Unit 2
Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

Busy Wait Synchronization

o & oo if il o W
b, i - o R . e = 4! | i

a4

2.1 Introduction

Uniprocessors and multiprocessor/multicore use shared memory:
— The compiler and OS avoid the use of same memory addresses
— But, shared variables can be written and read by several processes.
— What happens if 2 processes read and/or write the same variable ‘at the same time’?

By the abstraction of concurrent programming, we must think that any interleaving
is possible for all non-atomic statements.

Java and Pascal-FC provide atomic read/write operations in primitive variables
(except double and long).

Busy Wait Synchronization 3

2.1 Introduction

* |f 2 processes read a variable at the same time...

—>both process read same value

* If 2 processes write at the same time (any after the other):

—the last written value remains, but we cannot predict it.

* If one process reads and the other writes at the same time (any after the other):
- the read value could be the former or the latter, but we cannot predict it.

Busy Wait Synchronization

Interaction
between
processes

2.1 Introduction

Activities between

performed
by

Competence

> Synchronization

T may need

Cooperation

Communication

Busy Wait Synchronization

processes

Condition
Synchronization

2 kinds

Mutual Exclusion

2.1 Introduction

Shared-memory communication:

Shared variables let processes share information by reading and writing on them

Shared-memory synchronization:

Condition Synchronization: depending on the value of one or more variables

Mutual Exclusion: use of structures or algorithms which provide exclusive access to
critical sections.

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

Busy Wait Synchronization

1 8 1 8
et i) ¢ (R i Mt s A)]

- i
S T I

2.2 Condition Synchronization

One process halts waiting for a condition to be met thanks to the action of another
process.

Let us consider the following precedence diagram of the statements of 2
processes:

Process a

Process b

Busy Wait Synchronization 8

2.2 Condition Synchronization

Assume that the last instruction in each block of statements is to print the id of
such block (write from Pascal/FC and System.out.print in Java provide atomic
access to screen).

Some possible outputs:

aS1l aS2 bS1l bS2

Process a
aS1l bS1l aS2 bS2
bSl aSl aS2 bS2 Process b

bS1 aSl1l aS2 bs2

..think more..

An impossible output:

bS1 bSPQS1 as2

7 N\

Busy Wait Synchronization

2.2 Condition Synchronization

program conditSynch;

var
continue: boolean:

process Processh;

begin
write('asl ");
continue := true;
write('asSz '):
end;

process ProcessB;
begin
write('bS1 ");

while not continue do;

write('bS2 ');
_end;
begin
continue := false:
cobegin
ProcessA:
ProcessB:
coend
end.

Pascal-FC code

 Shared variable: continue

 The work done by Process b waiting for the
condition to be set, is called busy wait. That
is, waste processor time doing nothing until
the other process sets the condition.

Process a

Process b

Busy Wait Synchronization 10

2.2 Condition Synchronization

class ThreadA extends Thread{
SharedObject s;:

public ThreadA (SharedObject shared) {
s=shared;

}

public wvoid run{() {
System.out.println("as1");
s.5etGo ()
System.out.println("asS2");

class ThreadB extends Thread{
SharedObiject s:

public ThreadB (SharedObject shared) {
s=shared;

}

public wveoid runf() {
System.out.println("bS1");
while(!s.getGo())
System.out.println("bs2");

JAVA code

class SharedObject{

boolean go=false:
Why isn’t it necessary to add

the volatile modifier to
boolean go?

public boolean getGo() {
return go;

}

public wveoid setGo () {
go=true;

}

public class CondSynch {

public static wvoid main(String args|[]) {
SharedObject s=new SharedObject():
(new ThreadA(s)).start():
(new ThreadB(s)).start():

ait Synchronization 11

TF rEd me m ama o . ™ rEd me m ama o . B

2.2 Condition Synchronization

Interleaving of instructions to get the output:

aS1l bS1l aS2 bS2

Process A Process B continue
1l |write(‘asSl '), false
2 write('bSl ') ; false
3 | continue := true; true
4 |write(‘as2 '), true
5 while not continue true
6 write('bS2 ') ; true

