Unit 3

Shared-memory Communication

3.1 SEMAPHORES

3.1 Semaphores

3.1.1 Introduction
3.1.2 Mutual Exclusion

3.1.3 Condition Synchronization
3.1.4 Producer-Consumer Problem
3.1.5 The Dining Philosophers

Pablo.Bermejo@uclm.es
0.A.1

3.1 Semaphores
3.1.1 Introduction
3.1.2 Mutual Exclusion
3.1.3 Condition Synchronization
3.1.4 Producer-Consumer Problem
3.1.5 The Dining Philosophers

3.2 CCR
3.3 Monitors

Semaphores
M) e

3 Shared-memory Communication

In Unit 2, we learned techniques based on busy-wait which allowed the
programmer to synchronize processes so that:

— Processes do not execute some action if a condition is not met
— Processes access shared resources under mutual exclusion

We learned that passive-wait (blocked process) is much more efficient than using
busy-wait and protocols.

In multiprogramming, processes share memory. This fact has been used to develop
tools which make synchronization easier and less error-prone.

The most important and most frequently found in concurrent languages, are:
— Semaphores
— Conditional Critical Regions
— Monitors

ordered increasingly by level of abstraction.

Semaphores 3

3.1.1 Introduction to semaphores

Dijkstra (1968) creates the first synchronization primitive tool using passive-
waiting: semaphores.

A semaphore is a low level tool which helps the programmer achieve conditional
synchronization among processes and access to critical regions under mutual

exclusion.

Dijkstra
(1930-2002)

Semaphores 4

3.1.1 Introduction to semaphores

A semaphore may be implemented as a structured data type or as an object,
depending on the programming language.

In order to implement a semaphore from scratch, we need:
— A private counter of permits.
— A private set of blocked processes

— Public methods which change the counter and, according to the new value, may make
changes in the state of processes (block / unblock).

Permissible values for the counter of permits depends of the type of semaphore:
— General or counting semaphore: non-negative integer value.
— Binary semaphore: 0 or 1. Only 1 bit of storage is required!

In practice, we refer to the current value of the counter of permits by saying “the
value of the semaphore”. So, given semaphore s, “s>0” stands for “the counter of
permits in s is greater than 0”.

Semaphores 5

3.1.1 Introduction to semaphores

Permissible operations. There are only 2 operations which processes can carry on
semaphores: wait(s) and signal(s).

wait(s): decreases s or blocks the process.
— Ifs>0,s:=s-1
— If s=0, block the process and queue it in blocked processes set.

signal(s): increases s or unblocks a process.
— If there are blocked processes in s, unblock one process.

— else, s:=s+1

A call to any of these operations involves testing the value of s or the set of
blocked processes and, when appropriate, perform a modification. Semaphores
grant that all this is executed as an indivisible action. Internally, this is not
implemented with busy-wait but using OS functions to block and grant mutual
exclusion of both operations..

Semaphores 6

3.1.1 Introduction to semaphores

* Having 2 operations called on a semaphore, op1 and op2, both are to be executed
but we cannot predict the order. We just know that they will be run under mutual
exclusion.

wait(s)

if s>0 then
s:=s-1 - Atomic execution

Mutual else bock this process on s

exclusion

signal(s)

if processes blocked on s then
unblock on of them

else s:=s+1

Atomic execution

* In the signal operation, if there are more than 1 blocked process, the way to select
the process to be unblocked depends on the implementation of the semaphore:
FIFO, priorities, random (Pascal-FC),...

Semaphores 7

3.1.1 Introduction to semaphores

If signal is called on a binary semaphore which already has a value of 1, in most
programming languages this is tackled by becoming this call a no-operation; that
is, it has no effect.

Caution, the name of operation wait maybe a bit misleading. A process calling wait
only does wait (blocks) if s=0. That is, if it cannot take any permit.

In Java:

— keywords wait and signal, without parameters, are reserved for processes signaling.
They can be regarded as semaphore with 0 permits by default in any execution. We will
work with them in lab assignments.

— Object java.util.concurrent.Semaphore provides the corresponding methods acquire and
release.

Semaphores 8

3.1.1 Introduction to semaphores

Pascal-FC provides non-negative general semaphores. So if you want a binary
semaphore, it is your responsibility to correctly deploy wait and signal operations.

