
Learning Probabilistic Decision Graphs

Manfred Jaegera Jens D. Nielsena Tomi Silanderb

aInstitut for Datalogi
Aalborg Universitet
Fredrik Bajers Vej 7,

9220 Aalborg Ø, Denmark
bComplex Systems Computation Group

Helsinki Institute for Information Technology
P.O.Box 9800,

FIN-02015 HUT, Finland

Abstract

Probabilistic decision graphs (PDGs) are a representationlanguage for probability distribu-
tions based on binary decision diagrams. PDGs can encode (context-specific) independence
relations that cannot be captured in a Bayesian network structure, and can sometimes pro-
vide computationally more efficient representations than Bayesian networks. In this paper
we present an algorithm for learning PDGs from data. First experiments show that the al-
gorithm is capable of learning optimal PDG representationsin some cases, and that the
computational efficiency of PDG models learned from real-life data is very close to the
computational efficiency of Bayesian network models.

Key words: Probabilistic models, Learning

1 Introduction

Probabilistic decision graphs (PDGs) [1,2] are a graphicalrepresentation language
for probability distributions that is based on the representation paradigm of ordered
binary decision diagrams [3]. PDGs were originally conceived for applications in
automated verification of probabilistic systems [1]. An initial study of their poten-
tial strengths as a representation language also for AI applications was conducted
in [2]. The main result of that study was that from a computational complexity

Email addresses:jaeger@cs.aau.dk (Manfred Jaeger),dalgaard@cs.aau.dk
(Jens D. Nielsen),tsilander@hiit.fi (Tomi Silander).

Preprint submitted to Elsevier Science 30 August 2005



point of view, PDGs are always as efficient for probabilisticinference as Bayesian
networks, and for some types of probability distributions they are more efficient.

These theoretical results leave the question open, how PDG representations of a
given probabilistic domain can be found in practice; in particular, whether PDGs
can be learned automatically from data. This question is taken up in the present
paper. We describe two approaches for learning PDGs from data. The first approach
is a score-based learning procedure that constructs a PDG bya (partly randomized)
search in the space of PDG structures. The second approach isa hybrid approach,
in which we first learn a Bayesian network, compute its junction tree, then compile
the junction tree into a PDG, and finally apply learning techniques to optimize the
constructed PDG.

For both approaches we compare the PDG models with Bayesian networks learned
from the same datasets. The basis for the comparison is the efficiency/accuracy
trade-off of probabilistic inference in the learned models.

A comparison of learned probabilistic models in different representation frame-
works raises some methodological questions. Often score functions like BIC or
MDL score are used as quality measures for learned models [4]. However, neither
does it seem safe to use such functions as a basis for comparison across different
representation languages, nor would we want to commit to anyparticular score
function. For this reason, we base our comparison on Size-Likelihood curves that
represent the available range of possible efficiency/accuracy trade-offs in the mod-
els from the different languages.

In the following section we briefly introduce the language ofPDGs, and review
some of their essential properties. Section 3 describes ourmethodological approach
of SL-curves, and its relation to ROC analysis for classifierperformance. Section 4
describes our pure learning algorithm for PDGs, and experimental results compar-
ing the learned models with learned Bayesian network models. Section 5 describes
our hybrid approach for PDG learning, and presents experimental results.

2 Probabilistic Decision Graphs

In this section we briefly review by an example the basic definitions and properties
of PDGs. Formal definitions can be found in [2,5].

Like a Bayesian network, a PDG is a graphical representationof a joint distribution
for a set of discrete random variables. Figure 1 shows on the right an example PDG
defining a distribution for binary random variablesX = X1, . . . , X6. The graphical
structure of the PDG is defined in two stages: first, one definesa forest (a set of
trees) over a set of nodes labeled with the given random variables. This forest is

2



ν1

(.3,.7)

ν2

(.8,.2)
ν3

(.9,.1)
ν4

(.5,.5)
ν5

(.4,.6)

ν6

(.1,.9)
ν7

(.2,.8)
ν8

(.5,.5)

ν9

(.1,.9)

ν10

(.4,.6)
ν11

(.8,.2)

V1

V2 V3

V4

V5

V6

X1

X2 X3

X4

X5

X6

Variable-forest PDG

Fig. 1. Probabilistic Decision Graph with underlying forest and nodes reached by
(1, 0, 1, 1, 0, 0)

shown in the left part of Figure 1. Then, each nodeXi in the forest is expanded into
a setVi of nodes, and a nodeν ∈ Vi is connected as follows: for each successorXj

of Xi in the variable tree containingXi, and each possible value ofXi, there exists
exactly one outgoing edge ofν leading to a nodeν ′ ∈ Vj. We denote bysucc(Xi)
the set of variables that are (direct) successors ofXi, and bydesc(Xi) the set of
descendants ofXi. The resulting structure is a rooted directed acyclic graph(rdag)
for every tree in the original variable-forest. In our example all variables are{0, 1}-
valued, so that each nodeν contains two outgoing edges for each successor variable
in the variable-forest structure. Edges corresponding to value 0 here are indicated
by dotted lines, edges corresponding to value 1 by solid lines. Finally, a PDG is
obtained by annotating each nodeν ∈ Vi with a probability distribution over the
possible values ofXi.

Each joint instantiation of the variables determines a sub-graph in the PDG that is a
forest of the same structure as the underlying variable-forest. In figure 1 the nodes
of the forest corresponding to the instantiationX1 = 1, X2 = 0, X3 = 1, X4 =
1, X5 = 0, X6 = 0 are shaded. We say that these nodes arereachedby the given
instantiation. The PDG now defines the probability of the instantiation as the prod-
uct of all the probability assignments to the values of the instantiation according to
the distributions at the nodes reached by the instantiation. In our example:

P ((X1, . . . , X6) = (1, 0, 1, 1, 0, 0)) = .7 · .8 · .6 · .9 · .1 · .8 = 0.024192.