Busy Wait Synchronization

12

2.2 Condition Synchronization

Interleaving of instructions to get the output:
bS1 aSl aS2 bS2

Process A Process B continue
1 write('bSl ') ; false
2 while not continue false
3 while not continue false
4 while not continue false
5 |write(‘'asl '"); false
6 | continue:= true; true
7 |write(‘'asS2 '); true
8 while not continue true
9 write('bS2 ') ; true

Busy Wait Synchronization

13

2.2 Condition Synchronization

Interleaving of instructions to get the output: complete the table

aS1l aS2 bS1l bSs2

Process A Process B continue

false

true

true

true

true

Nl | _W|IN(PR

true

Busy Wait Synchronization

14

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

15

Busy Wait Synchronization

2.3 Mutual Exclusion

When two or more processes need to access a shared variable, object or set of
statements which require exclusive access, processes need to be synchronized in order
to guarantee that only 1 of them gains access (enters the critical section).

2

\ critical section

Ben-Ari et al. Chapter 3. 2006.

The synchronization by mutual exclusion is the execution of a set of instructions before
entering the critical section (pre-protocol) and another set of instructions immediately
after leaving the critical section (post-protocol).

The pre-protocol guarantees mutual exclusion in the access.

The post-protocol communicates to the other processes it is not waiting to enter in the

critical section anymore.

Busy Wait Synchronization 16

2.3 Mutual Exclusion

* A correct solution of mutual exclusion fulfills:
— Mutual exclusion is granted.
— Avoids livelock and starvation of processes trying to enter the critical section.

 And, it would be good that:

— No variables used in the critical and non-critical sections are used in the protocols. That
is, variables used in protocols are created for their exclusive use in protocols.

— Pre and pot-protocols should use little memory and CPU clock-time.

Busy Wait Synchronization 17

2.3 Mutual Exclusion

Solutions using protocols assume that the only atomic instructions available are
read and write on primitive variables.

In 1965, Dijkstra published a solution for mutual exclusion in the case of 2
processes. In order to explain it, he first presents 4 wrong approaches or attempts
in which the most common errors of concurrent programming appear.

The correct solution is based on a mathematician called Dekker, so Dijkstra called it
Dekker’s algorithm.

Dijkstra improved Dekker’s Algorithm for n>1 processes: Dijkstra’s algorithm.

The Eisenberg-Mcguire’s algorithm is an optimization of Dijkstra’s algorithm.

Busy Wait Synchronization 18

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

19

Busy Wait Synchronization

2.3 Mutual Exclusion

15t atte

mpt (Pascal-FC)

Based on busy-wait: processes share 1 variable to tell which process may enter in CS

program FirstAttempt;
var turn:Integer;

process Pl;

begin begin
repeat turn:=1;
while turn <> 1 do; cobegin
writeln('P1l is in CS'");: Pl:
writeln('Pl is leaving CS'); ’
. PZ2;
turn:=2;
writeln('Pl is in non-CS'): coend
forever end.
end;

process P2;

begin
repeat
while turn <> 2 do;
writeln('P2 is in CS5'"):
writeln('P2 is leaving C3'):
turn:=1;
writeln('P2 is in non-CS5'):
forever
end;

Identify the pre-protocol, the Critical Section
and the post-protocol in both processes

Busy Wait Synchronization 20

2.3 Mutual Exclusion
15t attempt

e Commonly, this approach would work but...

* The 1%t attempt is not correct because:

it is not free of starvation if one process fails.

Pl P2 turn
1 while turn <> 1 do; 1
2 writeln('Pl1 is in CS'"); 1
3 while turn <> 2 do; 1
4 | process 1 crashes! 1
Remains forever 1in 1

busy-wait

Alternation is mandatory: access to CS is granted in turns, so if a process is very slow
(long non-CS) the other cannot enter the CS until the other changes the value of turn.