Examples for declaring variables, an array and a record using type semaphore.

var
sl,s2:semaphore;
semArray:array [l1l..5] of semaphore;
semRec:record
i:integer;
S : semaphore;
end;

Restrictions in declaring semaphores:
— they may be declared

* in the global declaration space right before the main block and pass them by
reference .

* In the global declaration space of the program.
— In order to pass them by reference, do not forget to use the var modifier.

Semaphores

3.1.1 Introduction to semaphores

Why do you think semaphores need to be passed as reference?

Procedure initial(s, value) initiates semaphore s to the given value.
Semaphores must be initiated in the main block and out of the cobeing-coend keywords .

Pascal provides the 2 semaphore operations, implemented as procedures:
— wait(s) and signal(s),
— Where s is of type semaphore.

Procedure write can use a semaphore as argument to output its value on screen.

Java provides class java.util.concurrent.Semaphore.
Semaphore mutex=new Semaphore(1); // binary semaphore

Semaphores 10

3.1 Semaphores
3.1.1 Introduction
3.1.2 Mutual Exclusion
3.1.3 Condition Synchronization
3.1.4 Producer-Consumer Problem
3.1.5 The Dining Philosophers

3.2 CCR
3.3 Monitors

Semaphores

11

3.1.2 Mutual Exclusion

By using semaphores, we can forget about using protocols to access and exit
critical sections.

Given a critical section CS, we achieve mutual exclusion access by:
— using a binary semaphore s
— calling wait(s) right before entering CS
— calling signal(s) right after exiting CS

If s=1, CS is free.
If s=0, a process is inside CS.

If we have several critical sections, we need the same binary semaphore for each
subset of critical sections which need mutual exclusion among them.

Semaphores 12

3.1.2 Mutual Exclusion

program mutexSem;
var
cont : integer;

process type MyProcess (var sem:
begin
repeat
wait (sem) ;

(* CS *)
cont := cont +1;
writeln('["',id,"'] ',cont);

signal (sem) ;
(* non-CS¥*)

forever
end;

var
pl,p2:MyProcess;
mutex:semaphore;

begin
initial (mutex, 1) ;
cont := 0;
cobegin
pl (mutex, 1) ;
P2 (mutex, 2) ;
coend;

semaphore; id:integer) ;

Semaphores

(Pascal-FC)

What do you think the output is?

What may happen if we move
the write command out of CS?

13

g,

3.1.2 Mutual Exclusion
(Java)

public class mutexSem {
public static void main(String args[]) {
Counter counter = new Counter():;
i++)

class Counter {

int cont = 0;
Semaphore mutex = new Semaphore(l): for (int i = 0; 1 < 5;

(new counterThread (counter, 1)).start():;

void increment (int id) {
try { }
mutex.acquire()
} eateh (InterruptedExzcepticn e) {
e.printStackTrace():

}
cont++;
System.cut.println("[" + id + "] " + cont);

mutex.release(); Do you think the same reference to mutex

} } is shared among processes?

class counterThread extends Thread {
Counter c;
int ID;

counterThread (Counter counter, int id) {
Cc = counter;
ID = id;

}

public void run () {
for (int i = 0; i < 100; i++) {
c.increment (ID) ;

Semaphores 14

3.1.2 Mutual Exclusion

General semaphores can be used for sharing a given number of available instances
of a resource; or to provide multiple exclusion (more than 1 process in CS).

E.g.: number of tickets for a concert; number of chairs in a room;...

Thus:

— Binary semaphore: mutual exclusion
e.g. pascal-FC
— General semaphore:
e Share or allocate resources.
e.g. pascal-FC

e Multiple exclusion: N>1 processes in CS
e.g. pascal-FC

Semaphores

initial (mutex, 1) ;

initial (tickets, 5);

initial (multiplex, 3);

15

3.1.2 Mutual Exclusion

When a general semaphore is used to share resources (e.g. chair in waiting room),
once one instance of a resource is returned the process must call signal(s).

If a general semaphore is used to allocate resources which are never returned (e.g.
books for sale), then signal(s) is never called. If there are more processes than the
initial value of the semaphore, some processes will never get the resource and fall
in deadlock.

