
USIXML: a Language Supporting Multi-Path
Development of User Interfaces

Quentin Limbourg1, Jean Vanderdonckt1, Benjamin Michotte1, Laurent Bouillon1,
Víctor López-Jaquero1 2

1 Université catholique de Louvain, School of Management (IAG), ISYS-BCHI
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

{limbourg,vanderdonckt,michotte,bouillon, lopez}@isys.ucl.ac.be
http://www.isys.ucl.ac.be/bchi

2 Laboratory of User Interaction and Software Engineering (LoUISE)

University of Castilla-La Mancha, Albacete, Spain
victor@info-ab.uclm.es

Abstract. USer Interface eXtensible Markup Language (USIXML) consists of
a User Interface Description Language (UIDL) allowing designers to apply a
multi-path development of user interfaces. In this development paradigm, a
user interface can be specified and produced at and from different, and possibly
multiple, levels of abstraction while maintaining the mappings between these
levels if required. Thus, the development process can be initiated from any
level of abstraction and proceed towards obtaining one or many final user inter-
faces for various contexts of use at other levels of abstraction. In this way, the
model-to-model transformation which is the cornerstone of Model-Driven Ar-
chitecture (MDA) can be supported in multiple configurations, based on com-
position of three basic transformation types: abstraction, reification, and trans-
lation.

Keywords: context-sensitive user interface, development processes, modality
independence, model-driven architecture, model-to-model transformation,
multi-path development, rendering independence, user interface description
language.

1 Introduction

Due to the rapid changes of today’s organisations and their business, many informa-
tion systems departments face the problem of quickly adapting the user interface (UI)
of their interactive applications to these changes. These changes include, but are not
limited to: task redefinition [4], task reallocation among workers [4], support of new
computing platforms [10], migration from stationary platforms to mobile computing
[17], evolution of users with more demands, increasing need for more usable UIs,
transfer of task from one user to another one [7], redefinition of the organisation
structure, adaptation to dynamic environments [16], change of the language, redesign
due to obsolescence [3], evolution of the domain model [1]. All these changes change
to some extent the context of use, which is hereby referred to as the complete envi-

ronment where final users have to carry out their interactive tasks to fulfil the roles
they are playing in their organisations.

To address the challenges posed by these changes, the development processes used
in these organisations are not always considered appropriate, as they do not reflect the
implication of any change throughout the complete development life cycle. As a mat-
ter of fact, organisations react to changes in very different ways in their UI develop-
ment processes. For instance, one organisation starts by recovering existing in-
put/output screens, by redrawing them and by completing the functional core when
the new UI is validated by the customer (bottom-up approach). Another organisation
prefers to modify the domain model (e.g., a UML class diagram [12]) and the task
model [20] to be mapped further to screen design (top-down approach). A third one
tends to apply in parallel all the required adaptations where they occur (wide spread-
ing approach). A fourth one relies on an intermediate model and proceeds simultane-
ously to the task and domain models, and the final UI (middle-out approach) [15].
The UI development process has also been empirically observed as an ill-defined, in-
complete, and incremental process [24] that is not well supported by rigid develop-
ment methods and tools. Such methods and tools usually force developers to act in a
way that remains peculiar to the method. The tool does not allow for more flexibility.
For instance, SEGUIA [25] only supports a single fixed UI development path [11].

The variety of the approaches adopted in organisations and the rigidity of existing
solutions provide ample motivations for a UI development paradigm that is flexible
enough to accommodate multiple development paths and design situations while stay-
ing precise enough to manipulate information required for UI development. To over-
come these shortcomings, the development paradigm of multi-path UI development
is introduced that is characterised by the following principles:

• Expressiveness of UI: any UI is expressed depending on the context of use
thanks to a suite of models [20] analysable, editable, and manipulable by a
software [21].

• Central storage of models: each model is stored in a model repository where
all UI models are expressed according to the same UI Description Language
(UIDL).

• Transformational approach: each model stored in the model repository may
be subject to one or many transformations supporting various development
steps.

• Multiple development path: development steps can be combined together to
form developments path that are compatible with the organisation’s con-
straints, conventions, and context of use. For example, a series of transforma-
tions should be applied to progressively move from a task model to a dialog
model, to recover a domain model from a presentation model, to derive a pres-
entation model from both the task and domain models.

• Flexible development approaches: development approaches (e.g., top-down,
bottom-up, wide spreading, and middle-out) are supported by flexibly follow-
ing alternate development path and enabling designers to freely shift between
these path depending on the changes imposed by the organization [15].

The remainder of this paper is structured as follows: Section 2 reports on some sig-
nificant pieces of work that are partially related to the multi-path UI development.
Section 3 introduces the reference representations that are used throughout this paper
to address the principles of expressiveness and central storage of models based on
USer Interface eXtensible Markup Language (USIXML). Section 4 shows how a
transformational approach is represented and implemented thanks to graph grammars
and graph transformations applied on models expressed in USIXML and stored in a
model repository. Three basic transformation types (i.e., abstraction, reification, and
translation) are exemplified. Section 6 exposes the tool support proposed around
USIXML. Section 7 concludes by reporting on the main benefits and difficulties en-
countered so far with multi-path UI development.

