
Unit 3
Shared-memory Communication

3.2 CONDITIONAL CRITICAL REGIONS

3.1 Semaphores

3.2 CCR
3.2.1 Introduction
3.2.2 Critical Region
3.2.3 Conditional Critical Region
3.2.4 Producer-Consumer problem
3.2.5 Readers-Writers problem
3.2.6 The dining philosophers problem

3.3 Monitors

2CCR

3.1 Semaphores

3.2 CCR
3.2.1 Introduction
3.2.2 Critical Region
3.2.3 Condition Critical Region
3.2.4 Producer-Consumer problem
3.2.5 Readers-Writers problem
3.2.6 The dining philosophers problem

3.3 Monitors

3.2.1 Introduction

• Semaphores:

– are low level abstraction tools for mutual exclusion and synchronization.

– their syntax is the same when they are used for both kinds of interaction among
processes.

– It is easy to forget one wait or signal operation.

• In 1972, Hoare and Brinch Hansen proposed and made popular the notion of
Conditional Critical Region (CCR).

• CCRs tell the compiler where the mutual exclusion (CR) and condition
synchronization (CCR) statements are, and it deals with the deployment of wait
and signal operations.

3CCR

4CCR

3.1 Semaphores

3.2 CCR
3.2.1 Introduction
3.2.2 Critical Region
3.2.3 Condition Critical Region
3.2.4 Producer-Consumer problem
3.2.5 Readers-Writers problem
3.2.6 The dining philosophers problem

3.3 Monitors

3.2.2 Critical Region

• A critical section is a piece of code that should be executed under mutual
exclusion. It depends on the programmer that this happens.

• A critical region (CR) is a piece of code that is executed under mutual exclusion.
The programmer does not need to take care of protocols nor correct use of
wait/signal calls.

• CR and CCRs can be seen as precursor of monitors, and they are available just in a
few programming languages (e.g. Ada 9X).

• CR and CCR are not available in Pascal-FC nor Java. We will learn its use using
Pascal-FC syntax and reserved word resource, but it must be read just as pseudo-
code.

CCR 5

3.2.2 Critical Region

• Shared variables must be declared as usual, and then associate them to a
resource.

• Since variables are attached to a resource, they can only be accessed by explicitly
using the keyword region, and the name of the resource which holds the variable.

CCR 6

var i,j: integer;

resource CS: i,j;

...

shared variables

associate variables to a

resource

region CS do

begin

i:= i+1;

…

end;

3.2.2 Critical Region

• All regions with the same resource name will be executed under mutual exclusion.

• If a variable associated to a shared resource is accessed directly from code, the
compiler flags an error.

• One variable can only be associated to 1 resource.

• Nested CRs may lead to a deadlock situation:

CCR 7

process p1:

…

region A do

region B do

S;

process p2:

…

region B do

region A do

S;

CCR 8

3.1 Semaphores

3.2 CCR
3.2.1 Introduction
3.2.2 Critical Region
3.2.3 Conditional Critical Region
3.2.4 Producer-Consumer problem
3.2.5 Readers-Writers problem
3.2.6 The dining philosophers problem

3.3 Monitors

3.2.3 Conditional Critical Region

• So CRs provide mutual exclusion my making the compiler be responsible of the use
of semaphores.

• A Conditional Critical Region (CCR) is an extension of CR which lets express a
condition to gain access to the resource: condition synchronization.

• Resources are declared the same way than CRs.

• Access to resources now includes a condition:

CCR 9

var i,j: integer;

resource CCS i,j;

...

region CCS when <condition> do

begin

…

end;

3.2.3 Conditional Critical Region

• Thus, a process trying to enter a CCR runs as follows:
1. A process remains blocked in the main queue until it gains mutual exclusion access to the

region.

2. Once access is obtained,

1. if condition is true, statements in the CCR are executed.

2. else, the process releases the mutual exclusion access and is blocked in the events
queue.

