
Unit 2
Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

2

2.1 Introduction

• Uniprocessors and multiprocessor/multicore use shared memory:

– The compiler and OS avoid the use of same memory addresses

– But, shared variables can be written and read by several processes.

– What happens if 2 processes read and/or write the same variable ‘at the same time’?

• By the abstraction of concurrent programming, we must think that any interleaving
is possible for all non-atomic statements.

• Java and Pascal-FC provide atomic read/write operations in primitive variables
(except double and long).

Busy Wait Synchronization 3

2.1 Introduction

• If 2 processes read a variable at the same time…

both process read same value

• If 2 processes write at the same time (any after the other):

the last written value remains, but we cannot predict it.

• If one process reads and the other writes at the same time (any after the other):

 the read value could be the former or the latter, but we cannot predict it.

Busy Wait Synchronization 4

2.1 Introduction

Busy Wait Synchronization

Interaction

between

processes

Activities between

processes

Communication

Condition

Synchronization

Mutual Exclusion

performed

by

may need

2 kinds Competence

Cooperation

Synchronization

5

2.1 Introduction

• Shared-memory communication:

– Shared variables let processes share information by reading and writing on them

• Shared-memory synchronization:

– Condition Synchronization: depending on the value of one or more variables

– Mutual Exclusion: use of structures or algorithms which provide exclusive access to
critical sections.

Busy Wait Synchronization 6

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

7

2.2 Condition Synchronization

• One process halts waiting for a condition to be met thanks to the action of another
process.

• Let us consider the following precedence diagram of the statements of 2
processes:

Busy Wait Synchronization

aS1 aS2

bS1 bS2

Process a

Process b

8

2.2 Condition Synchronization

• Assume that the last instruction in each block of statements is to print the id of
such block (write from Pascal/FC and System.out.print in Java provide atomic
access to screen).

Busy Wait Synchronization

aS1 aS2

bS1 bS2

Process a

Process b

aS1 aS2 bS1 bS2

aS1 bS1 aS2 bS2

bS1 aS1 aS2 bS2

Some possible outputs:

An impossible output:

bS1 bS2 aS1 aS2

bS1 aS1 aS2 bS2

…think more…

9

2.2 Condition Synchronization

• Shared variable: continue

• The work done by Process b waiting for the
condition to be set, is called busy wait. That
is, waste processor time doing nothing until
the other process sets the condition.

Busy Wait Synchronization

aS1 aS2

bS1 bS2

Process a

Process b

Pascal-FC code

10

2.2 Condition Synchronization

Busy Wait Synchronization

Why isn’t it necessary to add
the volatile modifier to
boolean go?

JAVA code

11

2.2 Condition Synchronization

• Interleaving of instructions to get the output:

Busy Wait Synchronization

aS1 bS1 aS2 bS2

Process A Process B continue

1 write(‘aS1 '); false

2 write(‘bS1 '); false

3 continue := true; true

4 write(‘aS2 '); true

5 while not continue true

6 write(‘bS2 '); true

12

2.2 Condition Synchronization

• Interleaving of instructions to get the output:

Busy Wait Synchronization

bS1 aS1 aS2 bS2

Process A Process B continue

1 write(‘bS1 '); false

2 while not continue false

3 while not continue false

4 while not continue false

5 write(‘aS1 '); false

6 continue:= true; true

7 write(‘aS2 '); true

8 while not continue true

9 write(‘bS2 '); true

13

2.2 Condition Synchronization

• Interleaving of instructions to get the output: complete the table

Busy Wait Synchronization

aS1 aS2 bS1 bS2

Process A Process B continue

1 … false

2 … true

3 … true

4 … true

5 … true

6 … true

procA procB continuar

1 write('PA1 '); false

2 continuar := true; true

3 write('PA2 '); true

4 write('PB1 '); true

5 while not continuar true

6 write('PB2 '); true

14

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

15

2.3 Mutual Exclusion
• When two or more processes need to access a shared variable, object or set of

statements which require exclusive access, processes need to be synchronized in order
to guarantee that only 1 of them gains access (enters the critical section).

• The synchronization by mutual exclusion is the execution of a set of instructions before
entering the critical section (pre-protocol) and another set of instructions immediately
after leaving the critical section (post-protocol).

• The pre-protocol guarantees mutual exclusion in the access.

• The post-protocol communicates to the other processes it is not waiting to enter in the
critical section anymore.

Busy Wait Synchronization

critical section

Ben-Ari et al. Chapter 3. 2006.

16

2.3 Mutual Exclusion

• A correct solution of mutual exclusion fulfills:

– Mutual exclusion is granted.