Busy Wait Synchronization

21

2.3 Mutual Exclusion
15t attempt (Java)

class CS1 { class MyThread extends Thread{ ;
int turn = 1; C31 sharedCs; 1
int ID: i

public void enterCS (int ID) {

// pre-protocol MyThread (CS1 cs, int id) {
while (turn != ID); sharedCS=cs;

// CS ID=id;
System.cut.println("P" + ID + " is in C3"): }

System.out.println ("P" + ID 4+ " is leaving CS");

//non—CS public void runf() {

// post-protocol i

turn = ID-1: while (true) {

sharedCS.enterCs (ID);

System.out.println("P" + ID + " is in non-C35");

public class FirstAttempt {

public static wvoid main(String args[]){
CS1 criticalSection=new CS1():

(new MyThread(criticalSection, 0)).start():
(new MyThread(criticalSection, 1)) .start():

Busy Wait Synchronization 22

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

23

Busy Wait Synchronization

2.3 Mutual Exclusion
2"d attempt (Pasca-FC)

In order to solve the problem of having just one variable which leads to mandatory
alternation, each process uses a flag to indicate it is entering in CS, but it will only do
that if the other flag is not set.

program SecondAttempt;
var flagl,flagZ:Boolean;

process P1l; But the 2" attempt is not correct because
begi o .
S repeat - Mutual Exclusion is not guaranteed.
while flag2 do: L.
flagl:=true; P2 is in CS
writeln('Pl is in CS5'): ..
writeln('P1l is leaving C5'"): Pl IS In CS

flagl:=false;
writeln('P1l i3 in non-CS"):

forever
end; -Moreover, starvation may occur if one process
process P2; repeats its loop and sets its flag before the
begin . .

repeat other process leaves its busy-wait.

while flagl do:
flag2:=true;

writeln('P2 is in CS'); Think what interleaving of statements
writeln('P2 is leaving CS');
flag2:—false; leads to common access to CS
writeln('P2 is in non-CS'):

forever

end;

BUSY Wait Synchronization 24

2.3 Mutual Exclusion

Interleaving which leads to common access to CS:

2"d attempt

P1 P2 flagl flag2
1 |while flag2 do false |false
2 while flagl do false |false
3 |flagl:i=true true false
4 flag2:=true; true true
5 writeln('P2 is in CS'); true true
6 | writeln('P1isin CS'); true true

Busy Wait Synchronization

25

Starvation does not happen on the fail of one process in its non-CS because its flag would remain false.

2.3 Mutual Exclusion

2"d attempt

P1 P2 flagl | flag2
1 | .. flagl:=false; false | false
2 |P1 halts forever! false | false
3 while flagl do false | false
4 flag2:=true; false | true
writeln('P2 is in CS'); false | true
writeln('P2 is leaving CS'); false | true
flag2:=false; false | false
writeln('P2 is in non-CS'); false | false
while flagl do false | false
flag2:=true; false | true
writeln('P2 is in CS');... false | true

Keeps entering in CS forever

Busy Wait Synchronization

26

2.3 Mutual Exclusion
2"d attempt (Java)

class CS52 {

class MyThread? extends Thread{ ‘
boolean[] flag={false, false}:; CS2 sharedCs: 0

int ID;
public veid enterCS(int ID) { b

// pre-protocol . .
while (flag[l-ID]): MYTh;Egiiéggicz?' int 1d){

flag[ID]=true;

/] CS ID=id:
System.out.println("P" + ID + " is in CS"): }

System.out.println("P" + ID 4+ " is leaving CS"):

// non-CS public wvoid run /() {

// post-protocol while (true) {
flag[ID]=false; sharedCS.enterCS(ID) ;

}

System.out.println("P" + ID + " is in non-C35"):

public class SecondAttempt{

public static wvoid main (String args[]){
CS2 criticalSection=new CS2():

(new MyThread? (criticalSection, 0)).start():
(new MyThread? (criticalSection, 1)) .start():

Busy Wait Synchronization 27

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

28

Busy Wait Synchronization

2.3 Mutual Exclusion
3" attempt

15t attempt = because of the use of 1 variable, it forces alternation, and one
process starves when the other halts.

