
Unit 1
Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

Pablo.Bermejo@uclm.es

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

2

1.1 Baseline definitions

• A program is a set of instructions written in one or several files.

 • When you compile and run the program, you create a process which is the dynamic
execution of the compiled instructions in the CPU.

CPU

Introduction and Basic Concepts 3

1.1 Baseline definitions

• The process needs some help to run successfully: Program Counter (PC), CPU
registers, stack, stack pointer, main memory for global variables.

• Each time you run a compiled program, you create one new process with new PC,
stack, registers and memory addresses.

• So you have one process running in your computer per program and instance:
Multitask Operating Systems.

CPU

Introduction and Basic Concepts 4

1.1 Baseline definitions

• Moreover, each process may contain several sub-processes or threads.

• These threads share the same main memory for global variables. But they still
have different PC, stack and registers.

• Blue process: Intelligence test

– Green thread: display questions and get input

– Read thread: timer

– Orange thread: pop-ups advertising

CPU

Introduction and Basic Concepts 5

1.1 Baseline definitions

• The scheduler is a built-in process in the kernel of the operating system which
decides when a process/thread enters or exits the CPU.

• Each period of time during which a process is granted the CPU is called time-slice.

• A process may not be finished when the scheduler decides that another process
must enter in CPU. So what about the unfinished process?

– Can the new running process use the same memory addresses or registers?

– Should it start from the beginning again once it re-enters the CPU?

TIME

P1 in CPU

P2 in CPU

P3 in CPU

Introduction and Basic Concepts 6

1.1 Baseline definitions

Image obtained from www.freertos.org

Context switch: store the status (PC, stack, stack
pointer, memory and registers values) of the
unfinished process before running a new process
or restoring the status of a process previously
suspended.

Introduction and Basic Concepts 7

1.1 Baseline definitions
• Thus, a process may be running, waiting, stopped… A generic state diagram for a process is:

• Ready: the process wants to start/resume its execution.
• Running: the process is inside CPU and the current context is its own.
• Waiting: the process is waiting for a signal, or it has been interrupted by an I/O device.
• Admitted: the process enters in the ready-queue managed by the OS scheduler
• Interrupt: the scheduler decides to give a new time-slice to another process.
• Sch. dispatch: the scheduler gives a new time-slice to a ready process.

All transitions to or from running perform a context switch.

Introduction and Basic Concepts 8

1.1 Baseline definitions

• CPUs have such a high clock-frequency that we are not usually aware of context
switches, thus having the abstraction or the appearance that all processes and I/O are
being executed at the same time: operating system, spreadsheet, word processor,
internet browser,…

• Parallel execution of processes: two or more processes running at the same time (one
CPU per process). Physically simultaneous processing.

• Concurrent execution of processes: two or more processes which need to share at
least one CPU to run their machine code instructions. Logically simultaneous
processing.

• Concurrent programming: application of techniques which help us manage the
underlying problems arising from concurrent execution: mutual exclusions and
synchronization of processes .

• The same definitions hold for execution of threads or sub-processes.

• Your lab assignments apply concurrent programming of threads. That is, 1 process with

several threads which share 1 CPU.

Introduction and Basic Concepts 9

1.1 Baseline definitions

Introduction and Basic Concepts

• In parallel computation, memory may be shared or not. In this example, it is not.
• Concurrent computation always uses shared memory.
• Whenever memory is shared, access must be controlled.
• When processes work together to solve a given problem, synchronization is necessary.
• From now on, with concurrent we refer to any computation with shared memory or need

for synchronization. 10

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

11

1.2 Benefits and issues of concurrency
• Performance gain from multiprocessing hardware

– Parallelism for numeric computations

– Several slave processes and one master which merges the results.

– E.g.: In the previous example of parallel computation, if we only had 2 CPUs for slave

processes:

– If we only had 1 CPU, the processing would take 2 extra time-slices.

Introduction and Basic Concepts

S1 en CPU1

S2 en CPU2

TIME

S3 en CPU2

Master

12

1.2 Benefits and issues of concurrency

• Increased application throughput

– an I/O call blocks the thread in the corresponding CPU without delaying the others.

– E.g.: A process for a video-game with 2 threads: moving the enemy and moving Player 1.

