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1 Introduction

Classification is an important task within data analysis. The problem of classi-
fication consists of determining the class to which an individual belongs given
that some features about that individual are known. Much attention has been
paid in the literature to the induction of classifiers from data. In this paper we
are concerned with supervised classification, which means that the classifier is
induced from a set of data containing information about individuals for which
the class value is known.

In the last decades, probabilistic graphical models, and particularly Bayesian
networks (BNs) (Castillo et al., 1997; Jensen, 2001; Pearl, 1988) have been
successfully applied to the classification problem, giving rise to the so-called
Bayesian network classifiers, which by Friedman et al. (1997) was shown to
be competitive with classical models like classification trees (Breiman et al.,
1984; Quinlan, 1986).

Probabilistic decision graphs (PDGs) constitute a class of probabilistic graph-
ical models that naturally capture certain context specific independencies
(Boutilier et al., 1996) that are not easily represented by other graphical mod-
els (Jaeger, 2004; Jaeger et al., 2006). This means that the PDG model can
capture some distributions with fewer parameters than classical models, which
in some situations leads to a model less prone to over-fitting.

In this paper we propose a new model for supervised classification based on the
representational capabilities of PDGs. We introduce algorithms for inducing
PDG-based classifiers directly from data, as well as for transforming a previ-
ously existing Bayesian network classifier into a PDG, under the restriction
that the structure of the Bayesian network is a forest augmented Bayesian
network (Lucas, 2002).

The rest of the paper is organised as follows. We establish the notation used
throughout the paper in section 2. The classification problem and the most
commonly used classifiers are described in section 3. The general PDG model
as well as the PDG classification model are introduced in section 4. Two dif-
ferent approaches to the construction of classifiers based on PDGs are studied
in section 5. The proposed methods are experimentally tested in section 6 and
the paper ends with conclusions in section 7.
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2 Basic Notation

We will denote random variables by uppercase letters, and by boldfaced up-
percase letters we denote sets of random variables, e.g. X = {X0, X1, . . . , Xn}.
By R(X) we denote the set of possible states of variable X, and this extends
naturally to sets of random variables R(X) = ×Xi∈XR(Xi). By lowercase let-
ters x (or x) we denote some element of R(X) (or R(X)). When x ∈ R(X)
and Y ⊆ X, we denote by x[Y] the projection of x onto coordinates Y.

Let G be a directed graph over nodes V, Xi ∈ V. We will denote by paG(Xi)
the set of parents of node Xi in G, by de∗

G(Xi) the set of children of Xi, and
by ndG(Xi) the set of non-descendants of Xi in G.

3 Classification

A classification problem can be described in terms of a set of feature variables
X = {X1, . . . , Xn}, that describe an individual, and a class variable, C, that
indicates the class to which that individual belongs. A classification model,
commonly called classifier, is a model oriented to predict the value of variable
C given that the values of the features X1, . . . , Xn are known. Throughout
this paper, we will use the notation C = {C} ∪ X. We will assume that all
the variables in a classification model are discrete.

There are different kinds of classification models. A popular group of them
are the so-called Bayesian network classifiers, which are particular types of
Bayesian networks (Castillo et al., 1997; Jensen, 2001; Pearl, 1988). A Bayesian
network (BN) model (see Fig. 1(a)) is a directed acyclic graph in which each
node represents a random variable, and the existence of an arc between two
nodes indicates that the corresponding random variables are statistically de-
pendent. Every node has associated a probability distribution of the corre-
sponding variable given its parents in the graph.

A key property of BNs is that the joint distribution over the variables in the
network factorises according to the concept of d-separation as follows:

P (X1, . . . , Xn) =
n

∏

i=1

P (Xi|pa(Xi)) . (1)

This factorisation implies that the joint distribution of all the variables in the
network can be specified with an important reduction of the number of free
parameters.

3



X1

X2 X3

X4

(a)

C

X1 X2 Xn· · ·

(b)

Figure 1. An example of a BN model (a), and the structure of the NB model classifier
(b).

For example, the BN model with the structure given in Fig. 1(a) induces the
following factorisation of the joint probability distribution:

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2, X3) .

A BN model can be used for classification purposes if its set of nodes cor-
responds to the variables C = {C} ∪ X, as it can be used to compute the
posterior distribution of the class variable given the features, so that an in-
dividual with observed features x1, . . . , xn will be assigned to class c∗ such
that

c∗ = arg max
c∈R(C)

P (C = c|X = x1, . . . , xn) . (2)

The posterior distribution of the class variable given the features is propor-
tional to P (X1, . . . , Xn|C) · P (C). Therefore, in the most general setting it
would be necessary to specify a number of parameters exponential in the
number of variables. However, if the distribution is represented as a Bayesian
network, it is possible to take advantage of the factorisation encoded by the
network. Moreover, it is common to use only some restricted classes of Bayesian
networks when approaching classification problems, so that the number of free
parameters to estimate does not grow exponentially with the number of vari-
ables.

The simplest kind of Bayesian network for classification is the so-called Näıve
Bayes (NB) model (Minsky, 1963). In the NB classifier, the feature variables
are assumed to be independent given the class variable, which corresponds to
the structure depicted in Fig. 1(b). It means that the posterior distribution of
the class variable factorises as
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(a) TAN
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(b) kdB

Figure 2. Sub-figure (a) shows an example of a TAN structure with 4 features, and
(b) shows an example of a kdB structure (k = 2) with 5 features.