The structure of a PDG encodes certain (conditional) independence relations: first,
the joint distribution of the variables contained in one tree of the underlying variable-
forest is independent from the joint distribution of the variables in another tree. The
structure of a single rdag encodes conditional independence relations among the
variables contained in the tree for this rdag. These independence relations are not
characterized as for Bayesian networks in terms of subsets of variables, but in terms
of partitionsof the state space: each node setVi defines a partition of the state space
(the set of all complete instantiations) into the sets of instantiations that reach the
same node inVi. In our example, the nodesV4 partition the state space into the sets
of instantiations{X3 = 1}, {X1 = 0, X3 = 0} and{X1 = 1, X3 = 0}. Like in this
example, the partition corresponding toVi always is determined by the values of the

3



ancestors ofXi in the variable tree ofXi. The conditional independence relations
encoded by a PDG now are:

P (Xi | X \ {Xi, desc(Xi)}) = P (Xi | Vi) (1)

Such partition-based independence relations can correspond to context-specific in-
dependencies in the sense of [6]. In our example, for instance, the independence
relation (1) applied toXi = X4 essentially means thatX4 is independent ofX1

given thatX3 = 1 (because independent of the value ofX1, instantiations with
X3 = 1 will reach nodeν6 in V4). However, there is no exact match between our
partition-based independence relations and context-specific independencies. Fur-
thermore, it can be shown that the class of independence relations that can be en-
coded with PDGs is incomparable to the class of independencerelations that can be
encoded with Bayesian networks, i.e. each of these two representation languages
can encode independence relations that cannot be encoded bythe other language.
For more detailed information on independence relations encoded by PDGs the
reader is referred to [5].

Based on a PDG representation some key probabilistic inference problems are solv-
able in linear time. This includes the computation of posterior marginal distribu-
tions for all random variables given an instantiation of some of the variables in the
PDG, and the computation of the most probable explanation, i.e. the most probable
full instantiation given a partial instantiation. When using BN representations, the
complexity of these inference tasks is linear in the size of the junction tree con-
structed from the BN (see e.g. [7] for probabilistic inference using junction trees).
Since in this paper we are looking at graphical representations of probability dis-
tributions mostly as computational data structures for inference (as opposed to e.g.
causal models), we shall identify BNs essentially with their junction trees.

It was shown in [2, Theorem 4.1] that there is a linear transformation from junction
trees into equivalent PDGs. On the other hand, there exist distributions for which
a compact PDG representation, but no compact junction tree representation exists.
An example for such a distribution is the joint distributionof n + 1 binary random
variables,n of which are independently and uniformly distributed, and the(n+1)st
represents aparity bit that is deterministically defined by the other variablesas
Xn+1 =

∑n
i=1 Ximod 2. For this distribution PDG representations of sizeO(n) can

be constructed, but all junction tree representations are exponential inn. When the
set of variables is fixed, thus, PDGs are a more efficient representation language
than junction trees. For the parity distribution one can also construct linear size
junction tree representations by introducing suitable additional (hidden) variables.
This is true in general: using suitable augmenting sets of hidden variables, one can
always also define a linear transformation from PDGs to junction trees [2, Theorem
4.3].

In some sense, then, PDGs and junction trees, and hence Bayesian networks, pro-
vide computationally equally efficient representations ofprobability distributions.

4



However, the necessary introduction of hidden variables can be a major obstacle
for obtaining efficient Bayesian network representations when the model is to be
learned from data, since, so far, no reasonably general and effective ways of au-
tomatically learning hidden variables are known. This alsoindicates the challenge
posed by learning PDGs: learning optimal PDGs partially subsumes the problem
of learning hidden variables.

3 Method of Comparison

It is our goal to compare the computational efficiency and accuracy of PDG and
BN representations when models are learned from real data. For this one has to
specify what kind of inference tasks a model is expected to support. Our com-
parison is based on the assumption that the probabilistic model will be needed to
support the exact computation of arbitrary posterior marginals, i.e. we will want to
enter evidenceE1 = e1, . . . , Ek = ek (abbreviatedE = e) for arbitrary subsets
{E1, . . . , Ek} ⊆ {X1, . . . , Xn} of observed variables, and then compute the pos-
terior marginal of an unobserved variableXj. This is the classic inference task for
Bayesian networks. However, there are also more specialized tasks one can use a
Bayesian network for (e.g. classification tasks, where always all but one variable
are observed), or one can perform approximate inference. Such more specialized
tasks would require a different method of comparison from the one we here pursue.

As explained in the previous section, computational efficiency of BNs and PDGs
can be measured by the size of the BN’s junction tree, respectively the size of the
PDG. Ideally, one would for BNs always consider the smallestjunction tree for
any given BN. Since it is computationally infeasible to compute a minimal junction
tree, we base our comparisons on the size of the junction trees generated by the
B-course system [8], which implements the junction tree construction described
in [9].

Measuring the accuracy of a model is more difficult. For a single inference, we can
measure the accuracy by the discrepancy between the computed posterior marginal
for Xj givenE = e, and the true posterior marginal in the underlying distribution
P . If P M denotes the distribution defined by modelM , and we follow the common
approach of measuring discrepancy by cross-entropy (CE), then the in-accuracy of
a computed posterior is given byCE(P (Xj | E = e), P M(Xj | E = e)). The
expected discrepancy, given that we observe variablesE, then is

∑

e

P (E = e)CE(P (Xj | E = e), P M(Xj | E = e)). (2)

It follows from well-known properties ofCE thatCE(P, P M) is an upper bound
for (2) (e.g. [10, Theorem 2.5.3]). Thus,CE(P, P M) is a uniform upper bound for
the expected discrepancy between computed and actual posterior marginal, inde-

5



pendent of the set of observed variables. When learning fromreal dataD the true
underlying distributionP is not known. We therefore have to use the empirical dis-
tribution P D defined byD (or, more often, defined by a subset ofD reserved for
valuation purposes) as an approximation forP . One can easily derive that

CE(P D, P M) = −H(P D) − (1/|D|)L(M, D), (3)

whereH(P D) is the entropy ofP D andL(M, D) is the log-likelihood ofD un-
derP M . Seeing thatCE(P D, P M) is an (approximate) upper bound on expected
inference in-accuracy, and the right-hand side of (3) depends onM only through
L(M, D), we obtain thatL(M, D) can be interpreted as a measure for expected
accuracy for inference based on modelM .