The enemy thread is always working, while the thread for player 1 is blocked waiting for

the input device (mouse, keyboard, sensor,…)

Introduction and Basic Concepts 13

1.2 Benefits and issues of concurrency

• Increased application responsiveness

– high priority threads.

– E.g.: the main thread is not responding and it would

never release the CPU, but a higher priority thread gains

access and gives us the opportunity to stop it.

• More appropriate structure

– for programs which interact with the environment (sensors, data analysis, alarms), control

multiple activities and handle multiple events (chats).

– Databases: several readers, one writer.

Introduction and Basic Concepts 14

1.2 Benefits and issues of concurrency

• Depending on the programming techniques, the resulting high-level code may result
very difficult to understand or maintain.

• Error-prone: as you will find in your lab assignments, most of the concurrent
programming techniques used for controlling shared-memory or synchronization can be
distributed along all your code, making it difficult to get rid of execution-time errors:
– E.g.: access to memory is never unlocked

– E.g.: signals for synchronization do not reach the appropriate process

• Indeterminism in execution: the scheduler cannot be controlled, so:
– Interleaving

• we cannot predict the execution order for threads

• we cannot predict how many lines of code a thread will run in each time-slice

– Thus, different runs of a concurrent program produces different interleaving of its threads
access to CPU.

– But, if the concurrency is correctly controlled/programmed, the result is always the same.

– Program expecting the worst case: each line of code is interleaved.

Introduction and Basic Concepts 15

1.2 Benefits and issues of concurrency

• Example of indeterminism in execution without controlling access to memory:

• Instructions p1 and q1 are atomic: 1 machine instruction after compilation.

• Instructions p2 and q2 are not atomic: 3 machine instructions: LOAD, ADD and STORE which
can be interleaved due to the scheduler. But they do not affect x.

• Try to understand why the possible resulting values for variable y are: 5 and 4.

• Try to understand why the possible number of context switches are: 1 to 9.

Introduction and Basic Concepts

Shared memory
int x;

Process p Process q

x = 2 x = 1

int y = x + 3 int z = x + 4

print y print z

16

1.2 Benefits and issues of concurrency

• Example of indeterminism in execution controlling access to memory:

• Try to understand now why y is always 5.

• When one process holds the lock, the other is suspended until the lock is released.

• Number of (working) context switches: 1 to 3. (switch to a process which cannot hold the
lock, makes it be suspended and switch again)

• The order is still non-deterministic, but the result is always the same.

Introduction and Basic Concepts

Shared memory
int x;

Process p Process q

lock access to x lock access to x

x = 2 x = 1

int y = x + 3 int z = x + 4

unlock access to x unlock access to x

print y print z

17

1.2 Benefits and issues of concurrency

• Critical section: it is the portion of code which accesses a shared resource which
might be changed by some process.

• If more than 1 process is running code from the critical section, unexpected results
occur.

• In the previous example, without controlling access to memory, the critical section
are those instruction which access variable x.

Introduction and Basic Concepts

Critical
section

Shared memory
int x;

Process p Process q

x = 2 x = 1

int y = x + 3 int z = x + 4

print y print z

Critical
section

18

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

19

1.3 Correctness

• As we said, concurrent programming is error-prone.

• If you run your concurrent program once and you get the expected result, this
does not mean it is correct. If you run several times, some error may appear due
to a wrong protection of the critical section or wrong synchronization.

• A concurrent program is correct if properties of safety and liveness hold:
– a liveness property must eventually become true

– a safety property must always be true.

• Due to the unpredictability of interleaving:

– it is impossible to debug a concurrent program to find the source of an error.

– Correctness can only be proved with formal specification methods (out of the scope of
this course).

Introduction and Basic Concepts 20

1.3 Correctness

• Safety properties (or problems):

1) Mutual exclusion: only 1 process can be running inside the critical section.

E.g. Several readers and writers and 1 database.

Introduction and Basic Concepts

DB

read

write

read

DB

read

write

read

DB

read

read

read

No writers There is no need to define a critical section

DB

read

write

read

1 writer Critical section is access to database.
 Should 2 readers gain access without blocking to each other?

21

1.3 Correctness

2) Synchronization: when a process must wait for an I/O event or for another process to
do something.

E.g.: Producer-Consumer problem: you cannot consume if the buffer is empty, and you
cannot produce if the buffer is full.