P (C|X1, . . . , Xn) ∝ P (C)
n

∏

i=1

P (Xi|C) , (3)

and therefore, the number of free parameters is linear in the number of vari-
ables. The drawback of this model is that the independence assumption is
made previously to the induction of the model from the data. Therefore, this
assumption might be not supported by the data. However, this is usually
compensated by the reduction on the number of free parameters to estimate,
which also makes the NB classifier less prone to over-fitting than other more
complex models (Domingos and Pazzani, 1997).

The Tree Augmented Näıve Bayes (TAN) model (Friedman et al., 1997) relaxes
the independence assumption behind the NB model, by allowing some depen-
dencies among the features. More precisely, the TAN model assumes that the
feature variables are arranged in a directed tree structure, which means that
each variable has one more parent besides the class variable, except the root
of the directed tree, whose only parent is the class. An example of a TAN
structure is shown in Fig. 2(a).

Both the TAN and NB structures are particular cases of the Forest Augmented
Bayesian Network (FAN) model (Lucas, 2002). This model assumes that the
feature variables form a forest of directed tree structures. An example of a
FAN can be obtained from Fig. 2(a) by removing the arc between X2 and X3.

The more general Bayesian network classifier is the k-dependence Bayesian
network (kdB) (Sahami, 1996). A kdB classifier is a Bayesian network which
allows each feature to have a maximum of k feature variables as parents, apart
from the class variable which is a parent of every feature. Fig. 2(b) shows an
example of a kdB structure with k = 2.

Another important group of classifiers is based on the induction of a set of
rules, arranged as a tree, that partition the sample space of the features into
homogeneous groups in terms of the value of the class variable. The models
within this group are usually called tree-structured classifiers or classification
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tree (CT) models. A CT model is a hierarchical model, composed by terminal
leaves and decision nodes. Each decision node represents a test about a feature
variable, with a finite number of outcomes. Every outcome is connected to
another decision node or terminal leaf. Leaf nodes have no further links, but
they bear a value for the class variable (see Fig. 3).

X3 = 0?

X2 = 1? C = 1

C = 0 X1 = 1?

C = 1 C = 0

yes no

yes no

yes no

Figure 3. Example of a CT structure with 3 binary features and a binary class. Oval
nodes are decision nodes, and square nodes are terminal leaves.

There exist several methods for inducing CTs from data. The models induced
by the CART method (Breiman et al., 1984) are binary trees where the se-
lection of the variables to include in the model is made according to entropy
measures, and the tests are selected according to the goodness of split. The
C4.5 (Quinlan, 1993) and its predecessor ID3 (Quinlan, 1986) allow more than
two outcomes in the decision nodes.

A different approach is followed in the Dirichlet classification tree (Abellán
and Moral, 2003), in which the imprecise Dirichlet model is used to estimate
the probabilities of the values of the class variable.

4 The Probabilistic Decision Graph model

The Probabilistic Decision Graph (PDG) model was first introduced by Bozga
and Maler (1999), and was originally proposed as an efficient representation of
probabilistic transition systems. In this study, we consider the more generalised
version of PDGs proposed by Jaeger (2004).

A PDG encodes a joint probability distribution over a set of discrete random
variables X by representing each random variable Xi ∈ X by a set of nodes
{ν0, . . . , νl}. Nodes are organised in a set of rooted DAG structures that are
consistent with an underlying forest-structure over variables X. The structure
is formally defined as follows:

Definition 4.1 (The PDG Structure) Let F be a variable forest over do-
main X. A PDG-structure G = 〈V,E〉 for X w.r.t. F is a set of rooted
DAGs, such that:
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X2
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(a)

X0 ν0

X1 ν1 ν2 X2 ν3 ν4

X3 ν5 ν6 ν7

X4 ν8

X5 ν9 ν10

X6 ν11 ν12 X7 ν13 ν14

(b)

Figure 4. A variable forest F over binary variables X = {X0, . . . ,X7} is shown in
(a), and a PDG-structure over X w.r.t. variable forest F is shown in (b).

(1) Each node ν ∈ V is labelled with some Xi ∈ X. By VXi
, we will refer

to the set of all nodes in a PDG-structure labelled with the same variable
Xi. For every variable Xi, VXi

6= ∅.
(2) For each node νi ∈ VXi

, each possible state xi,h of Xi and each successor
Xj ∈ chF (Xi) there exists exactly one edge labelled with xi,h from νi

to some node νj labelled with random variable Xj. Let Xj ∈ chF (Xi)
and νi ∈ VXi

. By succ(νi, Xj , xi,h) we will then refer to the unique node
νj ∈ VXj

that is reached from νi by an edge with label xi,h.

Example 4.1 A variable forest F over binary variables X = {X0, . . . , X7}
can be seen in Figure 4(a), and a PDG structure over X w.r.t. F in Figure
4(b). The labelling of nodes ν in the PDG-structure is indicated by the dashed
boxes, e.g., the nodes labelled with X2 are visualised as the set VX2

= {ν3, ν4}.
Dashed edges correspond to edges labelled 0 and solid edges correspond to edges
labelled 1, for instance succ(ν9, X6, 0) = ν12.

A PDG-structure is instantiated by assigning to every node ν a local multi-
nomial distribution over the variable that it represents. We will refer to such
local distributions by pν = (pν

1, . . . p
ν
ki

) ∈ R
ki, where ki = |R(Xi)| is the num-

ber of distinct states of Xi. Then, by pν
xi,h

we refer to the h’th element of pν

under some ordering of R(Xi).

Definition 4.2 (The PDG model) A PDG model G is a pair G = 〈G, θ〉,
where G is a valid PDG-structure (Def. 4.1) over some set X of discrete
random variables and θ is a set of local distributions that fully instantiates G.