Semaphores 16

3.1 Semaphores
3.1.1 Introduction
3.1.2 Mutual Exclusion
3.1.3 Condition Synchronization
3.1.4 Producer-Consumer Problem
3.1.5 The Dining Philosophers

3.2 CCR
3.3 Monitors

Semaphores

17

3.1.3 Condition Synchronization

* Remember from Unit 2 that a condition synchronization happens when one process
halts waiting for a condition to be met thanks to the action of another process.

program conditSynch;

A possible solution for this precedence diagram var

continue: boolean:

is the use of busy-wait:

process ProcesshA;

begin
write('asl '):
Process a continue := true;
write('as2 '):
end;
process ProcessB;
Process b begin
write('bsS1 '):
while not continue do:
write('bsS2 ');:
i end;
begin
continue := false;
cobegin
ProcessA;
ProcessB:
coend
end.

Semaphores

3.1.3 Condition Synchronization

Solution using a binary semaphore in Pascal-FC
program synchronization:;

var aSldone: semaphore;

Process a
process ProcessA;
begin
write('asSl '):
signal (aSldone) ; Process b

write('asz ');
end;

process ProcessB;
begin

write('bs1l ') ;

wait (aSldone) ;

write('bs2 ') ;
end;
begin
initial (aSldone, Q) :
cobegin
ProcesshA;
ProcessB;
coend

end.
Semaphores

Try to code this solution in Java at home!

19

3.1.3 Condition Synchronization

A rendezvous is a meeting between 2 processes: both wait for each other

Process a

Process b

program rendezvous;

var aSldone: semaphore;
var bSldone: semaphore;

process Processh;
begin
write('asl '"):
signal (aSldone) ;
wait (bSldone) ;
write('as2 '"):
end;

process ProcessB;

begin
write('bs1l '"):
signal (bsldone) ;
wait (aSldone) ;
write('bs2 ');:
end;

begin

%gﬁ%i hores

initial (aSldone,0):
initial (bSldone, Q) ;
cobegin
Processh;
ProcessB;
coend

aS2 and bS2 will not
be written until aS1
and bS2 are.

To achieve a rendezvous,
each process must signal
its semaphore (announce
Itself) and then wait on
the semaphore of the
other process.

Java code this solution
at home!

20

3.1.3 Condition Synchronization

A barrier

— is a type of condition synchronization in which processes are blocked in the same point
until all of them reach that point.

— s a generalization of rendezvous, which only works for 2 processes.

Pascal-FC does not have a primitive type for barriers.

A common way to implement a barrier using semaphores is using the turnstile
solution: once all processes are blocked in the same statement, pairs of wait-signal
are executed to let all processes go through a binary semaphore.

E.g.: 5 processes write ‘A, When all of them finish, then they write B.

Draw the precedence diagram

Semaphores 21

3.1.3 Condition Synchronization

program turnstileBarrier;

const NPR=5;
var

mutex : semaphore;
Sbarrier: semaphore;
pCounter: integer;

process type writer:;
begin
write('A");

wailt (mutex) (*mutex to increment counter®)
pCounter := pCounter + 1;

signal (mutex);

if pCounter = NPR then signal (Sbarrier):
(*turnstile: once a process is unblocked
fromt wait, the rest will be unblocked

one after the other#*)
wait (Sbharrier):
signal (Sbarrier):

write('B");
end;

(Pascal-FC)

var
i:integer;

begin

pCounter := 0;
initial (Skarrier,0):
initial (mutex,1):
cobegin
for i:=1 to 5 do
writers[i]:
coend
end.

Semaphores

writers:array [l..5] of writer;

22

3.1.3 Condition Synchronization

(Java)

import java.util.concurrent.CyclicBarrier ;

class Writer extends Thread{
CyclicBarrier barrier;

Writer (CyclicBarrier b) {
barrier=b;
}
public woid runf{) {
System.out.println ("A"):
try {
barrier.await () :
} catch (Exception e) {
e.printStackTrace () :

}
System.out.println("B"):

}

public class Barrier {
statiec final int NPR=bh;

public static wveoid main(String args[]){

CyclicBarrier cb=new CyclicBarrier (NPR):

for (int i=0;i<NPR;i++) (new Writer (cb)).start():

The concurrent package of Java
Provides an object CyclicBarrier
which abstracts us from the barrier
implementation

23

3.1.3 Condition Synchronization
(Java)

A cyclic barrier allows to re-use the barrier again after the waiting threads are
released.