3. Once the execution of statements finishes:

1. Processes in the events queue are allowed to test the condition again. If the
condition is met, the first process in unblocked.

2. Else, the first process in the main queue is unblocked.

• This means that a process which has gained mutual exclusion access once is not
required to gain it again. That is, it has a higher priority than new incoming
processes.

CCR 10

3.2.3 Conditional Critical Region

• In order to give a full example, let’s see how to implement semaphores using CCR:

– One shared variable to be used as counter of permits

– Wait can only be executed under a given condition if we do not allow negative
semaphores.

– Signals do not need condition

CCR 11

program semaphore;

var

s: integer;

resource sem : s;

procedure wait;

begin

{if s=0, process is blocked in the events queue}

region sem when s>0 do

s:= s-1;

end;

procedure signal;

begin

region sem do

s:= s+1;

end;

CCR 12

3.1 Semaphores

3.2 CCR
3.2.1 Introduction
3.2.2 Critical Region
3.2.3 Conditional Critical Region
3.2.4 Producer-Consumer problem
3.2.5 Readers-Writers problem
3.2.6 The dining philosophers problem

3.3 Monitors

3.2.4 Producer-Consumer problem

• Again, we instantiate the problem with a finite buffer, and several producers and
consumers.

• Critical sections are those in which the following variables are accessed:
insertIndex, removeIndex, numItems

• We define 2 condition synchronizations between processes:

– Producers cannot insert items if it is full.

– Consumers cannot remove items if it is empty.

CCR 13

3.2.4 Producer-Consumer problem

CCR 14

program producerConsumerCCR;

const SIZE=8;

var

numItems, insertIndex,

removeIndex, i: integer;

data: array[1..SIZE] of integer;

resource buffer: insertIndex,

removeIndex,numItems;

process type tProducer;

var

item: integer;

begin

repeat

item := random(200);

region buffer when numItems < SIZE do

begin

data[insertIndex]:=item;

insertIndex:=insertIndex MOD SIZE + 1;

numItems:=numItems+1;

end;

forever

end;

process type tConsumer;

begin

var

item: integer;

repeat

region buffer when numItems>0 do

begin

item := data[removeIndex];

removeIndex := removeIndex MOD SIZE+ 1;

numItems:=numItems-1;

end;

forever

end;

var

prod:array [1..5] of tProducer;

cons:array [1..3] of tConsumer;

begin

numItems:=0;

insertIndex:=0;

removeIndex:=0;

cobegin

for i:=1 to 5 do

prod[i];

for i:=1 to 3 do

cons[i];

coend;

end.

CCR 15

3.1 Semaphores

3.2 CCR
3.2.1 Introduction
3.2.2 Critical Region
3.2.3 Conditional Critical Region
3.2.4 Producer-Consumer problem
3.2.5 Readers-Writers problem
3.2.6 The dining philosophers problem

3.3 Monitors

4.2.5 Readers/Writers problem

• In this problem, several readers and writers access to the same resource (e.g.
database).

• Several readers can read at the same time if no writers are writing.

• If one writer is writing, no reader nor extra writer can access.

• The solution is slightly different depending on which kind of process has priority when
both are waiting to access:
– Readers first

– Writers first

• In this example, we decide to give priority to writers:

• if a writer wants to access, it waits until current readers stop reading. Then no
reader may enter until the waiting writer finishes its action.