Model size and accuracy can be combined into an overall modelscore. Popular
scores like MDL or BIC scores are just weighted combinationsof size and log-
likelihood measures (though the underlying philosophy fortaking size into account
is usually not based on measuring inference efficiency). Forexample, the BIC score
of a modelM relative to dataD is given by(1 − λ)L(M, D) − λ|M |, where
λ = log |D | /(2+ |D |).

For the purpose of our comparative study, there is no good reason to commit to
one particular overall score function. Instead we report our results in the form of
Size-Likelihood (SL) - curvesthat show what range of possible size/likelihood com-
binations are obtainable by models from the different classes. These SL-curves are
similar to ROC-curves [11] that are often used to report the performance of classi-
fiers by plotting the combinations of true positive rates andfalse positive rates that
are obtainable for a classifier through different settings of some tuning parameter.
A ROC curve describes the performance of a classifier withoutcommitting in the
evaluation to any particular gain/loss structure of the classification problem (which
amounts to assigning different weights to true and false positive rates).

Figure 2 shows a somewhat idealized example of an SL-curve. The solid curve
shows the range of size/likelihood values that are obtainable by a class of models
for a fixed data set, which, when the models are generated by a learning procedure,
would be the training data. However, complex models that obtain a high likelihood
score on the training data will tend to overfit the training data, and hence obtain
a lower likelihood score on test data. The dashed curve showsthe possible devel-
opment of the likelihood score of models of increasing size when evaluated over a
separate test set.

In the context of ROC analysis, one obtains that, given a specific cost function,
all classifiers obtaining equal expected lossl lie on on a straight line, and lines
corresponding to different expected losses are parallel. Analogously, we have for
SL analysis that constant BIC or MDL scores correspond to parallel straight lines
in SL-space. Figure 2 indicates three of such equi-score lines for some such a score
that is a weighted combination of size and likelihood. However, BIC/MDL type

6



scores may not always be the most appropriate. Consider, forexample, the situation
where the model is needed for a resource-bounded or time-critical application. In
that case there might be a strict upper bound on the model size, but models within
these bounds would be scored only according to their accuracy (i.e. there is no
bonus for staying below the upper size bound). Models obtaining equal score in
such a setting are characterized by horizontal lines in SL-space that extend to the
maximally allowed size.

The relevant part of SL-space is effectively bounded by two extreme points: the
independence modelmodels all random variables as independent. This model has
minimal size (in basically every conceivable representation framework it will re-
quire for its specificationn parameters, assuming the state space is generated byn
binary variables), and likelihood scoreL(Mindep, D). Models with lower likelihood
score could obviously be constructed, but they would hardlyhave to be considered
in practice. At the other extreme, one can construct a model that represents the em-
pirical distribution of the data precisely. In most cases this cannot be done except
by an explicit enumeration of the probabilities of all2n states, which thus gives
us a modelMemp of size2n (again, this would be the same in all representation
frameworks).

L
o

g
−

L
ik

el
ih

o
o

d

Size

Equi−score lines:

Resource bound score

Equi−score lines:

BIC/MDL type score

n 2n
L(Mindep, D)

L(Memp, D)

Fig. 2. SL-curves

4 Learning PDGs

4.1 The Algorithm

We use ascore-basedapproach to learning PDGs from data using the generic score
function:

Sλ(M) := (1 − λ)L(M, D) − λ|M | (4)
By varyingλ we learn models that yield different points in SL-space. Each setting
of λ corresponds to the slope of the parallel, linear equi-scorelines in SL-space.

7



Procedure Learn(D)
1: F := ∅ % Population of forest structures
2: G := ∅ % Population of PDGs
3: for each testlevel t do:
4: F := F ∪ {LearnForest(D, t)}
5: for λ in λmax, . . . , λmin do:
6: for each F ∈ F do:
7: G := G ∪ {LearnPDG(F, λ)}
8: collect Flow from F

9: F := F\{Flow}
10: output argmaxG∈G(Sλ(G))
11: G := ∅

Procedure LearnForest(D, t)
1: X :=variables from D

2: F := ∅
3: H :=DepGraph(X, t, ∅)
4: for each C ∈ CC(H) do:
5: Xi :=rndVar(C)
6: Vi := {νi}
7: desc(Xi) := C \ {Xi}
8: Ti :=tree w. Vi as root
9: F := F ∪ {Ti}
10: repeat:
11: Grow(Ti, t)
12: LearnPDG(F, λmax)
13: until Ti is full-grown
14: return F

Procedure LearnPDG(F, λ)
1: G :=minimal PDG for F

2: repeat for all trees in G:
3: split nodes top-down
4: merge nodes bottom-up
5: redirect edges bottom-up
6: until Sλ(G) did not change

Procedure Grow(T, t)
1: for each leaf Vi of T do:
2: H :=DepGraph(desc(Xi), t, Vi)
3: for each C ∈ CC(H) do:
4: Xj :=rndVar(C)
5: Vj := {νj}
6: attach νj below Vi

7: desc(Vj) := C \ {Xj}
Table 1
PDG learning procedures

OptimizingSλ for largeλ is easier than optimizing for smallλ, as the strong bias
towards smaller models reduces the effective size of the search-space.