For example, it can used in a loop to repeat the AAAAABBBBB printing 2 times.

public void run() {
for (int loop = 0; loop < 2; loopt+) {

System.out.println("A") ;

try |
barrier.await () ;
System.out.println("B");
barrier.await () :

} catch (Exception e) {
e.printStackTrace () ;

This code gives a new precedence restraint: the second set of A’ cannot
be printed until the previous set of ‘B’ are written. Otherwise, we would only
get the first iteration right.

Semaphores

24

3.1.3 Condition Synchronization
(Pascal-FC)

* Implementing a cyclic barrier in Pascal-FC is trickier because we need to build the
barrier using semaphores.

* We need:
— 2 semaphore-barriers
— 2 turnstile protocols
— Decrease the counter before going through the second turnstile protocol
— Block the second semaphore-barrier before unblocking the first.
— Block the first semaphore-barrier before unblocking the second.

Semaphores

3.1.3 Condition Svnchronlzatlon (Pascal-FC)

program cyclicBarrier;
const NPR=5; ITERATIONS=3;

var
mutex, Sbarrierl, Sbarrier?2 semaphore;
pCounter: integer;

process type rewriter;
var it:integer;

begin

for it:=1 to ITERATIONS do

begin
write ('A'");
wailt (mutex) ; (*mutex to increment counter*
pCounter := pCounter + 1;
if pCounter = NPR then
begin

wait (Sbarrier?2); {block Sbarrier2}
signal (Sbarrierl); {unblock Sbarrierl}
end;
signal (mutex);
wait (Sbarrierl); (*1st turnstile*
signal (Sbarrierl);

)

write('B');
wait(mut X) ; (*mutex to decrement counter*
pCounter := pCounter - 1;

if pCounter = 0 then
begin
wait (Sbarrierl); {block Sbarrierl}
signal (Sbarrier2); {unblock Sbarrier?2}
end;
signal (mutex) ;

wait (Sbarrier2); (*2nd turnstile*
signal (Sbarrier?2);
end;
end;

)

)

)

Sema

1.1nteger,

rewriters:array [1..5] of rewriter;
begin
pCounter := 0;

initial (Sbarrierl, 0);
initial (Sbarrier2,1);
initial (mutex, 1) ;
cobegin

for i:=1 to 5 do

rewriters([i];
coend
end.

Why do you think mutex is used
for both the increment and decrement?

Why do you think each mutex controls
the access to six lines of code?

Phores 26

3.1.3 Condition Synchronization

Thus, semaphores can be used to provide:
— Mutual exclusion in access to shared resources
— Synchronize processes

There exist several classic Concurrent Programming problems which need to be
solved using both mutual exclusion and synchronization.

We will solve 2 problems:
— Producer-Consumer
— The dining philosophers

Semaphores

27

3.1 Semaphores
3.1.1 Introduction
3.1.2 Mutual Exclusion
3.1.3 Condition Synchronization
3.1.4 Producer-Consumer Problem
3.1.5 The Dining Philosophers

3.2 CCR
3.3 Monitors

Semaphores

28

3.1.4 Producer-Consumer problem

This problem can be set with different levels of difficulty. We will solve an advanced
version of the problem, with 4 producers, 3 consumers and a buffer of Size 8.

Producers insert data in a circular buffer.

Only 1 producer can insert an item in a given slot.
A position cannot be written if it is being read.
If the buffer is full, no item can be inserted.

Consumers remove data from the circular buffer.

Remove in a FIFO manner

2 consumers cannot remove an item from the same slot
A slot cannot be consumed if it is being written.

A consumer cannot remove data from an empty buffer.

Identify which restrictions need condition synchronization, and which need mutual exclusion.
Do we need more than 1 semaphore for mutual exclusion?

Semaphores 29

3.1.4 Producer-Consumer problem

Necessary data:
removelndex = integer
removeIndex insertindex = integer
buffer - record.