Definition 4.3 (Reach) Let G be a PDG structure over variables X w.r.t.
forest F . A node ν in G labelled with Xi is reached by x ∈ R(X) if

• ν is a root in G, or
• Xi ∈ chF (Xj), ν ′ ∈ VXj

, ν ′ is reached by x and ν = succ(ν ′, Xi,x[Xj ]).

By reachG(i,x) we denote the unique node ν ∈ VXi
reached by x in PDG-

structure G.

An instantiated PDG model G = 〈G, θ〉 over variables X represents a joint
distribution P G by the following factorisation:
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P G(x) =
∏

Xi∈X

p
reachG(i,x)
x[Xi]

, (4)

where preachG(i,x) refers to the parameters contained in the unique node from
VXi

that is reached by joint configuration x and p
reachG(i,x)
x[Xi]

then refers to the
specific entry in that parameter vector for the value of Xi in x. A set of nodes
VXi

in a PDG structure G over variables X partitions the state space R(X)
into a set of disjoint subsets, namely (ν ∈ VXi

){x ∈ R(X) : reachG(i,x) = ν}.
We will denote by AG(Xi) the partitioning of R(X) defined by VXi

in G.
Then, the PDG structure G imposes the following conditional independence
relations:

Xi⊥⊥ndG(Xi)|AG(Xi) , (5)

where ndG(Xi) denotes the non-descendants of Xi in structure G.

4.1 The PDG classifier

In this section we introduce the PDG classification model. First, we give the
following formal definition of the model:

Definition 4.4 (The PDG Classifier) A PDG classifier C is a PDG model
that, in addition to the structural constraints of Def. 4.1, satisfies the following
two structural constraints:

(1) G defines a forest containing a single tree over the variables C, and
(2) C is the root of this tree.

The PDG model was initially inspired by ROBDDs (Bryant, 1992) which is
a modelling framework that allows efficient representation of boolean expres-
sions. As we will see in the following example, the PDG model has inherited
the ability to represent boolean expressions efficiently, at least to some extent.

Example 4.2 Let X be a set of truth-valued feature variables, and let C be a
truth valued class variable. Assume that the label (c ∈ R(C)) of an individual
x ∈ R(X) is determined as:

C = (((x0 ⊕ x1)⊕ x2)⊕ · · · )⊕ xn , (6)

where xi = x[Xi] and ⊕ is the logical exclusive-or operator. Assume that no
other relations exists, that is all X ∈ X are independent given any subset
S ⊂ X. Then, using the terminology of Jaeger (2003) it can be realised that
the concept defined by Eq. (6) is order-n polynomially separable, where n =
|X|. We say that a concept is recognised by a classifier if for any individual
x ∈ R(X) the correct class label c is assigned to x by that classifier. Jaeger
(2003) proved that if a concept A is not order-n polynomially separable then
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there exists no order-m association classifier (m < n) that recognises A. The
NB model is an order-1 association classifier and the TAN and FAN models
are order-2 association classifiers. The concept is efficiently recognised by a
PDG classifier. Consider n = 4 we have the concept

C = ((X1 ⊕X2)⊕X3)⊕X4 . (7)

The PDG classifier with the structure shown in Fig. 5(a) can recognise the
concept of Eq. (7). The two parameter nodes representing X4 contains zero-
one distributions while the rest of the parameter nodes can contain any positive
distribution without affecting the classifier.

The structure of Fig. 5(a) defines a model that contains 11 free parameters,
and adding more feature variables to the exclusive-or function determining the
label for the instance only yields an addition of 4 extra parameters to the model.
As noted above, neither NB nor TAN classifiers can recognise this concept, and
the kdB model would need k = 4 to recognise it.

Fig. 5(b) shows a PDG structure that efficiently represents the model where
the class label of an individual x ∈ R(X) is determined by the parity of feature
variables:

C =







true if (
∑

i δtrue(xi)) is odd

false otherwise
, (8)

where xi = x[Xi] and δtrue is the indicator function. The concept in (8) is cap-
tured by the PDG model with the structure shown in Fig. 5(b) with maximum
likelihood estimates. This model defines 2n+1 free parameters where n is the
number of feature variables, and again, this number grows linearly as we add
more feature variables to the concept. Also, this model defines a concept that is
not recognised by any NB, TAN nor FAN models (for n>2). A kdB model can
recognise the concept for k=n, but will require exponentially many parameters
to do so.

5 Learning the PDG Classifier

In this section we propose two different approaches to learning the PDG classi-
fier. The first approach, presented in Section 5.1, is based on a transformation
of a given FAN classifier into an equivalent PDG which can then subsequently
refined. Previous comparative studies have demonstrated the strength of the
PDG model as a secondary structure in probability estimation (Jaeger et al.,
2004). In the study of Jaeger et al. (2004), a PDG is learned from a Junction
Tree model and thereafter a series of merging operations is applied. These op-
erations effectively remove redundant parameters and parameters with little
or no data-support. It is shown that the PDG model can typically be much
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C ν0

X1 ν1 ν2

X2 ν3 ν4 ν5 ν6

X3 ν7 ν8 ν9 ν10

X4 {1, 0} {0, 1}

(a)

C ν0

X0 ν1 ν2

X1 ν3 ν4

Xn ν ′ ν ′′

...

(b)

Figure 5. The 2 different structures of PDG classifiers discussed in Example 4.2.
Solid edges correspond to the value true and dashed edges correspond to false.
The structure shown in (a) can recognise the concept of Eq. (7) while the structure
in (b) can recognise the concept of Eq. (8).

smaller than the JT model without degrading the precision of the represented
distribution.

