internal
Software Quality and the model for Quality in Use.

Figure 4 – Structure used for the quality model

5.4 Difference between internal, external and quality in use measures

Internal software quality measures can be used early in the system development
process to predict external software quality measures. There are often internal and
external measures for the same property, for example an internal measure to
estimate the expected response time to predict the time measured externally.

Quality in use measures relate to users completing realistic tasks (either by user
testing or in actual use). External operability measures relate to the behaviour of
individual functions, and can be evaluated individually, or as part of wider user testing
that may also be measuring overall usability in use.

Software properties Inherent properties

Assigned properties

Domain-specific functional properties

Quality properties (functional suitability,
reliability, performance efficiency,
operability, security, compatibility,
maintainability, transferability)

Managerial properties like for example
price, delivery date, product future,
product supplier

Software product

Quality

Characteristic Characteristic Characteristic

Subcharacteristic Subcharacteristic Subcharacteristic

Attribute Attribute Attribute Attribute

© ISO ISO/IEC CD 25010.2

 13

The relationship of quality in use to the other software product quality characteristics
depends on the type of user:

• the end user for whom quality in use is mainly a result of functional suitability,
reliability, operability and performance efficiency;

• the person maintaining the software for whom quality in use is a result of
maintainability;

• the person porting the software for whom quality in use is a result of portability.

5.5 Using a quality model

Software product quality should be evaluated using a defined quality model. The
quality model should be used when setting quality requirements for software products
and intermediate products. Software product quality should be hierarchically
decomposed into a quality model composed of characteristics and subcharacteristics
that can be used as a checklist of issues related to quality. Clauses 6 and 7 define
hierarchical quality models (although other ways of categorising quality may be more
appropriate in particular circumstances).

It is not practically possible to measure all internal and external subcharacteristics for
all parts of a large software product. Similarly it is not usually practical to measure
quality in use for all possible user-task scenarios. The relative importance of quality
characteristics will depend on the product and application domain. So the model
should be tailored before use, and resources for evaluation allocated between the
different types of measurement dependent on the business objectives and the nature
of the product and design processes.

NOTE 1 In a contractual environment, or in a regulated environment, such as the nuclear safety field, needs are
specified, whereas in other environments, implied needs should be identified and defined (ISO 8402: 1994, note
1).

ISO/IEC CD 25010.2 © ISO

 14

6 Software product quality model

This clause categorises software quality attributes into eight characteristics
(functional suitability, reliability, performance efficiency, operability, security,
compatibility, maintainability and transferability), which are further subdivided into
subcharacteristics (Figure 5). The subcharacteristics can be measured by internal or
external measures.

Figure 5 – Software product quality model

Definitions are given for each quality characteristic and the subcharacteristics of the
software that influences the quality characteristic. For each characteristic and
subcharacteristic, the capability of the software is determined by a set of internal
attributes that can be measured. Examples of internal measures are given in
ISO/IEC 9126-3 (to be replaced by ISO/IEC 25022). The characteristics and
subcharacteristics can be measured externally by the extent to which the capability is
provided by the system containing the software. Examples of external measures are
given in ISO/IEC 9126-2 (to be replaced by ISO/IEC 25023).

NOTE 1 There is a compliance subcharacteristic for all characteristics, as the principles are generally applicable
to all the internal and external quality characteristics.

NOTE 2 Some of the characteristics in this International Standard relate to dependability. Dependability
characteristics are defined for all types of systems in IEC 50-191, and where a term in this International Standard
is also defined in IEC 50-191, the definition given is broadly compatible.

6.1 Functional suitability

The degree to which the software product provides functions that meet stated and
implied needs when the software is used under specified conditions.

Software

Product
Quality

Modularity
Reusabillity
Analyzability
Changeability
Modification

stability
Testability

Compliance

Maintain-
ability

Appropriateness
recognisability

Learnability
Ease of use
Helpfulness

Attractivenes
Technical

accessibility
Compliance

Operability

Availability
Fault tolerance
Recoverability
Compliance

Reliability

Appropriateness
Accuracy

Compliance

Functional
Suitability

Portability
Adaptability
Installability
Compliance

Transferability

Time-
behaviour
Resource-
utilisation

Compliance

Performance
efficiency

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity
Compliance

Security

Replaceability
Co-existence

Interoperability
Compliance

Compatibility

© ISO ISO/IEC CD 25010.2

 15

6.1.1 Appropriateness

The degree to which the software product provides an appropriate set of functions for
specified tasks and user objectives.

NOTE 1 Examples of appropriateness are task-oriented composition of functions from constituent subfunctions,
and capacities of tables.

NOTE 2 Appropriateness corresponds to suitability for the task in ISO 9241-110.

NOTE 3 Appropriateness also affects operability.

6.1.2 Accuracy

The degree to which the software product provides the right or specified results with
the needed degree of precision.

NOTE For the software to provide accuracy, the associated data needs to have Accuracy, Consistency and
Precision (ISO/IEC 25012).

6.1.3 Functional suitability compliance

The degree to which the software product adheres to standards, conventions or
regulations in laws and similar prescriptions relating to functional suitability.