1 2 slots = array of integer variables

X

Necessary semaphores:
Mutual exclusion = binary
Counter of empty slots = general
Counter of available items—> general

>k

Why do we use semaphores to count,
6 5 Instead of integer variables?

insertIndex

Semaphores

PASCAL-FC

3.1.4 Producer-Consumer problem

program producerConsumer;

const SIZE=8;

{new buffer type}

type tBuffer = record
data: array [1l..SIZE] of integer;
insertIndex, removelndex: integer;
Sitems, Sempty, Smutex: semaphore;

end;

procedure init(var buffer:tBuffer);
begin
buffer.insertIndex := 1;
buffer.removelndex 1;
initial (buffer.Sitems,0);
initial (buffer.Sempty,SIZE) ;
initial (buffer.Smutex, 1) ;
end;

What operations on buffer are
protected by mutual exclusion?

procedure insert(item:integer; var buffer:tBuffer);
begin
{block if buffer has no empty slots}
wait (buffer.Sempty) ;
wait (buffer.Smutex) ;
buffer.data[buffer.insertIndex]:= item;
writeln('-->',item);
buffer.insertIndex:=buffer.insertIndex MOD SIZE + 1;
signal (buffer.Smutex) ;
{increase the counter of items}
signal (buffer.Sitems) ;
end;

procedure remove (var item:integer; var
buffer:tBuffer);
begin
{block if buffer has 0 items}
wait (buffer.Sitems);
wait (buffer.Smutex) ;
item := buffer.data[buffer.removelndex];
writeln ('<--"',item);
{our array starts by index 1}
buffer.removelndex:=buffer.removeIndex MOD SIZE +1;
signal (buffer.Smutex) ;
{increase the counter of empty slots}
signal (buffer.Sempty) ;
end;

Semaphores 31

PASCAL-FC

3.1.4 Producer-Consumer problem

process type tProducer
(var buffer:tBuffer);

var
item: integer;
begin
repeat
item := random(200) ;
insert (item, buffer);
forever
end;

process type tConsumer
(var buffer:tBuffer);
var
item:
begin
repeat
remove (item, buffer);
writeln (item) ;
forever
end;

integer;

var

buffer:tBuffer;

i:integer;

prod:array [1..5] of tProducer;

cons:array [1l..3] of tConsumer;
begin

init (buffer);

cobegin

for i:=1 to 5 do
prod[i] (buffer);

for i:=1 to 3 do
cons[i] (buffer);
coend;
end.

Semaphores

32

3.1.4 Producer-Consumer problem

A similar solution can be implemented in Java using class Semaphore, and creating
class Buffer instead of a record.

In order to gain mutual exclusion, Java provides the keyword synchronized.

Methods in the same class with synchronized modifier are executed under mutual
exclusion. That is, only 1 thread can exist at a time in all synchronized methods.

The Producer-Consumer problem is now solved using this keyword.

In order to block and resume a thread, Java provides methods wait(), notify(),
notifyAll(). Do not confuse them with semaphores procedures. They are signals,
which will be taught in more detail in Lab Sessions.

We cannot know which thread is going to be resumed by notify().

Semaphores 33

JAVA

3.1.4 Producer-Consumer problem

class Buffer {

static final int SIZE = 8,

int insertIndex, removelndex, empty, items;
int[] data;

Buffer () {

data = new int[SIZE],
insertIndex = 0;
removelIndex = 0;
empty = SIZE;

items = 0;

}

synchronized void insert(int item)
throws InterruptedException {

// block if buffer has no empty slots
while (empty == 0) {

wait () ;

}

data[insertIndex] = item;

//arrays start by index 0

insertIndex = (l+insertIndex)%$SIZE,
items++;//increase counter of items
notifyAll();

}

synchronized int remove ()
throws InterruptedException {

// block if buffer has 0 items
while (items == 0) {
wait () ;

}
int x = data[removelIndex];
removelIndex = (l+removelndex)%SIZE;,

empty++;//increase counter of empty slots

notifyAll();
return x;

Why do we call notifyAll instead of notify?
Why do we enclose wait in a while loop instead an
if condition?

Semaphores 34

JAVA

3.1.4 Producer-Consumer problem

class Producer extends Thread {
Buffer buffer;

Producer (Buffer b) {
buffer = b;

public void run() {
java.util.Random r =
while (true) {
try {
buffer.insert (r.nextInt (200)) ;
} catch (InterruptedException
e.printStackTrace(); } } }

new java.

class Consumer extends Thread {
Buffer buffer;
Consumer (Buffer b) {
buffer = b;

public void run() {
while (true) {
try |
int x = buffer.remove () ;

System.out.println (x) ;

} catch (InterruptedException

e.printStackTrace();} } }

util.Random() ;

e) |

public class ProducerConsumer {

public static void main(String argsl(])

{

Buffer buffer = new Buffer();
for (int 1 = 0; 1 < 4; 1i++)

(new Producer (buffer)) .start();
for (int 1 = 0; 1 < 3; 1i++)

(new Consumer (buffer)) .start();

35

3.1 Semaphores
3.1.1 Introduction
3.1.2 Mutual Exclusion
3.1.3 Condition Synchronization
3.1.4 Producer-Consumer Problem
3.1.5 The Dining Philosophers

3.2 CCR
3.3 Monitors

Semaphores

36

3.1.5 The dining philosophers

* Five philosophers are engaged in only two activities: thinking and eating.

