Unit 1

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Pablo.Bermejo@uclm.es

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Introduction and Basic Concepts

{5 . o e =5 -~ {5 .
._!l|_. R A e T - ._!l|_. ot s

1.1 Baseline definitions

* A program is a set of instructions written in one or several files.

* When you compile and run the program, you create a process which is the dynamic
execution of the compiled instructions in the CPU.

__

Introduction and Basic Concepts 3

1.1 Baseline definitions

The process needs some help to run successfully: Program Counter (PC), CPU
registers, stack, stack pointer, main memory for global variables.

Each time you run a compiled program, you create one new process with new PC,
stack, registers and memory addresses.

So you have one process running in your computer per program and instance:
Multitask Operating Systems.

> Windows Task Manager M=k

Sle Options View Shut Down Help

Applications | Processes | parformance Networking Users f
User Name CPU Mem Usage ~ f

avgtray .exe ard 3,680 K
msnmsgr .exe 34,728 K
ctfmon.exe edudd 1,120 K
explorer.exe 16,572 K

11,840 K
95,940 K
13,912 K
2532 K f

WINWORD.EXE ard

3888888888828888888

, LOCAL SERVICE 180 K
alg.exe LOCAL SERVICE 620 K
svchost.exe LOCAL SERVICE 1,592 ¥ _/->
svchost.exe NETWORK SERVICE 2,900 K
svchost.exe NETWORK SERVICE 3,664 K
System Idle Process SYSTEM 28K
System SYSTEM S2 K
avgwdsve.exe SYSTEM 2,864 K
svchost.exe SYSTEM ,224 K
Smss exe SYSTEM 168 K
wrec mvm SYSTFM 3,470 K b
[¥] Show processes from all users
rocesses: 26 CPU Usace: 0% Commit Charae: 436M J 2919M

Introduction and Basic Concepts

1.1 Baseline definitions

Moreover, each process may contain several sub-processes or threads.

=

These threads share the same main memory for global variables. But they still
have different PC, stack and registers.

Blue process: Intelligence test
— Green thread: display questions and get input
— Read thread: timer
— Orange thread: pop-ups advertising

Introduction and Basic Concepts

1.1 Baseline definitions

e The scheduler is a built-in process in the kernel of the operating system which
decides when a process/thread enters or exits the CPU.

P1in CPU

P2 in CPU

TIME >

e Each period of time during which a process is granted the CPU is called time-slice.

* A process may not be finished when the scheduler decides that another process
must enter in CPU. So what about the unfinished process?

— Can the new running process use the same memory addresses or registers?
— Should it start from the beginning again once it re-enters the CPU?

Introduction and Basic Concepts 6

1.1 Baseline definitions

'Execution Context Immediately |]

| Before Suspension Data

Stack Ptr | 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
|
I
|
I
|
I
|
| | LDIReg1, OXFA || |
I
|
I
|
|
|
I
I_

|
Reg1 I FA I I LD| Reg2, OxE2 I I Context switch: store the status (PC, stack, stack
Reg2 | E2 | ADD Reg1, Reg2 | | pointer, memory and registers values) of the
Reg3 [00 ‘ | ‘ | ‘ unfinished process before running a new process
or restoring the status of a process previously
_______________________ Lﬁi suspended.

The previous instructions have already set the registers used
by the ADD. When the task is resumed the ADD instruction
will be the first instruction to execute. The task will not know if
a different task modified Reg1 or Reg2 in the interim.

Image obtained from www.freertos.org

Introduction and Basic Concepts 7

1.1 Baseline definitions

* Thus, a process may be running, waiting, stopped... A generic state diagram for a process is:

admitted interrupt

. scheduler dispatch)
1/O or event completion IO or event wait

* Ready: the process wants to start/resume its execution.

* Running: the process is inside CPU and the current context is its own.

* Waiting: the process is waiting for a signal, or it has been interrupted by an I/O device.
* Admitted: the process enters in the ready-queue managed by the OS scheduler

* Interrupt: the scheduler decides to give a new time-slice to another process.

e Sch. dispatch: the scheduler gives a new time-slice to a ready process.

All transitions to or from running perform a context switch.

Introduction and Basic Concepts 8

1.1 Baseline definitions

CPUs have such a high clock-frequency that we are not usually aware of context
switches, thus having the abstraction or the appearance that all processes and 1/0 are
being executed at the same time: operating system, spreadsheet, word processor,
internet browser,...

Parallel execution of processes: two or more processes running at the same time (one
CPU per process). Physically simultaneous processing.

Concurrent execution of processes: two or more processes which need to share at
least one CPU to run their machine code instructions. Logically simultaneous
processing.

Concurrent programming: application of techniques which help us manage the
underlying problems arising from concurrent execution: mutual exclusions and
synchronization of processes .

The same definitions hold for execution of threads or sub-processes.

Your lab assignments apply concurrent programming of threads. That is, 1 process with
several threads which share 1 CPU.