2 Related Work

The multi-path UI development, as defined in Section 1, is at the intersection of two
mainstreams of research and development: on the one hand, UI modelling and design
of multi-platform UIs represent significant advances in Human-Computer Interaction
(HCI) and on the other hand, program transformation that is considered promising in
Software Engineering (SE) as a mean to bridge the gap between abstract description
of software artefacts and their implementation [4,23].

Teallach tool and method [11] exploit three models: a task model, a domain model
as a class diagram, and a presentation model both at logical and physical levels. Teal-
lach enables designers to start building a UI from any model and maps concepts from
different models one to each other (e.g., map a widget to a domain concept, or map a
task onto a domain concept). Teallach also provides rules to derive model elements
using information contained in another model.

XWEB [25] produces UIs for several devices starting from a multi-modal descrip-
tion of the abstract UI. This system operates on specific XWEB servers and browsers
tuned to the interactive capacities of particular platforms, which communicate thanks
to an appropriate XTP protocol. MORE [10] produce applications that are platform
independent by relying on Platform Independent Application (PIA). A PIA can be
created either by a design tool or by abstracting a concrete UI by a generalization
process done by reverse engineering [17] the UI code.

UIML consists of a UIDL supporting the development of UIs for multiple comput-
ing platforms by introducing a description that is platform-independent to be further
expanded with peers once a target platform has been chosen [2]. The TIDE tool [2]
transforms a basic task model into a final UI. XIML [21] is a more general UIDL than
UIML as it can specify any type of model, any model element, and relationships be-
tween. Although some predefined models and relationships exist, one can expand the
existing set to fit a particular context of use. XIML has been used in MANNA for plat-
form adaptation [9], and in VAQUITA and Envir3D [5] to support re-engineering [7] of
web sites by applying a series of model transformations. SeescoaXML [21] is the
base UIDL exploited in the SEESCOA project to support the production of UIs for
multiple platforms and the run-time migration of the full UI across these platforms.

TERESA (Transformation Environment for inteRactivE Systems representAtions)

[17] produces different UIs for multiple computing platforms by refining a general
task model for the different platforms. Then, various presentation and dialogue tech-
niques are used to map the refinenements into XHTML code adapted for each plat-
form, such as Web, PocketPC, and mobile phones. TERESA exploits TERESAXML, a
UIDL that supports several types of transformations such as: task model into presen-
tation task sets, task model into abstract UI, abstract UI to concrete UI, and genera-
tion of the final UI. In [26], a very interesting example of a platform modulator [9] is
provided that maps a hierarchical task model to a presentation model explicitly taking
into account platform characteristics such as screen resolution.

The above pieces of work all represent an instance with some degree of coverage
and restrictions of the multi-path UI development. Regarding the UI expressiveness
for multiple contexts of use, XTP of XWeb, UIML, XIML, TERESAXML and See-
scoaXML are UIDLs that address the basic requirements of UI modelling and expres-
sivity. XIML is probably the most expressive one as a new model, element or rela-
tionship can be defined internally. Yet, there is no systematic support of these rela-
tionships until they are covered by a specific software. Regarding the transforma-
tional approach, Seescoa, Teallach, TERESA and TIDE include some transformation
mechanism to map a model onto another one, but the logics and the definition of
transformation rules are completely hard coded with little or no control by designers.
In addition, the definition of these representations is not independent of the transfor-
mation engine. Regarding multiple development path, only Teallach explicitly ad-
dresses the problem as models can be mapped one onto another according to different
ways. Other typically apply top-down (e.g., TIDE), bottom-up (e.g., VAQUITA), mid-
dle-out (e.g., MIDAS [15]), but none of them support all development approaches.

To satisfy the requirements subsumed by the four principles, Graph Transforma-
tion (GT) [22] will be applied because substantive experience shows applicability in
numerous fields of science (e.g., biology, operational research) and, notably, to com-
puter science (e.g., model checking, parallel computing, software engineering). GTs
are operated in two steps: expressing abstract concepts in the form of a graph struc-
ture and defining operations producing relevant transformations on the graph struc-
ture. Sucrow [23] used GT techniques to formally describe UI dialog with dialog
states (the appearance of a UI at a particular moment in time) and dialog transitions
(transformations of dialog states). An interesting edge typology is proposed to de-
scribe dialog states emphasises widget hierarchy, semantic feedback, and relation-
ships with the functional core of the application. To support “a continuous specifica-
tion process of graphical UIs”, two models are defined in the development process:
abstract and concrete. GTs map one model into another, and vice versa, thus leading
to reversibility. Furthermore, elements such as dialog patterns, style guides, and
metaphors are used to automate abstract to concrete transition. However, conceptual
coverage and fundamental aspects of this work remains silent: presented concepts
remain at the model level without going to any final UI and there is no description of
the meta-level nor of the instance level. To structure the models involved in the UI
development process and to characterise the model transformations to be expressed
through GT techniques, a reference framework is now introduced.