2" attempt = mutual exclusion is not granted because one process may check the
status of the other process before it is updated.

So now, we still use 2 variables but the do not indicate the status of being inside
the CS or not, but the will to enter before trying to enter.

Busy Wait Synchronization 29

2.3 Mutual Exclusion
3" attempt (Pascal-FC)

program ThirdAttempt;
wvar wantsCS1l,wantsCS2:Boolean;

process Pl:
begin
repeat
wantsCS51l:=true;
while wantsCS2 do;
writeln('Pl is in CS"):

writeln('Pl is leaving C3');

wantsCSl:=false;
writeln('P1l is in non-CS'):
forever
end;

process P2;
begin
repeat
wantsCS2:=true;
while wantsCS1 do;
writeln('P2 is in CS"):

writeln('P2 is leaving CS5'");

wantsCSZ2:=false;
writeln('P2Z is in non-CS'):
forever
end;

begin
wantsC5l:=false;
wantsC32:=false;
cobegin
Fl:
E2;
coend

end.

| do not enter in CS if the other is willing
to enter

Besides global variables,
Pascal-FC allows sharing
information by passing variables
per reference (next slide)

ait Synchronization 30

2.3 Mutual Exclusion
3" attempt (Pascal-FC)

* Same solution but passing per reference a record which holds the 2 variables

program ThirdAttemptPerRef;

type willsRecord = record
wantsCS1l,wantsCS52: boolean;
end; var wills:willsRecord;
begin
wills.wantsCSl:=false;

process Pl (var w: willsRecord):

begin wills.wantsCS2:=false;
repeat cobegin .
w.wantsCS1l:=true:; Pl(w}lls)f
while w.wantsCS2 do; coenEZ(WlllS)'
writeln('Pl is in CS5"): end.
writeln('P1l is leaving CS');
w.wantsC51:=false;
writeln('Pl is in non-CS"):
forever
end;

process P2 (var w: willsRecord):
begin
repeat
w.wantsCS2:=true;
while w.wantsCSl do:
writeln('PZ is in C5"):
writeln('P2 is leaving CS'):
w.wantsCS2:=false;
writeln('P2Z is in non-CS5"):
forever

The 3" attempt may fall in a livelock.
Can you guess the interleaving which leads to
that situation?

end; Busy Wait Synchronization 31

2.3 Mutual Exclusion

3" attempt

Pl P2 wantsCS1 | wantsCS2
1 | wwantsCS1:=true; true false
2 w.wantsCS2:=true; true true
3 while w.wantsCS1 do; true true
4 | while w.wantsCS2 do; true true
livelock true true

Busy Wait Synchronization

32

2.3 Mutual Exclusion
3" attempt (Java)

class CS3 {
boolean|[] wantsCS={false, false};

public wvoid enterCS(int ID) {
// pre-protocol
wantsCS[ID]=true;
while (wantsCS[1-ID]);
// CS
System.cut.println("P" + ID + " is in CS"):
System.cut.println("P" + ID + " is leaving C3"):
// non-CS5
// post-protocol
wantsCS[ID]=false:

System.out.println("P" + ID + " is in non-C3"):

Busy Wait Synchronization

33

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

Busy Wait Synchronization

34

2.3 Mutual Exclusion
A4th attempt

15t attempt = because of the use of 1 variable, it forces alternation, and one
process starves when the other halts.

2" attempt = mutual exclusion is not granted because one process may check the
status of the other process before it is updated.

3d attempt = if both processes want to enter (contention for access), none of
them renounces its will. So both will wait forever.

The fourth attempt resolves contentions by making a process renounce, during a
short period of time, its will to enter if the other process wants to enter.