Introduction and Basic Concepts 9

1.1 Baseline definitions

Parallel — Concurrent [
E 2-1
[]
2+2 ol Problem S—— —
_— = 242 141 Problem

4 1 2
-_— - _—

Slave 1 T siave2 Slave 3

Processed Task

[[==
4 1
—-— —

Processed Task

In parallel computation, memory may be shared or not. In this example, it is not.
Concurrent computation always uses shared memory.

Whenever memory is shared, access must be controlled.

When processes work together to solve a given problem, synchronization is necessary.
From now on, with concurrent we refer to any computation with shared memory or need
for synchronization.

Introduction and Basic Concepts

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Introduction and Basic Concepts

11

1.2 Benefits and issues of concurrency

Performance gain from multiprocessing hardware
— Parallelism for numeric computations
— Several slave processes and one master which merges the results.

— E.g.:In the previous example of parallel computation, if we only had 2 CPUs for slave

processes:

Master
S1 en CPU1

S2 en CPU2

TIME

— If we only had 1 CPU, the processing would take 2 extra time-slices.

Introduction and Basic Concepts 12

1.2 Benefits and issues of concurrency

* Increased application throughput

— an |/0 call blocks the thread in the corresponding CPU without delaying the others.

— E.g.: A process for a video-game with 2 threads: moving the enemy and moving Player 1.

The enemy thread is always working, while the thread for player 1 is blocked waiting for

the input device (mouse, keyboard, sensor,...)

MARIO x664
52400

| R &
(4 od od =d

PENPE\ PP P
Lol ol ol ol ol ;
| o an anY ol any anl g A= V== ==y
4.4 4 _ 4 4 4 4 4 B N7 N ey N N

./ ./ A/ ./ ., ., A/
a_d4 4 _ 4 4 _ 4 4 _ 4

7N N7 N N7 NF N7 N b — @- ~—
I lg

Introduction and Basic Concepts 13

1.2 Benefits and issues of concurrency

x|
Increased application responsiveness @ T ek ot s

— i i 1 To return to Windows and check the status of the
high priority threads. i b el

. H H H H If choo: end the i di Y will lose
— E.g.:the main thread is not responding and it would a:yﬁwm?;;‘,o,ng'g;“;’:;nﬁ?ﬂw

Now.

never release the CPU, but a higher priority thread gains

End Now || Cancel I

access and gives us the opportunity to stop it.

More appropriate structure

— for programs which interact with the environment (sensors, data analysis, alarms), control

multiple activities and handle multiple events (chats).

— Databases: several readers, one writer.

Introduction and Basic Concepts 14

1.2 Benefits and issues of concurrency

Depending on the programming techniques, the resulting high-level code may result
very difficult to understand or maintain.

Error-prone: as you will find in your lab assignments, most of the concurrent
programming techniques used for controlling shared-memory or synchronization can be
distributed along all your code, making it difficult to get rid of execution-time errors:

— E.g.: access to memory is never unlocked

— E.g.:signals for synchronization do not reach the appropriate process

Indeterminism in execution: the scheduler cannot be controlled, so:
— Interleaving
* we cannot predict the execution order for threads
* we cannot predict how many lines of code a thread will run in each time-slice

— Thus, different runs of a concurrent program produces different interleaving of its threads
access to CPU.

— But, if the concurrency is correctly controlled/programmed, the result is always the same.
— Program expecting the worst case: each line of code is interleaved.

Introduction and Basic Concepts 15

1.2 Benefits and issues of concurrency

 Example of indeterminism in execution without controlling access to memory:

Shared memory
int x;

Process p Process q
X=2 x=1
inty=x+3 intz=x+4
printy print z

* Instructions pl and ql are atomic: 1 machine instruction after compilation.

e Instructions p2 and g2 are not atomic: 3 machine instructions: LOAD, ADD and STORE which
can be interleaved due to the scheduler. But they do not affect x.

* Try to understand why the possible resulting values for variable y are: 5 and 4.
* Try to understand why the possible number of context switches are: 1 to 9.

Introduction and Basic Concepts 16

1.2 Benefits and issues of concurrency

 Example of indeterminism in execution controlling access to memory:

Shared memory
int x;

Process p Process q

lock access to x lock access to x
X=2 x=1

inty=x+3 intz=x+4
unlock access to x unlock access to x
printy print z

e Try to understand now why y is always 5.
* When one process holds the lock, the other is suspended until the lock is released.

Number of (working) context switches: 1 to 3. (switch to a process which cannot hold the
lock, makes it be suspended and switch again)

 The order is still non-deterministic, but the result is always the same.
Introduction and Basic Concepts

17

1.2 Benefits and issues of concurrency

Critical section: it is the portion of code which accesses a shared resource which

might be changed by some process.

If more than 1 process is running code from the critical section, unexpected results

OCCur.

In the previous example, without controlling access to memory, the critical section
are those instruction which access variable x.