3 The Reference Framework used for Multi-Path UI
Development

Multi-path UI development is based on the Cameleon Reference Framework [6],
which defines UI development steps for multi-context interactive applications. Its
simplified version, reproduced in Fig. 1, structures development processes for two
contexts of use into four development steps (each development step being able to ma-
nipulate any specific artefact of interest as a model or a UI representation) [5,6]:

1. Final UI (FUI): is the operational UI i.e. any UI running on a particular comput-

ing platform either by interpretation (e.g., through a Web browser) or by execu-
tion (e.g., after compilation of code in an interactive development environment).

2. Concrete UI (CUI): concretises an abstract UI for a given context of use into
Concrete Interaction Objects (CIOs) [25] so as to define widgets layout and inter-
face navigation. It abstracts a FUI into a UI definition that is independent of any
computing platform. Although a CUI makes explicit the final Look & Feel of a
FUI, it is still a mock-up that runs only within a particular environment. A CUI
can also be considered as a reification of an AUI at the upper level and an abstrac-
tion of the FUI with respect to the platform.

3. Abstract UI (AUI): defines interaction spaces (or presentation units) by grouping
subtasks according to various criteria (e.g., task model structural patterns, cogni-
tive load analysis, semantic relationships identification), a navigation scheme be-
tween the interaction spaces and selects Abstract Interaction Objects (AIOs) [25]
for each concept so that they are independent of any modality. An AUI abstracts a
CUI into a UI definition that is independent of any modality of interaction (e.g.,
graphical interaction, vocal interaction, speech synthesis and recognition, video-
based interaction, virtual, augmented or mixed reality). An AUI can also be con-
sidered as a canonical expression of the rendering of the domain concepts and
tasks in a way that is independent from any modality of interaction. For example,
in ARTStudio [5], an AUI is a collection of related workspaces. The relations be-
tween the workspaces are inferred from the task relationships expressed at the up-
per level (task and concepts). An AUI is considered as an abstraction of a CUI
with respect to modality.

4. Task & Concepts (T&C): describe the various tasks to be carried out and the do-
main-oriented concepts as they are required by these tasks to be performed. These
objects are considered as instances of classes representing the concepts manipu-
lated.

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction
Fig. 1. The Cameleon Reference Framework.

This framework exhibits three types of basic transformation types: (1,2) Abstrac-
tion (respectively, Reification) is a process of elicitation of artefacts that are more ab-
stract (respectively, concrete) than the artefacts that serve as input to this process. Ab-
straction is the opposite of reification. (3) Translation is a process that elicits artefacts
intended for a particular context of use from artefacts of a similar development step
but aimed at a different context of use. With respect to this framework, multi-path UI
development refers to a UI engineering method and tool that enables a designer to (1)
start a development activity from any entry point of the reference framework (Fig. 1),
(2) get substantial support in the performance of all basic transformation types and
their combinations of Fig. 1. To enable such a development, the two most important
requirements gathered from observations are:

1. A language that enables the expression and the manipulation (e.g., creation, modi-

fication, deletion) of the model at each development steps and for each context of
use. For this purpose, USIXML is introduced and defined
(http://www.usixml.org). It is out of the scope of this paper to provide an exten-
sive discussion on the content of USIXML. USIXML is composed of approxi-
mately 150 concepts enabling the expression of different levels of abstraction as
introduced in Fig. 1.

2. A mechanism to express design knowledge that would provide a substantial sup-
port to the designer in the realisation of transformations. For this purpose, a GT
technique is introduced and defined based on USIXML.

4 Graph Transformation Specification with USIXML

Graph transformation techniques were chosen to formalize USIXML, the language
designed to support multi-path UI development, because it is (1) Visual: every ele-
ment within a GT based language has a graphical syntax; (2) Formal: GT is based on
a sound mathematical formalism (algebraic definition of graphs and category theory)
and enables verifying formal properties on represented artefacts; (3) Seamless: it al-

lows representing manipulated artefacts and rules within a single formalism. Fur-
thermore, the formalism applies equally to all levels of abstraction of USIXML (Fig.
2). USIXML model collection is structured according to the four basic levels of ab-
straction defined in the Cameleon Reference Framework that is intended to express
the UI development life cycle for context-sensitive interactive applications. Fig. 2 il-
lustrates more concretely the type of concepts populating each level of Cameleon ref-
erence framework:
• At the FUI level, the rendering materialises how a particular UI coded in one lan-

guage (markup, programming or declarative) is rendered depending on the UI
toolkit, the window manager and the presentation manager. For example, a push
button programmed in HTML at the code sub-level can be rendered differently,
here on MacOS X and Java Swing. Therefore, the code sub-level is materialised
onto the rendering sub-level.

• The CUI level is assumed to abstract the FUI independently of any computing
platform, this level can be further decomposed into two sub-levels: platform-
independent CIO and CIO type. For example, a HTML push-button belongs to the
type “Graphical 2D push button”. Other members of this category include a Win-
dows push button and XmButton, the OSF/Motif counterpart.