The second approach, presented in Section 5.2, concerns direct learning of
PDG classifiers from labelled data.

5.1 Transforming a BN Classifier into a PDG

It is known that any clique tree obtained from a BN model can be represented
by a PDG with a number of free parameters linear on the size of the clique tree
(Jaeger, 2004, Theorem 5.1). A clique tree is the main structure for organising
computations in many popular algorithms for exact inference in BN models,
as can be seen, for instance, in (Jensen et al., 1990). As we will show later, if
we consider BN models with FAN structure, then the equivalence in terms of
number of free parameters is not only met for the clique tree, but also for the
BN model. In the following we propose an algorithm for constructing a PDG
model from a FAN model that represents the same distribution and contains
the same amount of parameters.

The idea of the algorithm is to construct a PDG with variable forest given
by the forest structure of the FAN. The root will be the class variable and
the features are arranged in subtrees underneath the root. Let B be a FAN,
and let P B be the joint distribution represented by model B. Each variable
X will then be represented by |R(paB(X))| nodes such that there will be
a unique node νw ∈ VX for every X ∈ X and w ∈ R(paB(X)) for which
pνw = P (X|paB(X) = w). The nodes will then be connected in such a way
that the path from the root node to the leaves defined by any full instance
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c ∈ R(C) for each feature variable X reaches exactly the node that contains
P B(X|paB(X) = c[paB(X)]). The details can be found in function FANToPDG
in Algorithm 1.

Algorithm 1 Function FANToPDG converts a BN classifier model with FAN
structure to an equivalent PDG classifier model.

1: function FANToPDG(B)
2: Create new node νroot, and set pνroot = P B(C).
3: VC = {νroot}.
4: for all X ∈ X do
5: VX ← ∅.
6: for all w ∈ R(paB(X)) do
7: Create new node νw, and set pνX

w = P B(X|paB(X) = w).
8: VX ← VX ∪ {νw}.

9: for all trees T over feature variables in B do
10: Let L be a list of the variables in T .
11: order L according to a depth-first traversal of T .
12: while L 6= ∅ do
13: Let X be the next variable in L.
14: for all νw ∈ VX do
15: Let c be the value of C in w.
16: if paB(X) only contains C then
17: Set succ(νroot, X, c) = νX

w
.

18: else
19: Let Y be the parent of X in B that is not C.
20: Let y be the value of Y in w.
21: for all νu ∈ VY where u[C] = c do
22: Set succ(νu, X, y) = νw.

23: L← L \ {X}.

24: return a new PDG model with νroot as root.

Before proving the correctness of Alg. 1, we give two examples of applying the
FANToPDG function on specific FAN models.

Example 5.1 (Constructing a PDG from a NB) Consider the NB mo-
del B with four feature variables, that is X = {X1, . . . , X4}, and class C where
all the variables are binary (see Fig. 1(b)). We can construct an equivalent
PDG model using Algorithm 1. First, C is represented by a single node ν0

containing the parameters pν0 = P B(C) inserted as root of the PDG structure.
Next, every feature variable is connected underneath ν0 represented each by two
nodes connected under ν0, yielding a PDG structure very similar to the NB
structure as can be seen in Figure 6(a) which also shows the parameterisation
of the PDG model.

Example 5.2 (Constructing a PDG from a TAN) Consider the TAN
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C ν0

X1 ν1 ν2 X2 ν3 ν4 X3 ν5 ν6 X4 ν7 ν8

pν0 = P (C) pν1 = P (X1|C = 0)

pν2 = P (X1|C = 1) pν3 = P (X2|C = 0)

pν4 = P (X2|C = 1) pν5 = P (X3|C = 0)

pν6 = P (X3|C = 1) pν7 = P (X4|C = 0)

pν8 = P (X4|C = 1)

(a)

C ν0

X2 ν1 ν2

X1 ν3 ν4 ν5 ν6 X3 ν7 ν8 ν9 ν10

X4 ν11 ν12 ν13 ν14

pν0 = P (C) pν1 = P (X2|C = 0)

pν2 = P (X2|C = 1) pν3 = P (X1|X2 = 0, C = 0)

pν4 = P (X1|X2 = 1, C = 0) pν5 = P (X1|X2 = 0, C = 1)

pν6 = P (X1|X2 = 1, C = 1) pν7 = P (X3|X2 = 0, C = 0)

pν8 = P (X3|X2 = 1, C = 0) pν9 = P (X3|X2 = 0, C = 1)

pν10 = P (X3|X2 = 1, C = 1) pν11 = P (X4|X3 = 0, C = 0)

pν12 = P (X4|X3 = 1, C = 0) pν13 = P (X4|X3 = 0, C = 1)

pν14 = P (X4|X3 = 1, C = 1)

(b)

Figure 6. Examples of results of Algorithm 1. (a) shows the resulting PDG structure
and parameters when translating the NB classifier with four features. (b) shows the
resulting PDG structure and parameters when translating the TAN model of Figure
2(a).

model displayed in Figure 2(a) and assume all the variables are binary. The
construction of an equivalent PDG using Algorithm 1 proceeds as follows: The
class variable C is represented as a single node ν0 containing the parameters
pν0 = P B(C). Then, the root of the tree structure over the feature variables
(X2) is added under C represented by two nodes. At X2, the variable tree
structure branches and both X1 and X3 are connected as children of X2 each
represented by 4 nodes. Finally X4 is connected as child of X3, and connections
are configured such that X4 becomes dependent of C and X3 only. The resulting
structure and parameters can be seen in Fig. 6(b).

Lemma 5.1 Let B be a BN classifier model with FAN structure. Then the
FANToPDG(B) function of Algorithm 1 returns a valid PDG classifier.