The structure search for PDGs decomposes into two parts: thesearch for a vari-
able forest, and the search for the exact PDG structure basedon that variable for-
est. One may expect that when we obtain a high scoring PDG for someλ value,
then the variable forest underlying this PDG will also support high scoring PDGs
for otherλ-values (this expectation has been corroborated with minorqualifica-
tions in our experiments). Together with the observation above that it is much eas-
ier to learn PDGs when scoring with largeλ-values, this leads us to the follow-
ing population-based approach to learning (cf. procedureLearn of table 1): first
a population of candidate variable forests is created (Learn, lines 3-4). Starting
with the largestλ in a set ofλ-parameters, each variable forest is refined into an
actual PDG using theLearnPDG sub-routine, which optimizesSλ. ForestsF for
which LearnPDG(F, λ) yields a PDG achieving poor score are collected in set
Flow and removed from the population (lines 8-9). The subroutineLearnForest
generates the initial forests by aconstraint-basedapproach that builds a forest en-
coding certain conditional independence relations we find in the data. We now de-
scribe the two key subroutinesLearnPDG andLearnForest in greater detail.
LearnPDG(F, λ) traverses the space of different PDGs over the forestF in the

8



search for an optimal PDG, w.r.t scoreSλ. Three different local operators define the
traversal:split, mergeandredirect.

The split-operator takes a node withn > 1 incoming edges, and replaces it with
n nodes, one for each incoming edge. The outgoing edges of the new nodes are
directed into the original successors of the eliminated node. The selection of nodes
for splitting is randomized, but biased towards those nodesfor which the result of
splitting will lead to several new nodes that are all reachedby a significant num-
ber of data items. Splitting nodes with this property affords the highest potential
increase in likelihood score.

The merge-operator takes two nodes all of whose outgoing edges are directed to
the same successor nodes, and replaces them with a single node, also having these
same successors. From the number of data items reaching the original two nodes,
and their local distributions, one can compute the distribution for the new node and
the exact score gain obtained by the merge operation. A mergetherefore always is
executed iff the score gain is positive.

The redirect-operator is the computationally most expensive operator.It tests for
every nodeν in the PDG, and each of its outgoing edges leading into someν ′ ∈ Vi,
whether the likelihood score can be improved by redirectingthis edge into some
otherν ′′ ∈ Vi. This is tested by computing the likelihood score of the data-items
reachingν under the two marginal distributions defined byν ′ andν ′′ for the vari-
ables contained in the subtree rooted atXi in the variable forest.

TheLearnForest procedure constructs a variable forest incrementally. At each
stage, some of the variables have been built into a variable forest. Each of the re-
maining variables is assigned to the descendant set (desc(Xi)) of some leafXi of
an existing tree - they will be built into a subtree rooted at this leaf. Moreover,
using theLearnPDG procedure, the partially constructed variable forest has al-
ready been expanded into a small PDG. Figure 3(a) shows this situation with three
variablesX2, X4, X6 already built into a tree, all remaining variables assignedto
desc(X4) of leaf X4 of this tree, and a small PDG for the first three variables al-
ready constructed. In theGrow subroutine we first call the subroutineDepGraph.
A call to DepGraph(X, t, Vi) returns a dependency graph over variables inX.
Dependency tests are made conditional on the partition defined byVi. The param-
eter t is a significance level for the independence tests. The use ofdifferent val-
ues fort promotes diversity in the structures inF (Learn, lines 3-4). Figure 3(b)
shows the result of callingDepGraph({X1, X3, X5, X7}, t, V4). Edges between
variables indicate dependence between the variables. Eachconnected component
of the resulting graph becomes a separate sub-tree under theoriginal leaf.CC(H)
denotes the set of connected components in graphH. Thegrow subroutine fin-
ishes by randomly selecting from each connected component anode as the root for
these new subtrees (Grow, line 4), and assigning the remaining variables from the
connected component to this new leaf, (Grow, lines 5-7, figure 3(c)). One iteration

9



V6

V2 V4

X1 X7 X3 X5

(a)

V6

V2 V4

X1 X7 X3 X5

(b)

V6

V2 V4

V1 V3

X5 X7

(c)

V6

V2 V4

V1 V3

X5 X7

(d)

Fig. 3. Snapshots of the procedure for growing PDGs

of theLearnForest procedure then is completed by callingLearnPDG with a
large parameterλmax to refine the expanded forest into a small PDG, figure 3(d).
LearnForest terminates when all leaves of all trees have empty successorsets.
We then say they are full-grown.

We have implemented our PDG learning procedure in Java. The WEKA package
(http://www.cs.waikato.ac.nz/∼ml/weka/) was used for basic data-handling rou-
tines.

As a first test of our learning algorithm we have applied it to adataset sampled
from theparity distribution described in section 2 withn = 7. The algorithm was
run with a set of eight differentλ-values. Figure 4(a)-(c) shows the PDGs learned
for three decreasingλ-values. For the middleλ-value the learned PDG (figure 4(b))
is almost the optimal PDG for the underlying distribution. An optimal PDG would
be obtained by merging the nodes 8 and 9. By avoiding this merge the algorithm
here slightly overfits the data. For the smallestλ value (figure 4(c)) the overfit-
ting is much stronger. The ability to learn the structure forthe parity distribution
demonstrates the potential of the split, merge and redirectoperations for an effec-
tive PDG-structure search. The construction of the underlying variable forest here
is not such a difficult problem, as any forest consisting of a single, linear tree can
be used in an optimal PDG for theparity distribution.

4.2 Learning results: PDG vs. Bayesian networks

We applied our learning algorithm to several real-world datasets, and compared
the resulting PDGs with the junction trees constructed fromBayesian networks
learned from the same data. We evaluate the results using SL-curves, as described
in Section 3. All datasets were split into a training set (2/3of the data) and a test set
(1/3 of the data). We consider SL-curves both for likelihoodscores obtained over
the training data and over the test data.

Instead of using real-world data, one might also consider using synthetic data sam-

10



bit1

parity

bit7

bit2

bit5

bit6

bit4

bit3

0

1

2

3

4

5

6

7

(a)

parity

bit2

bit1

bit7

bit4

bit3

bit6

bit5

0

12

34

56

978

1110

1213

1415

(b)

parity

bit2

bit1

bit7

bit4

bit3

bit6

bit5

0

1 2

43

7 56

1113 89 1012

15 14161917 18

2120 24 2322

25 26

(c)

Fig. 4. Learned PDGs from parity data

pled from some distributionP . This approach avoids the difficulty of having to
approximate the true distributionP with an empirical distributionP D, and the ac-
curacy of a modelM can be evaluated directly viaCE(P M , P ). However, this
approach is problematic in our context, where we aim to compare different repre-
sentation frameworks: the representation used for the generating distributionP can
easily bias the results of the comparison in favor of that representation framework
which is more closely related to the generating model. If, for example, we generate
data with a Bayesian network, then the data can be expected tocontain indepen-
dence structures that are more easily expressible with Bayesian networks than with
PDGs. The converse holds if we sample data from a PDG.