6.2 Reliability

The degree to which the software product can maintain a specified level of
performance when used under specified conditions.

NOTE 1 Wear or ageing does not occur in software. Limitations in reliability are due to faults in requirements,
design, and implementation. Failures due to these faults depend on the way the software product is used and the
program options selected rather than on elapsed time.

NOTE 2 The definition of reliability in ISO/IEC DIS 2382-14:1994 is "The ability of functional unit to perform a
required function...". In this document, functional suitability is only one of the characteristics of software quality.
Therefore, the definition of reliability has been broadened to "maintain a specified level of performance..." instead
of "...perform a required function"

NOTE 3 Dependability characteristics include availability and its inherent or external influencing factors, such
as: reliability, fault tolerance, recoverability, integrity, security, maintainability, durability, and maintenance
support. See Annex B.

6.2.1 Availability

The degree to which a software component is operational and available when
required for use.

[Based on ISO/IEC 24765:2008]

NOTE Externally, availability can be assessed by the proportion of total time during which the software product
is in an up state. Availability is therefore a combination of maturity (which governs the frequency of failure), fault
tolerance and recoverability (which governs the length of down time following each failure).

6.2.2 Fault tolerance

The degree to which the software product can maintain a specified level of
performance in cases of software faults or of infringement of its specified interface.

ISO/IEC CD 25010.2 © ISO

 16

NOTE The specified level of performance may include fail-safe capability.

6.2.3 Recoverability

The degree to which the software product can re-establish a specified level of
performance and recover the data directly affected in the case of a failure.

NOTE Following a failure, a software product will sometimes be down for a certain period of time, the length of
which is assessed by its recoverability.

6.2.4 Reliability compliance

The degree to which the software product adheres to standards, conventions or
regulations relating to reliability.

6.3 Performance efficiency

The degree to which the software product provides appropriate performance, relative
to the amount of resources used, under stated conditions.

NOTE 1 Resources may include other software products, the software and hardware configuration of the
system, and materials (e.g. print paper, diskettes).

NOTE 2 For a system which is operated by a user, the combination of functional suitability, reliability, operability
and performance efficiency can be measured externally by quality in use.

6.3.1 Time behaviour

The degree to which the software product provides appropriate response and
processing times and throughput rates when performing its function, under stated
conditions.

6.3.2 Resource utilisation

The degree to which the software product uses appropriate amounts and types of
resources when the software performs its function under stated conditions.

NOTE Human resources are included as part of efficiency in use (7.3.2).

6.3.3 Performance efficiency compliance

The degree to which the software product adheres to standards or conventions
relating to performance efficiency.

6.4 Operability

The degree to which the software product can be understood, learned, used and
attractive to the user, when used under specified conditions.

NOTE 1 Some aspects of functional suitability, reliability and performance efficiency will also affect operability,
but for the purposes of ISO/IEC 25010 they are not classified as operability.

NOTE 2 Users may include operators, end users and indirect users who are under the influence of or dependent
on the use of the software. Operability should address all of the different user environments that the software
may affect, which may include preparation for usage and evaluation of results.

© ISO ISO/IEC CD 25010.2

 17

6.4.1 Appropriateness recognisability

The degree to which the software product enables users to recognise whether the
software is appropriate for their needs.

NOTE 1 Appropriateness is defined in 6.1.1.

NOTE 2 Appropriateness recognisability will depend on the ability to recognise the appropriateness of the
functions from initial impressions of the software and/or any associated documentation.

6.4.2 Learnability

The degree to which the software product enables users to learn its application.

NOTE The internal attributes correspond to suitability for learning as defined in ISO 9241-110.

6.4.3 Ease of use

The degree to which the software product makes it easy for users to operate and
control it.

NOTE 1 Aspects of suitability, changeability, adaptability and installability may affect ease of use.

NOTE 2 Ease of use corresponds to controllability, (operator) error tolerance and conformity with user
expectations as defined in ISO 9241-110.

NOTE 3 For a system which is operated by a user, the combination of functional suitability, reliability, operability
and performance efficiency can be measured externally by quality in use.

NOTE 2 If the software is to be adapted by the end user, adaptability corresponds to suitability for
individualisation as defined in ISO 9241-110, and may affect operability.

6.4.4 Helpfulness

The degree to which the software product provides help when users need assistance.

NOTE This includes help that is easy to find, comprehensive and effective.

6.4.5 Attractiveness

The degree to which the software product is attractive to the user.

NOTE This refers to attributes of the software that increase the pleasure and satisfaction of the user, such as
the use of colour and the nature of the graphical design.

6.4.6 Technical accessibility

The degree of operability of the software product for users with specified disabilities.

NOTE This includes disabilities associated with ageing.

6.4.7 Operability compliance

The degree to which the software product adheres to standards, conventions, style
guides or regulations relating to operability.

ISO/IEC CD 25010.2 © ISO

 18

6.5 Security

The protection of system items from accidental or malicious access, use,
modification, destruction, or disclosure.

[ISO/IEC 15026:1998]

NOTE 1 This also applies to data in transmission.