Introduction and Basic Concepts

Thread Consumer waits for the Producer
 to insert something into the buffer.
 If it does not wait –-> null pointer!

Thread Producer waits for the Consumer
 to take one element out of buffer.
 If it does not wait –-> index out of bounds!

We may have several consumers… and even
several producers.
Mutual exclusion and Synchronization may
get very hard depending on the tools that our
concurrent programming high-level language
provides.

22

1.3 Correctness
3) Deadlock: process A is waiting for process B to do something, but process B is waiting for
process A (or a process which depends on A) to do another thing. Process A and B will be
always waiting.

– Once in deadlock, processes are blocked forever.
– There is no general solution for deadlock. In programming time, you must think of

possible deadlocks.
– Possible solutions:

• Assign a maximum time of wait (cars go backwards after 10 seconds blocked)
• Mutual exclusion (the cross-road is a critical section, so only 1 car is allowed at a

time)
• Assign a permanent order in which threads must gain access to the resource

Introduction and Basic Concepts

Car 1 cannot go on until 2 goes on
Car 2 cannot go on until 3 goes on
Car 3 cannot go on until 4 goes on
Car 4 cannot go on until 1 goes on
 DEADLOCK

Operating Systems: Internals and Design Principles. Ch. 6. W. Stalling.

23

1.3 Correctness
• The safety of a concurrent program is assured if it always meets these criteria:

– our code guaranties mutual exclusion of critical sections,

– processes are synchronized, and

– processes never reach a deadlock status.

and then we say that our program is thread-safe.

• Liveness properties (or problems):

1) Livelock: two processes enter in livelock when they are doing some work responding to
each other, but none of them makes any progress. E.g.:

- Thread A needs the light on to wake up, but thread B needs the light off to sleep.
When A switches the light on, B switches it off, and then A switches on again. They
will be looping forever.

- Two cars on a road, or two people walking through a

 corridor, moving left or right at the same time.

Introduction and Basic Concepts

www.guruzon.com

24

1.3 Correctness

2) Starvation: a process is virtually dead by starvation when it never gets access to CPU
meanwhile other threads do. That is, it never gets out of the ready status. This may happen per
several reasons:

- Other thread never releases the CPU

- Other thread never releases a resource which - Other threads have higher priority

 grants access to CPU (locks, semaphores,…)

Introduction and Basic Concepts

CPU

www.danfinlay.com/
www.qnx.com

25

1.3 Correctness

• If it may happen that our processes or threads fall sometimes in livelock or
starvation, then our program does not provide liveness.

• A concurrent program cannot (should not) be debugged using traditional
methods, since liveness problems may happen from time to time. Moreover, the
use of a debugger makes changes in the scheduler so they might never appear.

• Careful design is encouraged, as well as the use of the highest-level tools
available to solve our concurrent problem.

• A program is correct if it is thread-safe and free of liveness problems.

Introduction and Basic Concepts 26

1.3 Correctness

• If there is not any relation between the activity of 2 processes, we say they
are independent.

• We can find two kinds of interaction between processes which might
make correctness fail:

– Competence: several processes must share common resources from the
system (processor, memory, disk, printers,…), so they need to compete to get
them. When the shared resource is a variable in memory, the competition is
known as race condition. The value of such variable might be different
depending of which process gains access to it first.

– Cooperation: several processes must work on different parts of a problem to
solve it together.

Introduction and Basic Concepts 27

1.3 Correctness

Competence and cooperation happen by means of one or more of the following
activities:

• Communication: interchange of information between processes. “I want to print!”,
or “here is the result of your inquiry”.

• Synchronization:

– Conditional synchronization: one or more processes wait until another process or
processes do some work. “I will print the document when the mail server sends it to
me”.

– Mutual Exclusion: only 1 process can be running inside the critical section or using a
shared resource. “I am printing now, so the others jobs need to wait”.

Introduction and Basic Concepts 28

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

29

1.4 Atomic and Volatile
• A statement is atomic if its resulting machine code is executed without any

interleaving.

• An assignment like
x = y

 is compiled to STORE and WRITE instructions, so interleaving may happen.

• Some languages, like Java, assure us that assignment and evaluation of boolean
conditions are executed in an atomic manner.

x = 3 is atomic

x = x + 3 is not atomic!!