By optimizing (4) we attempt to learn models that yield optimal size/likelihood
trade-offs, i.e. models that are not dominated in SL-space by any other models of
the same representation language (one model dominates another in SL-space, if
its SL-coordinates are to the left and above the other model’s coordinates). When
we compare the achieved SL-values for different types of models, then two major
factors will influence our results: the first factor is the existence of small, accu-
rate models for the given real-world distributions in the respective representation
frameworks; the second factor is our ability to find the best possible models with
our learning methods. Ideally, one would investigate thesetwo different factors
separately. On the one hand, one would determine the SL-curves defined by the op-
timal models available in different representations. On the other hand, one would
have to investigate how close to optimal the models are that we obtain from our
learning methods. In our experiments, we cannot separate these two issues. From
a practical point of view, however, one can argue that the mere existence of effi-

11



Data #variables size Description Source

Adult 15 45.222 Census data. UCI

Letter 17 20000 Recognition of handwritten letters. UCI

Hall of fame 17 1320 Major League Baseball hall of fame data. StatLib

Yeast 9 1446 Prediction of Cellular Localization Sites of Proteins. UCI

Supreme 8 4052 Prediction of action taken based on supreme court data from legal
cases.

StatLib

Table 2
Datasets used. Sources are the UCI-repository (http://kdd.ics.uci.edu/) and the StatLib site
(http://lib.stat.cmu.edu/)

cient models in a given representation language is of littlevalue if we are unable
to learn these models from data. The ’practical efficiency’ of a representation lan-
guage, then, would be measured in the size and accuracy of models we are actually
able to learn from data – which is what we do in our experiments.

For Bayesian network learning we use the B-course algorithm[8]. This is a score-
based learning algorithm that performs structure search bylocal arc insertion, dele-
tion and reversal operations. We use it with the generic score function (4) and vari-
ousλ-values. The search in B-course continues to explore for better models until a
timeout, always memorizing the best model found so far. In our experiments we set
the timeout to 1 hour for everyλ value. Bayesian networks were learned for 6-8 dif-
ferentλ-values, giving a total runtime for B-course of approximately 6-8 hours per
dataset. The search in our PDG learner, on the other hand, terminates when no score
improvement has been found within a certain number of iterations. The total run-
time of the PDG learner proved to be highly dependent on the size of the datasets,
because the local structure changing operations require quite frequent parameter
re-estimations, and hence expensive data-reads. To learn models for all the given
λ-values our algorithm needed in between 15 minutes for the smallest datasets,
and 12 hours for the Adult dataset. To reduce overfitting, both learning procedures
apply parameter smoothing methods to the model learned fromoptimization ofSλ.

The data used for the experiments are displayed in table 2. The preprocessing for
all datasets consisted of removing cases with missing values and discretization of
continuous variables into uniform intervals. Figure 5 shows the SL-curves obtained
by the BN and PDG learners on our five datasets. The figure contains both the SL-
curves obtained on the training data (lower row) and those for the test data (upper
row). Recall that for Bayesian networks, the reported size is that of the generated
junction tree. The likelihood scores are per-instance, i.e. equal toL(M, D)/ |D |.

As expected, the curves for the training data are monotonically increasing. On most
datasets we obtain with PDGs a somewhat higher likelihood score with models of
the same or smaller size than with BNs. However, when we turn to the SL-curves
for the test data we find that PDG models suffer to a greater extent from overfitting,
so that the SL-curves here tend to decrease after attaining amaximum. This effect
can also be observed on some datasets for the BN models (visible only for the

12



-10

-9.5

-9

-8.5

-8

-7.5

 0  500  1000  1500  2000  2500  3000  3500

 Yeast (JT)

 Yeast (PDG)

 Supreme (JT)

 Supreme (PDG)

-10

-9.5

-9

-8.5

-8

-7.5

-7

 0  500  1000  1500  2000  2500  3000  3500

 Yeast (JT)

 Yeast (PDG)

 Supreme (JT)

 Supreme (PDG)

(a)

-18.5

-18

-17.5

-17

-16.5

-16

-15.5

-15

-14.5

-14

-13.5

 0  5000  10000  15000  20000  25000  30000  35000

 Adult (JT)

 Adult (PDG)

 Hall of Fame (JT)

 Hall of Fame (PDG)

-19

-18

-17

-16

-15

-14

-13

-12

-11

 0  5000  10000  15000  20000  25000  30000  35000

 Adult (JT)

 Adult (PDG)

 Hall of Fame (JT)

 Hall of Fame (PDG)

(b)

-54

-52

-50

-48

-46

-44

-42

-40

-38

-36

 0  50000  100000  150000  200000  250000  300000  350000  400000

 Letter (JT)

 Letter (PDG)

-55

-50

-45

-40

-35

-30

 0  50000  100000  150000  200000  250000  300000  350000  400000

 Letter (JT)

 Letter (PDG)

(c)

Fig. 5. SL-curves for PDGs and BNs learned from the datasets in table 2. Upper plots shows
performance on test data and lower plots shows performance on training data. Plots are for
the following data: yeast and supreme (a), adult and hall of fame (b) and letter (c).

Supreme data), but here is not nearly as strong. The reason why this overfitting
effect is stronger for PDGs appears to be the following: whenwe have learned a
PDG of size 1000, for example, then we will fit in the parameterlearning phase 500
free parameters (assuming all variables are binary). A Junction tree of size 1000,
on the other hand, would have been induced by a Bayesian network that contains
only a much smaller number of free parameters. Since the parameter learning is
done on the Bayesian network, not the junction tree, we have far fewer parameters
to fit, and hence are less liable to overfit the training data.