Final User

Interface (FUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

Download

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

Download
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO
-

Final User

Interface (FUI)

Concrete User
Interface (CUI)

Abstract User

Interface (AUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

DownloadDownload

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

DownloadDownload
Down

Load
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO

Code representation

Final User

Interface (FUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

Download

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

Download
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO
-

Final User

Interface (FUI)

Concrete User
Interface (CUI)

Abstract User

Interface (AUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

DownloadDownload

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

DownloadDownload
Down

Load
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO

Code representation

Fig. 2. Example of transformations in USIXML.

• Since the AUI level is assumed to abstract the CUI independently of any modality
of interaction, this level can be further decomposed into two sub-levels: modality-
independent AIO and AIO type. For example, a software control (whether in 2D
or in 3D) and a physical control (e.g., a physical button on a control panel or a
function key) both belong to the category of control AIO.

• At the T&C level, a task of a certain type (here, download a file) is specified that
naturally leads to AIO for controlling the downloading.

Thanks to the four abstraction levels, it is possible to establish mappings between
instances and objects found at the different levels and to develop transformations that
find abstractions or reifications or combinations. For example, if a Graphical User In-
terface (GUI) needs to be virtualised, a series of abstractions is applied until the sub-
level “Software control AIO” sub-level is reached. Then, a series of reifications can
be applied to come back to the FUI level to find out another object satisfying the
same constraints, but in 3D. If the GUI needs to be transformed for a UI for aug-
mented reality for instance, the next sub-level can be reached with an additional ab-

straction and so forth. The combinations of the transformations allow establishing de-
velopment path. Here, some first examples are given of multi-path UI development.
To face multi-path development of UIs in general, USIXML is equipped with a col-
lection of basic UI models (i.e., domain model, task model, AUI model, CUI model,
context model and mapping model) (Fig. 4) and a so-called transformation model
(Fig. 3) [13].

Fig. 3. USIXML Model Collection.

Beyond the AUI and CUI models that reflect the AUI and CUI levels, the other UI
models are defined as follows:

• uiModel: is the topmost superclass containing common features shared by all
component models of a UI. A uiModel may consist of a list of component model
in any order and any number, such as task model, a domain model, an abstract UI
model, a concrete UI model, mapping model, and context model. A user interface
model needs not include one of each model component. Moreover, there may be
more than one of a particular kind of model component.

• taskModel (Inherits from: uiModel): is a model describing the interactive task as
viewed by the end user interacting with the system. A task model represents a de-
composition of tasks into sub-tasks linked with task relationships. Therefore, the
decomposition relationship is the privileged relationship to express this hierarchy,
while temporal relationships express the temporal constraints between sub-tasks
of a same parent task. A task model is here expressed according to the Concur-
TaskTree notation [20].

• domainModel (Inherits from: uiModel): is a description of the classes of objects
manipulated by a user while interacting with a system [12].

• mappingModel (Inherits from: uiModel): is a model containing a series of related
mappings (i.e, a declaration of an inter-model relationship) between models or
elements of models. A mapping model serves to gather a set of inter-model rela-
tionships that are semantically related.

• contextModel (Inherits from: uiModel): is a model describing the three aspects of
a context of use in which a end user is carrying out an interactive task with a spe-
cific computing platform in a given surrounding environment. Consequently, a
context model consists of a user model, a platform model, and an environment
model.

Fig. 4. Transformation model as defined in USIXML.

Transformations are specified using transformation systems. Transformation sys-
tems rely on the theory of graph grammars [22]. We first explain what a transforma-
tion system is and then illustrate how they may be used to specify UI model transfor-
mations. The proposed formalism to represent model-to-model transformation in
USIXML is graph transformations. This formalism has been discussed in [13,14].
USIXML has been designed with an underlying graph structure. Consequently any
graph transformation rule can be applied to a USIXML specification. Graph trans-
formations have been shown convenient and efficient for our present purpose in [19].

A transformation system is composed of several transformation rules. Technically,
a rule is a graph rewriting rule equipped with negative application conditions and at-
tribute conditions [19].

Fig. 5 illustrates how a transformation system applies to a USIXML specification:
let G be a USIXML specification (represented as a graph), when 1) a Left Hand Side
(LHS) matches into G and 2) a Negative Application Condition (NAC) does not
matches into G (note that several NAC may be associated with a single rule) 3) the
LHS is replaced by a Right Hand Side (RHS). G is resultantly transformed into G, a
resultant USIXML specification. All elements of G not covered by the match are
considered as unchanged. All elements contained in the LHS and not contained in the
RHS are considered as deleted (i.e., rules have destructive power). To add more ex-
pressive power to transformation rules, variables may be associated to attributes
within a LHS. Theses variables are initialized in the LHS and their value can be used

to assign an attribute in the expression of the RHS (e.g., LHS : button.name:=x, RHS :
task.name:=x). An expression may also be defined to compare a variable declared in
the LHS with a constant or with another variable. This mechanism is called ‘attribute
condition’.