Proof: First, observe that in lines 2 to 8 nodes representing every variable
are created, satisfying condition (1) of Definition 4.1. Second, in the for loop
at line 14 we connect a set of nodes VX with a set VY , where Y ∈ paB(X).
Remember that there exists a node νw ∈ VX for every X ∈ X and w ∈
R(paB(X)). When connecting a set of nodes VX representing feature variable
X there are two possible scenarios:

(1) The only parent of X in B is C, then in line 17 a unique outgoing edge for
νroot for every c ∈ R(C) is created satisfying condition (2) of Definition
4.1.
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(2) When X has feature variable Y as parent in B, then in the loop of line 21,
a unique outgoing edge for every νu ∈ VY and every y ∈ R(Y ) is created.
To realise this, observe that by the two nested loops we effectively iterate
over all values u ∈ R(paB(Y )) and thereby visit all νu ∈ VY that were
previously created in lines 2 to 8. This will ensure that condition (2) of
Definition 4.1 will be satisfied.

2

Theorem 5.1 Let B be a BN classifier model with FAN structure. Then the
FANToPDG(B) function of Algorithm 1 returns a PDG model G for which:

(1) G has the same number of parameters as B, and
(2) P G = P B.

Proof: A BN model B represents distribution P B by the factorisation given
in Eq. (1), while PDG model G represents distribution P G by the factorisation
given in Eq. (4). In order to prove the theorem, it is enough to show that when
B has FAN structure and G is constructed from B by Algorithm 1, Equations
(1) and (4) contain exactly the same factors. We will prove this by induction
in the size of the set C. Remember that the PDG factorisation consists of the
nodes being reached in the structure.

As the base case, assume that |C| = 1, that is, C only contains the class
variable C. G would then consist of the single node νroot with parameters
pνroot = P B(C) and therefore it trivially holds that the distributions P G and
P B have the same factors.

Next, assume that the theorem is true (that is, both distributions have exactly
the same factors) for |C| = n. If we add a new feature variable X to the FAN
model B, according to the definition of FAN we find that the only factor
that contains the new variable is P B(X|paB(X) = w). Before adding the
last variable X to the PDG structure as a child of (feature or class) variable
Y , by assumption any configuration v ∈ R(C) will reach the unique node
νu ∈ VY where u = v[paB(Y )]. In line 21 of Algorithm 1 it is ensured that
succ(νu, X, y) = νw where w = v[paB(X)] and y = v[Y ]. And as νw contains
the values P B(X|paB(X) = w), the theorem is true for |C| = n + 1. 2

5.1.1 Refining by merging nodes

From Algorithm 1 we can construct a PDG representation of any FAN classi-
fier. In a learning scenario we wish to take advantage of the full expressibility
of the PDG language and not just obtain an equivalent representation.
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Xi ν1 ν2

Xj ν3 ν4 ν5

Xk ν6 ν7 ν8 ν9

merge(ν4, ν5)

Xi ν1 ν2

Xj ν3 ν ′

Xk ν6 ν7 ν8

Figure 7. The structural changes resulting from the merge operation.

The merge operator is a binary operator that takes two nodes ν1 and ν2

representing the same variable in a PDG structure, and merges ν2 into ν1.
This effectively reduces the number of parameters in the model, but will also
introduce new independencies. The structural modification of merging node
ν2 into node ν1 is performed by the following 2 steps:

(1) Move all links incoming to ν2 towards ν1.
(2) Remove any node that can not be reached from the root node by a di-

rected path afterwards.

If the structure subjected to this transformation was a valid PDG structure,
then the transformed one will also be a valid PDG structure. After removing
all incoming links from ν2, the structure is clearly not a PDG structure, as
we have created one orphan node (ν2) in addition to the original root node,
and the structure is not a rooted DAG. However, the cleaning up done in the
second step removes the newly created orphan node, and recursively any node
that is orphaned from this removal.

An example of merging two nodes is shown in Figure 7, where on its left part,
a section of a larger PDG structure is shown, while the right part displays the
corresponding section after merging node ν5 into ν4, which effectively removes
nodes ν5 and ν9 from the model.

Our criteria for choosing pairs of nodes for merging is based on the improve-
ment in classification rate, that is, number of correctly classified individuals
from our training data. To find the optimal pair (ν1, ν2) ∈ VX×VX for merg-
ing by exhaustive search over all such ordered pairs is inevitable a search that
has polynomial time complexity in the size of VX . Instead, we employ a ran-
domised merging strategy where random pairs are sampled from VX and if the
merge results in a gain in classification rate, it is implemented and otherwise
it is not. This approach is very näıve indeed, but as initial experiments showed
acceptable results compared to exhaustive search and superior execution time,
we have not implemented more sophisticated methods.
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Algorithm 2 This procedure learns a PDG classifier from a fully observed
set of labelled data instances D.
Input: Data D containing full observations of feature variables X labelled

with class membership.
1: function LearnPDGC(D)
2: Divide D into Dtrain and Dhold-out

3: Create new node ν representing C.
4: pν ← P̂Dtrain

(C)
5: Instantiate PDG model G with ν as a root.
6: while X 6= ∅ do
7: 〈Xi, Xj〉 ← argmax

Xi∈X,Xj∈G
CA(Xi, Xj,G,Dtrain,Dhold-out).

8: Add Xi as a child of Xj in G.
9: Merge nodes bottom up from new leafs VXi

.

10: return G.