Busy Wait Synchronization 35

2.3 Mutual Exclusion 4t attempt (Pascal-FC)

program FourthAttempt;

type willsRecord = record var wills:willsRecord;
wantsC51,wantsC52: boolean; begin
end; wills.wantsCSl:=false;
process Pl (var w: willsRecord); wills.wantsCS2:=false;
begin cobegin
repeat Pl(wills):
w.wantsCSl:=true; P2 (wills);
while w.wantsCS52 do coend
begin
end.

w.wantsCSl:=false;
(*do anything, e.g. sleep*)
w.wantsCS51l:=true;
end;
writeln('P1l is in C5"):
writeln('Pl is leaving C5');
w.wantsC5l:=false;

panteCalinrals sy .
fopenrirednTEL A8 dn mon=C8 1) Both processes may give way to each
endi other during a long period. Livelock and starvation
Prososs Palvas wr willsRecord): will not last forever, because a process will
repeat) eventually gain access to CS.
w.wantsCS52:=true;
while W.wantsCsi do This solution is correct but lacks efficiency.
egin

w.wantsC52:=false;
(*do anything, e.g. sleep*)
w.wantsCS2:=true;
end;
writeln('P2 is in CS5");
writeln('P2 is leaving CS'):
w.wantsCS2:=false;
writeln('P2 is in non-CS'):
forever

end; . N
y Wait Synchronization 36

2.3 Mutual Exclusion
4th attempt (Java)

class CS4 |
boolean|[] wantsCS={false, falsel}:

public void enterCS(int ID) {
// pre-protocol
wantsCS[ID]=true;
while (wantsCS[1-ID]){
wantsC5[ID]=false;
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace ()
}
wantsCS[ID]=true:
}
// CS
System.out.println("P" + ID 4+ " is in CS");
System.out.println("P" + ID 4+ " is leaving C3");
// non-CS5
// post-protocol
wantsCS5[ID]=false:

System.ocut.println("P" + ID + " is in non-C3"):

Busy Wait Synchronization

37

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

Busy Wait Synchronization

38

2.3 Mutual Exclusion
Dekker’s Algorithm

Dekker decided to join the first, third and fourth attempts:
— each process has a flag to announce its will to enter in CS.

— when there is a contention, a common variable turn decides which must give way to the
other.

So Dekker’s solution uses 3 shared variables: two boolean flags (one per process)
and an integer for turn.

It fulfills all requirements to be a correct solution using protocols:
— Mutual exclusion is assured
— Livelock does not happen
— Starvation does not happen

And it is efficient! (except for the use of busy-wait)

Busy Wait Synchronization 39

2.3 Mutual Exclusion
Dekker’s Algorithm (Pascal-FC)

program Dekker;

type willsRecord = record
wantsCS1l,wantsCS2: boolean:
turn:integer;
end;

process Pl (var w: willsRecord):;

begin
repeat
w.wantsCS1:=true;
while w.wantsCS52Z2 do
if w.turn = 2 then
begin
w.wantsCSl:=false;
while w.turn = 2 do;
w.wantsC51l:=true;
end;
writeln('Pl is in CS5'"):
writeln('Pl is leaving CS'):
w.turn:=2;
w.wantsCSl:=false;
writeln('Pl is in non-CS'"):
forever
end;

process P2 (var w: willsRecord):;

begin
repeat
w.wantsCS2:=true;
while w.wantsC31 do
if w.turn = 1 then
begin
w.wantsCS2:=false;
while w.turn = 1 do;
w.wantsCS2:=true;
end;
writeln('P2 is in CS"):
writeln('P2 is leaving CS5');
w.turn:=1;
w.wantsCS2:=false;
writeln('P2 is in non-CS');
forever
end;

var wills:willsRecord:
begin
wills.wantsCSl:=false;
wills.wantsCS2:=false;
wills.turn:=1;
cobegin
Pl (wills):
P2 (wills):;
coend
end.

Busy Wait Synchronization

40

2.3 Mutual Exclusion
Dekker’s Algorithm (Pascal-FC)

Rewrite Dekker’s algorithm using global variables instead of a record passed by reference.

Busy Wait Synchronization

41

2.3 Mutual Exclusion
Dekker’s Algorithm (Java)

class CSdekker |

boolean|[] wantsCS={false, false}:
volatile int turn=0;

public wvoid enterCS(int ID) {

// pre-protocol . . op
wantsCs [ID] =true; Do you think the volatile modifier

//1f the other process does not Is necessary in variable turn?