• A combination of atomic statements is not atomic!
if(condition) x = 3

if condition is true, another thread may set it to false before x is set to 3.

• Assignment statements of long and double variables are not atomic! (they need 2
words to store their value, and words reading may suffer of interleaving)

Introduction and Basic Concepts 30

1.4 Atomic and Volatile

• Shared variables are first created in main memory.

• In compiling time, the compiler optimizes our code by making each process cache
a copy of all variables or move them to registers.

• So, what happens if 3 threads work with a copy of a shared variable?

Introduction and Basic Concepts

http://igoro.com/

31

1.4 Atomic and Volatile
• In order to avoid this, Java lets us declare variables as volatile to tell the compiler that a

variable is accessed by 2 or more threads.

• Thus, sets and gets are now volatile. Some languages, like C#, make volatile reads and
writes by default.

• Of course, this makes the computation with such variables slower because each access
to it derives in reading or writing in main memory.

• Variable v is volatile, but u is not. However, the set of a new value to v flushes all cache
values in main memory.

• A get call to v in Thread 2 flushes all main memory values in its cache.

Introduction and Basic Concepts

http://igoro.com/

32

1.4 Atomic and Volatile

• Reads and writes of volatile variables are atomic, including long and double.

• Imagine 10 processes running the following code on a volatile shared variable which
is initiated as double d=0 :

for(int i=0; i<5;i++) d++;

• Can we say that the resulting value of d is 50?

Introduction and Basic Concepts 33

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

1.5 Specification of Concurrent Execution

• There exist several methods to specify the order of execution of the instructions in
our concurrent program. Two well-known methods are:

– Precedence graphs

– Cobegin-coend statements

• Precedence Graphs: an acyclic graph, in which a node represents a set of
instructions. An arrow from node A to node B means that B cannot start until A
ends. Two parallel nodes means they can be executed concurrently.

Introduction and Basic Concepts

S1  a:= x + y;
S2  b:= z – 1;
S3  c:= a – b;
S4  w:= c + 1;

S1 S2

S4

S3

Palma et al. Ch. 1. 2003

35

1.5 Specification of Concurrent Execution

• Cobegin/coend block: instructions which can be executed in parallel are written
inside a cobegin/coend block. Instructions inside these blocks can be run in any
order (concurrently), the rest is run sequentially.

Introduction and Basic Concepts

S1  a:= x + y;
S2  b:= z – 1;
S3  c:= a – b;
S4  w:= c + 1;

begin
 cobegin
 a:= x + y;
 b:= z – 1;
 coend;
 c:= a – b;
 w:= c + 1;
end;

Palma et al. Ch. 1. 2003

36

1.5 Specification of Concurrent Execution

Introduction and Basic Concepts

S1

S7

S2 S3

S5

S4

S6

S1;

Use the precedence graph to write the specification of concurrent execution with
cobegin/coend statements.

Palma et al. Ch. 1. 2003

37

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

38

1.6 Processes vs. Threads
• Processes are run by the operating system.

• Threads are independent running sequences inside a process.

• Both processes and threads can be run concurrently:

– 1st level of concurrency: processes

– 2nd level of concurrency: threads

• Context switch is lighter in threads than in processes:

– Some of the context information of a process belongs to the OS kernel

– All the information related to a thread belongs to the OS user space

Introduction and Basic Concepts www.cs.cf.ac.uk/Dave/C/

1st level scheduling: user threads
compete for access to a kernel thread

2nd level scheduling: system threads
compete for access to CPU

39

1.6 Processes vs. Threads

• Different processes use different memory addresses.

• Threads of the same process share memory addresses.

• A process allocates a shared memory space (heap space) for the shared variables of all
its threads. Although each thread has its own stack (local variables from methods).

• Threads can control other threads (kill, create,…). Processes can only manage their
children.

• Threads are also called light weight processes.

Introduction and Basic Concepts

http://www.java-forums.org/

40

1.6 Processes vs. Threads

• Threads can communicate with each other directly (signals), while processes need
calls to the operating systems, pipes, …

• Children and parent threads share heap space.

• There are two levels of threads-programming:
– System (kernel) threads

– User threads

Introduction and Basic Concepts

http://www.perl.com/

41

1.6 Processes vs. Threads

• User threads: threads created inside the user space of the OS. These are created
from our high-level programming language and are used to create concurrent
programs.

