
Unit 3
Shared-memory Communication

3.3 Monitors

3.1 Semaphores
3.2 CCR
3.3 Monitors
 3.3.1 Introduction
 3.3.2 Monitors
 -Mutual Exclusion
 -Condition Synchronization
 3.3.3 Producer-Consumer problem
 3.3.4 Proposed problems
 3.3.5 Monitors in Java

Monitors

3.1 Semaphores
3.2 CCR
3.3 Monitors
 3.3.1 Introduction
 3.3.2 Monitors
 -Mutual Exclusion
 -Condition Synchronization
 3.3.3 Producer-Consumer problem
 3.3.4 Proposed problems
 3.3.5 Monitors in Java

2

3.3.1 Introduction

• We learned that semaphores are concurrent programming solutions which had
several problems. Can you remember a few of them?

• CCR solved some of these problems:

• But still provided a resulting code with sparse use of global variables aimed to
control the concurrent execution.

• Solution: Monitors

Monitors 3

3.3.1 Introduction

• Monitors were proposed by C.A.R. Hoare in 1974.

• A monitor is an encapsulation of resources, and operations which can be applied
on them.

• Variables declared in a monitor can be accessed only from a procedure exported
from the same monitor.

• All procedures are executed under mutual exclusion; the programmer does not
need to explicitly manage access to critical regions anymore.

• Processes are queued inside a Condition queue, when a condition is not met. It
will wait until another process makes the necessary change.

Monitors 4

3.3.1 Introduction

• Consequently, a monitor solves all problems mentioned when using semaphores
and CCR:

– Modular: the code written to control concurrent processes is inside a unique structure.

– Local variables: variables used are local in the monitor. The programmer will not find
global variables along the code.

– The programmer cannot access, by error, shared variables.

– Meaningful: the code inside the monitor helps the programmer to know what is the aim
of the monitor (mutual exclusion or synchronization).

• Active process: a process which calls a procedure inside the monitor. We say the
process is inside the monitor.

• If the monitor creates processes inside it, these are called passive processes.

Monitors 5

Monitors 6

3.1 Semaphores
3.2 CCR
3.3 Monitors
 3.3.1 Introduction
 3.3.2 Monitors
 -Mutual Exclusion
 -Condition Synchronization
 3.3.3 Producer-Consumer problem
 3.3.4 Proposed problems
 3.3.5 Monitors in Java

3.3.2 Monitors
• Monitors are available as primitive in Pascal-FC, but not in Java. The generic

structure in Pascal-FC is:

Monitors

monitor name;

 export exported_procedures;

 var local_variables;

 procedure P1 (parameters);

 var local_variables;

 begin

 {some code}

 end;

 ...

 procedure Pn (parameters);

 var local_variables;

 begin

 {some code}

 end;

begin

 {initiation code}

end;

- A set of local variables called permanent
variables. They indicate the state of the
resource represented by the monitor.

- An initiation code. This code is executed
once, when the monitor is created. It is used
to initiate the permanent variables.

- One or more procedures which manage the
value of the permanent variables.

- A list of exported procedures which can be
accessed from outside the monitor by the
programmer. The export keyword must be
the first to appear in the monitor code.

- Procedures which are not exported are
inner procedures.

7

3.3.2 Monitors

• When an active process needs to use a shared resource which is
represented/controlled by a monitor, the process must call an exported procedure
from the monitor.

• This call is performed in Pascal-FC as follows:

monitorName.procedure(arguments)

• That is, the name of the monitor followed by the name of the exported procedure
(and arguments, if required).

• Let us see how the monitor provides:

– mutual exclusion access to procedures inside the monitor, and

– processes synchronization

Monitors 8

3.3.2 Monitors – mutual exclusion

• A monitor uses a processes queue called monitor queue.

• The monitor queue is managed as follows:

– When an active process is inside the monitor, and another active process tries to enter
the monitor through another (or the same) exported procedure than the former, the
latter is blocked in the monitor queue (which has a FIFO behaviour).

– When an active process finishes the execution of an exported procedure, it leaves the
monitor. Then:

• If the monitor queue is empty, the first active process which tries to gain access will
enter.

• Else, the process in the head of the monitor queue is released and gains access to
the monitor.

Monitors 9

3.3.2 Monitors – mutual exclusion
• Write a Pascal-FC monitor which lets us increment the value of a variable and

printing its value. The access must be performed under mutual exclusion.

Monitors

program incrementing;

monitor monit;

export inc, value;

var i:integer;

procedure inc;

begin

i:=i+1;

end;

procedure value;

begin

writeln('---->',i)

end;

begin

i:=0;

end;

process type P;

begin

repeat

 monit.inc;

 monit.value;

 forever

end;

var

 p1,p2,p3:P;

begin

cobegin

 p1;

 p2;

 p3;

coend

end.

program incrementing;

monitor monit;

export inc, value;

var i:integer;

procedure inc;

begin

i:=i+1;

end;

procedure value;

begin

writeln('---->',i)

end;

begin

i:=0;

end;

10

3.3.2 Monitors – condition synch.

• The previous example allows us to increment and print the value of a variable
under mutual exclusion. But the increment&printing operations are not
synchronized, so the output may be a little ‘dumb’.