//want to enter, I enter even
//1f it is not my turn
while (wantsCS5[1-ID]){
if (turn==1-1ID) {
wantsCS[ID]=false;
while (turn==1-1ID);
wantsCS[ID]=true;
}
}
// CS
System.out.println("P" + ID + " is in C3"):
System.cut.println("P" 4+ ID 4+ " is leaving C3");
// non-C35
// post-protocol
turn=1-1D;
wantsCS[ID]=false:

System.cut.println("P" + ID 4+ " is in non-C3");

42

2.3 Mutual Exclusion

e Other algorithms :

Peterson’s (1981) developed an easier pre-protocol to grant exclusive access to CS.
Dijkstra’s (1965) is an extension of Dekker’s algorithm for n processes.
Eisenber-McGuire’s (1972) improved the efficiency of Dijkstra’s algorithm.

Lamport’s algorithm, also known as the Bakery algorithm (1974), was developed for n
processes running in distributed systems, where there is only read-access for shared
variables which belong to other processes

* Hardware solutions: there exist processors which provide special atomic
instructions, which grant mutual exclusion avoiding the use of protocols.

Increment & Decrement instructions (also Fetch-and-Add) L. .
, , Machine instruction from processor IA32
INC(int x) { int v = x; x = x + 1; return v } '

* You can choose any of these algorithms or hardware solution as Task 1 (see
proposed tasks in Unit Zero). Use [Palma et al. Chapter 3.] as reference.

Busy Wait Synchronization 43

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

Busy Wait Synchronization

44

2.3 Mutual Exclusion
Several CSs

There exist two kinds of atomic execution:
— Fine-grained
* Provided by the programming language to the developer.
* They are compiled to atomic machine instructions executed by the processor.

— Coarse-grained
» Set of instructions executed without interleaving of other processes.

* There exist programming (protocols, semaphores,...) and hardware solutions which

provide tools to make a set of sentences be executed in an atomic manner.

Given these definition, we can say that the Critical Section instructions together
are a coarse-grained instruction because two processes cannot interleave critical
section statements (they can mix one CS statements with non-CS from other

process).

Busy Wait Synchronization

45

2.3 Mutual Exclusion
Several CSs

The work done inside a critical section usually performs changes in shared

variables. If this change is done only in one piece of code, then the program only
has 1 CS.

But the same shared variable may be accessed/changed in several situations
inside the same program:

— Each piece of code which makes access counts as 1 CS.

— Flags and variables used in protocols are not replicated, they are used in access to all
CSs.

E.g.: increments and decrements of the same variable

Busy Wait Synchronization

46

2.3 Mutual Exclusion
Several CSs

* \Variable x is used in 2 critical sections. Protocols may be any which is correct, e.g.
Dekker’s algorithm.

program incdec;

process type inc(var x:integer) ; var

begin x:integer;
(*preprotocol (x) *) pInc:inc; pDec:dec;
x:=x+1; begin
(*postprotocol (x) *) x:=0;

end; cobegin

pInc(x) ;

process type dec(var x:integer) ; pDec (x) ;

begin coend;
(*preprotocol (x) *) writeln (x)
x:=x-1; end.
(*postprotocol (x) *)

end;

Busy Wait Synchronization

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

Busy Wait Synchronization

48

2.4 Busy wait VS. passive wait

As we saw, busy-wait is the execution of instructions used to make the process
wait for a condition to be fulfilled in order to go on doing actual progress in the
program.

while not continue do;

So the process uses processor time by interleaving statements which “do nothing”.
Thus, busy-wait is known to be a very inefficient way to make a process wait.

Problems of busy-wait:

— Processes doing busy-wait are wasting processor time which could be used by other
processes willing to do useful work.

— A processor working consumes energy and generates heat.

It is necessary to find another approach to make processes wait

Busy Wait Synchronization 49

2.4 Busy wait VS. passive wait

A processes which uses passive-wait (also called blocked-wait) enters in state
blocked (or similar). In that state, the process does not execute any instruction.