G
Host USIXML specification

G’
Resultant USIXML specification

LHS RHS

Matches -Co-Matches

Is Transformed Into

Is Transformed Into

Transformation Rule 1

Transformation Rule 2
…

Transformation Rule N

Tr
an

sf
or

m
at

io
n

S
ys

te
m

NAC

Not
Matches

+

G
Host USIXML specification

G’
Resultant USIXML specification

LHS RHS

Matches -Co-Matches

Is Transformed Into

Is Transformed Into

Transformation Rule 1

Transformation Rule 2
…

Transformation Rule N

Tr
an

sf
or

m
at

io
n

S
ys

te
m

NAC

Not
Matches

+

Fig. 5. Transformation system in USIXML.

We detail hereafter a simplified scenario illustrating the three basic types of trans-
formation (thus inducing different path) mentioned in Section 3.

Step 1 (Abstraction): a designer reverse engineers an HTML page with Rutabaga
[3] in order to obtain a CUI model. Transformation 1 (Fig. 6) is an abstraction that
takes a button at the concrete level and abstracts it away into an abstract interaction
object. The LHS selects every button and the method they activate and create a corre-
sponding abstract interaction object equipped with a control facet mapped onto the
method triggered by its corresponding concrete interaction object. Some behavioural
specification is preserved at the abstract level. Note that behaviour specification in
USIXML is also done with graph transformations rules. It is out of the scope of this
paper to explicit this mechanism. This is why rule 1 in transformation 1, in its LHS,
embeds a fragment of a transformation system specification. This may seem confus-
ing at first sight but is very powerful at the end i.e., we dispose of a mechanism trans-
forming a UI behavioural specification into another one! In the RHS, one also see
that a relationship isAbstractedInto has been created. This relationship ensures trace-
ability of rule application and helps in maintaining coherence among different levels
of abstraction.

Step 2 (Reification): the designer decides to add, by hand, to the abstract level a
navigation facet to every abstract interaction object that has a control facet. From this
new abstract specification, Transformation 2 (Fig. 7) reifies every abstract interaction
object into image components (i.e., a type of concrete interaction object). By default,
the control facet is activated when an event “onMouseOver” is triggered, and the

navigation facet is activated when the imageComponent is double-clicked. This rule
may of course be customized by the designer to reflect his own preferences or needs.

Transformation 1: abstraction

...
<abstraction id="AB1" name = "AbstractButtonWithCon-
trol" description = "this translation abstracts buttons into
an AIO with an activation facet"

<transformationSystem id = "TR2" name="Transfo2"...>
<transformationRule id = "rule1" name "abstractsBut">

<lhs>

<button ruleSpecificID="1" mapID="2">
<behavior>
<action>
<transformationSystem>
<transformationRule>
<rhs>
<method ruleSpecificID="3"
 mapID ="4" name=”X” />
<isTriggeredBy isFired="true">
<source sourceId="1">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</action>
</behaviour>

</button>
</lhs>

<rhs>

<abstractIndividualComponent ruleSpecificId="5">
<control activatedMethod=”X”>

</abstractIndividualComponent>

<isAbstractedInto>

<source sourceId="2"/>
<target targetId="5"/>

<isAbstractedInto>

<button ruleSpecificId="1" mapID="2">

<behavior>
<transformationSystem>
<transformationRule>
<rhs>
<method ruleSpecificID="3" mapID ="4"/>
<isTriggeredBy isFired="true">
<source sourceId="1">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>

</button>
</rhs>
...
<nac.../>

</transformationRule>
</transformationSystem>
</abstraction>
...

Transformation 2: reification

...
<reification id="Reif1" name = "ReifiesAioImgCtlrNav”
 description = " reifies a control AIO into an image Component
with corresponding behavior template”

<transformationSystem id = "TRE1" name="TR2"...>
<transformationRule id = "rule44" name "ReiFControl44">

<lhs>

<abstractIndividualComponent mapID="1">
<control activatedMethod=”X”/>
<navigation target=”Y”/>
</abstractIndividualComponent>

<lhs>
<rhs>

<imageComponent ruleSpecificID="2">
<behavior>
<event type="doubleClick"/>
<action>
<transformationSystem>
<transformationRule>
<lhs/>
<rhs>
<method ruleSpecificID="3" name=”X”/>
<isTriggeredBy isFired="true">
<source sourceId="2">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>
<behavior>
<event type="onMouseOver(self)"/>
<action>
<transformationSystem>
<transformationRule>
<lhs/>
<rhs>
<graphicalContainer id="Y" visible="true"/>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>

</imageComponent>

<isReifiedInto>

<source sourceId="1"/>
<target targetId="2"/>

</isReifiedInto>

<abstractIndividualComponent mapID="1">

<control activatedMethod="X">
</abstractIndividualComponent>

</rhs>
<nac.../>

<transformationRule>
</transformationSystem>
</reification>
...

Fig. 6. Transformation 1. Fig. 7. Transformation 2.

Step3 (Translation): to adapt a UI to a new type of display/browser that has the

characteristic to be tall and narrow. The designer decides then to apply Transforma-
tion 3 (Fig. 8) to her CUI model. This transformation is made of a rule that selects all

boxes (basic layout structure at the CUI level) and sets these boxes type to “vertical”.
All widgets contained in this box are then glued to the left of the box (again in the
idea of minimizing the width of the resulting UI). Note the presence of a negative ap-
plication condition (too long to show in previous examples) that ensures that rule 1 in
transformation 3 is not applied to an already formatted box.

