Unit 4
Message Passing: Synchronous
Communication

4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication
4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting — terminate
4.3.5 Selective waiting — else,timeout, pri




4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication
4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting — terminate
4.3.5 Selective waiting — else,timeout,pri

Message Passing

oo i ipl b S




4.1 Introduction

Semaphores, CCRs and Monitors are concurrent programming tools based on
shared memory.

If our program is to be run in a distributed system, in which physical memory is
not shared, then these tools are not useful anymore.

Message Passing




4.1 Introduction

* Inadistributed system:
— Several processors are connected through a network.
— Processors do not share memory nor clock.
— Connected systems and hardware may be different among them
— The network can be scaled up to no limit (Internet).

‘,
3

T &

CPUA CPUB CPUC

* A concurrent program which uses message-passing can be executed in one single
platform (messages passed using shared memory). However, the contrary is not
true.

Message Passing




4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication
4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting — terminate
4.3.5 Selective waiting — else,timeout, pri

Message Passing




4.2 Message passing models

Since memory is not shared, the alternative used for concurrent (parallel)
programs is to pass messages among nodes executing processes.

In message passing, the mutual exclusion problem does not exist. However, we
still need to solve synchronization problems.

The basic operations needed in message passing are:
— SEND: the process sends a message
— RECEIVE: the process receives a message

The specific implementation of the SEND and RECEIVE operations leads to
different message passing models.

Message Passing 6




4.2 Message passing models

 Whatever the model, the generic communication scheme is:

{ message

SEND RECEIVE

* Ataxonomy of the communication models can be depicted attending to 3
different aspects:

— Addressing method
— Synchronization method
— Channel characteristics

Message Passing




4.2 Message passing models

Depending on the addressing methods, message passing can be:
* Direct communication: explicitly name the process you are communicating with:

SEND(A, message): send message to process A
RECEIVE(B, message): receive a message from B

It is fast, but any change in the identification of processes makes it necessary to recompile
and launch the program.

In a client/server application, the clients knows the receiver but the server cannot know the
IDs of the clients. This can be solved with asymmetric direct communication:

* SEND(A, message)
* RECEIVE(ID, message): the OS tells us the ID of the sender.

* Indirect communication: processes are not identified, and messages are sent
to/received from mailboxes (ports) or channels.

SEND(mailboxA, message)
RECEIVE(mailboxA, message)

A channel is a communication link used by only one sender or receiver at a time. Pascal-FC
uses channels.

Message Passing




4.2 Message passing models

B

Direct symmetric communication
Send to B Receive from A

Receive Direct asymmetric communication

Sender([1]
send(e?, p)

Sender{2] Receiver

send(e2, p)

v = receive(p)

Indirect communication

Sender[n]
send(en, p)

Message Passing 9




4.2 Message passing models

Depending on the synchronization method:

* Synchronous communication: the sending/receiving process is delayed until the
corresponding RECEIVE/SEND is executed: rendezvous e.g. phone call

— messages do not need to be buffered

— both the send and receive operations are blocking: the process which tries to
communicate first will be blocked.

— If an answer is sent back, this is extended rendezvous or remote invocation

* Asynchronous communication: the senders sends a message and continues
executing without waiting for the message to be received: fax, print server
— SEND operation is non-blocking.
— message delivery is not guaranteed (channel failures can occur).
— messages have to be buffered: Problem?

Message Passing 10




4.2 Message passing models

Depending on the channel characteristics:

Data flow: the sense in which data is sent. Unidirectional (e-mail) or bidirectional

(chat).

Capacity: the amount of data the channel can store before the messages are

retrieved from the receivers.

Size of message: if it is fixed size, the programmer needs to deal with the slicing of
oversized messages. If size is not fixed, the designer of the communication system

will need to use dynamic memory allocation.
Data type: is a given type mandatory?

Models provided by some programming languages:

ADA: rendezvous or syncronous

Erlang: asynchronous

JAVA: sockets (asynchronous-like) and RMI (synchronous) libraries.
Pascal-FC: synchronous.

Message Passing

11




4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication
4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting — terminate
4.3.5 Selective waiting — else,timeout, pri

Message Passing

12




4.3.1 Intro to Synch. Comm.

Pascal-FC provides only synchronous communication tools. Java does not provide
primitives for synchronous nor asynchronous communication. Thus, we will focus
on solving concurrent programming problems using synchronous message passing

with Pascal-FC.

Process A Process B Process A Process B
serd recefyak
recefvd send
- -* ---------- - == s = -'-- ]
Y Y Y h

Message Passing




4.3.1 Intro to Synch. Comm.

One channel allows 2 processes to communicate to each other through a link.