Critical
section

Shared memory
int x;

Process p

X=2

inty=x+3

Process q

printy

Introduction and Basic Concepts

x=1

intz=x+4

print z

Critical
section

18

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Introduction and Basic Concepts

19

1.3 Correctness

As we said, concurrent programming is error-prone.

If you run your concurrent program once and you get the expected result, this
does not mean it is correct. If you run several times, some error may appear due
to a wrong protection of the critical section or wrong synchronization.

A concurrent program is correct if properties of safety and liveness hold:
— aliveness property must eventually become true
— asafety property must always be true.

Due to the unpredictability of interleaving:
— itis impossible to debug a concurrent program to find the source of an error.

— Correctness can only be proved with formal specification methods (out of the scope of
this course).

Introduction and Basic Concepts 20

1.3 Correctness

Safety properties (or problems):

1) Mutual exclusion: only 1 process can be running inside the critical section.

E.g. Several readers and writers and 1 database.

No writers There is no need to define a critical section

1 writer Critical section is access to database.
Should 2 readers gain access without blocking to each other?

read
T —

write
—

read
>

Introduction and Basic Concepts

read
>

write
—

read
>

21

1.3 Correctness

2) Synchronization: when a process must wait for an 1/O event or for another process to
do something.

E.g.: Producer-Consumer problem: you cannot consume if the buffer is empty, and you
cannot produce if the buffer is full.

II:/

II\Z

Thread Consumer waits for the Producer Thread Producer waits for the Consumer
to insert something into the buffer. to take one element out of buffer.
If it does not wait —> null pointer! If it does not wait —> index out of bounds!

We may have several consumers... and even
several producers.

Mutual exclusion and Synchronization may
get very hard depending on the tools that our
concurrent programming high-level language
provides.

Y @

&

Introduction and Basic Concepts 22

1.3 Correctness

3) Deadlock: process A is waiting for process B to do something, but process B is waiting for
process A (or a process which depends on A) to do another thing. Process A and B will be
always waiting.

B |

I B I Car 1 cannot go on until 2 goes on

___________ SR * B - = B Car 2 cannot go on until 3 goes on

. " N - (8D iE— Car 3 cannot go on until 4 goes on
E Car 4 cannot go on until 1 goes on
; 3 DEADLOCK

I I
(a) Deadlock possible (b) Deadlock

Operating Systems: Internals and Design Principles. Ch. 6. W. Stalling.

— Once in deadlock, processes are blocked forever.
— There is no general solution for deadlock. In programming time, you must think of
possible deadlocks.
— Possible solutions:
* Assign a maximum time of wait (cars go backwards after 10 seconds blocked)

* Mutual exclusion (the cross-road is a critical section, so only 1 car is allowed at a
time)
* Assign a permanent order in which threads must gain access to the resource

Introduction and Basic Concepts 23

1.3 Correctness

* The safety of a concurrent program is assured if it always meets these criteria:

— our code guaranties mutual exclusion of critical sections,
— processes are synchronized, and
— processes never reach a deadlock status.

and then we say that our program is thread-safe.

* Liveness properties (or problems):

1) Livelock: two processes enter in livelock when they are doing some work responding to

each other, but none of them makes any progress. E.g.:

- Thread A needs the light on to wake up, but thread B needs the light off to sleep.

When A switches the light on, B switches it off, and then A switches on again. They

will be looping forever.
- Two cars on a road, or two people walking through a
corridor, moving left or right at the same time.

Introduction and Basic Concepts

Both are on the

road

Both moved

Livelock Problem

Again both moved

left lane of the ——= to right lane > to left lane of the
-t . ro:

ad
A
)
i
i

T

Www.guruzon.com

24

1.3 Correctness

2) Starvation: a process is virtually dead by starvation when it never gets access to CPU
meanwhile other threads do. That is, it never gets out of the ready status. This may happen per

several reasons:
- Other thread never releases the CPU __—"

- Other thread never releases a resource which - Other threads have higher priority
grants access to CPU (locks, semaphores,...)

Ready
queue

Active

R RS
C

Priority

www.danfinlay.com/ o ———

Introduction and Basic Concepts 25

1.3 Correctness

If it may happen that our processes or threads fall sometimes in livelock or
starvation, then our program does not provide liveness.

A concurrent program cannot (should not) be debugged using traditional
methods, since liveness problems may happen from time to time. Moreover, the
use of a debugger makes changes in the scheduler so they might never appear.

Careful design is encouraged, as well as the use of the highest-level tools
available to solve our concurrent problem.

A program is correct if it is thread-safe and free of liveness problems.

Introduction and Basic Concepts 26

1.3 Correctness

If there is not any relation between the activity of 2 processes, we say they
are independent.

We can find two kinds of interaction between processes which might
make correctness fail:

— Competence: several processes must share common resources from the
system (processor, memory, disk, printers,...), so they need to compete to get
them. When the shared resource is a variable in memory, the competition is
known as race condition. The value of such variable might be different
depending of which process gains access to it first.