A process exits the blocked state due to an action of another process (probably
change of one condition variable). (see Unit 1, states diagrams).

Clearly, passive-wait is more efficient than busy-wait.

Busy-wait, as a means to achieve synchronization, is recommended only when the

programming environment does not provide passive-wait tools or primitives.

Busy Wait Synchronization

50

2.4 Busy wait VS. passive wait

Primitive calls, methods or objects provided by some languages allow a greater
abstraction for synchronization than using busy-wait-based protocols.

Among these programming tools, some of them may still make our code confusing
and error-prone.

Not all synchronization tools are available in all programming languages.

Synchronization tools are available for two models of communication:
— Shared-memory
* Semaphores
* Critical Regions
* Conditional Critical Regions (CCR)
* Monitors
— Message Passing
* (A)synchronous message passing
* Remote invocation

Busy Wait Synchronization 51

2.1 Introduction
2.2 Condition Synchronization
2.3 Mutual Exclusion
2.3.1 First Attempt
2.3.2 Second Attempt
2.3.3 Third Attempt
2.3.4 Fourth Attempt
2.3.5 Dekker’s Algorithm
2.3.6 Several Critical Sections
2.4 Busy wait VS. passive wait
2.5 Conclusions

Busy Wait Synchronization

52

2.5 Conclusions

Processes may need to be synchronized in order to:
— start/end an action (Condition Synchronization)
— access a shared resource (mutual exclusion)

In any programming environment, mutual exclusion access to a critical section can

be achieved using protocols which make use of shared variables and busy-wait.

In order to say these protocols are correct, they must:
— Grant mutual exclusion
— Avoid livelock
— Avoid starvation
— (avoid deadlock, but none of the solutions introduced fall in deadlock)

Busy Wait Synchronization

53

2.5 Conclusions

Passive-wait primitives are available in some concurrent programming languages
to achieve a more efficient execution, and to make our code easier to read and

less error-prone.

You are lucky, we will study these tools in the following units!

Busy Wait Synchronization

54

Potential Midterm Exam Questions

. What interactions between processes need synchronization?

. What do we mean when we say that a process running a busy-wait is doing

nothing?

. In program ConditSynch (section 2.2), what interleaving of instructions leads to
output “aS1 as2 bS1 bS2”?

Process A Process B continue

||| W|IN|PRL

Busy Wait Synchronization 55

Potential Midterm Exam Questions

4. What are the requirements for a correct solution of mutual exclusion
synchronization?

program FirstAttempt:

5. What problems can you find in this var turn:Integer;
attempt of achieving mutual exclusion? process Pl;
egin
repeat

while turn <> 1 do;
writeln('P1l is in CS'):
writeln('Fl is leaving CS');

turn:=2;
writeln('Pl is in non-CS5'):
forever

end;

process P2;

begin
repeat
while turn <> 2 do:
writeln('P2 is in CS'):
writeln('P2 is leaving CS'");
turn:=1;
writeln('P2 is in non-CS'):
forever
end;

Busy Wait Synchronization

Potential Midterm Exam Questions

6. From the point of view of atomic execution, what can we say about critical sections?

7. What is the upper bound of critical sections in a program?

Busy Wait Synchronization

57

Keywords phonetics

attempt /o'tempt/ =)
renounce /ri'naons/ ﬂnb)
mutual /'mijutfual/ <))
exclusion /ik'sklu:zan/ =)
coarse /ka:s/)

)

)

—
_— S S Ss——

—

critical / knitikal/ <
section /'sekfan/ <
contention /kan'tenfan/ 4”))

—

Busy Wait Synchronization

58

http://dictionary.cambridge.org/dictionary/british/renounce
http://dictionary.cambridge.org/dictionary/british/attempt
http://dictionary.cambridge.org/dictionary/british/mutual
http://dictionary.cambridge.org/dictionary/british/exclusion
http://dictionary.cambridge.org/dictionary/british/coarse
http://dictionary.cambridge.org/dictionary/british/section
http://dictionary.cambridge.org/dictionary/british/critical
http://dictionary.cambridge.org/dictionary/british/contention