– Avoids livelock and starvation of processes trying to enter the critical section.

• And, it would be good that:

– No variables used in the critical and non-critical sections are used in the protocols. That
is, variables used in protocols are created for their exclusive use in protocols.

– Pre and pot-protocols should use little memory and CPU clock-time.

Busy Wait Synchronization 17

2.3 Mutual Exclusion

• Solutions using protocols assume that the only atomic instructions available are
read and write on primitive variables.

• In 1965, Dijkstra published a solution for mutual exclusion in the case of 2
processes. In order to explain it, he first presents 4 wrong approaches or attempts
in which the most common errors of concurrent programming appear.

• The correct solution is based on a mathematician called Dekker, so Dijkstra called it
Dekker’s algorithm.

• Dijkstra improved Dekker’s Algorithm for n>1 processes: Dijkstra’s algorithm.

• The Eisenberg-Mcguire’s algorithm is an optimization of Dijkstra’s algorithm.

Busy Wait Synchronization 18

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

19

2.3 Mutual Exclusion
1st attempt (Pascal-FC)

• Based on busy-wait: processes share 1 variable to tell which process may enter in CS

Busy Wait Synchronization

Identify the pre-protocol, the Critical Section
and the post-protocol in both processes

20

2.3 Mutual Exclusion
1st attempt

• Commonly, this approach would work but…

• The 1st attempt is not correct because:

– it is not free of starvation if one process fails.

– Alternation is mandatory: access to CS is granted in turns, so if a process is very slow
(long non-CS) the other cannot enter the CS until the other changes the value of turn.

Busy Wait Synchronization

P1 P2 turn

1 while turn <> 1 do; 1

2 writeln('P1 is in CS'); 1

3 while turn <> 2 do; 1

4 process 1 crashes! 1

Remains forever in

busy-wait

1

21

2.3 Mutual Exclusion
1st attempt (Java)

Busy Wait Synchronization 22

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

23

2.3 Mutual Exclusion
2nd attempt (Pasca-FC)

• In order to solve the problem of having just one variable which leads to mandatory
alternation, each process uses a flag to indicate it is entering in CS, but it will only do
that if the other flag is not set.

Busy Wait Synchronization

But the 2nd attempt is not correct because
- Mutual Exclusion is not guaranteed.

-Moreover, starvation may occur if one process
repeats its loop and sets its flag before the
other process leaves its busy-wait.

Think what interleaving of statements
leads to common access to CS

P2 is in CS
P1 is in CS

24

2.3 Mutual Exclusion
2nd attempt

Busy Wait Synchronization

P1 P2 flag1 flag2

1 while flag2 do false false

2 while flag1 do false false

3 flag1:=true true false

4 flag2:=true; true true

5 writeln('P2 is in CS'); true true

6 writeln('P1 is in CS'); true true

Interleaving which leads to common access to CS:

25

2.3 Mutual Exclusion
2nd attempt

Busy Wait Synchronization

P1 P2 flag1 flag2

1 … flag1:=false; false false

2 P1 halts forever! false false

3 while flag1 do false false

4 flag2:=true; false true

writeln('P2 is in CS'); false true

writeln('P2 is leaving CS'); false true

flag2:=false; false false

writeln('P2 is in non-CS'); false false

while flag1 do false false

flag2:=true; false true

writeln('P2 is in CS');… false true

Keeps entering in CS forever

Starvation does not happen on the fail of one process in its non-CS because its flag would remain false.

26

2.3 Mutual Exclusion
2nd attempt (Java)

Busy Wait Synchronization 27

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

28

2.3 Mutual Exclusion
3rd attempt

• 1st attempt  because of the use of 1 variable, it forces alternation, and one
process starves when the other halts.

• 2nd attempt  mutual exclusion is not granted because one process may check the
status of the other process before it is updated.

• So now, we still use 2 variables but the do not indicate the status of being inside
the CS or not, but the will to enter before trying to enter.

Busy Wait Synchronization 29

2.3 Mutual Exclusion
3rd attempt (Pascal-FC)

Busy Wait Synchronization

Besides global variables,
Pascal-FC allows sharing
information by passing variables
per reference (next slide)

I do not enter in CS if the other is willing
to enter

30

2.3 Mutual Exclusion
3rd attempt (Pascal-FC)

• Same solution but passing per reference a record which holds the 2 variables

Busy Wait Synchronization

The 3rd attempt may fall in a livelock.
Can you guess the interleaving which leads to
that situation?