— Cooperation: several processes must work on different parts of a problem to
solve it together.

Introduction and Basic Concepts 27

1.3 Correctness

Competence and cooperation happen by means of one or more of the following
activities:

* Communication: interchange of information between processes. “l want to print!”,
or “here is the result of your inquiry”.

e Synchronization:

— Conditional synchronization: one or more processes wait until another process or
processes do some work. “I will print the document when the mail server sends it to

”

me-.

— Mutual Exclusion: only 1 process can be running inside the critical section or using a
shared resource. “I am printing now, so the others jobs need to wait”.

Introduction and Basic Concepts 28

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Introduction and Basic Concepts

29

1.4 Atomic and Volatile

A statement is atomic if its resulting machine code is executed without any
interleaving.

An assignment like
X=y
is compiled to STORE and WRITE instructions, so interleaving may happen.

Some languages, like Java, assure us that assignment and evaluation of boolean
conditions are executed in an atomic manner.
x =3 is atomic
X =X+ 3 is not atomic!!

A combination of atomic statements is not atomic!

if(condition) x = 3
if condition is true, another thread may set it to false before x is set to 3.

Assignment statements of long and double variables are not atomic! (they need 2
words to store their value, and words reading may suffer of interleaving)

Introduction and Basic Concepts 30

1.4 Atomic and Volatile

Shared variables are first created in main memory.

In compiling time, the compiler optimizes our code by making each process cache
a copy of all variables or move them to registers.

So, what happens if 3 threads work with a copy of a shared variable?

Thread 2 Thread 3 Thread 1 Thread 2 Thread 3

http://igoro.com/

Introduction and Basic Concepts 31

1.4 Atomic and Volatile

In order to avoid this, Java lets us declare variables as volatile to tell the compiler that a
variable is accessed by 2 or more threads.
Thus, sets and gets are now volatile. Some languages, like C#, make volatile reads and

writes by default.
Of course, this makes the computation with such variables slower because each access

to it derives in reading or writing in main memory.

Cache 1 Cache 2 Cache 3
1] 01] 0] 1o
u v u v u v

@ Thread 2 @
http://igoro.com/

Variable v is volatile, but u is not. However, the set of a new value to v flushes all cache
values in main memory.
A get call to vin Thread 2 flushes all main memory values in its cache.

Introduction and Basic Concepts 32

1.4 Atomic and Volatile

Reads and writes of volatile variables are atomic, including long and double.

Imagine 10 processes running the following code on a volatile shared variable which
is initiated as double d=0 :

for(int i=0; i<5;i++) d++;

Can we say that the resulting value of d is 50?

Introduction and Basic Concepts 33

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

1.5 Specification of Concurrent Execution

* There exist several methods to specify the order of execution of the instructions in
our concurrent program. Two well-known methods are:

— Precedence graphs
— Cobegin-coend statements

* Precedence Graphs: an acyclic graph, in which a node represents a set of
instructions. An arrow from node A to node B means that B cannot start until A
ends. Two parallel nodes means they can be executed concurrently.

Ny

S1>a=x+y; ° g
S2>bi=z-1;

S3>c=a-b;
S4 > w:i=c+1;
Introduction and Basic Concepts 35

Palma et al. Ch. 1. 2003

1.5 Specification of Concurrent Execution

Cobegin/coend block: instructions which can be executed in parallel are written
inside a cobegin/coend block. Instructions inside these blocks can be run in any
order (concurrently), the rest is run sequentially.

S1-2a:=x+y;
S2 2> b:=z-1;
S32>ci=a-—-b;
SA>w:i=c+1;

begin

cobegin

a=xX+y;
b:=z-1;

coend;
c:=a-—b;
w:=c+1;

end;

Introduction and Basic Concepts

Palma et al. Ch. 1. 2003
36

1.5 Specification of Concurrent Execution

Use the precedence graph to write the specification of concurrent execution with

cobegin/coend statements.

S1;

Introduction and Basic Concepts

Palma et al. Ch. 1. 2003
37

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Introduction and Basic Concepts

38

1.6 Processes vs. Threads

Processes are run by the operating system.
Threads are independent running sequences inside a process.
Both processes and threads can be run concurrently:
— 1%tlevel of concurrency: processes
— 2nd Jevel of concurrency: threads
Context switch is lighter in threads than in processes:
— Some of the context information of a process belongs to the OS kernel
— All the information related to a thread belongs to the OS user space

Process 1 Process 2 Process 3 Process 4 Process 5

SILE &L L& 8 B[S8 § ¢ ¢
| / |
N

Threads 1st level scheduling: user threads

User <"\ Library
L=—(L) Lt compete for access to a kernel thread

(D 2nd level scheduling: system threads

compete for access to CPU
Kernel

Hardware

s User-level thread @ Kernel-level thread @ Light-weight Process P Processor www.cs.cf.ac.uk/Dave/C/ 39

1.6 Processes vs. Threads

Different processes use different memory addresses.
Threads of the same process share memory addresses.