This link:
— is stablished between 1 sender and 1 receiver.
— s unidirectional: only the receiver or sender can use it at the same time.

The channel is typed: only data of such type can be sent through the link

Pascal-FC provides the following operators:

ch ' e sends ethrough channel ch

ch ? v receives v from channel ch

Message Passing 14




4.3.1 Intro to Synch. Comm.

 Achannelis declared with keyword channel.

* If you want to define one channel for integer data, and a channel for a given
structure:

var link

end;

type package=
record
(* some structure¥*)

var network : channel of package;

channel of integer;

Message Passing

15




4.3.1 Intro to Synch. Comm.

program basicExample;
var
ch: channel of integer;

process S;
var x:integer;
begin

repeat

ch ! x;
xX:=x+1;

until x=10;
end;

process R;

var y:integer;

begin

repeat

ch ? vy;

writeln ('Message ',y,' received');
until y=9;

end;

begin
cobegin

Why is the stop condition y=9 in process R?

Can we be sure that the values printed by R
will be ordered?

Message Passing

16




4.3.1 Intro to Synch. Comm.

The previous example shows that process R is synchronized with S: it does not
write until it receives the message.

We may want R to be the producer and writer of the integer value, maintaining
the synchronization.

We can define a channel used just for synchronization, and send a signal through
the channel.

var ch: channel of synchronous;
ch ! any
ch ? any

“any” is a variable of type synchronous. It is defined by default in Pascal-FC

Message Passing

17




4.3.1 Intro to Synch. Comm.

program basicSyncExample;

var ch: channel of synchronous;

process S;
begin
repeat

ch ! any;
forever
end;

process R;

var x:integer;
begin

repeat

ch ? any;
writeln ('Action
xX:=x+1;

forever

end;

|

IXI

|l

begin
cobegin

synchronized');

Message Passing

18




4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication
4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting — terminate
4.3.5 Selective waiting — else,timeout, pri

Message Passing

19




4.3.2 Selective Waiting

Several process may want to send messages (each one trough a different channel) to
the same receiver.

The receiver needs to listen to the channels in a non-sequential manner to avoid to get
blocked on one channel without messages, while other channels do have messages
waiting to be read: selective waiting.

Pascal-FC provides the primitive “select”, which randomly selects the message from
channels which have 1 message waiting to be read. We can specify all channels, or use
an array.

select select

chl ? messagel; for cont:=1 to N replicate
or begin

ch2 ? message 2; chlcont] ? message[cont];

Simplified manner

or with end;
or
or another ? anotherMessage;
chN ? message N; end
end

Keyword “another” listens to all channels not specified in the array, and writes the
message in “anotherMessage”.

Message Passing 20




4.3.2 Selective Waiting

Selective waiting helps us solve some concurrent programming problems such as the Ornamental Gardens:
visitors may enter from 2 turnstiles, and a counter of visitors needs to be updated.

program OrnamentalGardens;
var paths array[l..2] of syncChannel;
(*or var paths

var i:integer;
begin
for i:=1 to people do
paths[id] ! any;
end;

process counter;

var count,i integer;
begin
count:=0;
for i:=1 to 40 do
begin
select
paths[1] ? any;
or
paths[2] ? any;
end;
count := count+l;
end;

end;

writeln ('People who visited the Gardens:

type syncChannel = channel of synchronous;
array[l..2] of channel of synchronous;*)

process type turnstile(id, people: integer) ;

', count) ;

var turnl, turn2:turnstile;
begin
cobegin
counter;
turnl (1, 20);
turn2(2,20);
coend
end.

If both alternatives in select
contain a message, only 1 channel
Is randomly chosen.

If no alternative contains a message,
the process is suspended.

21




4.3.2 Selective Waiting

The previous example is a read alternative. In general, each alternative within a
select statement can be one of four types:

1. Message read alternative
2. Message write alternative
3. timeout alternative

4. terminate alternative

In addition there may be a default else alternative, and different priorities.

If, when a select is executed, there are no ready alternatives then the process is
suspended until one becomes ready (unless there is an else alternative).

Message Passing 22




4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication
4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting — terminate
4.3.5 Selective waiting — else,timeout, pri

Message Passing

23




4.3.3 Guarded selective waiting

* We may want all alternatives not to be selectable in each select execution.

* Guarded alternatives: an alternative which is ignored if its condition is not fulfilled.
When the condition is TRUE, then the alternative is open.

select
when conditionl =>
chl ? messagel;
or
ch?2 ! message 2;
or

or
when conditionN =>
chN ? message N;
end

* Only open ready alternatives and non-guarded ready alternatives are candidates to be
randomly chosen for execution.