NOTE 2 Safety is defined as a characteristic of quality in use, as it does not relate to software alone, but to a
whole system.

NOTE 3 Survivability (The degree to which the software product continues to fulfil its mission by providing
essential services in a timely manner in spite of the presence of attacks) is covered by Recoverability (6.2.3)

NOTE 4 Immunity (the degree to which the software product is resistant to attack) is covered by Robustness
(6.2.4)

6.5.1 Confidentiality

The degree to which the software product provides protection from unauthorized
disclosure of data or information, whether accidental or deliberate.

6.5.2 Integrity

The degree to which the accuracy and completeness of assets are safeguarded.

[based on ISO/IEC 13335-1:2004]

6.5.3 Non-repudiation

The degree to which actions or events can be proven to have taken place, so that the
events or actions cannot be repudiated later.

[based on ISO 7498-2:1989]

6.5.4 Accountability

The degree to which the actions of an entity can be traced uniquely to the entity.

[based on ISO 7498-2:1989]

6.5.5 Authenticity

The degree to which the identity of a subject or resource can be proved to be the one
claimed.

[based on ISO/IEC 13335-1:2004]

6.5.6 Security compliance

The degree to which the software product adheres to standards, conventions or
regulations relating to security.

© ISO ISO/IEC CD 25010.2

 19

6.6 Compatibility

The ability of two or more software components to exchange information and/or to
perform their required functions while sharing the same hardware or software
environment.

[based on ISO/IEC 24765:2008]

6.6.1 Replaceability

The degree to which the software product can be used in place of another specified
software product for the same purpose in the same environment.

NOTE 1 For example, the replaceability of a new version of a software product is important to the user when
upgrading.

NOTE 2 Replaceability may include attributes of both installability and adaptability. The concept has been
introduced as a subcharacteristic of its own because of its importance.

6.6.2 Co-existence

The degree to which the software product can co-exist with other independent
software in a common environment sharing common resources without any
detrimental impacts.

6.6.3 Interoperability

The degree to which the software product can be cooperatively operable with one or
more other software products.

6.6.4 Compatibility compliance

The degree to which the software product adheres to standards, conventions or
regulations relating to compatibility.

6.7 Maintainability

The degree to which the software product can be modified. Modifications may
include corrections, improvements or adaptation of the software to changes in
environment, and in requirements and functional specifications.

6.7.1 Modularity

The degree to which a system or computer program is composed of discrete
components such that a change to one component has minimal impact on other
components.

[ISO/IEC 24765:2008]

6.7.2 Reusability

The degree to which an asset can be used in more than one software system, or in
building other assets.

ISO/IEC CD 25010.2 © ISO

 20

[IEEE 1517-1999]

6.7.3 Analysability

The degree to which the software product can be diagnosed for deficiencies or
causes of failures in the software, or for the parts to be modified to be identified.

NOTE Implementation can include providing mechanisms for the software product to analyse its own faults
and report on the conditions prior to a failure or other event.

6.7.4 Changeability

The degree to which the software product enables a specified modification to be
implemented. The ease with which a software product can be modified.

NOTE 1 Implementation includes coding, designing and documenting changes.

NOTE 2 If the software is to be modified by the end user, changeability may affect operability.

6.7.5 Modification stability

The degree to which the software product can avoid unexpected effects from
modifications of the software.

6.7.6 Testability

The degree to which the software product enables modified software to be validated.

6.7.7 Maintainability compliance

The degree to which the software product adheres to standards or conventions
relating to maintainability.

6.8 Transferability

The degree to which the software product can be transferred from one environment
to another.

6.8.1 Portability

The ease with which a system or component can be transferred from one hardware
or software environment to another

[ISO/IEC 24765:2008]

6.8.2 Adaptability

The degree to which the software product can be adapted for different specified
environments without applying actions or means other than those provided for this
purpose for the software considered.

NOTE Adaptability includes the scalability of internal capacity (e.g. screen fields, tables, transaction volumes,
report formats, etc.).

© ISO ISO/IEC CD 25010.2

 21

6.8.3 Installability

The degree to which the software product can be successfully installed and
uninstalled in a specified environment.

NOTE If the software is to be installed by an end user, installability can affect the resulting suitability and
operability.

6.8.4 Transferability compliance

The degree to which the software product adheres to standards or conventions
relating to portability.

7 System quality in use model

7.1 Quality in use

Quality in use is the degree to which a product used by specific users meets their
needs to achieve specific goals with effectiveness in use, efficiency in use, flexibility
in use, safety and satisfaction in use in specific contexts of use.

Quality in use is a measure of the quality of the system in a real or simulated
operational environment. It is determined by the quality of the software, hardware,
operating environment, and the characteristics of the users, tasks and social
environment. All these factors contribute to quality in use. Quality in use can be used
to assess the quality of software in a specific context of use.

The attributes of quality in use are categorised into three characteristics: usability in
use, flexibility in use, and safety (Figure 6).