A process allocates a shared memory space (heap space) for the shared variables of all
its threads. Although each thread has its own stack (local variables from methods).

/ Process vs Threads

/Process (JVM
’ () |Thread 1| [Thread2 | [Thread s
Stack Stack\ Stack\

Each thread has its }

™\
J

own stack memory

method1() method 1() method1()

-

/_\| Heap _?
© O

Y,
http://www.java-forums.org/
Threads can control other threads (kill, create,...). Processes can only manage their

children.
Threads are also called light weight processes.

Single heap per process
shared by all the threads

.
\
‘9

Introduction and Basic Concepts 40

1.6 Processes vs. Threads

Threads can communicate with each other directly (signals), while processes need
calls to the operating systems, pipes, ...

e Children and parent threads share heap space.
Threads Forked Processes

Iemory
Space

Memory Space

Process

5582044

 There are two levels of threads-programming:

— System (kernel) threads
— User threads

Introduction and Basic Concepts

1.6 Processes vs. Threads

User threads: threads created inside the user space of the OS. These are created
from our high-level programming language and are used to create concurrent
programs.

System threads: threads provided by the operating system to give support to user
threads. There exist 3 standards of system threads:

— Win32 (proprietary), implemented in the OS kernel

— 0S/2 Win32 (proprietary), implemented in the OS kernel

— POSIX (UNIX and Linux), implemented in the user space of the OS

The way the programming language uses the native system threads is transparent
for the developer.

Introduction and Basic Concepts 42

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Introduction and Basic Concepts

43

1.7 Architectures providing concurrency

* There are three kinds of hardware architecture which provide concurrency:
— Uniprocessor: 1 computer with 1 processor
— Multiprocessor: 1 computer with more than 1 processor
— Distributed Systems: several computers (uni or multiprocessor) in a network.

* Uniprocessor:

— Processes share the processor by interleaving.

P1in CPU
P2 in CPU

TIME >

Introduction and Basic Concepts 44

1.7 Architectures providing concurrency

— Interleaving is controlled by the scheduler of the operating system

— Threads share the same memory: communication and synchronization is performed by
shared variables.

shared |
. Shared memory
| variable I
Thread Thread Thread
1 2 3

Operating System

scheduler

Concurrency in uniprocessor architecture

Introduction and Basic Concepts

45

1.7 Architectures providing concurrency

e Multiprocessor and Multicore:

— Now one processor has several cores, each capable of running parallel instructions. They
are integrated in one chip: multicore

— There might be several multicore chips: multicore multiprocessor (cluster)

— Real parallelism happens, but interleaving is still necessary (commonly, the number of
processes is higher than the number of cores)

P1in corel

P2 in core2

TIME >

Introduction and Basic Concepts 46

1.7 Architectures providing concurrency

Cores in one processor may share the same memory or have different levels each one.
Communication and synchronization may be performed by shared memory or message

passing, depending on the architecture.

_shz;d—| CPU1 CPU 2
I variable I L3 shared memory L1 memory L1 memory
—_— |
Writes/ \{eads writes/ writes/
Process Process Process Process | Mms8 Process Process
1 2 3 1 2 3
Operating System Operating System
scheduler scheduler
Corel Corel Corel
Core2 Core2 Core2
CPU 1 CPU 2

CPU1
Concurrency in multicore architecture

Concurrency in multicore multiprocessor
Introduction and Basic Concepts

47

1.7 Architectures providing concurrency

Distributed systems:

— Nodes (processors) are connected to each other through a network

— Communication and synchronization by message passing.

— Each node may contain processors with different architecture or systems.
— Parallelism and concurrency occur.

Node Node
T \
Node Node

Message passing in a distributed system

Introduction and Basic Concepts

48

1.7 Architectures providing concurrency

Depending on the architecture, we define 3 kinds of scheduling:

— Multiprocessing: several cores or processors are available, and shared memory is used.
It happens in multicore and multiprocessor architecture.

— Distributed processing: several cores or processors are available. It happens in
distributed systems.

— Multiprogramming: only one processing unit is available. Shared memory used, and it
happens in uniprocessor architecture. Parallelism is not possible.

Introduction and Basic Concepts 49

1.7 Architectures providing concurrency

* In order to avoid correctness problems, and to help us to get rid of low level
details, we should implement concurrent programs from the concurrent
programming abstraction:

The execution of a concurrent program proceeds by executing a sequence of atomic
statements obtained by random interleaving of the atomic statements of each process.

* So we should think or assume that:

— The final execution is a single sequential program, which is made of atomic statements
of all processes, randomly interleaved.
— Since there exist only 1 CPU, the clock frequency is not important.

— And, most importantly, INTERLEAVING MAY HAPPEN AT ANY TIME. THUS, USE
CONCURRENT PROGRAMMING TOOLS TO PROTECT CRITICAL SECTIONS AND
CORRECTLY PERFORM SYNCHRONIZATION.

