
Unit 4
Message Passing: Synchronous

Communication

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication

4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting – terminate
4.3.5 Selective waiting – else,timeout,pri

Message Passing 2

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication

4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting – terminate
4.3.5 Selective waiting – else,timeout,pri

4.1 Introduction

• Semaphores, CCRs and Monitors are concurrent programming tools based on
shared memory.

• If our program is to be run in a distributed system, in which physical memory is
not shared, then these tools are not useful anymore.

Message Passing 3

4.1 Introduction

• In a distributed system:
– Several processors are connected through a network.

– Processors do not share memory nor clock.

– Connected systems and hardware may be different among them

– The network can be scaled up to no limit (Internet).

• A concurrent program which uses message-passing can be executed in one single
platform (messages passed using shared memory). However, the contrary is not
true.

Message Passing 4

Message Passing 5

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication

4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting – terminate
4.3.5 Selective waiting – else,timeout,pri

4.2 Message passing models

• Since memory is not shared, the alternative used for concurrent (parallel)
programs is to pass messages among nodes executing processes.

• In message passing, the mutual exclusion problem does not exist. However, we
still need to solve synchronization problems.

• The basic operations needed in message passing are:

– SEND: the process sends a message

– RECEIVE: the process receives a message

• The specific implementation of the SEND and RECEIVE operations leads to
different message passing models.

Message Passing 6

4.2 Message passing models

• Whatever the model, the generic communication scheme is:

• A taxonomy of the communication models can be depicted attending to 3
different aspects:

– Addressing method

– Synchronization method

– Channel characteristics

Message Passing 7

Sender ReceiverCHANNEL

message

SEND RECEIVE

4.2 Message passing models

Depending on the addressing methods, message passing can be:

• Direct communication: explicitly name the process you are communicating with:
– SEND(A, message): send message to process A

– RECEIVE(B, message): receive a message from B

– It is fast, but any change in the identification of processes makes it necessary to recompile
and launch the program.

– In a client/server application, the clients knows the receiver but the server cannot know the
IDs of the clients. This can be solved with asymmetric direct communication:

• SEND(A, message)

• RECEIVE(ID, message): the OS tells us the ID of the sender.

• Indirect communication: processes are not identified, and messages are sent
to/received from mailboxes (ports) or channels.
– SEND(mailboxA, message)

– RECEIVE(mailboxA, message)

– A channel is a communication link used by only one sender or receiver at a time. Pascal-FC
uses channels.

Message Passing 8

4.2 Message passing models

Message Passing 9

Direct symmetric communication

Direct asymmetric communication

Indirect communication

4.2 Message passing models

Depending on the synchronization method:

• Synchronous communication: the sending/receiving process is delayed until the
corresponding RECEIVE/SEND is executed: rendezvous e.g. phone call

– messages do not need to be buffered

– both the send and receive operations are blocking: the process which tries to
communicate first will be blocked.

– If an answer is sent back, this is extended rendezvous or remote invocation

• Asynchronous communication: the senders sends a message and continues
executing without waiting for the message to be received: fax, print server

– SEND operation is non-blocking.

– message delivery is not guaranteed (channel failures can occur).

– messages have to be buffered: Problem?

Message Passing 10

4.2 Message passing models
Depending on the channel characteristics:

• Data flow: the sense in which data is sent. Unidirectional (e-mail) or bidirectional
(chat).

• Capacity: the amount of data the channel can store before the messages are
retrieved from the receivers.

• Size of message: if it is fixed size, the programmer needs to deal with the slicing of
oversized messages. If size is not fixed, the designer of the communication system
will need to use dynamic memory allocation.

• Data type: is a given type mandatory?

Models provided by some programming languages:

• ADA: rendezvous or syncronous

• Erlang: asynchronous

• JAVA: sockets (asynchronous-like) and RMI (synchronous) libraries.

• Pascal-FC: synchronous.

Message Passing 11

Message Passing 12

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication

4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting – terminate
4.3.5 Selective waiting – else,timeout,pri

4.3.1 Intro to Synch. Comm.

• Pascal-FC provides only synchronous communication tools. Java does not provide
primitives for synchronous nor asynchronous communication. Thus, we will focus
on solving concurrent programming problems using synchronous message passing
with Pascal-FC.

Message Passing 13

Process A Process B Process A Process B

4.3.1 Intro to Synch. Comm.

• One channel allows 2 processes to communicate to each other through a link.

• This link:

– is stablished between 1 sender and 1 receiver.