• We need to learn how to synchronize processes under a given condition inside
monitors.

• This is performed by using condition variables: variables inside a monitor which
represent FIFO queues.

• An active process is blocked in a condition variable when it cannot continue its
execution (e.g.: producer blocked because buffer is full). It will resume its
execution when the situation changes (e.g.: the consumer takes an item from the
buffer).

Monitors 11

3.3.2 Monitors – condition synch.

• Declaration in Pascal-FC of 2 condition variables and an array of condition
variables:

• Disambiguation of term “condition”:

1. The situation which makes a process block until it is changed by another process.

2. A type of variable which represents a FIFO queue. If there are several kinds of
processes, then each kind of process is queue in a different condition variable. For
example, in the Producer/Consumer problem, producers are blocked in condition
variable A, and consumers in condition variable B.

Monitors

var

cond_A, cond_B: condition;

conditions: array [1..5] of condition;

12

3.3.2 Monitors – condition synch.

• Pascal-FC provides three necessary operations on a condition variable C.

– empty(C): it returns a boolean value. True if there are not active processes blocked in C,
False otherwise.

– delay(C): the active process which executes this operation releases the mutual
exclusion hold on the monitor, and is queued in condition C. This is different from
wait(semaphore) because the active process is always blocked in the condition, while
semaphores only block processes when their value is 0.

– resume(C): the active process blocked in the head of the queue in C is set ready for
execution. If the queue is empty, this operation is null (does nothing); this is different
from signal(semaphore) because signal always increases the value of the semaphore so
it is never a null operation.

Monitors 13

3.3.2 Monitors – condition synch.
• When an active process P1 executes resume(C) and then P2 is set ready for

execution, which processes goes on running: P1 or P2? (both together cannot
because this violates the mutual exclusion guaranteed by the monitor).

• The possible solutions are known as semantic of the resume operation.
– Resume and Continue (RC): P2 is inserted back in the monitor queue. The situation

which blocked it needs to be revaluated in a while loop because once it re-enters the
monitor, the situation might be true again. Java wait-notify signals use the semantic RC.

– Resume and Exit (RE): P1 returns from the monitor and P2 resumes its execution inside
the monitor. Thus, P2 does not need to revaluate the situation. Concurrent Pascal uses
RE.

– Resume-and-Wait (RW): P1 returns from the monitor and is inserted again in the
monitor queue. P2 resumes its execution. Modula-2, Concurrent Euclid.

– Resume-and-Urgent-Wait (RUW): the same than RW, but now P1 in inserted in the
courtesy queue, which has higher priority than the monitor queue when trying to gain
access to the monitor. This is the semantic of resume in Pascal-FC.

Monitors 14

3.3.2 Monitors – condition synch.
• Thus, the final structure of a monitor (with RUW semantic) is this:

Monitors

initiation code

x

y

Permanent variable

Condition variables x and
y which represent FIFO
queues

Monitor queue

...

operations

Courtesy queue

15

Monitors 16

3.1 Semaphores
3.2 CCR
3.3 Monitors
 3.3.1 Introduction
 3.3.2 Monitors
 -Mutual Exclusion
 -Condition Synchronization
 3.3.3 Producer-Consumer problem
 3.3.4 Proposed problems
 3.3.5 Monitors in Java

3.3.3 Producer-Consumer problem
Let us solve the problem with limited buffer and several producers and consumers

• What resource is to be represented by the monitor?

• What are the permanent variables?

• What are the active processes?

• Do we need condition variables to queue active processes?

• What operations should the monitor export?

Monitors 17

3.3.3 Producer-Consumer problem

Monitors 18

program ProducerConsumer;

monitor buffer;

{list of operations to export}

export insert, remove;

{permanent variables}

const SIZE=10;

var

 numItems, insertIndex, removeIndex:integer;

 consumersC, producersC: condition;

 data: array[1..SIZE] of integer;

 {operations}

 procedure insert(item:integer);

 begin

 if numItems=SIZE then delay(producersC);

 data[insertIndex]:=item;

 writeln('--->',item);

 insertIndex:= (insertIndex MOD SIZE) + 1;

 numItems:=numItems+1;

 resume(consumersC);

 end;

procedure remove(var item:integer);

 {the item is passed by reference}

 begin

 if numItems=0 then delay(consumersC);

 item:=data[removeIndex];

 writeln('<---',item);

 removeIndex:=(removeIndex MOD SIZE)+1;

 numItems:=numItems-1;

 resume(producersC);

 end;

begin {initiation code}

insertIndex:=1;

removeIndex:=1;

numItems:=0;

end;

3.3.3 Producer-Consumer problem

Monitors 19

Now write the code necessary to run the solution with 2 consumers and 2 producers

process type tProducer;

var

 item: integer;

begin

 repeat

 item := random(200);

 buffer.insert(item);

 forever

end;

process type tConsumer;

var

 item: integer;

begin

 repeat

 buffer.extract(item);

 forever

end;

var

{*the buffer monitor is a global variable

we do not need to declare it*}

consumer1, consumer2:tProducer;

producer1,producer2: tConsumer;

begin

cobegin

consumer1;

consumer2;

producer1;

producer2;

coend

end.