Figure 6 - Quality model for quality in use

Quality in
use

Flexibility in use Safety

Operator health and safety

Public health and safety
Environmental harm in use

Commercial damage in use
Safety compliance

Usability in use

Effectiveness in use

Efficiency in use
Satisfaction in use

Usability in use compliance

Context conformity in use

Context extendibility in use
Accessibility in use

Flexibility in use compliance

ISO/IEC CD 25010.2 © ISO

 22

Examples of quality in use measures are given in ISO/IEC TR 9126-4 (to be replaced
by ISO/IEC 25024).

Achieving quality in use is dependent on achieving the necessary external quality,
which in turn is dependent on achieving the necessary internal quality (Figure C.3).
Measures are normally required at all three levels, as meeting criteria for internal
measures is not usually sufficient to ensure achievement of criteria for external
measures, and meeting criteria for external measures of subcharacteristics is not
usually sufficient to ensure achieving criteria for quality in use.

The basic measures of quality in use are effectiveness in use, efficiency in use and
satisfaction in use (collectively called usability in use).

NOTE 1 Before the product is released, quality in use can be specified and measured in a test environment for
the intended users, goals and contexts of use. Once in use, it can be measured for actual users, goals and
contexts of use. The actual needs of users may not be the same as those anticipated in requirements, so actual
quality in use may be different from quality in use measured earlier in a test environment.

7.2 Usability in use

The degree to which specified users can achieve specified goals with effectiveness in
use, efficiency in use and satisfaction in use in a specified context of use.

[based on ISO 9241-11]

7.2.1 Effectiveness in use

The degree to which specified users can achieve specified goals with accuracy and
completeness in a specified context of use.

[based on ISO 9241-11]

7.2.2 Efficiency in use

The degree to which specified users expend appropriate amounts of resources in
relation to the effectiveness achieved in a specified context of use.

[based on ISO 9241-11]

NOTE Relevant resources can include time to complete the task, materials, or the financial cost of usage.

7.2.3 Satisfaction in use

The degree to which users are satisfied in a specified context of use.

Satisfaction is further subdivided into sub-subcharacteristics:

• Likability (cognitive satisfaction)

• Pleasure (emotional satisfaction)

• Comfort (physical satisfaction)

• Trust

© ISO ISO/IEC CD 25010.2

 23

NOTE Satisfaction is the user s response to interaction with the product, and includes attitudes towards use of
the product.

7.2.4 Usability in use compliance

Adherence to standards or conventions relating to usability in use.

7.3 Flexibility in use

The degree to which the product is usable in all potential contexts of use.

7.3.1 Context conformity in use

The degree to which usability in use meets requirements in all the intended contexts
of use.

7.3.2 Context extendibility in use

The degree of usability in use in contexts beyond those initially intended.

NOTE 1 Context extendibility can include providing usability for additional user groups, tasks and cultures.

NOTE 2 This enables products to take account of circumstances, opportunities and individual preferences that
may not have been anticipated in advance.

7.3.3 Accessibility in use

The degree of usability in use for users with specified disabilities.

NOTE This includes disabilities associated with ageing.

7.3.4 Flexibility in use compliance

Adherence to standards or conventions relating to flexibility in use.

7.4 Safety

Acceptable levels of risk of harm to people, business, data, software, property or the
environment in the intended contexts of use.

7.4.1 Operator health and safety

Acceptable levels of risk of harm to the operator in the intended contexts of use.

7.4.2 Public health and safety

Acceptable levels of risk of harm to the public in the intended contexts of use.

7.4.3 Environmental harm in use

Acceptable levels of risk of harm to property or the environment in the intended
contexts of use.

7.4.4 Commercial damage in use

Acceptable levels of risk of a failure that would lead to commercial damage or
reputation damage in the intended contexts of use.

ISO/IEC CD 25010.2 © ISO

 24

NOTE Risks are usually a result of deficiencies in the functionality (including security), reliability, usability or
maintainability.

7.4.5 Safety compliance

The degree of conformance to standards, conventions or regulations relating to
safety.

© ISO ISO/IEC CD 25010.2

 25

Annex A
(informative)

Comparison with the quality model in ISO/IEC 9126-1

Table A.1 – Comparison with the previous model in ISO/IEC 9126-1:2001.

 This International Standard ISO/IEC 9126-1 Notes

6 Software product quality Internal and
External

Quality in use is now a system
quality

6.1 Functional suitability Functionality New name is more accurate,
and avoids confusion with
other meanings of
“functionality”

6.1.1 Appropriateness Suitability Renamed

6.1.2 Accuracy Accuracy

 Interoperability Moved to Compatibility

 Security Now a characteristic

6.2 Reliability Reliability

6.2.1 Availability Maturity Availability is more important
than Maturity. Maturity as
previously defined was closely
related to fault tolerance, but
has other meanings.