– Is unidirectional: only the receiver or sender can use it at the same time.

• The channel is typed: only data of such type can be sent through the link

• Pascal-FC provides the following operators:

Message Passing 14

ch ! e sends e through channel ch

ch ? v receives v from channel ch

4.3.1 Intro to Synch. Comm.

• A channel is declared with keyword channel.

• If you want to define one channel for integer data, and a channel for a given
structure:

Message Passing 15

var link : channel of integer;

type package=

record

(* some structure*)

end;

var network : channel of package;

4.3.1 Intro to Synch. Comm.

Message Passing 16

program basicExample;

var

ch: channel of integer;

process S;

var x:integer;

begin

repeat

ch ! x;

x:=x+1;

until x=10;

end;

process R;

var y:integer;

begin

repeat

ch ? y;

writeln('Message ',y,' received');

until y=9;

end;

begin

cobegin

S;

R;

coend

end.

Why is the stop condition y=9 in process R?

Can we be sure that the values printed by R
will be ordered?

4.3.1 Intro to Synch. Comm.

• The previous example shows that process R is synchronized with S: it does not
write until it receives the message.

• We may want R to be the producer and writer of the integer value, maintaining
the synchronization.

• We can define a channel used just for synchronization, and send a signal through
the channel.

• “any” is a variable of type synchronous. It is defined by default in Pascal-FC

Message Passing 17

var ch: channel of synchronous;

ch ! any

ch ? any

4.3.1 Intro to Synch. Comm.

Message Passing 18

program basicSyncExample;

var ch: channel of synchronous;

process S;

begin

repeat

ch ! any;

forever

end;

process R;

var x:integer;

begin

repeat

ch ? any;

writeln('Action ',x,' synchronized');

x:=x+1;

forever

end;

begin

cobegin

S;

R;

coend

end.

Message Passing 19

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication

4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting – terminate
4.3.5 Selective waiting – else,timeout,pri

4.3.2 Selective Waiting
• Several process may want to send messages (each one trough a different channel) to

the same receiver.

• The receiver needs to listen to the channels in a non-sequential manner to avoid to get
blocked on one channel without messages, while other channels do have messages
waiting to be read: selective waiting.

• Pascal-FC provides the primitive “select”, which randomly selects the message from
channels which have 1 message waiting to be read. We can specify all channels, or use
an array.

• Keyword “another” listens to all channels not specified in the array, and writes the
message in “anotherMessage”.

Message Passing 20

select

ch1 ? message1;

or

ch2 ? message 2;

or

...

or

chN ? message N;

end

select

for cont:=1 to N replicate

begin

ch[cont] ? message[cont];

end;

or

another ? anotherMessage;

end

Simplified manner

with replicate

4.3.2 Selective Waiting
Selective waiting helps us solve some concurrent programming problems such as the Ornamental Gardens:
visitors may enter from 2 turnstiles, and a counter of visitors needs to be updated.

Message Passing 21

program OrnamentalGardens;

type syncChannel = channel of synchronous;

var paths : array[1..2] of syncChannel;

(*or var paths : array[1..2] of channel of synchronous;*)

process type turnstile(id, people: integer);

var i:integer;

begin

for i:=1 to people do

paths[id] ! any;

end;

process counter;

var count,i : integer;

begin

count:=0;

for i:=1 to 40 do

begin

select

paths[1] ? any;

or

paths[2] ? any;

end;

count := count+1;

end;

writeln('People who visited the Gardens:',count);

end;

var turn1,turn2:turnstile;

begin

cobegin

counter;

turn1(1,20);

turn2(2,20);

coend

end.

If both alternatives in select
contain a message, only 1 channel
Is randomly chosen.

If no alternative contains a message,
the process is suspended.

4.3.2 Selective Waiting

• The previous example is a read alternative. In general, each alternative within a
select statement can be one of four types:

1. Message read alternative

2. Message write alternative

3. timeout alternative

4. terminate alternative

• In addition there may be a default else alternative, and different priorities.

• If, when a select is executed, there are no ready alternatives then the process is
suspended until one becomes ready (unless there is an else alternative).

Message Passing 22

Message Passing 23

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication

4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting – terminate
4.3.5 Selective waiting – else,timeout,pri

4.3.3 Guarded selective waiting
• We may want all alternatives not to be selectable in each select execution.

• Guarded alternatives: an alternative which is ignored if its condition is not fulfilled.
When the condition is TRUE, then the alternative is open.

• Only open ready alternatives and non-guarded ready alternatives are candidates to be
randomly chosen for execution.