31

2.3 Mutual Exclusion
3rd attempt

Busy Wait Synchronization

P1 P2 wantsCS1 wantsCS2

1 w.wantsCS1:=true; true false

2 w.wantsCS2:=true; true true

3 while w.wantsCS1 do; true true

4 while w.wantsCS2 do; true true

livelock true true

32

2.3 Mutual Exclusion
3rd attempt (Java)

Busy Wait Synchronization 33

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

34

2.3 Mutual Exclusion
4th attempt

• 1st attempt  because of the use of 1 variable, it forces alternation, and one
process starves when the other halts.

• 2nd attempt  mutual exclusion is not granted because one process may check the
status of the other process before it is updated.

• 3rd attempt  if both processes want to enter (contention for access), none of
them renounces its will. So both will wait forever.

• The fourth attempt resolves contentions by making a process renounce, during a
short period of time, its will to enter if the other process wants to enter.

Busy Wait Synchronization 35

2.3 Mutual Exclusion 4th attempt (Pascal-FC)

Busy Wait Synchronization

Both processes may give way to each
other during a long period. Livelock and starvation
will not last forever, because a process will
eventually gain access to CS.
This solution is correct but lacks efficiency.

36

2.3 Mutual Exclusion
4th attempt (Java)

Busy Wait Synchronization 37

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

38

2.3 Mutual Exclusion
Dekker’s Algorithm

• Dekker decided to join the first, third and fourth attempts:

– each process has a flag to announce its will to enter in CS.

– when there is a contention, a common variable turn decides which must give way to the
other.

• So Dekker’s solution uses 3 shared variables: two boolean flags (one per process)
and an integer for turn.

• It fulfills all requirements to be a correct solution using protocols:

– Mutual exclusion is assured

– Livelock does not happen

– Starvation does not happen

• And it is efficient! (except for the use of busy-wait)

Busy Wait Synchronization 39

2.3 Mutual Exclusion
Dekker’s Algorithm (Pascal-FC)

Busy Wait Synchronization 40

2.3 Mutual Exclusion
Dekker’s Algorithm (Pascal-FC)

Rewrite Dekker’s algorithm using global variables instead of a record passed by reference.

Busy Wait Synchronization 41

2.3 Mutual Exclusion
Dekker’s Algorithm (Java)

Busy Wait Synchronization

Do you think the volatile modifier
Is necessary in variable turn?

42

2.3 Mutual Exclusion

• Other algorithms :

– Peterson’s (1981) developed an easier pre-protocol to grant exclusive access to CS.

– Dijkstra’s (1965) is an extension of Dekker’s algorithm for n processes.

– Eisenber-McGuire’s (1972) improved the efficiency of Dijkstra’s algorithm.

– Lamport’s algorithm, also known as the Bakery algorithm (1974), was developed for n
processes running in distributed systems, where there is only read-access for shared
variables which belong to other processes

• Hardware solutions: there exist processors which provide special atomic
instructions, which grant mutual exclusion avoiding the use of protocols.

• You can choose any of these algorithms or hardware solution as Task 1 (see
proposed tasks in Unit Zero). Use [Palma et al. Chapter 3.] as reference.

Busy Wait Synchronization

Machine instruction from processor IA32

43

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

44

2.3 Mutual Exclusion
Several CSs

• There exist two kinds of atomic execution:

– Fine-grained

• Provided by the programming language to the developer.

• They are compiled to atomic machine instructions executed by the processor.

– Coarse-grained

• Set of instructions executed without interleaving of other processes.

• There exist programming (protocols, semaphores,…) and hardware solutions which
provide tools to make a set of sentences be executed in an atomic manner.

• Given these definition, we can say that the Critical Section instructions together
are a coarse-grained instruction because two processes cannot interleave critical
section statements (they can mix one CS statements with non-CS from other
process).

Busy Wait Synchronization 45

2.3 Mutual Exclusion
Several CSs

• The work done inside a critical section usually performs changes in shared
variables. If this change is done only in one piece of code, then the program only
has 1 CS.

• But the same shared variable may be accessed/changed in several situations
inside the same program:

– Each piece of code which makes access counts as 1 CS.

– Flags and variables used in protocols are not replicated, they are used in access to all
CSs.

• E.g.: increments and decrements of the same variable

Busy Wait Synchronization 46

2.3 Mutual Exclusion
Several CSs

• Variable x is used in 2 critical sections. Protocols may be any which is correct, e.g.
Dekker’s algorithm.

Busy Wait Synchronization

program incdec;

 process type inc(var x:integer);

 begin

 (*preprotocol(x)*)

 x:=x+1;

 (*postprotocol(x)*)

 end;

 process type dec(var x:integer);

 begin

 (*preprotocol(x)*)

 x:=x-1;

 (*postprotocol(x)*)

 end;

var

 x:integer;

 pInc:inc; pDec:dec;

begin

 x:=0;

 cobegin

 pInc(x);

 pDec(x);

 coend;

 writeln(x)

end.