Fig. 8 shows a simple example of translation specified with USIXML. This rule of
the rule selects all boxes (basic layout structure at the CUI level), sets these boxes to
“vertical”. All widgets contained in this box are then glued to the left of the box
(again in the idea of minimizing the width of the resulting UI). A negative application
condition ensures that a rule is not applied to an already formatted box.

Transformation 3: translation

...
<translation id="TL1" name="squeezeDisplay"
description= "this translations vertically aligns all widgets of a con-
tainer">
<sourceModel type="cui"/>
<targetModel type="cui"/>
<transformationSystem id="TR1" name="Transfo1"...>
<transformationRule id="rule1" name="squeeze1">

<lhs>
<box mapID="1">
<graphicalIndividualComponent mapId="2" />
</box>
</lhs>

<rhs>
<box mapID="1" type="vertical">
<graphicalIndividualComponent mapId="2" glueHorizontal="left"/>
</box>
</rhs>

<nac>
<box mapID="1" type="vertical">
<graphicalIndividualComponent mapId="2" glueHorizontal="left"/>
</nac>
</transformationRule>
</transformationSystem>
</translation>
...

Fig. 8. Transformation 3.

Alternatively to textual representation, transformation rules are easily expressed in
a graphical syntax. Fig. 9 shows a graphical equivalent for the rule contained in Fig.
8. A general purpose tool for graph transformation called AGG (Attributed Graph
Grammars) was used to specify this example. There is no proof that states the superi-
ority of graphical formalism over textual ones, but at least USIXML designer can
choose between both.

LHSNAC RHS

::=

LHSNAC RHS

::=

Fig. 9. Graphical representation of the transformation.

Traceability (and as a side-effect reversibility) of model transformation is enabled
thanks to a set of ‘so-called’ interModelMappings (e.g., isAbstractedInto, IsReified-
Into, isTranslatedInto) allowing a relation between model elements belonging to dif-
ferent models. Thus, it is possible to keep a trace of the application of rules i.e., when
a new element is created a mapping indicates of what element it is an abstraction, a
reification, a translation, etc. Another advantage of using these mappings is to support
multi-path development is that they explicitly connect the various levels of our
framework and realizes an seamless integration of the different models used to de-
scribe the system. Knowing the mappings of a model increases dramatically the un-
derstanding of the underlying structure of a UI. It enables to answer, at no cost, to
question like: what task a interaction object enables?, what domain object attributes
are updated by what interaction object? Which interaction object triggers what
method?

5 Tool Support

Tool support is provided for several of the levels shown in Fig. 2.
• Reverse engineering of UI code: a specific tool, called ReversiXML [3], auto-

matically reverse engineers the presentation model of an existing HTML Web
page at both the CUI and AUI levels, with or without intra-model, inter-model
mappings. This tool allows developers to recuperate an existing UI so as to incor-
porate it again in the development process. In this case, a re-engineering can be
obtained by combining two abstractions, one translation, and two reifications.
This is particularly useful for evolution of legacy systems.

• Model edition: as editing a new UI in USIXML directly can be considered as a
tedious task, a specific editor called GrafiXML has been developed to face the de-
velopment of USIXML models. Being at first hand a textual language, an ad hoc
USIXML editor was created. In this editor, the designer can draw in direct ma-
nipulation any graphical UI by directly placing CIOs and editing their properties
in the Composer, which are instantly reflected in the UI design (Fig. 10). At any
time, the designer may want to see the corresponding USIXML specifications
(Fig. 11) and edit it. Selecting a USIXML tag automatically displays possible val-
ues for this tag in a contextual menu. When the tag or the elements are modified,
those changes are propagated to the graphical representation. In this way, a bidi-
rectional mapping is maintained between a UI and its USIXML specification:
each time a part is modified, the other one is updated accordingly.

Fig. 10. Graphical Editing of a UI in GrafiXML.

Fig. 11. USIXML equivalent of a UI edited in GrafiXML.

Fig. 12. Capabilities to generate a UI at different levels of abstraction.

What distinguishes GrafiXML from other UI graphical editors are its capabilities
to directly generate USIXML specifications at the different levels of abstractions
represented in Fig. 2: FUI (here in plain text, in XHTML and Java AWT), CUI
(with or without relationships), and AUI (with or without relationships). In addi-
tion, a UI can be saved simultaneously with CUI and AUI specifications, while
establishing and maintaining the inter-model relationships between.

• Transformation specification and application: an environment called AGG
(Attributed Graph Grammars tool) is used for this experiment. AGG can be con-
sidered as a genuine programming environment based on graph transformations
[12]. It provides 1) a programming language enabling the specification of graph
grammars 2) a customizable interpreter enabling graph transformations. AGG
was chosen because it allows the graphical expression of directed, typed and at-
tributed graphs (for expressing specifications and rules). It has a powerful library
containing notably algorithms for graph transformation [14], critical pair analysis,
consistency checking, positive and negative application condition enforcement.
AGG user interface is described in Fig. 13. Frame 1 is the grammar explorer. Fig.
13 Frames 2, 3 and 4 enable to specify sub-graphs composing a production: a
negative application (frame 2), a left hand side (frame 3) and a right hand side
(frame 4). The host graph on which a production will be applied is represented in
Frame 5.