We obtain the following general picture: on all datasets theSL-curves of PDGs and
BNs show a surprisingly similar behavior. One might have expected that for some
datasets one representation framework would clearly outperform the other, because
of independence structures in the data that are more easily expressed in one of
the two frameworks. However, no really big discrepancies inthe results have been
found 1 . The results for PDGs tend to be better than the results for junction trees
when the evaluation is over the training data. PDGs here allow to fit the empirical
distribution closely using smaller models than the junction trees generated from
BNs. However, the models for which this difference becomes pronounced overfit

1 To obtain a better intuition for the magnitude in likelihooddifferences, consider the fol-
lowing: suppose that the test data defines a distribution on binary variablesX1, . . . ,Xn+1

such that variableXn+1 is deterministically determined by the values ofX1, . . . ,Xn. Con-
sider two modelsM1,M2 for the data that agree with respect to the marginal distribution
of X1, . . . ,Xn, but M1 correctly identifies the functional dependence ofXn+1, whereas
M2 modelsXn+1 as independent from the other variables, with probability 1/2 for both its
values. Then the difference in per-instance log-likelihood score for these two models will
be equal to 1.

13



X1, X2, X3

X1, X4 X3, X5, X6

(a)

V1

V2

V3

V4 V5

V6

(b)

V1

V2

V3

V4 V5

V6

(c)

Fig. 6. The first steps in thehybrid-procedure. (a) shows a junction tree and (b) shows the
PDG that result from compilation of the junction tree. Nodeswith zero data-support are
shaded light-gray. By garbage-collection we get the PDG shown in (c) - garbage nodes
shaded dark-gray.

the data, so that the PDGs advantage is canceled, or even reversed, when evaluated
over the test data.

5 Hybrid learning: combining BN and PDG-learning

As previously stated, there exists a linear transformationfrom junction trees into
equivalent PDGs [5]. This naturally suggests another way oflearning PDGs: one
can first learn a Bayesian network from data, and then compileits junction tree into
a PDG. The PDG so constructed can then be used as a starting point in our PDG
learning procedure. A potential advantage of this approachis that the Bayesian
network learning methods might be more successful in identifying independence
relations among the variables, which would then be reflectedin the tree structure
of the compiled PDG. Thus, we would mainly hope to optimize the learned PDG
forest structure by using this approach.

Figure 6 (a) shows a simple junction tree , and (b) the result of compiling it into a
PDG using the method described in [5]. The compiled PDG is composed of several
complete binary trees (in the case of binary variables). When the junction tree was
learned from data, then it will typically contain in its clique potential tables many
zero entries, corresponding to combinations of values thatwere not encountered in
the data. In the compiled PDG these configurations with zero data support corre-
spond to PDG nodes that are not reached by any data items. In Figure 6 (b) these
zero-nodes are indicated by a grey shading. A first way to compress the size of the
PDG representation without any loss of likelihood score on the underlying training
data, is to eliminate the zero nodes.

14



We perform this elimination by collapsing all zero nodes in anode setVi into a
single “garbage-node”. Such garbage nodes are then connected to form for each
branch of the variable tree a garbage-path, and are initialised with parameters of
uniform distribution. Figure 6 (c) shows the result of this operation with the new
garbage nodes indicated by a dark shading.

The example illustrated in figure 6 does not show any gain (size reduction) from this
garbage-collection. However, in our experiments we typically gain a considerable
size reduction in this way. Starting with the PDG obtained from compilation and
garbage collection, we then perform a series ofmerge-operations to further reduce
the size. The rationale behind focusing on merge operationsis that besides the zero
nodes, the compiled PDG may also contain numerous equivalent non-zero nodes
that may be merged without any likelihood loss. Specifically, context-specific in-
dependencies [6] in the underlying distribution would leadto the existence of such
equivalent, mergeable nodes. For the merge operation we usethe merge subroutine
from our general learning procedure. This merge operation is parameterized with
theλ parameter of our generic score function, and, depending on theλ value, will
also merge nodes that are only approximately equivalent. The higher theλ-value,
the more merge operations will be performed, leading to smaller and less accurate
models. Apart frommergeoperations one might also transform the initial PDG us-
ing thesplit andredirectoperations ofLearnPDG. However, since the initial PDG
obtained from a junction tree tends to be rather large already, we currently only use
the size reducingmergeoperation.

Figure 7 contains plots showing the performance of ourhybridprocedure for learn-
ing PDGs. The procedure was invoked on all the junction treesobtained from the
BN learning as described in section 4.2. The solid lines depict the SL-curves of the
initial junction trees; they are exactly the same as the plots for junction trees pre-
sented in figure 5 with the exception that in figure 7 we use a logarithmic scale for
size. Each execution of the hybrid procedure gives us a sequence of PDGs obtained
by iterated merge operations with increasingλ-parameter. The dotted lines in the
plots are the SL-curves obtained for the models in one execution of the hybrid pro-
cedure. The temporal direction of the dotted lines are from right to left, i.e. from
large towards smaller models. The first (rightmost) point onany dotted line repre-
sents the PDG that is obtained after compilation and elimination of zero nodes. The
rest of the points each corresponds to additionalmerge-operations with increased
λ-value.