6.2.2 Fault tolerance Fault tolerance

6.2.3 Recoverability Recoverability

6.2.4 Robustness New subcharacteristic

6.3 Performance efficiency Efficiency Renamed to avoid conflicting
with the definition of efficiency
in 25062

6.3.1 Time behaviour Time behaviour

6.3.2 Resource utilisation Resource utilisation

6.4 Operability Usability Renamed to avoid conflicting
with the definition of usability
in 25062

6.4.1 Appropriateness recognisability Understandability New name is more accurate

6.4.2 Learnability Learnability

6.4.3 Ease of use Operability Renamed

6.4.4 Helpfulness New subcharacteristic

6.4.5 Attractiveness Attractiveness

6.4.5 Technical accessibility New subcharacteristic

ISO/IEC CD 25010.2 © ISO

 26

6.5 Security Security Previously a sub-
characteristic

6.5.1 Confidentiality

6.5.2 Integrity

6.5.3 Non-repudiation

6.5.4 Accountability

6.5.5 Authenticity

6.5.6 Immunity

6.5.7 Survivability

6.6 Compatibility Some subcharacteristics of
Portability were not logically
part of “transfer from one
environment to another”

6.6.1 Replaceability Replaceability

6.6.2 Co-existence Co-existence

6.6.3 Interoperability Moved from Functionality

6.8 Maintainability Maintainability

6.8.1 Modularity New subcharacteristic

6.8.2 Reusability New subcharacteristic

6.8.3 Analysability Analysability

6.8.4 Changeability Changeability

6.8.5 Modification stability Stability New name is more accurate

6.8.6 Testability Testability

6.9 Transferability Portability The previous Portability
characteristic did not include a
subcharacteristic for
portability, and co-existence
did not fit.

 Adaptability Adaptability

 Portability Original characteristic had no
subcharacteristic measuring
“transfer from one
environment to another”

 Installability Installability

 Co-existence Moved to Compatibility

 Replaceability Moved to Compatibility

7.2 Quality in use Quality in use

7.3 Usability in use This characteristic is aligned
with usability in 25062

7.3.1 Effectiveness in use Effectiveness

© ISO ISO/IEC CD 25010.2

 27

7.3.2 Efficiency in use Productivity Aligned with efficiency in
25062

7.3.3 Satisfaction in use Satisfaction

7.4 Flexibility in use New characteristic

7.4.1 Context conformity in use It is important that a product is
usable in all required contexts
of use

7.4.2 Context extendibility in use

7.4.3 Accessibility in use Accessibility is an important
perspective on usability in use

7.5 Safety Safety

7.5.1 Operator health and safety New subcharacteristic

7.5.2 Public health and safety New subcharacteristic

7.5.3 Environmental harm in use New subcharacteristic

7.5.4 Commercial damage in use New subcharacteristic

ISO/IEC CD 25010.2 © ISO

 28

Annex B

(informative)
Example of mapping to dependability

The North Texas Net Centric Systems Consortium uses the following definition of
dependability.

The dependability of a system is its ability to deliver specified services to the end
users so that they can justifiably rely on and trust the services provided by the
system. Dependability has several attributes, including reliability, availability,
maintainability, confidentiality, integrity, and safety.

• Availability. The availability of a system for a period (0,t) is the probability that
the system is available for use at any random time in (0,t).

• Reliability. The reliability of a system for a period (0,t) is the probability that
the system is continuously operational (i.e., does not fail) in time interval (0,t)
given that it is operational at time 0.

• Maintainability: The maintainability of a system is a measure of the ability of
the system to undergo maintenance or to return to normal operation after a
failure.

• Confidentiality: The confidentiality of a system is a measure of the degree to
which the system can ensure that an unauthorized user will not be able to
understand protected information in the system.

• Integrity and Trustworthiness. The integrity of a system is the probability
that errors or attacks will not lead to damages to the state of the system,
including data, code, etc.

• Safety. The safety of a system for a period (0,t) is the probability that the
system will not incur any catastrophic failures in time interval (0,t).

This definition of dependability maps onto the parts of the ISO/IEC 25010 quality
model shown in Table B.1.

Table B.1 – Mapping of dependability

Clause ISO/IEC 25010 Dependability

6.1 Functional suitability *

6.2 Reliability Reliability

6.2.1 Availability Availability

6.3 Performance efficiency *

6.4 Operability *

6.5 Security

© ISO ISO/IEC CD 25010.2

 29

6.5.1 Confidentiality Confidentiality

6.5.2 Integrity Integrity

6.6 Compatibility *

6.8 Maintainability Maintainability

6.9 Transferability *

7.3 Usability in use *

7.4 Flexibility in use *

7.5 Safety Safety

So if this definition of Dependability was being used as part of a wider assessment of
software quality, it would also be necessary to consider functional suitability,
performance efficiency, operability, compatibility, transferability, usability in use and
flexibility in use.

ISO/IEC CD 25010.2 © ISO

 30

Annex C

(informative)
Using the quality model for measurement

C.1 General

The information in this Annex may be moved to a future revision on ISO/IEC 25000.

C.2 Software quality measurement model

Inherent software properties, that can be distinguished quantitatively or qualitatively,
are called attributes. Quality attributes are inherent properties of the software that
contribute to quality. Quality attributes are categorised into one or more (sub)-
characteristics.