Introduction and Basic Concepts 50

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Introduction and Basic Concepts

51

1.8 Java Threads

Java threads are implemented on the Java Virtual Machine (JVM), which is built on
the corresponding operating system threads.

Application ‘\ o
developer '..,;,_.5.'_,

Palma et al. Ch. 2. 2003
JAVA makes concurrent programming possible without taking into account the

underlying system threads library.

Introduction and Basic Concepts 52

1.8 Java Threads

When you run the main method in a Java program, you create one thread (Main
Thread).

From the main thread, you can create new threads. And from each new thread,
you can create new threads as well.

When the only existing thread is the Main Thread, you can be sure of the order of
execution: sequential

Once you create a second thread and start it, you can never know the order of
execution of time-slices for the coexisting threads: you may find indeterminism
and non thread-safe situations if you do not control access to critical sections and
synchronization.

Introduction and Basic Concepts 53

1.8 Java Threads

* InlJava, a thread is represented by a java.lang.Thread object. The two ways to create a
thread are:

1. Instantiate a class which extends java.lang.Thread and overrides method run()

2. Instantiate Thread passing as argument a class implementing method run() of interface
java.lang.Runnable

1 k lect .unitl;

1 package lectures.unitl; > package fectures.tni

- i 3 public class HelloRunnable implements Runnable {

3 public class HelloThread extends Thread { 1

4)) 5e public void run() {

54 public void run() { 6 System.out.println("Hello from a thread!"):
6 System.out.println("Hello from a thread!"): 7 }

7 } g8

8 .]]]] Ge public static void main(String args[]) {

9e public static void main(String args[]) { 10 (new Thread (new HelloRunnable())) .start():
10 (new HelloThread()).start(): 11 }
11 }

e Extending Thread is more simple and intuitive, but your new class cannot extend
anymore classes (Java does not allow multiple inheritance)

 The second method is more complex but your thread can extend another class.

Introduction and Basic Concepts 54

1.8 Java Threads

The official number of states for a Java thread is 6, from version 1.5:
_Eh_u_r_h_c_dﬁ_s_t'ah_t_ eﬁd Description
BLOCKED

Thread state for a thread blocked waiting for a monitor lock.
NEW

Thread state for a thread which has not yet started.
RUNNABLE

Thread state for a runnable thread.

TERMINATED

Thread state for a terminated thread.

TIMED WAITING

Thread state for a waiting thread with a specified waiting time.
WAITING

Thread state for a waiting thread.

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html|

These are the states inside the JVM. That is, we cannot ask if the thread is Running

or Sleeping using method Thread.getState().

Introduction and Basic Concepts

55

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html

1.8 Java Threads

 The Java thread status does not lets us always know how the thread reached it.

state machine Thread States {pmtocol})

m =

/_ Runnakle

thread was selected by

thread scheduler to run/

thread was suspended
by thread schedulerf

_\\

thread terminated/
Terminated

k sleep(slesptime)

O

.

wait{timeout)/

-

join{timaout)/

timeout elapsed! /

N\

\

Timed Waiting
\LackSupport.parkNanos() thread terminated! _/
. notify
LockS rt.parkUntil()f

\OC upport parkUntil() notifyAll
wat 1 N/
joi notifyAll/ Iy
loin/ Waiting iy

LockSupport.park/ thread terminated/ /

wait for lock to enter

\s;rnchro block or methad

—

wait for lock to reenter

Qynchm block or method

Blocked

monitor lock acguired!

@ uml-diagrams.org

Introduction and Basic Concepts

In Runnable, we do not know
when it is actually running.
We do not really need it, when
it Runs your code it means it is
running!

A thread can be killed while
waiting

A thread waiting is waiting for
another thread to send a signal

A thread is blocked when waiting
for another thread to release a
lock

56

1.8 Java Threads

 We can change the state of a thread by calling methods provided by Thread and
Object.

— To wait state:
» sleep(milliseconds): current thread waits the given period of time

e join(): current thread waits until the thread on which this method is called is
terminated

* wait(): current thread waits until it receives a signal from other thread.
— To running state:

 yield(): current thread tells the scheduler that it wants to release the processor
— Indicate that it should go to terminate state:

* nterrupt(): current thread sets the interrupted flag of the thread on which this
method is called. The interrupted thread should check this flag and finish when it
corresponds.

e Careful, do not use deprecated methods!: stop(), destroy(), suspend(), resume()

Introduction and Basic Concepts 57

1.8 Java Threads

In order to call a method on a thread different to the current thread, we need to

keep references when they are instantiated. Think what happens in the following
examples:

class extendedThread extends Thread{
@0Override
public void run() {
for (int i=0;i<1000;i++) {
System.out.println("hi there from "+Thread.currentThread()):
}
}

public class Calling {
public static wvoid main(String args([]) {

extendedThread tl=new extendedThread():
extendedThread tZ2=new extendedThread():

tl.start():
t2.start ()