Message Passing 24

select

when condition1 =>

ch1 ? message1;

or

ch2 ! message 2;

or

...

or

when conditionN =>

chN ? message N;

end

4.3.3 Guarded selective waiting

Producer/Consumer problem

• Guards are useful is buffer problems, such as the Producer/Consumer problem: we
need to control the insert and remove operations when the buffer is full and
empty, respectively.

• Remember that synchronized communication needs 1 channel for each pair
sender-receiver: we need 1 channel for each producer and also for each consumer.

• In order to solve the problem, we need to define:
– Array of insertion channels.

– Array of removal channels

– Process buffer, which controls insert and remove operations

– Insert index, remove index

– numItems

Message Passing 25

Message Passing 26

program producerConsumer;

const

SIZE=8;

PRODUCERS=3;

CONSUMERS=3;

N=10; (*items to produce per producer*)

var

insertChannel: array[1..PRODUCERS] of channel of integer;

removeChannel: array[1..CONSUMERS] of channel of integer;

itemValue:integer;

process bufferController;

var

data: array[0..SIZE] of integer;

insertIndex, removeIndex, numItems, producerID, consumerID: integer;

begin

insertIndex:=1;

removeIndex:=1;

numItems:=0;

repeat

select

for producerID:=1 to PRODUCERS replicate

when numItems < SIZE =>

insertChannel[producerID] ? data[insertIndex];

insertIndex := insertIndex MOD SIZE + 1;

numItems:=numItems+1;

or

for consumerID:=1 to CONSUMERS replicate

when numItems > 0 =>

removeChannel[consumerID] ! data[removeIndex];

removeIndex := removeIndex MOD SIZE +1;

numItems := numItems - 1;

or

terminate;

end

forever

end;

4.3.3 Guarded selective
waiting

4.3.3 Guarded selective waiting

Message Passing 27

process type tProducer(ID:integer);

var i:integer;

begin

for i:=1 to N do

begin

insertChannel[ID] ! i;

writeln('item ',i,‘

inserted by producer [',i,'].');

end;

end;

process type tConsumer(ID:integer);

var i:integer;

begin

for i:=1 to N do

begin

removeChannel[ID] ? i;

writeln('item ',i,‘

removed by consumer [',i,'].');

end;

end;

var

myProducers: array[1..PRODUCERS] of tProducer;

myConsumers: array[1..CONSUMERS] of tConsumer;

x,y:integer;

begin

cobegin

for x:=1 to PRODUCERS do

myProducersx;

for y:=1 to CONSUMERS do

myConsumersy;

bufferController;

coend

end.

Note each consumer is allowed to remove
only N elements. Thus, we are sure all consumer
processes end.

Message Passing 28

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication

4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting – terminate
4.3.5 Selective waiting – else,timout,pri

4.3.4 Selective waiting - terminate

• The terminate alternative is necessary because passive processes such as the
bufferController needs to know when to finish execution. Otherwise it may be
blocked forever in the select sentence.

• We can control this with a counter, but it is much more efficient to make it finish
when no more active processes are working.

• Thus, a process only enters in the terminate and finishes if and only if:

– No more alternatives are ready

– And the other processes are finished or also blocked in a select sentence with

terminate alternative.

Message Passing 29

4.3.4 Selective waiting - terminate

• Thus, in the problem of the Ornamental Gardens, we do not need to specify the
number of iterations for the counter process:

Message Passing 30

process counter;

var count,i : integer;

begin

count:=0;

for i:=1 to 40 do

begin

select

paths[1] ? any;

or

paths[2] ? any;

end;

count := count+1;

end;

writeln('People who visited the

Gardens:',count);

end;

process counter;

var count: integer;

begin

count:=0;

repeat

select

paths[1] ? any;

or

paths[2] ? any;

or

terminate

end;

count := count+1;

forever;

writeln('People who visited the

Gardens:',count);

end;

The process finishes correctly, but… can you see a problem?

4.3.4 Selective waiting - terminate

Message Passing 31

process counter(var count:integer);

begin

repeat

select

paths[1] ? any;

or

paths[2] ? any;

or

terminate

end;

count := count+1;

forever;

end;

var

turn1,turn2:turnstile;

number:integer;

begin

number:=0;

cobegin

counter(number);

turn1(1,20);

turn2(2,20);

coend;

writeln('People who visited the Gardens:',number);

end.

Counter process for the
Ornamental Gardens
problem, using the terminate
alternative.