5.2 Direct Learning of PDG Classifiers from Data

In this section we propose an algorithm for learning PDG classifiers directly
from labelled data, with no need to refer to a previously existing BN classifier.
The algorithm builds the PDG structure incrementally by adding variables
from X to the variable tree structure with root C guided by classification
accuracy on a hold-out set. We use a merging procedure that collapses two
nodes into a single node if doing so increases classification accuracy measured
on the hold-out data.

In Algorithm 2, the notation P̂D(X) refers to the maximum likelihood esti-
mate of the marginal distribution of X, obtained from data D. The function
CA(Xi, Xj,G,Dtrain,Dhold-out) in Algorithm 2 calculates the classification accu-
racy of the PDG classifier constructed from G by adding feature variable Xi as
a fully expanded child of variable Xj with parameters estimated from Dtrain in
G, measured on data-set Dhold-out. A variable Xi is added as a fully expanded
child of Xj in G by adding for every node νj representing Xj and every value
xj ∈ R(Xj) a new node νi representing Xi such that succ(νj , Xi, xj) = νi.
Adding a variable as a fully expanded child potentially results in many nodes
and consequently many independent parameters for estimation. Parameters
for node νi are computed as maximum likelihood estimates of the marginal
probability P̂Dtrain[νi](Xi), where Dtrain[νi] = {d ∈ Dtrain|reachG(i, d) = νi}. To
be sure we have a minimum amount of data for estimating we will collapse
newly created nodes that are being reached by less than a minimum number of
data instances. That is, assume we add Xi as a fully expanded child, resulting
in nodes VXi

. We can then collapse two nodes νk and νl that both are reached
by too few data cases into a single node νk+l that will then be reached by
Dtrain[νk] + Dtrain[νl]. Such collapses are continued until all nodes are reached
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by the minimum number of data instances, which for our experiments have
been set to 5 · |R(Xi)| for nodes representing variable Xi.

In Line 9 of Algorithm 2, nodes are merged bottom up from the newly created
leaves using the merging procedure described in Section 5.1.1.

In Example 4.2, we illustrated some concepts that can be recognised efficiently
by a PDG classification model. However, learning these classification models
from data is inherently difficult as the concepts from Example 4.2 are both
examples of a concept where no proper subset S of the set of features X reveals
anything about the class label C of the individual, while the full set of features
X determines C. Inducing such concepts from data generally requires that
we consider all features X together, which is intractable in practice. Indeed
Algorithm 2 does not guarantee that an efficient and accurate PDG model
will be recovered even when such a model exists for the given domain.

6 Experimental Evaluation

In this section we present the results of an experimental comparison of our
proposed PDG based classifier with a set of commonly used classifiers.

6.1 Experimental Setup

We have tested our proposed algorithms (Alg. 1 and Alg. 2) against well known
and commonly used algorithms for learning classification models including NB,
TAN, kdB and Classification Tree (CT) models, introduced in Section 3. For
the kdB learning algorithm, we used k = 4. We have used the implementation
of the models and their learning algorithms available in the Elvira system
(The Elvira Consortium, 2002). The methods included in the comparison are
the following:

NB: As the structure of the NB model is fixed, its learning reduces to the
learning the parameters which is done by computing maximum likelihood
estimates.

TAN: The algorithm that we have used for learning TAN models is the one
proposed by Friedman et al. (1997). This algorithm uses the well-known
algorithm by Chow and Liu (1968) to induce an optimal tree structure over
the feature variables.

kdB: We use the so-called kdB-algorithm proposed by Sahami (1996) for
learning kdB models. We configured the algorithm to assign at most 4 par-
ents to each feature variable.
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CT: For CT models we have used three different algorithms for learning the
model. The classic ID3 algorithm (Quinlan, 1986), its successor the C4.5
algorithm (Quinlan, 1993) and lastly the more recent Dirichlet classification
tree algorithm (Abellán and Moral, 2003).

6.2 An Initial Experiment

As an initial experiment, we have generated a set of labelled data-instances
from the following concept over 9 binary feature variables Xi : 0 ≤ i ≤ 8 and
binary class variable C:

C = (X0 ∨X1 ∨X2) ∧ (X3 ∨X4 ∨X5) ∧ (X6 ∨X7 ∨X8) . (9)

The concept of Eq. (9) consists of 3 disjunctions over 3 variables each, and
the three disjunctions are then connected in a conjunction. We will refer to
the concept in Eq. (9) as the discon-3-3. The feature variables of discon-3-3
are assumed to be marginally independent and have a uniform prior distri-
bution. We have designed this concept especially for exposing the expressive
power of the PDG model over the traditional models (NB, TAN, kdB and
CT). Following the terminology of Jaeger (2003) this concept is order-3 poly-
nomial separable and by (Jaeger, 2003, Theorem 2.6) it is not recognisable
by classification models of order lower than 3, that is, models that does not
include associations of order 3 or higher. NB and TAN models are examples of
association-1 and association-2 classifiers respectively. kdB models with k = 4
are examples of association-4 classifiers and may therefore be able to recognise
the concept. CT models can recognise this concept and the same is true for
PDG models.

Figure 8 shows an example of a PDG classifier that recognizes the discon-3-3
concept, in the figure we have represented edges labelled with true as solid
and edges labelled with false as dashed. By setting parameters pν32 = [1, 0]
and pν33 = [0, 1] and all other parameters as uniform or any other positive
distribution. The posterior probability of C given some complete configuration
x ∈ R(X) will be a zero-one distribution modelling the boolean function of
Eq. (9).