 Meals are taken at a table set with five plates and five chopsticks. In the center of
the table is a bowl of spaghetti that is endlessly replenished.

* When a philosopher is hungry, he sits down and uses the chopsticks on his left
and right sides. Thus, two philosophers sitting together cannot eat at the same

time.

Chopsticks are the
shared resources

* Philosopher i takes chopstick i and i+1

Semaphores 37

3.1.5 The dining philosophers

Being each philosopher a process, they will do the following actions:

process type philosopher(id:: integer);
begin
repeat
think;
Sit;
take left and right chopsticks
eat;
release chopsticks
forever
end;

How can we code the think, sit and eat actions?

The core problem is how to synchronize them when taking the chopsticks

Semaphores

38

3.1.5 The dining philosophers

* The given solution should meet the following criteria:
1. One chopstick is hold by just 1 philosopher: mutual exclusion

2. One philosopher can eat only if he holds the left and right chopsticks: condition
synchronization.

3. Free from deadlock and livelock
Free from starvation

5. If possible, be efficient: more than 1 philosopher should be able to eat at the same time.
We will implement 2 solutions:

1. Mutex semaphores for chopsticks (produces deadlock)
2. Allow only 4 philosopher to be sitting (it is not efficient)

Semaphores 39

PASCAL-FC

3.1.5 The dining philosophers — Sol.1

program diningPhilosophersSoll;

{Soll: mutex chopsticks}

const N=5; {5 philosophers}

var chopstick:array[l..N] of semaphore;

process type tPhilosopher (id:integer);
begin
repeat
sleep(random(2)); {THINK and SIT}
wait (chopstick[id]);
wait (chopstick[(id MOD N)+11);
writeln('[',id,"'] eating;"');
sleep(random(2)); {EAT}
signal (chopstick([id]) ;
signal (chopstick|[(id MOD N)+171);
forever;
end;

var
phils array[l..N] of tPhilosopher;
i: integer;
begin
for i:=1 to N do
initial (chopstick([i],1);
cobegin
for i:=1 to N do
phils[i] (1)
coend;
end.

(@]

If the interleaving of instructions

Is such that all philosophers take their
left chopstick, they will wait forever
eating for their right chopstick: deadlock

Sol.2: allow only N-1 philosophers to sit down at
the same time.

What kind of semaphore do we use to implement
this idea: only N-1 chairs available.

bmaphores

40

3.1.5 The dining philosophers — Sol.2

program diningPhilosophersSol2;
{Sol2: mutex chopsticks, and N-1 chairs}

chairs:semaphore;

walt (chairs); {SIT}

signal (chairs) ;

initial (chairs,N-1);

PASCAL-FC

This solution is correct.

At any moment, at least 1 philosopher

will be able to eat.

But having just 1 out of N philosophers eating
is not efficient.

There exist more efficient solutions, which

can be presented as Task 1:

Sol3:

- Odd philosophers first wait on left chopstick.

- Even philosophers first wait on right chopstick.

Sol4:
-The last philosopher first waits on a different
chopstick than the others.

bemaphores 41

3.1.5 The dining philosophers

Next, Solution 2 is implemented in Java.
Chopsticks are classes which provide methods take() and release().
Actions on chairs are performed through the methods provided in class Chairs.

Philosophers are threads.

Mutual exclusion is necessary in actions on chopsticks and chairs. This can be
achieved by using object Semaphore, or with the synchronized modifier. We will
use the latter.