Monitors 20

3.1 Semaphores
3.2 CCR
3.3 Monitors
 3.3.1 Introduction
 3.3.2 Monitors
 -Mutual Exclusion
 -Condition Synchronization
 3.3.3 Producer-Consumer problem
 3.3.4 Proposed problems
 3.3.5 Monitors in Java

3.3.4 Proposed problems

• Using Pascal-FC:

– Implement a binary semaphore using monitors.

– Solve the Elevator problem using monitors

Always think:

– What resource is to be represented by the monitor?

– What are the permanent variables?

– What are the active processes?

– Do we need condition variables to queue active processes?

– What operations should the monitor export?

Monitors 21

Monitors 22

3.1 Semaphores
3.2 CCR
3.3 Monitors
 3.3.1 Introduction
 3.3.2 Monitors
 -Mutual Exclusion
 -Condition Synchronization
 3.3.3 Producer-Consumer problem
 3.3.4 Proposed problems
 3.3.5 Monitors in Java

3.3.5 Monitors in Java

• Java language does not provide monitors as built-in objects.

• Think of a class with a set of private variables, and several public synchronized
methods which operate on that variable:

– that is a monitor which guarantees mutual exclusion operations on such variables.

– Why?

• But, what about condition synchronization?

– You can use signals wait and notify to block processes but…

– Can you see a problem here?

Monitors 23

3.3.5 Monitors in Java

• By default, signals block and resume threads on the same queue.

• If we want to imitate the behaviour of condition variables, we can call these signals on
different Object objects.

• Since we are using more than 1 condition variable, the synchronization must be done per
blocks instead of the whole method. And then each block is synchronized on the Object on
which a wait or signal may be called.

Monitors 24

synchronized public void queueMe() throws Exception{
wait();
}

Thread 1 Thread 2 Thread 3

Thread
 1

Thread
 2

Thread
 3

public void queueMe(Object ob) throws Exception{
//imagine each thread passes a different Object instance
synchronized(ob){ob.wait();}
}

Thread 1 Thread 2 Thread 3

Thread
 1

Thread
 2

Thread
 3

3.3.5 Monitors in Java

• Now we can build a monitor for the buffer of the Producer-Consumer problem.

Monitors 25

class BufferMonitor {

 private final int SIZE=10;

 private Object consumersC = new Object();

 private Object producersC = new Object();

 private int insertIndex=0,removeIndex=0,numItems=0;

 private int[] data=new int[SIZE];

 public void insert(int item){

 synchronized(producersC){

 //Note:we need to reevaluate the condition

 //because JAVA uses Resume and Continue semantic

 while(numItems==SIZE)

 try {producersC.wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 data[insertIndex]=item;

 System.out.println("--->"+item);

 insertIndex= (insertIndex +1) % SIZE;

 numItems++;

 }

 synchronized(consumersC){

 consumersC.notify();

 }

}

public int remove(){

 int item;

 synchronized(consumersC){

 while(numItems==0){

 try {

 consumersC.wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 item=data[removeIndex];

 System.out.println("<---"+item);

 removeIndex=(removeIndex+1)%SIZE;

 numItems--;

}

 synchronized(producersC){

 producersC.notify();

 }

 return item;

 }

}

3.3.5 Monitors in Java

Monitors 26

class Producer extends Thread {

BufferMonitor buffer;

Producer(BufferMonitor b) {

buffer = b;

}

public void run() {

java.util.Random r =

 new java.util.Random();

while (true) {

buffer.insert(r.nextInt(200));

}

}

}

class Consumer extends Thread {

BufferMonitor buffer;

Consumer(BufferMonitor b) {

buffer = b;

}

public void run() {

while (true) {

int x = buffer.remove();

}

}

}

public class ProducerConsumer{

public static void main(String args[]){

BufferMonitor buffer = new BufferMonitor();

//SHARED INSTANCE OF THE BUFFERMONITOR!!

for (int i = 0; i < 2; i++)

(new Producer(buffer)).start();

for (int i = 0; i < 2; i++)

(new Consumer(buffer)).start();

}

}

Potential Mid-term Exam Questions
1. What is the structure of a monitor which provides condition synchronization?

2. What can you say about a Java class with a private variable and a set of public and
synchronized methods?

3. What do we mean by ‘semantic’ of the resume operation on blocked processes?

4. How many queues do we have in a monitor?

Monitors 27

Keywords phonetics

• active /ˈæktɪv/

• disambiguation /ˌdɪsæmbɪgjʊˈeɪʃən/

• resume /rɪˈzjuːm/

• courtesy /ˈkɜːtəsi/

Monitors 28

http://dictionary.cambridge.org/dictionary/british/active
http://dictionary.cambridge.org/dictionary/british/resume
http://es.forvo.com/word/disambiguation/
http://dictionary.cambridge.org/dictionary/british/courtesy