Quality attributes are measured by applying a measurement method. A measurement
method is a logical sequence of operations used to quantify an attribute with respect
to a specified scale. The result of applying a measurement method is called a quality
measure element. The quality characteristics and subcharacteristics can be
quantified by applying measurement functions. A measurement function is an
algorithm used to combine quality measure elements. The result of applying a
measurement function is called a software quality measure. In this way software
quality measures become quantifications of the quality characteristics and
subcharacteristics. More than one software quality measure may be used to measure
a quality characteristic or subcharacteristic.

Figure C.1 from ISO/IEC 25020 shows the relations between the ISO/IEC 25010
quality model, the measure in ISO/IEC 2502n, and the measurement model
suggested in ISO/IEC 15939.

© ISO ISO/IEC CD 25010.2

 31

Figure C.1 – Software product quality measurement reference model

C.3 Approaches to quality

process
quality

external
measures

external
quality

attributes

process
measures

quality in
use

attributes contexts
of use

quality in use
measures

internal
measures

internal
quality

attributes

influences influences

depends on

influences

depends ondepends on

process software product effect of software
product

Figure C.2 - Quality in the lifecycle

User needs for quality include requirements for quality in use in specific contexts of
use. These identified needs can be used when specifying external and internal
quality using software product quality characteristics and subcharacteristics.

Software product quality can be evaluated by measuring internal attributes (typically
static measures of intermediate products), or by measuring external attributes
(typically by measuring the behaviour of the code when executed), or by measuring
quality in use attributes (when the product is in real or simulated use) (Figure C.2).

Improving process quality (the quality of any of the lifecycle processes defined in
ISO/IEC 12207 and ISO/IEC 15288) contributes to improving product quality, and
product quality contributes to improving quality in use. Therefore, assessing and
improving a process is a means to improve product quality, and evaluating and
improving product quality is one means of improving quality in use. Similarly,

Software Product

Quality

Quality

Characteristics

Quality

Sub-Characteristics

Quality Measures

Quality Measure

Elements

Measurement

Function

indicate

indicate

are applied to

generates

composed of

composed of

Software Product

Quality

Quality

Characteristics

Quality

Sub-Characteristics

Quality Measures

Quality Measure

Elements

Measurement

Function

indicate

indicate

are applied to

generates

composed of

composed of

ISO/IEC CD 25010.2 © ISO

 32

evaluating quality in use can provide feedback to improve a product, and evaluating a
product can provide feedback to improve a process.

Appropriate internal attributes of the software are a pre-requisite for achieving the
required external behaviour, and appropriate external behaviour is a pre-requisite for
achieving quality in use (Figure C.2).

C.4 Software product quality life cycle model

The software product quality life cycle model (Figure C.3) addresses software
product quality in three principal phases of software product life cycle: product under
development, product testing and product in use.

• The phase of a product under development is the subject of internal software
quality

• The phase of product testing is the subject of external software quality, and

• The phase of a product in use is the subject of quality in use.

 Figure C.3 – Software Product Quality Life Cycle Model

The software product quality life cycle model also indicates that achieving acceptable
levels of software quality should be an integral part of the software development

Quality in use
Quality in use
Requirements

Requirements Product

External
Quality

External Quality
Requirements

Internal
Quality

Internal Quality

Requirements

Validation

Validation &
Verification

Verification

Implementation

Needs

Specifying

Specifying

 Specifying

Determine

Determine

Indicates

Indicates

Quality in
Use

Measures

External
Quality

Measures

Internal
Quality

Measures

Evaluating

Evaluating

Evaluating

© ISO ISO/IEC CD 25010.2

 33

process for each type of quality including: requirements, implementation and
validation of the results.

Quality in use requirements specify the required level of quality from the end user s
point of view. These requirements are derived from user and other stakeholder
needs. Quality in use requirements are used as the target for validation of the
software product by the user. Requirements for quality in use characteristics should
be stated in the quality requirements specification using quality in use measures and
used as criteria when a product is evaluated.

NOTE 1 Quality in use requirements contribute to identifying and to defining external software quality
requirements.

EXAMPLE 1 Specified types of uses can achieve a specified task in a specified time.

External software quality requirements specify the required level of quality from the
external view. They include requirements derived from stakeholder quality
requirements, including quality in use requirements. External software quality
requirements are used as the target for technical verification and validation of the
software product. Requirements for external software quality characteristics should
be stated quantitatively in the quality requirements specification using external
measures and used as criteria when a product is evaluated.

NOTE 2 External software quality requirements contribute to identifying and to defining internal software quality
requirements.

NOTE 3 External software quality evaluation can be used to predict quality in use.

EXAMPLE 2 Users respond appropriately to error messages and successfully undo errors.

Internal software quality requirements specify the level of required quality from the
internal view of the product. They include requirements derived from external
software quality requirements. Internal software quality requirements are used to
specify properties of intermediate software products (specifications, source code,
etc.). Internal software quality requirements may also be used to specify properties of
deliverable, non-executable software products such as documentation and manuals.
Internal software quality requirements can be used as targets for verification at
various stages of development. They can also be used for defining strategies of
development and criteria for evaluation and verification during development. Internal
quality requirements should be specified quantitatively in terms of internal measures.