Introduction and Basic Concepts 58

1.8 Java Threads

public static void main (String args[]) throws Exception{

extendedThread tl=new extendedThread (

):
extendedThread t2=new extendedThread():

tl.start ()
tl.join():
tZ2.start():

class extendedThread extends Thread/

@0Override
public wvoid run() {
for (int i=0;i<1000 && !Thread.currentThread().isInterrupted() ;i++){
System.out.println("hi there from "+Thread.currentThread()):
}

}
public class Calling {
public static void main(String args[]) throws Exception{

extendedThread tl=new extendedThread()
extendedThread tZ2=new extendedThread()

r
r

tl.start():
tZ2.start ()
tl.interrupt():

Introduction and Basic Concepts

59

1.8 Java Threads

class extendedThread extends Thread{

@Override
public void run(){
for (int i=0;1i<1000;i+4) {
System.cut.println("hi there from "+Thread.currentThread()):
if (Thread.currentThread() .getName () .equals ("T1")) yield():

}
public eclass Calling {
public statiec wveoid main(String args[]) throws Exception{

extendedThread tl=new extendedThread()
extendedThread t2=new extendedThread()

r
r

Thread.sleep(3000);
tl.setName ("T1");
t2.setName ("T2") :
tl.start():
t2.start () :

Introduction and Basic Concepts

60

1.8 Java Threads

When you print a thread using Thread.currentThread() method, 3 values are
printed: [name of thread, priority, threads group]

The default priority is 5, which can be changed calling method setPriority(int n)
being n from 1 to 10 (min to max priority).

In theory,

— a thread with higher priority will gain access to CPU before a lower priority thread.
However,

— Aready thread will not switch context with a running higher-priority thread
however, Java does not guarantee this is true at any moment.

Introduction and Basic Concepts 61

1.1 Baseline definitions

1.2 Benefits and issues of concurrency

1.3 Correctness

1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads

1.7 Architectures providing concurrency

1.8 Java Threads

1.9 Pascal FC

Introduction and Basic Concepts

62

1.9 Pascal FC

In this course, we will learn concurrent programming using Pascal-FC and Java.

Pascal FC is based on Pascal, which is enhanced and reduced to support
concurrent programming and to be used in educational contexts.

Developed by Alan Burns and Geoff Davies, at the University of York.

The official webpage maintained by the authors is
http://www-users.cs.york.ac.uk/~burns/pf.html

THE UNIVE RS[TYW

DEPARTMENT OF COMPUTER SCIENCE

Pascal-FC

by Alan Bumns and Geoff Davies

Introduction and Basic Concepts 63

http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html

1.9 Pascal FC

Pascal-FC was developed to provide the most common tools to achieve
correctness in our concurrent programming language, whose primitive commands

or objects may not

Program structure:

contain the desired tools.

program name;
(* global declarations:*)
(* variables, processes, monitors,... *)

begin
(* statements *)
end

Introduction and Basic Concepts

64

1.9 Pascal FC

Declaration and use of 3 processes:

program threeprocesses;
process type MYPROCESS(I : integer):;
begin
writeln(I):
end;
var
P1, P2, P3: MYPROCESS;
begin
(*.. statements executed sequentially?)
cobegin
P1(1);
B2 (2);
P3(3):
coend
(*.. statements executed sequentially?)
end.

Processes P1, P2 and P3:

-are type MYPROCESS

-are run concurrently (we do not
know the order)

-cannot start until the sequential
statements prior to cobegin are
finished.

-must finish before the sequential
statements after coend start.

Introduction and Basic Concepts

65

1.9 Pascal FC

Program which defines two processes. Each one prints its id 5 times.

program printlD;
process First;

var
i: integer:;
begin Instead of defining
for i:=1 to 5 do .
writeln (1) ; the process type, since
end; we only want 1 occurrence
process Second;
Ay of each type, processes are
i: integer; defined directly.
begin
for i:=1 to 5 do
writeln(2):
end;
begin

writeln('This is executed sequentially'):
writeln('and the following cobegin/coend'):
writeln('block concurrently'):
cobegin
First:;
Second;
coend;
writeln('When the 2 processes end, ')

writeln(', this is run sequentially'):
Burns et al. Ch2. 1993.

Introduction and Basic Concepts 66

1.9 Pascal FC

Modify the previous program so that we only need to define 1 kind of process:
declare the type of process, instantiate as many as necessary, use parameters.

Introduction and Basic Concepts

67

1.9 Pascal FC

* States diagram of a process in Pascal-FC

Created Non-existing
T 1 e mmm T 1
I Ready H Running | Destroyed
- —— J
7 Executable
Terminated
pm———— ‘-----. l\ --------- = /
| Delayed ' | Suspended '
P o — J
Blocked

A process is delayed by sleep(). It returns to Ready state after a given time.
A process is suspended by calling a primitive which blocks it: read channel, request
semaphore... A suspended process can only go back to Ready state by the action of

another process. A suspended process is Terminated because it is selected as alternative
(advanced topic).