Looking at the bottom plots of figure 7, depicting performance on training data,
the first observation that can be made is that PDGs generally represent the empir-
ical distribution with the same or better accuracy as the BN-model, while using
fewer parameters. Secondly, we observe that the junction tree compilation does not
always produce a PDG with exactly the same likelihood as the original BN. The
reason for this is the same as we already encountered in section 4.2: the likelihood
scores reported for the junction trees are those that are obtained by the underly-

15



-8

-7.95

-7.9

-7.85

-7.8

-7.75

-7.7

-7.65

-7.6

 32  64  128  256  512  1024

-7.7

-7.6

-7.5

-7.4

-7.3

-7.2

-7.1

 32  64  128  256  512  1024

(a)

-52

-50

-48

-46

-44

-42

-40

-38

-36

 256  512  1024  2048  4096  8192  16384  32768  65536  131072  262144  524288

-52

-50

-48

-46

-44

-42

-40

-38

-36

-34

 256  512  1024  2048  4096  8192  16384  32768  65536  131072  262144  524288

(b)

-18

-17.5

-17

-16.5

-16

-15.5

-15

-14.5

-14

-13.5

 128  256  512  1024  2048  4096  8192  16384  32768  65536  131072

-15.5

-15

-14.5

-14

-13.5

-13

-12.5

-12

-11.5

 128  256  512  1024  2048  4096  8192  16384  32768  65536  131072

(c)

Fig. 7. Performance plots of the hybrid-procedure. Solid lines depicts SL-curves of junction
trees, and dotted lines depicts SL-curves obtained by usingthe junction trees as starting
point for the hybrid procedure. Plots are for yeast (a), letter (b) and hall of fame (c) datasets.
Performance on test data are displayed in the upper plots andon training data below. Please
note that the X-axis (Size) is logarithmic.

ing Bayesian network model, because parameters are fitted onthat model. The
Bayesian network model usually dictates a stricter independence model than the
generated junction tree (which manifests itself in a smaller number of free param-
eters). The independence model represented by the PDG obtained from compiling
the junction tree (before eliminating zero nodes) is the same as the independence
model of the junction tree, and so it, too, imposes fewer independence constraints
than the original Bayesian network. When we relearn parameters for the PDG-
structure retrieved from the junction tree, we potentiallyexploit some additional
degrees of freedom offered by the PDG-structure. This effect is clearly visible for
the hall of fame data (c), and can also be noticed to a lesser degree for the other
datasets.

Turning to the upper plots of figure 7, depicting the performance on test data, we see
that for the yeast and letter data (a,b) the behavior is similar for the test data as for
the training data: the initial compilation and the first one or two steps of the merge
procedure produce models that have nearly the same likelihood score as the initial
junction tree, but with a size reduced by about a factor 2. Theresults for the two
remaining datasets from table 2 (Adult and Supreme) are similar to the results for
yeast and letter, and are here omitted. For the Hall of fame dataset (c) the results
look somewhat different. Here we clearly over-fit the training data also with our
hybrid procedure, just like the overfitting problem was already most pronounced
for this dataset in Figure 5 (not surprisingly: this datasetcontains a relatively small
number of cases, but has a relatively large state space with 17 variables). The gain in
likelihood score on the training data, thus corresponds to aloss in likelihood score

16



on the test data. The SL-curves for the Hall of fame test data show a somewhat
strange, irregular behavior. We do not have a completely satisfactory explanation
for the sudden drop in likelihood score, followed by a partial recovery, that we
here observe as model size decreases. Most likely, this is due to the fact that our
parameter smoothing routine may sometimes on larger modelsbe a more effective
instrument against overfitting than on somewhat smaller models.

Comparing the results of the hybrid-procedure to the results of the direct PDG
learning algorithm reported in section 4.2 figure 5, we obtain more or less equiv-
alent results in terms of Size/Likelihood trade-off on training data. For both Yeast
and Hall of fame (Fig. 7(a)-(c)) we get equivalent size of themodels with high-
est likelihood score for the training data, but for smaller model sizes the hybrid-
procedure outperforms direct learning. For Letter-data (Fig. 7(b)) we do not obtain
quite as good likelihood scores with the larger models as with direct learning, but
again for smaller models hybrid learning performs better. For all the datasets, we
improve performance on test sets - even for the dataset on which we experience
over-fitting of training data (Hall of Fame, Fig. 7(c)).

The main lesson to take from these first experiments with the hybrid-procedure
is that PDGs can offer a compact representation by compilingjunction trees into
PDGs. The compilation only ensures that the size of the PDG iswithin a factor 2 of
the original junction tree [5, Theorem 5.1]. However, theseexperiments show that
in practice we can reduce the size of the PDGs considerably bysimple procedures,
with limited or no loss in accuracy. The factor by which we canperform lossless
compression of the PDG compared to the junction tree in practice seems closer to
1/2 than 2.

6 Related Work

A related approach to making representations of probability distributions more
compact and thereby speeding up probabilistic inference isthe work by Darwiche
on arithmetic circuit representations [12,13]. The key difference between arithmetic
circuit representations and PDGs is that the former are not adedicated representa-
tion framework for probability distributions, i.e. the subclass of circuits that repre-
sent distributions is not characterized by a simple syntactic criterion. As a conse-
quence, it would appear very difficult to learn arithmetic circuits directly from data,
as the search space of possible models is not well circumscribed. Consequently,
Darwiche envisages arithmetic circuits mostly as a secondary representation that
has to be obtained by compilation from some primary representation (e.g. a poly-
nomial or a junction tree representation). Empirical results in [13] show that com-
piled circuit representations can be much smaller than junction tree representations.
The compilation technique of Darwiche is related to the firstphase of our hybrid
learning procedure. Since arithmetic circuits have fewer structural constraints than

17



PDGs, one would, in fact, expect that by pure compilation smaller arithmetic cir-
cuit than PDG representations can be obtained. However, PDGs have the advantage
that compilation can be combined with parameter re-estimation from the data, so
that we can always fit optimal parameters to the structure of the compiled model.

Another recent framework related to PDGs and arithmetic circuits are thecase-
factor diagramsof Collins et al. [14]. Like PDGs, case-factor diagrams are inspired
by binary decision diagrams, and support linear time probabilistic inference. The
learnability of case-factor diagrams has not been investigated yet.