Message Passing 32

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication

4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting – terminate
4.3.5 Selective waiting – else,timeout,pri

4.3.5 Selective waiting – else, timeout, pri

• Sometimes we may want the sender or receiver not to be blocked until its
message has been received or sent.

• Alternative else :
– tells the process to do another thing if no alternative is ready.

– Only 1 per select.

– It cannot be guarded.

• Alternative timeout
– tells the process the time it may remain blocked waiting for an alternative to be ready,

and then do another thing.

– It may be guarded.

– Useful in real-time systems: trigger alarm if there is no communication with the plane.

• Alternatives terminate, else and timeout cannot be used in the same select.

Message Passing 33

4.3.5 Selective waiting – else, timeout, pri

• Imagine a producer process generates numbers in a forever loop.

Message Passing 34

select

ch1 ? message1;

or

ch2 ? message 2;

or

...

else (*do something*)

end

select

ch1 ? message1;

or

ch2 ? message 2;

or

..

or

timeout n;

(*do something*)

end

type chInt = channel of integer;

process producer (var ch1: chInt);

var i:integer;

begin

i:=1;

repeat

ch1 ! i;

i:=i+1;

forever

end;

begin

end.

How to tell the producer to stop sending
numbers?

4.3.5 Selective waiting – else, timeout, pri

Message Passing 35

program stopProducerWithElse;

type chInt = channel of integer;

type chSync= channel of synchronous;

process producer (var ch1: chInt;

var chSyn: chSync);

var i:integer;

stop: boolean;

begin

i:=1;

stop:=false;

while not stop do

select

chSyn ? any;

stop:=true;

else

ch1 ! i;

i:=i+1;

end;

writeln('producer finished.');

end;

process consumer(var ch1: chInt;

var chSyn: chSync);

var i,n:integer;

begin

for i:=1 to 10 do

begin

ch1 ? n;

writeln(n);

end;

chSyn ! any;

writeln('consumer finished.');

end;

var

ch1:chInt;

chSyn:chSync;

begin

cobegin

producer(ch1,chSyn);

consumer(ch1,chSyn);

coend

end.

4.3.5 Selective waiting – else, timeout, pri

• If we use the modifier pri in a select sentence, the alternative to execute is not
chosen randomly but by order of appearance.

Message Passing 36

pri select

ch1 ? message1;

or

ch2 ? message 2;

or

...

or

chN ? message N;

end

Synchronous message passing simulated in Java is one of the choices for Task 2.

See Section 9.4.1 in the book of Palma et.al

Message Passing 37

Potential Mid-term Exam Questions
1. What is the difference between the else and terminate alternatives?

2. When can a process be blocked inside a select which uses an else alternative?

3. Which kind of communication do you think these schemes represent? (from the
point of view of synchronization)

Message Passing 38

Process A SEND(B,mssg)

Process B

RECEIVE(a,mssg)

Time

answer

Process A SEND(B,mssg)

Process B

RECEIVE(a,mssg)

Time

Keywords phonetics

• distribute /dɪˈstrɪbjuːt/

• direct /daɪˈrekt/

• asymmetric /eɪsɪˈmetrɪk/

• asynchronous /eɪˈsɪŋkrənəs/

• priority /prʌɪˈɒrɪti/

• guarded /ˈɡɑːdɪd/

• message /ˈmesɪdʒ/

• receive /rɪˈsiːv/

• indirect /ˌɪndɪˈrekt/

Message Passing 39

http://dictionary.cambridge.org/dictionary/british/distribute
http://dictionary.cambridge.org/dictionary/british/distribute
http://dictionary.cambridge.org/dictionary/british/direct
http://dictionary.cambridge.org/dictionary/british/direct
http://dictionary.cambridge.org/dictionary/british/asymmetric
http://dictionary.cambridge.org/dictionary/british/asymmetric
http://dictionary.cambridge.org/dictionary/british/asynchronous
http://dictionary.cambridge.org/dictionary/british/asynchronous
http://dictionary.cambridge.org/dictionary/british/priority
http://dictionary.cambridge.org/dictionary/british/priority
http://dictionary.cambridge.org/dictionary/british/guarded
http://dictionary.cambridge.org/dictionary/british/guarded
http://dictionary.cambridge.org/dictionary/british/message
http://dictionary.cambridge.org/dictionary/british/message
http://www.merriam-webster.com/dictionary/receive
http://www.merriam-webster.com/dictionary/receive
http://www.merriam-webster.com/dictionary/indirect
http://www.merriam-webster.com/dictionary/indirect