We have generated a database from the discon-3-3 concept by enumerating all
possible combinations of R(X) and the corresponding class-label c which gives
us a database of 512 labelled instances, 343 (or ≈67%) of which are positive
examples. In Table 1 we have listed the mean classification rate (CR) from a
5-fold cross-validation and the mean size (S) of the models induced. Sizes refer
to number of free parameters for the BN based classifiers as well as for the
PDG based classifier, while for CT models the size refer to the number of leaf
nodes in the tree. Each row corresponds to a specific model, PDG1 refers to
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C ν0

X0 ν1 ν2

X1 ν3 ν4 ν5 ν6

X2 ν7 ν8 ν9 ν10

X3 ν11 ν12 ν13

X4 ν14 ν15 ν16 ν17 ν18

X5 ν19 ν20 ν21 ν22 ν23

X6 ν24 ν25 ν26

X7 ν27 ν28 ν29 ν30

X8 ν31 ν32 ν33 ν34

Figure 8. A PDG-classifier that recognises the concept of Eq. (9). Solid edges are
are labelled with true and dashed edges are labelled false.

CR S

DIR 0.745 62.4

ID3 0.753 66.0

C4.5 0.753 66.0

TAN 0.698 35.0

NB 0.751 19.0

kdB 0.759 191.0

PDG1 0.722 31.0

PDG2 0.825 43.6

Table 1
Results of learning various kinds of classification models on a database sampled
from the discon-3-3 concept.

the model learnt from first inducing an equivalent TAN by Algorithm 1 and
then merging nodes as described in Section 5.1.1, while PDG2 refers to the
PDG classification model learnt directly from data by Algorithm 2.

From Table 1 we see first that no algorithm is able to learn a classifier that
recognises the discon-3-3 concept as they all have CR < 1. Next, it should be
noticed that the direct learning of PDG classifiers (PDG2) is the most suc-
cessful approach in this constructed example. Even the kdB classifier that uses
191 parameters on average compared to the PDG2 classifiers 43.6 parameters
has a lower CR.
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Name Size |X| |R(C)| Baseline

australian 1 690 14 2 0.555

car 1727 6 4 0.701

chess 3195 36 2 0.522

crx 653 15 2 0.547

ecoli 336 7 8 0.426

glass 214 9 6 0.355

heart 1 270 13 2 0.556

image 2310 19 7 0.143

iris 150 4 3 0.333

monks-1 431 6 2 0.501

monks-2 600 6 2 0.657

monks-3 431 6 2 0.529

Name Size |X| |R(C)| Baseline

mushroom 5643 22 2 0.618

new-thyroid 215 5 3 0.698

nursery 12959 8 5 0.333

pima 768 8 2 0.651

postop 86 8 3 0.721

soybean-large 561 35 15 0.164

vehicle 846 18 4 0.258

voting-records 434 16 2 0.615

waveform 5000 21 3 0.339

wine 178 13 3 0.399

sat 1 6435 36 6 0.238

Table 2
Data sets used in our experiments. The number of instances is listed in the Size
column, |X| indicates the number of feature variables for the database, |R(C)| refers
to the number of different labels while Baseline gives the frequency of the most
frequent class label. All databases are publicly available from the UCI repository.

In the following section we will investigate the performance of our proposals
on a larger set of commonly used benchmark-data.

6.3 Main Experiments

In our main set of experiments we have used a sample of 23 data sets commonly
used in benchmarking classifiers publicly available from the UCI repository
(Newman et al., 1998). The datasets have been processed by removing the
individuals with missing values and by discretising all continuous features
using the k-means algorithm implemented in the Elvira System (The Elvira
Consortium, 2002). A description of these dataset can be seen in Table 2.

6.3.1 Results

The results are listed in Tables 3 and 4. As in the initial experiment of Sec-
tion 6.2 we have listed the mean classification rate (CR) from a 5-fold cross-
validation and the mean size (S) of the models induced. As before, sizes refer
to number of free parameters for the BN based classifiers as well as for the
PDG based classifier, while for CT models the size refer to the number of leaf
nodes in the tree. Each row corresponds to a specific model, PDG1 refers to
the model learnt from first inducing an equivalent TAN by Algorithm 1 and
then merging nodes as described in Section 5.1.1, while PDG2 refers to the

1 Included in the UCI repository under the StatLog project.
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PDG classification model learnt directly from data by Algorithm 2.

In order to determine whether or not there are significant differences in terms
of classification accuracy among the tested classifiers, we have carried out a
Friedman rank sum test (Demšar, 2006) using the classification rates displayed
in Tables 3 and 4. According to the result of the test, there are no significant
differences among the tested classifiers for the considered databases (p-value
of 0.4656).

Regarding the convenience of transforming a BN into a PDG, we can say that a
statistical comparison between methods TAN and PDG1 shows no significant
differences between both of them (p-value of 0.9888 in a two-sided t-test).
However, we find a slight edge in favour of PDG1, since out of the 23 used
databases, PDG1 provides better accuracy than TAN in 11 databases, for only
9 with better performance of the TAN, besides 3 draws.

The same can be concluded if we examine PDG1 versus NB, when the first
one reaches higher accuracy in 14 databases while NB is more successful in
9. Also, the comparison between NB and PDG2 is favourable to PDG2 in 12
cases for only 10 to NB.

Therefore, the experimental results show a competitive behaviour of the PDG
classifiers in relation to the other tested models. Moreover, there is also a slight
edge in favour of the PDG classifiers compared to their more close competitors,
namely the NB and the TAN.

With respect to the comparison with tree-structured classifiers, PDGs have
the added value that they are not just a blind model for classification, but
actually a representation of the joint distribution of the variables contained
in the model. Therefore, it can be efficiently used for other purposes as, for
instance, probabilistic reasoning.