The most closely related work about learning PDG-related models is work on learn-
ing probability estimation trees (PETs)[15] and decision graphs for CPT represen-
tations in a Bayesian network (CPT-DG)[16,17]. Both of these frameworks serve
only for the representation of a distribution of a single variable, conditional on val-
ues of other variables. In case of PETs this is the distribution of the class variable
given attribute values; in the case of CPT-DGs this is the distribution of a network
variable conditional on its parents. More fundamental thanthis difference, however,
is the fact that both PETs and CPT-DGs follow themulti-terminal binary decision
diagram (MTBDD)[18] paradigm of function representation: the internal nodes of
the representations only serve to determine the argument for the function; they do
not as in PDGs already contain numerical information from which the function
value (i.e. a probability) is incrementally constructed while descending through the
tree or graph. As a result, such representations always require as many leaves as
there are different function values, whereas in the case of PDGs the number of
function values only induces a lower bound on the number of paths through the
graph.

The structure search for good PETs or CPT-DGs on the one hand,and PDGs on
the other hand, has to focus on somewhat different problems:for the former types
of representations one main question is which variables to include in the graph or
tree, so as to obtain an informative case-distinction for the distribution of the target
variable at the leaves. For PDGs, the set of variables is given, and the labeling
of nodes in the PDG with variables follows much stricter rules than imposed in
a PET or CPT-DG. Nevertheless, [16] use in the structure search for CPT-DGs
split and merge operations that somewhat resemble our splitand merge operations.
However, Chickering et al. [16] apply their split and merge operations only at leaf
nodes. Moreover, their application of split and merge operations is purely random,
and not based on any score improvement heuristics as in our algorithm.

De Campos and Huete [19] describes an algorithm that directly learns a junction
tree, rather than a BN, through independence tests. This work is related to ours
in that it allows to score a candidate model directly in termsof its efficiency for
probabilistic inference. No experimental results are reported in [19].

18



7 Conclusion

We have developed and implemented a method for learning probabilistic decision
graphs from data. The results obtained from applying the method to theparity
dataset show that our structure search procedure can identify optimal or near op-
timal PDG structures in at least some non-trivial problems.Using our method, we
have learned PDG models for a number of real-life datasets, and on the basis of
Size-Likelihood curves compared the learned models with junction tree represen-
tations obtained from Bayesian network learning. The results here indicate a better
ability of the PDGs to fit the training data exactly, which gives a higher likelihood
score on the training data, but leads to overfitting. Combining Bayesian network
learning with the merge-subroutine of PDG learning, we developed a hybrid learn-
ing method that improves both on pure BN learning and pure PDGlearning.

At this point it is still unclear to what extent the results weobtained in PDG learning
were limited by the representation language as such, i.e. the (non-)availability of
small, accurate PDG models, or by our learning method, i.e. the (non-)ability to
find good PDG structures for a given dataset.

Future work should be directed at refining the structure search methods in PDG
learning, the experimental exploration of further datasets in order to identify types
of distributions for which PDG representations are best suited, and at adapting
PDGs for more specialized inference tasks like classification.

References

[1] M. Bozga, O. Maler, On the representation of probabilities over structured domains,
in: Proceedings of CAV-99, no. 1633 in Lecture Notes in Computer Science, 1999.

[2] M. Jaeger, Probabilistic decision graphs: Combining verification and AI techniques
for probabilistic inference, in: Proceedings of the first European Workshop on
Probabilistic Graphical Models (PGM), 2002, pp. 81 – 88.

[3] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE
Transactions on Computers 35 (8) (1986) 677–691.

[4] M. I. Jordan (Ed.), Learning in Graphical Models, MIT Press, 1999.

[5] M. Jaeger, Probabilistic decision graphs - combining verification and AI techniques
for probabilistic inference, Int. J. of Uncertainty, Fuzziness and Knowledge-based
Systems 12 (2004) 19–42.

[6] C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Context-specific independence in
Bayesian networks, in: Proceedings of the Twelfth Annual Conference on Uncertainty
in Artificial Intelligence (UAI–96), 1996, pp. 115–123.

19



[7] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, D. J. Spiegelhalter, Probabilistic Networks
and Expert Systems, Springer, 1999.

[8] P. Myllymaki, T. Silander, H. Tirri, P. Uronen, B-course: A web-based tool for
Bayesian and causal data analysis, International Journal on Artificial Intelligence
Tools 11 (3) (2002) 369–387.

[9] C. Huang, A. Darwiche, Inference in belief networks: A procedural guide,
International Journal of Approximate Reasoning 15 (1996) 225–263.

[10] T. M. Cover, J. Thomas, Elements of information theory,Wiley, 1991.

[11] F. Provost, T. Fawcett, Analysis and visualization of classifier performance:
Comparison under imprecise class and cost distribution, in: Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining (KDD-97), 1997,
pp. 43–48.

[12] A. Darwiche, A differential approach to inference in Bayesian networks, in:
Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI–2000), 2000, pp. 123–132.

[13] A. Darwiche, A logical approach to factoring belief networks, in: Proceedings of the
Eighth International Conference on Principles and Knowledge Representation and
Reasoning (KR-2002), 2002, pp. 409–420.

[14] M. Collins, D. McAllester, F. Pereira, Case-factor diagrams for structured probabilistic
modeling, in: Proceedings of the Twentieth Annual Conference on Uncertainty in
Artificial Intelligence (UAI–2004), 2004, pp. 382–391.

[15] F. Provost, P. Domingos, Tree induction for probability-based ranking, Machine
Learning 52 (2003) 199–215.

[16] D. M. Chickering, D. Heckerman, C. Meek, A Bayesian approach to learning Bayesian
networks with local structure, in: Proceedings of the Thirteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI–97), Morgan Kaufmann Publishers, San
Francisco, CA, 1997, pp. 80–89.

[17] N. Friedman, M. Goldszmidt, Learning bayesian networks with local structure, in:
M. I. Jordan (Ed.), Learning in Graphical Models, MIT Press,1999.

[18] M. Fujita, P. C. McGeer, J.-Y. Yang, Multi-terminal binary decision diagrams: an
efficient data structure for matrix representation, FormalMethods in System Design
10 (1997) 149–169.

[19] L. M. de Campos, J. F. Huete, Algorithms for learning decomposable models and
chordal graphs, in: Proceedings of the Thirteenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI–97), 1997, pp. 46–53.

20