Message Passing 24




4.3.3 Guarded selective waiting

Producer/Consumer problem

Guards are useful is buffer problems, such as the Producer/Consumer problem: we

need to control the insert and remove operations when the buffer is full and
empty, respectively.

Remember that synchronized communication needs 1 channel for each pair
sender-receiver: we need 1 channel for each producer and also for each consumer.

In order to solve the problem, we need to define:
— Array of insertion channels.
— Array of removal channels
— Process buffer, which controls insert and remove operations
— Insert index, remove index
— nhumltems

Message Passing 25




program producerConsumer;
const
SIZE=8;
PRODUCERS=3;
CONSUMERS=3;
N=10; (*items to produce per producer*)
var
insertChannel: array[l..PRODUCERS] of channel of integer;
removeChannel: array[l..CONSUMERS] of channel of integer;
itemValue:integer;

process bufferController;
var
data: array[0..SIZE] of integer;

insertIndex, removelndex, numltems, producerID, consumerID:

begin
insertIndex:=1;
removelndex:=1;
numItems:=0;
repeat
select
for producerID:=1 to PRODUCERS replicate
when numItems < SIZE =>
insertChannel [producerID] ? datal[insertIndex];
insertIndex := insertIndex MOD SIZE + 1;
numItems:=numItems+1;

or
for consumerID:=1 to CONSUMERS replicate
when numItems > 0 =>
removeChannel [consumerID] ! datal[removelIndex];
removelIndex := removelndex MOD SIZE +1;
numItems := numlItems - 1;
or
terminate;
end
forever

end;

integer;

4.3.3 Guarded selective
waiting

26




4.3.3 Guarded selective waiting

process type tProducer (ID:integer) ;
var i:integer;

begin
for i:=1 to N do
begin
insertChannel [ID] ! 1i;
writeln('item ',1i,"°
inserted by producer [',1i,'].");
end;
end;

process type tConsumer (ID:integer) ;
var i:integer;

begin
for i:=1 to N do
begin
removeChannel [ID] ? i;
writeln('item ',1i,"
removed by consumer [',i,'].");
end;
end;

var

myProducers: array[l..PRODUCERS] of
myConsumers: array[l..CONSUMERS] of
X, y:integer;

begin

cobegin

for x:=1 to PRODUCERS do
myProducers [x] (xX) ;

for y:=1 to CONSUMERS do
myConsumers [y] (y) ;
bufferController;

coend

end.

tProducer;
tConsumer;

Note each consumer is allowed to remove
only N elements. Thus, we are sure all consumer

processes end.

Message Passing

27




4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication
4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting — terminate
4.3.5 Selective waiting — else,timout,pri

Message Passing

28




4.3.4 Selective waiting - terminate

The terminate alternative is necessary because passive processes such as the
bufferController needs to know when to finish execution. Otherwise it may be
blocked forever in the select sentence.

We can control this with a counter, but it is much more efficient to make it finish
when no more active processes are working.

Thus, a process only enters in the terminate and finishes if and only if:
— No more alternatives are ready

— And the other processes are finished or also blocked in a select sentence with
terminate alternative.

Message Passing 29




4.3.4 Selective waiting - terminate

Thus, in the problem of the Ornamental Gardens, we do not need to specify the
number of iterations for the counter process:

process counter;
var count,i : integer;

begin
count:=0;
for i:=1 to 40 do
begin
select
paths[1] ? any;
or
paths[2] ? any;
end;
count := count+1;
end;

writeln ('People who visited the
Gardens: ', count) ;
end;

process counter;
var count: integer;
begin
count:=0;
repeat
select
paths[1] ? any;
or
paths[2] ? any;
or
terminate
end;
count := count+l;
forever;
writeln ('People who visited the
Gardens: ', count);
end;

The process finishes correctly, but... can you see a problem?

Message Passing

30




4.3.4 Selective waiting - terminate

process counter (var count:integer);

begin
repeat
select
paths[1] ? any;
or
paths[2] ? any;
or
terminate
end;
count := count+1;
forever;
end;
var

turnl, turn2:turnstile;
number:integer;
begin

number :=0;

cobegin
counter (number) ;
turnl (1,20);
turn2(2,20);

coend;

writeln ('People who visited the Gardens:',number);

end.

Message Passing

Counter process for the
Ornamental Gardens

problem, using the terminate

alternative.