NOTE 4 Internal software quality evaluation can be used to predict external software quality.

EXAMPLE 3 All error messages specify corrective action, and all user inputs can be undone.

ISO/IEC 25030 describes software quality requirements, and ISO/IEC 25040
describes the software quality evaluation process.

C.5 Items to be evaluated

Items can be evaluated by direct measurement, or indirectly by measuring their
consequences. For example, a process may be assessed indirectly by measuring

ISO/IEC CD 25010.2 © ISO

 34

and evaluating it's product, and a product may be evaluated indirectly by measuring
the task performance of a user (using quality in use measures).

Software never runs alone, but always as part of a larger system typically consisting
of other software products with which it has interfaces, and of hardware, human
operators, and workflows. The completed software product can be evaluated by the
levels of the chosen external measures. These measures describe its interaction with
its environment, and are assessed by observing the software in operation. Quality in
use can be measured by the extent to which a product used by specified users meets
their needs to achieve specified goals with effectiveness, productivity, satisfaction,
safety and flexibility.

At the earliest stages of development, only resources and process can be measured.
When intermediate products (specifications, source code, etc.) become available,
these can be evaluated by the levels of the chosen internal measures. These
measures can be used to predict values of the external measures. They may also be
measured in their own right, as essential pre-requisites for external quality.

A further distinction can be made between the evaluation of a software product and
the evaluation of the system in which it is executed.

NOTE 1 For example, the reliability of a system is assessed by observing all failures due to whatever cause
(hardware, software, human error, etc.), whereas the reliability of the software product is assessed by extracting
from the observed failures only those that are due to faults (originating from requirements, design or
implementation) in the software.

Also, where the boundary of the system is judged to be, depends upon the purpose
of the evaluation, and upon who the users are.

NOTE 2 For example, if the users of an aircraft with a computer-based flight control system are taken to be the
passengers, then the system upon which they depend includes the flight crew, the airframe, and the hardware
and software in the flight control system, whereas if the flight crew are taken to be the users, then the system
upon which they depend consists only of the airframe and the flight control system.

© ISO ISO/IEC CD 25010.2

 35

Annex D
(normative)

Terms and definitions

D.1
attribute

inherent property or characteristic of an entity that can be distinguished quantitatively
or qualitatively by human or automated means

NOTE 1 based on ISO/IEC 15939:2002.

NOTE 2 ISO 9000 distinguishes two types of attributes: a permanent characteristic existing inherently in
something; and an assigned characteristic of a product, process or system (e.g. the price of a product, the owner
of a product). The assigned characteristic is not an inherent quality characteristic of that product, process or
system.

[ISO/IEC 25000:2005]

D.2
context of use

users, tasks, equipment (hardware, software and materials), and the physical and
social environments in which a product is used

[ISO 9241-11:1998]

D.3
end user

individual person who ultimately benefits from the outcomes of the system

NOTE The end user may be a regular operator of the software product or a casual user such as a member of the
public.

[ISO/IEC 25000:2005]

D.4
implied needs

needs that may not have been stated but are actual needs

NOTE Some implied needs only become evident when the software product is used in particular conditions.

EXAMPLE Implied needs include: needs not stated but implied by other stated needs and needs not stated
because they are considered to be evident or obvious.

[ISO/IEC 25000:2005]

D.5
measure (noun)

variable to which a value is assigned as the result of measurement

ISO/IEC CD 25010.2 © ISO

 36

NOTE The term “measures” is used to refer collectively to base measures, derived measures, and indicators.

 [ISO/IEC 15939:2002]

D.6
measure (verb)

make a measurement

[ISO/IEC 14598-1:1999]

D.7
measurement

set of operations having the object of determining a value of a measure

[ISO/IEC 15939:2002, based on the definition in International Vocabulary of Basic
and General Terms in Metrology, 1993]

NOTE: Measurement can include assigning a qualitative category such as the language of a source program
(ADA, C, COBOL, etc.).

D.8
quality in use (measure)

the extent to which a product used by specific users meets their needs to achieve
specific goals with effectiveness, productivity, safety and satisfaction in specific
contexts of use

[ISO/IEC 25000:2005]

D.9
quality model

defined set of characteristics, and of relationships between them, which provides a
framework for specifying quality requirements and evaluating quality

[ISO/IEC 25000:2005]

D.10
requirements

expression of a perceived need that something be accomplished or realized

NOTE The requirements may be specified as part of a contract, or specified by the development organisation, as
when a product is developed for unspecified users, such as consumer software, or the requirements may be more
general, as when a user evaluates products for comparison and selection purpose.

[ISO/IEC 25000:2005]

D.11
software product

set of computer programs, procedures, and possibly associated documentation and
data

© ISO ISO/IEC CD 25010.2

 37

[ISO/IEC 12207:1995]

NOTE 1 Products include intermediate products, and products intended for users such as developers and
maintainers.

NOTE 2 In SQuaRE standards software quality has the same meaning as software product quality.

D.12
software quality

degree to which the software product satisfies stated and implied needs when used
under specified conditions

NOTE This definitions differs from the ISO 9000:2000 quality definition mainly because the software quality
definition refers to the satisfaction of stated and implied needs, while the ISO 9000 quality definition refers to the
satisfaction of requirements.