Introduction and Basic Concepts 68

1.9 Pascal FC

Pascal-FC is designed to be run in OS without support to concurrency. In order to
achieve this, it compiles all processes in one single sequential program.

This means that if the code of one process halts, all the others halt. Do not
misunderstand with state Blocked. By ‘halt” we mean the process cannot go on, for
example due to a deadlock problem or waiting for I/O which never happens.

We can choose 2 kinds of execution:
— Unfair (without time-slices): one process cannot start until other is Terminated
— Fair (time-slices): pieces of code are interleaved in the compiled sequential program.

Introduction and Basic Concepts 69

1.9 Pascal FC

The official compiler and interpreter can be downloaded at http://www-
users.cs.york.ac.uk/~burns/pf.html, but they work by command line.

Compile and run Pascal FC programs using the Eclipse Gavab version. This is not
available on its official webpage: http://www.gavab.es/eclipsegavab

But you can browse the Internet to find it, for example at:
http://eclipsegavab.software.informer.com/2.0/

& Java - PascalFC Program/prog.pfc - Eclipse Platform
File Edit Navigate Search Project Run Window Hep

p B0 Q- BHC @O 5 5 & e
V‘_ %
3 |2 Packa ¢ Te Herar | = O || [B) progipfc £3 = O B rasklst 3 —lim
U et 2 = - R DE-
=) 1 PascaFC Program 7
= - writeln('Hello World');| Finds
[t prog.obj o (% Uncategorized
L B prog.pfc
e C I S e -
An outine i not available.
2. Problems 32 @ Javadoc | |2, Dedaration b ige S
0 errors, 0 wamings, 0 infos
Description Resource Path Location

Introduction and Basic Concepts 70

http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/

1.9 Pascal FC

* Eclipse Gavab: new project of type PascalFC, then new File>Other—>PascalFC Program file
* You can create folders in a project to sort your programs

. New Project

Select a wizard Select a wizard

Wizards:
type filter text

Wizards:

ype filter text

A Haskell Project
@ PascalFC Project

s = Java
> = Pascal

4 (= PascalFC Programming

= General
& C |IE PascalFC Program fi|e|
& C++ & PascalFC Project

= CVS

Introduction and Basic Concepts

Potential Midterm Exam Questions

What is the operating system scheduler? Where is it running?

What is the difference between parallel and concurrent execution? Do you need
to previously know the kind of execution when doing concurrent programing?

What do we mean when we say that concurrency implies indeterminism?

What is a critical section?

Introduction and Basic Concepts

72

Potential Midterm Exam Questions

5. ldentify the critical section in this code:

class Counter { public class Questionb {
int value;
public static void main (String args[]) {

Counter (int v) { Counter ¢ = new Counter (0);

value = v;

LoopingThread t1 = new LoopingThread(c):
} LoopingThread t2 = new LoopingThread(c):
public wvoid increment () | tl.start (s
value++; t2.start();

}

} }

class LoopingThread extends Thread {
Counter counter;

LoopingThread (Counter c) {

counter = c;

}

@Override

public wvoid run() {
try {

Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace () ;

}
for (int 1 = 0; 1 < by i++) {
counter.increment () ;

Introduction and Basic Concepts

73

Potential Midterm Exam Questions
5. Identify the critical section in this code:

class LoopingThread extends Thread |
int value;

LoopingThread (int x) {
value=x;

}

@Override
public void run() {
try {
Thread.sleep(100):
} eateh (InterruptedExcepticn e) {
e.printStackTrace ()
}
for (int i = 0; 1 < 5; i++) {
valuet+;

}
}

public class Questiont {

public static void main(String args[]) {
int v=0;
LoopingThread tl = new LoopingThread(v):
LoopingThread t2 = new LoopingThread(v):
tl.start();
t2.start();

Introduction and Basic Concepts

74

Keywords phonetics

synchronization / sinkranai'zeifan/ <»D)
starvation /sta:'velfan/ (»D)
initiate /I’ nifieit/ <»))
variable /'veariabl/ <)
instantiate /in'stenfieit/ <”D)
inheritance /in"heritans/ <»D)
yield /ji:ld/ =)
architecture /'a:kitektfar/ =)
concurrent /kan 'karant/ <»))
precedence / 'presadans/ <»))

Introduction and Basic Concepts

75

http://dictionary.cambridge.org/dictionary/british/synchronize
http://dictionary.cambridge.org/dictionary/british/starvation
http://dictionary.cambridge.org/dictionary/british/initiate_1
http://dictionary.cambridge.org/dictionary/british/variable_1
http://dictionary.cambridge.org/dictionary/british/instantiate
http://dictionary.cambridge.org/dictionary/british/inheritance_1
http://dictionary.cambridge.org/dictionary/british/yield_1
http://dictionary.cambridge.org/dictionary/british/architecture
http://dictionary.cambridge.org/dictionary/british/concurrent
http://www.merriam-webster.com/dictionary/precedence