47

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

48

2.4 Busy wait VS. passive wait

• As we saw, busy-wait is the execution of instructions used to make the process
wait for a condition to be fulfilled in order to go on doing actual progress in the
program.

• So the process uses processor time by interleaving statements which “do nothing”.

• Thus, busy-wait is known to be a very inefficient way to make a process wait.

• Problems of busy-wait:
– Processes doing busy-wait are wasting processor time which could be used by other

processes willing to do useful work.

– A processor working consumes energy and generates heat.

• It is necessary to find another approach to make processes wait

Busy Wait Synchronization

while not continue do;

49

2.4 Busy wait VS. passive wait

• A processes which uses passive-wait (also called blocked-wait) enters in state
blocked (or similar). In that state, the process does not execute any instruction.

• A process exits the blocked state due to an action of another process (probably
change of one condition variable). (see Unit 1, states diagrams).

• Clearly, passive-wait is more efficient than busy-wait.

• Busy-wait, as a means to achieve synchronization, is recommended only when the
programming environment does not provide passive-wait tools or primitives.

Busy Wait Synchronization 50

2.4 Busy wait VS. passive wait
• Primitive calls, methods or objects provided by some languages allow a greater

abstraction for synchronization than using busy-wait-based protocols.

• Among these programming tools, some of them may still make our code confusing
and error-prone.

• Not all synchronization tools are available in all programming languages.

• Synchronization tools are available for two models of communication:
– Shared-memory

• Semaphores

• Critical Regions

• Conditional Critical Regions (CCR)

• Monitors

– Message Passing

• (A)synchronous message passing

• Remote invocation

 Busy Wait Synchronization 51

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
 2.3.1 First Attempt
 2.3.2 Second Attempt
 2.3.3 Third Attempt
 2.3.4 Fourth Attempt
 2.3.5 Dekker’s Algorithm
 2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

52

2.5 Conclusions
• Processes may need to be synchronized in order to:

– start/end an action (Condition Synchronization)

– access a shared resource (mutual exclusion)

• In any programming environment, mutual exclusion access to a critical section can
be achieved using protocols which make use of shared variables and busy-wait.

• In order to say these protocols are correct, they must:

– Grant mutual exclusion

– Avoid livelock

– Avoid starvation

– (avoid deadlock, but none of the solutions introduced fall in deadlock)

Busy Wait Synchronization 53

2.5 Conclusions

• Passive-wait primitives are available in some concurrent programming languages
to achieve a more efficient execution, and to make our code easier to read and
less error-prone.

• You are lucky, we will study these tools in the following units!

Busy Wait Synchronization 54

Potential Midterm Exam Questions
1. What interactions between processes need synchronization?

2. What do we mean when we say that a process running a busy-wait is doing
nothing?

3. In program ConditSynch (section 2.2), what interleaving of instructions leads to
output “aS1 as2 bS1 bS2”?

Busy Wait Synchronization

Process A Process B continue

1

2

3

4

5

6

Process A Process B continue

1 write(‘aS1 '); false

2 continue := true; true

3 write(‘aS2 '); true

4 write(‘bS1 '); true

5 while not continue do true

6 write(‘bS2 '); true
55

Potential Midterm Exam Questions
4. What are the requirements for a correct solution of mutual exclusion
synchronization?

5. What problems can you find in this

attempt of achieving mutual exclusion?

Busy Wait Synchronization 56

Potential Midterm Exam Questions

6. From the point of view of atomic execution, what can we say about critical sections?

7. What is the upper bound of critical sections in a program?

Busy Wait Synchronization 57

Keywords phonetics

• attempt /əˈtempt/

• renounce /rɪˈnaʊns/

• mutual /ˈmjuːtʃuəl/

• exclusion /ɪkˈskluːʒən/

• coarse /kɔːs/

• critical /ˈkrɪtɪkəl/

• section /ˈsekʃən/

• contention /kənˈtenʃən/

Busy Wait Synchronization 58

http://dictionary.cambridge.org/dictionary/british/renounce
http://dictionary.cambridge.org/dictionary/british/attempt
http://dictionary.cambridge.org/dictionary/british/mutual
http://dictionary.cambridge.org/dictionary/british/exclusion
http://dictionary.cambridge.org/dictionary/british/coarse
http://dictionary.cambridge.org/dictionary/british/section
http://dictionary.cambridge.org/dictionary/british/critical
http://dictionary.cambridge.org/dictionary/british/contention