31




4.1 Introduction
4.2 Message passing models
4.3 Synchronous communication
4.3.1 Intro to synch. comm.
4.3.2 Selective waiting
4.3.3 Guarded selective waiting
4.3.4 Selective waiting — terminate
4.3.5 Selective waiting — else,timeout,pri

Message Passing

32




4.3.5 Selective waiting — else, timeout, pri

Sometimes we may want the sender or receiver not to be blocked until its
message has been received or sent.

Alternative else :
— tells the process to do another thing if no alternative is ready.
— Only 1 per select.
— It cannot be guarded.

Alternative timeout

— tells the process the time it may remain blocked waiting for an alternative to be ready,
and then do another thing.

— It may be guarded.
— Useful in real-time systems: trigger alarm if there is no communication with the plane.

Alternatives terminate, else and timeout cannot be used in the same select.

Message Passing

33




4.3.5 Selective waiting — else, timeout, pri

select

chl ? messagel;
or

ch?2 ? message 2;
or

else (*do something™)

end

Imagine a producer process generates numbers in a forever loop.

select

chl ? messagel;
or

ch?2 ? message 2;
or

or
timeout n;
(*do something*)
end

process producer (var chl:
var i:integer;
begin

i:=1;

repeat

chl ! 1i;
i:=i+1;
forever

end;

begin

end.

type chInt = channel of integer;

chlInt);

numbers?

Message Passing

How to tell the producer to stop sending

34




4.3.5 Selective waiting — else, timeout, pri

program stopProducerWithElse;

type chInt = channel of integer;
type chSync= channel of synchronous;

process producer (var chl: chInt;

var chSyn: chSync);
var i:integer;
stop: boolean;
begin
i:=1;
stop:=false;
while not stop do
select
chSyn ? any;
stop:=true;
else
chl ! 1i;
i:=1+1;
end;

writeln ('producer finished.

end;

process consumer (var chl: chInt;

var chSyn: chSync);
var i,n:integer;
begin
for i:=1 to 10 do
begin
chl ? n;
writeln (n) ;
end;
chSyn ! any;

writeln ('consumer finished.

end;

var
chl:chInt;
chSyn:chSync;

begin

cobegin
producer (chl,chSyn) ;
consumer (chl, chSyn) ;

coend

end.

Message Passing

35




4.3.5 Selective waiting — else, timeout, pri

If we use the modifier priin a select sentence, the alternative to execute is not
chosen randomly but by order of appearance.

pri select

chl ? messagel;
or

ch2 ? message 2;
or

or
chN ? message N;
end

Message Passing

36




Synchronous message passing simulated in Java is one of the choices for Task 2.
See Section 9.4.1 in the book of Palma et.al

Message Passing

37




Potential Mid-term Exam Questions

What is the difference between the else and terminate alternatives?

When can a process be blocked inside a select which uses an else alternative?

Which kind of communication do you think these schemes represent? (from the

point of view of synchronization)

Process A

SEND(B,mssg)

—‘_ ______
answer
Process B

RECEIVE(a,mssg)

v

Time

Process A SEND(B,mssg)

‘\
O100
Process B \L

RECEIVE(a,mssg)

v

v

Time

Message Passing 38




distribute
direct
asymmetric
asynchronous
priority
guarded
message
receive

indirect

Keywords phonetics

/dr1'stribju:t/

x{
/dar rekt/ <
=
x{

/e1s1 metrik/

/et sinkranas/
/pra1 oriti/ ﬂ”»
/'ga:did/ ﬂmb)
/'mesidz/ =
/ri'sizv/ <|»,
/ 1nd1'rekt/ ﬂm))

Message Passing

39



http://dictionary.cambridge.org/dictionary/british/distribute
http://dictionary.cambridge.org/dictionary/british/distribute
http://dictionary.cambridge.org/dictionary/british/direct
http://dictionary.cambridge.org/dictionary/british/direct
http://dictionary.cambridge.org/dictionary/british/asymmetric
http://dictionary.cambridge.org/dictionary/british/asymmetric
http://dictionary.cambridge.org/dictionary/british/asynchronous
http://dictionary.cambridge.org/dictionary/british/asynchronous
http://dictionary.cambridge.org/dictionary/british/priority
http://dictionary.cambridge.org/dictionary/british/priority
http://dictionary.cambridge.org/dictionary/british/guarded
http://dictionary.cambridge.org/dictionary/british/guarded
http://dictionary.cambridge.org/dictionary/british/message
http://dictionary.cambridge.org/dictionary/british/message
http://www.merriam-webster.com/dictionary/receive
http://www.merriam-webster.com/dictionary/receive
http://www.merriam-webster.com/dictionary/indirect
http://www.merriam-webster.com/dictionary/indirect