• System threads: threads provided by the operating system to give support to user
threads. There exist 3 standards of system threads:

– Win32 (proprietary), implemented in the OS kernel

– OS/2 Win32 (proprietary), implemented in the OS kernel

– POSIX (UNIX and Linux), implemented in the user space of the OS

• The way the programming language uses the native system threads is transparent
for the developer.

Introduction and Basic Concepts 42

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

43

1.7 Architectures providing concurrency

• There are three kinds of hardware architecture which provide concurrency:

– Uniprocessor: 1 computer with 1 processor

– Multiprocessor: 1 computer with more than 1 processor

– Distributed Systems: several computers (uni or multiprocessor) in a network.

• Uniprocessor:

– Processes share the processor by interleaving.

Introduction and Basic Concepts

TIME

P1 in CPU

P2 in CPU

P3 in CPU

44

1.7 Architectures providing concurrency

– Interleaving is controlled by the scheduler of the operating system

– Threads share the same memory: communication and synchronization is performed by
shared variables.

Introduction and Basic Concepts

 Shared memory

Thread
1

shared
variable

Operating System

scheduler

writes reads

CPU

Thread
2

Thread
3

Concurrency in uniprocessor architecture

45

1.7 Architectures providing concurrency

• Multiprocessor and Multicore:

– Now one processor has several cores, each capable of running parallel instructions. They
are integrated in one chip: multicore

– There might be several multicore chips: multicore multiprocessor (cluster)

– Real parallelism happens, but interleaving is still necessary (commonly, the number of
processes is higher than the number of cores)

Introduction and Basic Concepts

TIME

P1 in core1

P2 in core2

P3 in core1

46

1.7 Architectures providing concurrency

• Cores in one processor may share the same memory or have different levels each one.

• Communication and synchronization may be performed by shared memory or message
passing, depending on the architecture.

Introduction and Basic Concepts

 L3 shared memory

Process
1

shared
variable

Operating System

scheduler

writes reads

Core1
Core2

Process
2

Process
3

CPU 1

Concurrency in multicore architecture

CPU 1
 L1 memory

Process
1

Operating System

scheduler

writes

Core1
Core2

Process
2

Process
3

CPU 1

Core1
Core2

CPU 2
 L1 memory

writes

msg

CPU 2

Concurrency in multicore multiprocessor
47

1.7 Architectures providing concurrency

• Distributed systems:

– Nodes (processors) are connected to each other through a network

– Communication and synchronization by message passing.

– Each node may contain processors with different architecture or systems.

– Parallelism and concurrency occur.

Introduction and Basic Concepts

Node Node

Node Node

Message passing in a distributed system

48

1.7 Architectures providing concurrency

• Depending on the architecture, we define 3 kinds of scheduling:

– Multiprocessing: several cores or processors are available, and shared memory is used.
It happens in multicore and multiprocessor architecture.

– Distributed processing: several cores or processors are available. It happens in
distributed systems.

– Multiprogramming: only one processing unit is available. Shared memory used, and it
happens in uniprocessor architecture. Parallelism is not possible.

Introduction and Basic Concepts 49

1.7 Architectures providing concurrency

• In order to avoid correctness problems, and to help us to get rid of low level
details, we should implement concurrent programs from the concurrent
programming abstraction:

The execution of a concurrent program proceeds by executing a sequence of atomic
statements obtained by random interleaving of the atomic statements of each process.

• So we should think or assume that:

– The final execution is a single sequential program, which is made of atomic statements
of all processes, randomly interleaved.

– Since there exist only 1 CPU, the clock frequency is not important.

– And, most importantly, INTERLEAVING MAY HAPPEN AT ANY TIME. THUS, USE
CONCURRENT PROGRAMMING TOOLS TO PROTECT CRITICAL SECTIONS AND
CORRECTLY PERFORM SYNCHRONIZATION.

Introduction and Basic Concepts 50

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

51

1.8 Java Threads

• Java threads are implemented on the Java Virtual Machine (JVM), which is built on
the corresponding operating system threads.

• JAVA makes concurrent programming possible without taking into account the
underlying system threads library.

 Introduction and Basic Concepts

Palma et al. Ch. 2. 2003

52

1.8 Java Threads

• When you run the main method in a Java program, you create one thread (Main
Thread).