• We need 3 variables:
– numReaders: number of processes of type Reader reaing

– numWwaiting: num of processes of type Writer waiting to access

– isWriting: true when a writer is accessing it

CCR 16

4.2.5 Readers/Writers problem

CCR 17

program readersWriters;

{PRIORITARY WRITERS}

var

numReading, numWwaiting: integer;

isWriting: boolean;

resource data: numReading, numWwaiting,

isWriting;

process type tReader;

begin

(*readers wait if a writer is

writing or waiting*)

region data when not isWriting and

numWwaiting=0 do

numReading:=numReading+1;

writeln('Reading...');

region data do

numReading:=numReading-1;

end;

process type tWriter;

begin

{announce a new writer is waiting}

region data do

numWwaiting:=numWwaiting+1;

{wait if a writer or reader is in}

region data when numReading=0 and

not isWriting

begin

isWriting:=true;

numWwaiting := numWwaiting-1;

end;

writeln('Writing...');

region data do isWriting:=false;

end;

var

read:array[1...5] of tReader;

wri:array[1...3] of tWriter;

i:integer;

begin

numReading:=0;

isWriting:=false;

cobegin

for i:=1 to 5 do

read[i];

for i:=1 to 3 do

wri[i];

coend

end.

Thanks to the unqueue FIFO policy of the
events queue, starvation of readers is
not possible (it is using semaphores).

CCR 18

3.1 Semaphores

3.2 CCR
3.2.1 Introduction
3.2.2 Critical Region
3.2.3 Conditional Critical Region
3.2.4 Producer-Consumer problem
3.2.5 Readers-Writers problem
3.2.6 The dining philosophers problem

3.3 Monitors

3.2.6 The dining philosophers problem
• Critical sections: those in which chopsticks are taken.

• Cond. Synch: philosopher i cannot eat if he cannot take chopstick i and i+1

CCR 19

program diningPhilosophers;

const N=5;

var

{true when they are available}

chopstick:array[1..N] of boolean;

resource chopsCCR:chopstick;

process type tPhilosopher(id:integer);

begin

repeat

sleep(random(2)); {THINK and SIT}

region chopsCCR when chopstick[id] and

chopstick[(id+1) MOD N] do

begin

chopstick[id]:=false;

chopstick[(id+1)MOD N]:=false;

end;

sleep(random(2)); {EAT}

region chopsCCR do

begin

chopstick[id]:=true;

chopstick[(id+1)MOD N]:=true;

end;

forever

end;

var

phils : array[1..N] of tPhilosopher;

i: integer;

begin

for i:=1 to N do

chopstick[i]:=true;

cobegin

for i:=1 to N do

philsi;

coend;

end.

Using semaphores (solution 1) deadlock Could happen.
Using CCRs this is not possible, since a philosopher only
enters in the CCR when both chopsticks are available.

Conclusions

• CCRs let us distinguish between critical sections are condition synchronization.

• They may be difficult to implement (two process queues)

• Deadlock risk when embedding CCRS

• They still keep one problem of semaphores: their use is widespread along the
code: difficult to maintain.

CCR 20

Potential Mid-term Exam Questions

1. Which processes queue has higher priority in CCR?

2. What correctness problem do CCRs solve in the Dining Philosophers problem
which needed a special solution when using semaphores?

3. What is the difference between CR and CCR?

21CCR

The Elevator problem
• An elevator has a capacity of 4 people.

• Several people call it from different levels.

• A person leaves the elevator when it reaches its level.

• A constant is the number of levels

• Several processes of type Person. Each process has a variable which indicates the
level it wants to access to and the level from which it is calling.

• One process is the elevator:

– with boolean variable: up. (false means down).

– an integer with current level (starts in 0).

– Num of people inside.

• What are the CS?

• What are the cond. synch.?

• Pseudo-code the solution: available as Task 2 (see Unit Zero).

CCR 22

Keywords phonetics

• region /ˈriːdʒən/

• resource /rɪˈzɔːs/

• priority /praɪˈɒrɪtɪ/

23CCR

http://dictionary.cambridge.org/dictionary/british/region
http://dictionary.cambridge.org/dictionary/british/region
http://dictionary.cambridge.org/dictionary/british/priority
http://dictionary.cambridge.org/dictionary/british/priority
http://dictionary.cambridge.org/dictionary/british/resource
http://dictionary.cambridge.org/dictionary/british/resource