• A tool for transformation application: several Application Programming Inter-
faces are available to perform model-to-model transformations (e.g., DMOF at
http://www.dstc.edu.au/Products/CORBA/M-OF/ or Univers@lis at http://univer
salis.elibel.tm.fr/site/). We tested AGG API as this API proposes to transform
models with as graph transformations. This scenario is described in Fig. 14. An
initial model along with a set of rules are transmitted to a Application Program-
ming Interface that performs appropriate model transformations and provide a re-
sulting model that can be edited.

Fig. 13. AGG user interface.

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules
expressed in USIXML

::=

Transformation rules
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

Fig. 14. Development process based on transformation application.

6 Conclusion

Information systems are subject to a constant pressure toward change. UIs represent
an important and expensive software component of information systems. Multi-path
UI development has been proposed to cope with the problem of UI adaptation to an
evolving context of use. Multi-path UI development has been defined as an engineer-
ing method and tool that allows a designer to start a UI development by several entry
points in the development cycle, and from this entry point get a substantial support to
build a high quality UI. Main features of multi-path UI development are:

1. A flexible development process based on transformations.
2. A unique formal language to specify UI related artefacts. So far, these con-

cepts have been hard coded in software tools, thus preventing anyone from re-
using, redefining or exchanging them. USIXML provides a mean to overcome
these shortcomings. The core of this language is composed of a set of inte-
grated models expressed in a formal and uniform format, governed by a com-
mon meta-model definition, graphically expressible and a modular, modifiable
and extensible repository of executable design knowledge that is also repre-
sented with a graphical syntax. Furthermore, a definition of an XML notation
supporting the exchange of models and executable design knowledge has been
presented.

3. A transformational approach based on systematic rules that guarantee semantic
equivalence when applied, some of them being reversible.

4. A tool supporting the expression and manipulation of models and design
knowledge visually.

With increase of design experience, a copious catalogue of transformation rules
can be assembled into meaningful grammars. The level of support provided to the ac-
complishment of design steps varies from one transition to another. Indeed, some
transitions are better known than others. For instance, the reification between physical
and logical UI can be supported by hundreds of rules namely by widget selection
rules. On the contrary, rules that enable the translation of a task model from a desktop
PC to a handheld PC are, for now, understudied. Some transitions are intrinsically
harder to support (e.g., abstraction transitions). For instance, retrieving a task model
from the physical UI is not a trivial problem.

Acknowledgements

The authors would like to thank Cameleon partners who contributed to V1.2 of
USIXML: Lionel Balme, Gaëlle Calvary, Cristina Chesta, Alexandre Demeure, Joëlle
Coutaz, Jean-Thierry Lechein, Fabio Paternò, Stéphane Raymond, Carmen Santoro,
and Youri Vanden Berghe. This paper is related to USIXML V1.4, an extension of
USIXML V1.2 with dialog model, more inter-model mappings, a context model made
up of user, platform, and environment, and the concrete user interface level. Laurent
Bouillon is supported by Cameleon research project (http://giove.cnuce.cnr.it/ came-
leon.html) under the umbrella of the European Fifth Framework Programme (FP5-
2000-IST2). Benjamin Michotte is supported by the SIMILAR network of excellence

(http://www.similar.cc), the European research task force creating human-machine in-
terfaces similar to human-human communication of the European Sixth Framework
Programme (FP6-2002-IST1-507609).

References

1. Agrawal, A., Karsai, G., Ledeczi, K.: An End-to-end Domain-Driven Software Develop-
ment Framework. In: Companion of the 18th Annual ACM SIGPLAN Conference on Ob-
ject-oriented Programming Systems, Languages, and Applications OOPSLA’2003 (Ana-
heim, October 26-30, 2003). ACM Press, New York (2003) 8–15

2. Ali, M.F., Pérez-Quiñones M.A., Abrams M.: Building Multi-Platform User Interfaces with
UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and Ap-
plication Framework. John Wiley and Sons, New York (2003)

3. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible Re-engineering of Web Sites. In:
Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces IUI’2004 (Funchal, January 13-
16, 2004). ACM Press, New York (2004) 132–139

4. Brown J.: Exploring Human-Computer Interaction and Software Engineering Methodolo-
gies for the Creation of Interactive Software. SIGCHI Bulletin 29,1 (1997) 32–35

5. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the Develop-
ment of Plastic User Interfaces. In: Little, M.R., Nigay, L. (eds.): Proc. of IFIP WG2.7
(13.2) Working Conference EHCI’2001 (Toronto, May 11-13, 2001). Lecture Notes in
Computer Science, Vol. 2254. Springer-Verlag, Berlin (2001) 173–192

6. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15,3 (2003) 289–308

7. Chikofsky, E.J., Cross, J.H.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software 1,7 (1990) 13–17

8. Constantine, L.: Canonical Abstract Prototypes for Abstract Visual and Interaction Design.
In: Jorge, J., Nunes, N.J., Falcão e Cunha, J. (eds.), Proc. of 10th Int. Workshop on Design,
Specification, and Verification of Interactive Systems DSVIS’2003 (Funchal, June 4-6,
2003). Lecture Notes in Computer Science, Vol. 2844. Springer-Verlag, Berlin (2003) 1–9

9. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Model-Based User-Interface Development
Techniques for Mobile Computing. In: Lester, J. (ed.), Proc. of 5th ACM Int. Conf. on In-
telligent User Interfaces IUI’2001 (Santa Fe, January 14-17, 2001). ACM Press, New York
(2001) 69–76

10. Gaeremynck, Y., Bergman, L.D., Lau, T.: MORE for Less: Model Recovery from Visual
Interfaces for Multi-Device Application Design. In: Proc. of 7th ACM Int. Conf. on Intelli-
gent User Interfaces IUI’2003 (Miami, January 12-15, 2003). ACM Press, New York
(2003) 69–76

11. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper, R.,
Goble, C.A., da Silva, P.P.: Teallach: A Model-Based User Interface Development Envi-
ronment for Object Databases. Interacting with Computers 14, 1 (December 2001) 31–68

12. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. Prentice Hall, Englewood Cliffs (2001)

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, B.: TOMATOXML, a General Pur-
pose XML Compliant User Interface Description Language, TOMATOXML V1.2.0. Wor-
king Paper n°105. Institut d’Administration et de Gestion (IAG), Louvain-la-Neuve (19
February 2004).

14. Limbourg, Q., Vanderdonckt, J.: Transformational Development of User Interfaces with
Graph Transformations. In: Jacob, R., Limbourg, Q., Vanderdonckt, J. (eds.): Proc. of 5th
Int. Conf. on Computer-Aided Design of User Interfaces CADUI’2004 (Madeira, January
14-16, 2004). Kluwer Academics Pub., Dordrecht (2004)

15. Luo, P.: A Human-Computer Collaboration Paradgim for Bridging Besign Conceptualiza-
tion and Implementation. In: F. Paternò (ed.): Interactive Systems: Design, Specification,
and Verification, Proc. of the 1st Eurographics Workshop on Design, Specification, and
Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, June 8-10, 1994).
Springer-Verlag, Berlin (1995) 129–147

16. Luyten, K., Van Laerhoven, T., Coninx, K., Van Reeth, F.: Runtime Transformations for
Modal Independent User Interface Migration. Interacting with Computers 15,3 (2003) 329–
347

17. Mori, G., Paternò, F., Santoro, C.: Tool Support for Designing Nomadic Applications. In:
Proc. of 7th ACM Int. Conf. on Intelligent User Interfaces IUI’2003 (Miami, January 12-15,
2003). ACM Press, New York (2003)141–148

18. Olsen, D.R., Jefferies, S., Nielsen, T., Moyes, W., Fredrickson, P.: Cross Modal Interaction
using XWEB. In: Proc. of the 13th Annual ACM Symposium on User Interface Software
and Technology UIST’2000 (San Diego, November 5-8, 2000). ACM Press, New York
(2000) 191–200

19. Partsch, H., Steinbruggen, R.: Program Transformation Systems. ACM Computing Surveys
15,3 (September 1983), 199–236

20. Paternò, F. Model-Based Design and Evaluation of Interactive Applications. Springer-
Verlag, Berlin (2000)

21. Puerta, A., Eisenstein, J.: Developing a Multiple User Interface Representation Framework
for Industry. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and
Application Framework. John Wiley and Sons, New York (2003)

22. Rozenberg, G. (ed.). Handbook of Graph Grammars and Computing by Graph Transforma-
tion. World Scientific, Singapore (1997)

23. Sucrow, B.: On Integrating Software-Ergonomic Aspects in the Specification Process of
Graphical User Interfaces. Transactions of the SDPS Journal of Integrated Design & Proc-
ess Science. Society for Design & Process Science 2,2 (June 1998) 32–42

24. Sumner, T., Bonnardel, N., Kallak, B.H.: The Cognitive Ergonomics of Knowledge-Based
Design Support Systems PAPERS: Intelligent Support. In: Proceedings of ACM Confer-
ence on Human Factors in Computing Systems CHI’97 (Atlanta, April 1997). ACM Press,
New York (1997) 83–90

25. Vanderdonckt, J., Berquin, P.: Towards a Very Large Model-Based Approach for User In-
terface Development. In: Paton, N.W., Griffiths, T. (eds.): Proc. of 1st IEEE Int. Workshop
on User Interfaces to Data Intensive Systems UIDIS’99 (Edinburgh, September 5-6, 1999).
IEEE Computer Society Press, Los Alamitos (1999) 76–85

26. Wong, C., Chu, H.H., Katagiri, M.A., Single-Authoring Technique for Building Device-
Independent Presentations. In: Proc. of W3C Workshop on Device Independent Authoring
Techniques (St. Leon-Rot, 15-26 September 2002), accessible at http://www.w3.org/2002/
07/DIAT/posn/docomo.pdf