• From the main thread, you can create new threads. And from each new thread,
you can create new threads as well.

• When the only existing thread is the Main Thread, you can be sure of the order of
execution: sequential

• Once you create a second thread and start it, you can never know the order of
execution of time-slices for the coexisting threads: you may find indeterminism
and non thread-safe situations if you do not control access to critical sections and
synchronization.

Introduction and Basic Concepts 53

1.8 Java Threads
• In Java, a thread is represented by a java.lang.Thread object. The two ways to create a

thread are:
1. Instantiate a class which extends java.lang.Thread and overrides method run()

2. Instantiate Thread passing as argument a class implementing method run() of interface
java.lang.Runnable

• Extending Thread is more simple and intuitive, but your new class cannot extend
anymore classes (Java does not allow multiple inheritance)

• The second method is more complex but your thread can extend another class.

Introduction and Basic Concepts 54

1.8 Java Threads

• The official number of states for a Java thread is 6, from version 1.5:

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html

• These are the states inside the JVM. That is, we cannot ask if the thread is Running
or Sleeping using method Thread.getState().

Introduction and Basic Concepts 55

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html

1.8 Java Threads
• The Java thread status does not lets us always know how the thread reached it.

Introduction and Basic Concepts

A thread waiting is waiting for
another thread to send a signal

A thread can be killed while
waiting

notify
notifyAll

In Runnable, we do not know
when it is actually running.
We do not really need it, when
it Runs your code it means it is
running!

A thread is blocked when waiting
for another thread to release a
lock

56

1.8 Java Threads

• We can change the state of a thread by calling methods provided by Thread and
Object.

– To wait state:

• sleep(milliseconds): current thread waits the given period of time

• join(): current thread waits until the thread on which this method is called is
terminated

• wait(): current thread waits until it receives a signal from other thread.

– To running state:

• yield(): current thread tells the scheduler that it wants to release the processor

– Indicate that it should go to terminate state:

• interrupt(): current thread sets the interrupted flag of the thread on which this
method is called. The interrupted thread should check this flag and finish when it
corresponds.

• Careful, do not use deprecated methods!: stop(), destroy(), suspend(), resume()

Introduction and Basic Concepts 57

1.8 Java Threads
• In order to call a method on a thread different to the current thread, we need to

keep references when they are instantiated. Think what happens in the following
examples:

Introduction and Basic Concepts 58

1.8 Java Threads

Introduction and Basic Concepts 59

1.8 Java Threads

Introduction and Basic Concepts 60

1.8 Java Threads

• When you print a thread using Thread.currentThread() method, 3 values are
printed: [name of thread, priority, threads group]

• The default priority is 5, which can be changed calling method setPriority(int n)
being n from 1 to 10 (min to max priority).

• In theory,

– a thread with higher priority will gain access to CPU before a lower priority thread.
However,

– A ready thread will not switch context with a running higher-priority thread

 however, Java does not guarantee this is true at any moment.

Introduction and Basic Concepts 61

Introduction and Basic Concepts

1.1 Baseline definitions
1.2 Benefits and issues of concurrency
1.3 Correctness
1.4 Atomic statements and volatile variables
1.5 Specification of Concurrent Execution
1.6 Processes vs. Threads
1.7 Architectures providing concurrency
1.8 Java Threads
1.9 Pascal FC

62

1.9 Pascal FC

• In this course, we will learn concurrent programming using Pascal-FC and Java.

• Pascal FC is based on Pascal, which is enhanced and reduced to support
concurrent programming and to be used in educational contexts.

• Developed by Alan Burns and Geoff Davies, at the University of York.

• The official webpage maintained by the authors is

http://www-users.cs.york.ac.uk/~burns/pf.html

Introduction and Basic Concepts 63

http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html

1.9 Pascal FC

• Pascal-FC was developed to provide the most common tools to achieve
correctness in our concurrent programming language, whose primitive commands
or objects may not contain the desired tools.

• Program structure:

Introduction and Basic Concepts

program name;
(* global declarations:*)
(* variables, processes, monitors,… *)

begin
 (* statements *)
end

64

1.9 Pascal FC

• Declaration and use of 3 processes:

Introduction and Basic Concepts

Processes P1, P2 and P3:
 -are type MYPROCESS
 -are run concurrently (we do not
know the order)
 -cannot start until the sequential
statements prior to cobegin are
finished.
 -must finish before the sequential
statements after coend start.