[ISO/IEC 25000:2005]

D.13
software quality requirement

a requirement that a software quality attribute be present in software

D.14
software quality characteristic

category of software quality attributes that bears on software quality

NOTE Software quality characteristics may be refined into multiple levels of subcharacteristics and finally into
software quality attributes.

[ISO/IEC 25000:2005]

D.15
system

a combination of interacting elements organised to achieve one or more stated
purposes

NOTE 1 A system may be considered as a product or as the services it provides.

NOTE 2 In practice, the interpretation of its meaning is frequently clarified by the use of an associative noun, e.g.
aircraft system. Alternatively the word system may be substituted simply by a context dependent synonym, e.g.
aircraft, though this may then obscure a system principles perspective.

[ISO/IEC 15288:2008]

D.16
user

individual or organisation that uses the system to perform a specific function

NOTE Users may include operators, recipients of the results of the software, or developers or maintainers of
software.

[ISO/IEC 15939:2002]

ISO/IEC CD 25010.2 © ISO

 38

D.17
validation

confirmation, through the provision of objective evidence, that the requirements for a
specific intended use or application have been fulfilled

NOTE 1 "Validated" is used to designate the corresponding status.

[ISO 9000:2000]

NOTE 2 In design and development, validation concerns the process of examining a product to determine
conformity with user needs.

NOTE 3 Validation is normally performed on the final product under defined operating conditions. It may be
necessary in earlier stages.

NOTE 4 Multiple validations may be carried out if there are different intended uses.

D.18
verification

confirmation, through the provision of objective evidence, that specified requirements
have been fulfilled

NOTE 1 "Verified" is used to designate the corresponding status.

[ISO 9000:2000]

NOTE 2 In design and development, verification concerns the process of examining
the result of a given

© ISO ISO/IEC CD 25010.2

 39

Annex E
(informative)

Bibliography

IEC 50-(191) International Electrotechnical vocabulary - Dependability and quality of
service

IEEE 610.12-1990 Standard Glossary of Software Engineering Terminology

IEEE 1517-1999 (R2004) IEEE Standard for Information Technology - Software Life
Cycle Processes - Reuse Processes

ISO/IEC 2382-1:1993 Data processing - Vocabulary - Part 1: Fundamental terms

ISO/IEC 2382-14:1997 Reliability, maintainability and availability

ISO/IEC 2382-20:1990, Information technology -- Vocabulary - Part 20 : Systems
development.

ISO 7498-2:1989, Information processing systems -- Open Systems Interconnection -
- Basic Reference Model -- Part 2: Security Architecture

ISO 9001:2000, Quality management systems -- Requirements

ISO/IEC TR 9126-2:2003, Software engineering -- Product quality - Part 2: External
metrics

ISO/IEC TR 9126-3:2003, Software engineering -- Product quality - Part 3: Internal
metrics

ISO/IEC TR 9126-4:2004, Software engineering -- Product quality - Part 4: Quality in
use metrics

ISO 9241-11:1997, Ergonomic requirements for office work with visual display
terminals (VDT)s - Part 11: Guidance on usability.

ISO 9241-110:2006, Ergonomics of human-system interaction -- Part 110: Dialogue
principles

ISO/IEC 12207:2008, Systems and software engineering -- Software life cycle
processes.

ISO/IEC 13335-1:2004, Information technology -- Security techniques -- Management
of information and communications technology security -- Part 1: Concepts and
models for information and communications technology security management

ISO 13407:1999, Human centred design processes for interactive systems.

ISO/IEC CD 25010.2 © ISO

 40

ISO/IEC 14598-2:2000, Information Technology - Software product evaluation - Part
2: Planning and management

ISO/IEC 14598-3:2000, Information Technology - Software product evaluation - Part
3: Process for developers

ISO/IEC 14598-4:1999, Information Technology - Software product evaluation - Part
4: Process for acquirers

ISO/IEC 14598-5:1998, Information Technology - Software product evaluation - Part
5: Process for evaluators

ISO/IEC 14598-6:2001, Information Technology - Software product evaluation - Part
6: Documentation of evaluation modules

ISO/IEC 15026:1998, Information technology -- System and software integrity levels

ISO/IEC 15504 (parts 1 to 5) Information Technology - Process Assessment

ISO/IEC 15288:2008 Systems and software engineering -- System life cycle
processes

ISO/IEC FCD 24765:2008, Systems and software engineering vocabulary

ISO/IEC 25000:2005 Software Engineering - Software product Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE.

ISO/IEC FCD 25012:2008 Software Engineering - Software product Quality
Requirements and Evaluation (SQuaRE) – Data quality model

ISO/IEC 25020:2007 Software engineering -- Software product Quality Requirements
and Evaluation (SQuaRE) -- Measurement reference model and guide

North Texas Net Centric Systems Consortium (2008). Dependability definitions.
http://csrl.unt.edu/~kavi/NetCentric/Dependability-Defn.doc Retrieved 2 June 2008.