Semaphores

42

3.1.5 The dining philosophers Sol.2

JAVA

class Chopstick/{
boolean free=true;

synchronized public void take () {
while (!free) {

try{

wait () ;

}catch (Exception e) {
e.printStackTrace () ;}

}

free=false;

}

synchronized public void release () {
free=true;

notifyAll();

//all blocked phil. will try to
//take it again

}

}

class Chairs{
int max, busy;

Chairs (int m) {
max=m;

busy=0;

}

synchronized public void sit () {
while (busy==max) {

try{wait () ;

}catch (Exception e) {
e.printStackTrace () ;}

}

busy++;

}

synchronized public void standUp () {
busy--;

notifyAll();

}

}

Semaphores

43

JAVA

3.1.5 The dining philosophers Sol.2

class Philosopher extends Thread({
int id;

Chopstick rightCh,
Chairs chairs;

leftCh;

public Philosopher (int ID, Chairs c,
Chopstick r, Chopstick 1) {

i1id=ID;

chairs=c;

rightCh=r;

leftCh=1;

}

public void run () {

java.util.Random r=new java.util.Random() ;
while (true) {

try {//THINK

Thread.sleep (r.nextInt (2000)) ;

} catch (InterruptedException e) {
e.printStackTrace () ;

}

chairs.sit();//SIT

rightCh.take () ;

leftCh.take();
System.out.println("["+id+"] eating.") ;//EAT
rightCh.release();

leftCh.release();

chairs.standUp () ;

b}

Com-nH
L)

public class DiningPhilosophersSol2{
public static final int N=5;

public static void main(String args[]) {
Chairs chairs=new Chairs(N-1);,
Chopstick chopstick[]=new Chopstick[N],

for (int 1i=0;i<N;i++)
chopstick[i]=new Chopstick();

for (int 1i=0;i<N;i++)
new Philosopher (i, chairs,chopstick[i],
chopstick[(i+1)%N]).start();

ores 44

Conclusions

You may have already reached the following conclusion:

 Semaphores have advantages:

Easy and efficient solution for mutual exclusion and synchronization
Their primitives are available in most of concurrent programming languages

* But the have several disadvantages:

Their level of abstraction is low
Error-prone: their use depends on the programmer (lost signal...)

Readability and maintenance of the code is not straightforward (they are deployed along
the code without any structure).

At first glance, we cannot tell which semaphores are used for mutual exclusion or which
for synchronization.

 These disadvantages (specially, the last one) are alleviated by using CCR and
Monitors. But they are not available in all languages!

Semaphores 45

Potential Mid-term Exam Questions

1. Whatis a cyclic barrier? How can we use it in Pascal-FC and Java?

 2.If we were to implement a semaphore, what variables and procedures do we
need to code?

3. What is the most general purpose of binary semaphores? And general?

Semaphores 46

Potential Mid-term Exam Questions

4. What effect do wait, notify and notifyAll signals have on threads in Java?

5. Read again Solution 1 of the Dining Philosophers problem. Write a possible
interleaving which leads to a deadlock situation

Semaphores

47

Keywords phonetics

semaphore /'semafarr/
procedure /pra'si:dzar/
rendezvous /'rondeivu:/
cyclic / saiklik/
barrier /'beeriar/

_— _s=
— @z —— s ==

philosopher /fi'losafar/

signal /'signl/
binary /'bainari/

= —
——a—-

A8 NN A

—
_—
S

multiple / ' maltipl/

Semaphores

48

http://dictionary.cambridge.org/dictionary/british/semaphore
http://dictionary.cambridge.org/dictionary/british/semaphore
http://dictionary.cambridge.org/dictionary/british/procedure
http://dictionary.cambridge.org/dictionary/british/procedure
http://dictionary.cambridge.org/dictionary/british/rendezvous
http://dictionary.cambridge.org/dictionary/british/rendezvous
http://dictionary.reference.com/browse/cyclic
http://dictionary.reference.com/browse/cyclic
http://dictionary.cambridge.org/dictionary/british/barrier
http://dictionary.cambridge.org/dictionary/british/barrier
http://dictionary.cambridge.org/dictionary/british/philosopher
http://dictionary.cambridge.org/dictionary/british/philosopher
http://dictionary.cambridge.org/dictionary/english-spanish/signal_1
http://dictionary.cambridge.org/dictionary/english-spanish/signal_1
http://dictionary.cambridge.org/dictionary/english-spanish/binary
http://dictionary.cambridge.org/dictionary/english-spanish/binary
http://dictionary.cambridge.org/dictionary/english-spanish/multiple
http://dictionary.cambridge.org/dictionary/english-spanish/multiple