65

1.9 Pascal FC
• Program which defines two processes. Each one prints its id 5 times.

Introduction and Basic Concepts

Instead of defining
the process type, since
we only want 1 occurrence
of each type, processes are
defined directly.

Burns et al. Ch2. 1993.

66

1.9 Pascal FC
• Modify the previous program so that we only need to define 1 kind of process:

declare the type of process, instantiate as many as necessary, use parameters.

Introduction and Basic Concepts 67

1.9 Pascal FC
• States diagram of a process in Pascal-FC

Introduction and Basic Concepts

Non-existing Created

Ready Running

Delayed Suspended

Executable

Destroyed

Terminated

Blocked

A process is delayed by sleep(). It returns to Ready state after a given time.
A process is suspended by calling a primitive which blocks it: read channel, request
semaphore… A suspended process can only go back to Ready state by the action of
another process. A suspended process is Terminated because it is selected as alternative
(advanced topic).

68

1.9 Pascal FC

• Pascal-FC is designed to be run in OS without support to concurrency. In order to
achieve this, it compiles all processes in one single sequential program.

• This means that if the code of one process halts, all the others halt. Do not
misunderstand with state Blocked. By ‘halt’ we mean the process cannot go on, for
example due to a deadlock problem or waiting for I/O which never happens.

• We can choose 2 kinds of execution:

– Unfair (without time-slices): one process cannot start until other is Terminated

– Fair (time-slices): pieces of code are interleaved in the compiled sequential program.

Introduction and Basic Concepts 69

1.9 Pascal FC

• The official compiler and interpreter can be downloaded at http://www-
users.cs.york.ac.uk/~burns/pf.html, but they work by command line.

• Compile and run Pascal FC programs using the Eclipse Gavab version. This is not
available on its official webpage: http://www.gavab.es/eclipsegavab

• But you can browse the Internet to find it, for example at:
http://eclipsegavab.software.informer.com/2.0/

Introduction and Basic Concepts 70

http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www-users.cs.york.ac.uk/~burns/pf.html
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://www.gavab.es/eclipsegavab
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/
http://eclipsegavab.software.informer.com/2.0/

1.9 Pascal FC

• Eclipse Gavab: new project of type PascalFC, then new FileOtherPascalFC Program file

• You can create folders in a project to sort your programs

Introduction and Basic Concepts 71

Potential Midterm Exam Questions
1. What is the operating system scheduler? Where is it running?

2. What is the difference between parallel and concurrent execution? Do you need
to previously know the kind of execution when doing concurrent programing?

3. What do we mean when we say that concurrency implies indeterminism?

4. What is a critical section?

Introduction and Basic Concepts 72

Potential Midterm Exam Questions

5. Identify the critical section in this code:

Introduction and Basic Concepts 73

Potential Midterm Exam Questions
• 5. Identify the critical section in this code:

Introduction and Basic Concepts 74

Keywords phonetics

• synchronization /ˌsɪŋkrənaɪˈzeɪʃən/

• starvation /stɑ:ˈveɪʃən/

• initiate /ɪˈnɪʃieɪt/

• variable /ˈveəriəbl/

• instantiate /ɪnˈstænʃieɪt/

• inheritance /ɪnˈherɪtəns/

• yield /jiːld/

• architecture /ˈɑːkɪtektʃər/

• concurrent /kənˈkʌrənt/

• precedence / ˈpresədəns/

Introduction and Basic Concepts 75

http://dictionary.cambridge.org/dictionary/british/synchronize
http://dictionary.cambridge.org/dictionary/british/starvation
http://dictionary.cambridge.org/dictionary/british/initiate_1
http://dictionary.cambridge.org/dictionary/british/variable_1
http://dictionary.cambridge.org/dictionary/british/instantiate
http://dictionary.cambridge.org/dictionary/british/inheritance_1
http://dictionary.cambridge.org/dictionary/british/yield_1
http://dictionary.cambridge.org/dictionary/british/architecture
http://dictionary.cambridge.org/dictionary/british/concurrent
http://www.merriam-webster.com/dictionary/precedence