7 Conclusion

In this paper we have introduced a new model for supervised classification
based on probabilistic decision graphs. The resulting classifiers are closely
related to the so-called Bayesian network classifiers. Moreover, we have shown
that any BN classifier with FAN structure has an equivalent PDG classifier
with the same number of free parameters.

The experimental analysis carried out supports the hypothesis that the pro-
posed models are competitive with the state-of-the-art BN classifiers and with
classification trees.
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australian car chess crx ecoli

CR S CR S CR S CR S CR S

DIR 0.828 226.4 0.746 579.2 0.929 78.8 0.818 216.0 0.472 193.6

ID3 0.787 592.8 0.750 964.8 0.939 88.4 0.761 590.4 0.537 2260.8

C4.5 0.778 563.2 0.752 966.4 0.929 95.6 0.760 582.8 0.520 2139.2

TAN 0.859 347.8 0.748 183.8 0.768 147.0 0.839 429.8 0.520 999.0

NB 0.846 81.0 0.727 63.0 0.593 75.0 0.848 111.0 0.564 231.0

kdB 0.842 27099.0 0.774 3023.0 0.840 1291.8 0.826 141063.0 0.523 64999.0

PDG1 0.835 289.8 0.745 150.8 0.799 125.4 0.844 378.0 0.550 882.2

PDG2 0.845 163.0 0.750 117.6 0.686 228.6 0.832 191.2 0.541 129.4

glass heart image iris monks-1

CR S CR S CR S CR S CR S

DIR 0.401 342.0 0.752 148.0 0.855 757.4 0.880 29.4 0.611 49.6

ID3 0.463 1282.8 0.741 238.0 0.900 5702.2 0.867 103.8 0.611 49.6

C4.5 0.382 1201.2 0.741 212.0 0.881 5674.2 0.867 103.8 0.611 49.6

TAN 0.467 989.0 0.793 222.2 0.852 2414.0 0.920 194.0 0.724 59.0

NB 0.356 221.0 0.837 71.0 0.713 510.0 0.927 50.0 0.586 23.0

kdB 0.284 78749.0 0.778 19095.0 0.858 249374.0 0.900 1874.0 0.593 611.0

PDG1 0.472 893.8 0.785 196.2 0.852 2108.4 0.927 192.4 0.724 59.0

PDG2 0.260 101.0 0.804 115.8 0.741 895.6 0.927 46.8 0.824 34.2

monks-2 monks-3 mushroom new-thyroid nursery

CR S CR S CR S CR S CR S

DIR 0.777 515.2 1.000 25.6 0.989 30.8 0.791 36.6 0.953 849.0

ID3 0.757 536.4 1.000 25.6 0.991 35.2 0.837 147.0 0.976 3980.0

C4.5 0.777 514.8 1.000 26.4 0.990 31.6 0.828 144.6 0.975 3972.0

TAN 0.632 48.6 0.979 59.0 0.977 711.0 0.814 254.0 0.931 314.0

NB 0.597 23.0 0.940 23.0 0.946 153.0 0.926 62.0 0.903 99.0

kdB 0.706 539.0 0.972 596.6 0.990 108218.2 0.809 9374.0 0.970 7949.0

PDG1 0.635 39.4 1.000 57.2 0.988 683.2 0.800 234.8 0.933 238.2

PDG2 0.662 48.8 0.963 35.8 0.955 210.8 0.828 59.6 0.928 370.4

pima postop soybean-large vehicle voting-records

CR S CR S CR S CR S CR S

DIR 0.702 659.6 0.735 3.0 0.859 630.0 0.683 746.4 0.945 51.6

ID3 0.642 1142.8 0.587 178.2 0.826 2109.0 0.645 2416.8 0.943 78.0

C4.5 0.620 1131.6 0.620 165.0 0.859 1668.0 0.654 2570.4 0.945 82.8

TAN 0.763 289.0 0.713 116.0 0.877 2789.0 0.717 1379.0 0.945 185.0

NB 0.770 65.0 0.701 47.0 0.877 944.0 0.609 291.0 0.901 65.0

kdB 0.723 21249.0 0.646 1986.2 0.849 137663.0 0.681 142499.0 0.956 4049.0

PDG1 0.763 255.4 0.678 111.8 0.882 2732.6 0.695 1268.6 0.931 160.2

PDG2 0.744 149.8 0.700 42.8 0.785 685.0 0.663 618.2 0.917 115.8

Table 3
Results of learning models from 20 of the datasets listed in Table 2 (see Table 4 for
the remaining 3 datasets). For each dataset the mean classification rate from 5-fold
cross validation (CR) is listed along with the mean size (S) of the models induced
over the 5 folds.
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waveform wine sat

CR S CR S CR S

DIR 0.741 1375.8 0.662 91.8 0.835 3481.2

ID3 0.696 6379.8 0.774 123.0 0.807 12169.2

C4.5 0.690 6408.6 0.701 120.6 0.791 13705.2

TAN 0.813 1214.0 0.904 734.0 0.855 4229.0

NB 0.804 254.0 0.955 158.0 0.801 869.0

kdB 0.739 129374.0 0.673 69374.0 0.876 483749.0

PDG1 0.819 883.6 0.888 734.0 0.854 2891.4

PDG2 0.826 1154.8 0.933 157.2 0.850 3388.2

Table 4
Results of learning models from the 3 last datasets listed in Table 2. For each dataset
the mean classification rate from 5-fold cross validation (CR) is listed along with
the mean size (S) of the models induced over the 5 folds.

As future work, we plan to study the problem of selecting features. All the
models considered in this work include all the available features, but the se-
lection of an appropriate feature set can significantly improve the accuracy of
the final models.
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