
FROM PLATO’S DUALISM TO USER INTERFACE
DEVELOPMENT

Francisco Montero, Víctor López-Jaquero
LoUISE Research Group

University of Castilla-La Mancha
02071, Albacete – Spain

{fmontero, victor}@dsi.uclm.es

Keywords: user interface development, design patterns, reflection, dual specification

Abstract: Today, many devices are available, and they use different languages. From a user point of view, the system
is its user interface, and this idea is used in this paper to provide a pattern-based design solution where
platform independent and dependent levels are connected in a model-based user interface development and
reflective environment. Platform independent and dependent levels have similarities with Plato’s dual view
of reality..

1 INTRODUCTION

User Interface (López-Jaquero et al., 2006) is the
part of the system that receives input from, and
presents information to the user. Strictly speaking,
the user interface includes both hardware and
software components, although in the context of
software design, it refers to the software that
manages the interaction with the user.

Nowadays, we have many devices and theirs
associated programming languages, to handle this
diversity, service providers must either devote
considerable resources to developing multiple
alternative user interfaces, each specialized to a
particular delivery context, or must develop more
flexible user interfaces.

In this paper we introduce a design pattern-based
framework as a solution to flexible user interface
development. This framework is a model-based user
interface development environment (MB-UIDE)
where a hierarchical structure is identified. This
structure consists of a meta level, where MB-UIDE
platform-independent models are located, and a base
level where platform dependent models are hosted.

This paper is organized into three further
sections. Section 2 presents relationships among user
interfaces and classic philosophy. Section 3 presents
our framework, a reflective-MB-UIDE that can be
implemented using design patterns, how these

patterns can be used is commented too. Finally,
section 4 presents conclusions and future challenges.

2 USER INTERFACES AND
PHILOSOPHY

Reality is the configuration of any substance,
material or spiritual. Therefore, the definition of
reality is looked for in the substance and
configurations of existence. To test substance for
reality, an example is used. A clay model is a good
test. The question then is, is reality in the substance.
A model of a tree can be made of a different
substance, and it still represents a tree. So the reality
is not in the substance.

The question then is whether the reality is in the
configuration. When the configuration is changed,
the reality changes. Therefore, the reality is in the
configuration. This definition is adequate for both
material and spiritual substance. It is accurate for
thoughts in the mind, for that which is observed and
for that which is communicated.

Truth is an attempt to properly represent the
characteristics of unified reality. Therefore, its
proper definition is the communicated representation
of unified reality.

Developers often see the functionality of a
system as separate from the UI, with the UI as an
add-on. Users, however, do not typically make

distinctions between the underlying functionality
and the way it is presented in the UI. To users, the
UI is the system. Therefore, if the UI is usable, they
will see the entire system as usable.

User interface is often thought of as referring
only to how screens look. But because users see the
UI as the system, this is too narrow a definition. A
broader definition of UI includes all aspects of the
system design that influence the interaction between
the user and the system. It is not simply the screens
that the user sees, although these are certainly part of
the UI. The UI is made up of everything that the user
experiences, sees and does with the computer
system.

2.1 Classic philosophy

Plato's allegory of the cave (Roser, 2001) is the best-
known of his many metaphors, allegories, and
myths. The allegory is told and interpreted at the
beginning of Book VII of The Republic (514a-520a).
The allegory is probably best presented as a story,
and then interpreted—as Plato himself does.

Unlike his mentor Socrates, Plato was both a
writer and a teacher. His writings are in the form of
dialogues, with Socrates as the principal speaker. In
the Allegory of the Cave, Plato described
symbolically the predicament in which mankind
finds itself and proposes a way of salvation. The
Allegory presents, in brief form, most of Plato's
major philosophical assumptions: his belief that the
world revealed by our senses is not the real world
but only a poor copy of it, and that the real world
can only be apprehended intellectually; his idea that
knowledge cannot be transferred from teacher to
student, but rather that education consists in
directing student's minds toward what is real and
important and allowing them to apprehend it for
themselves; his faith that the universe ultimately is
good; his conviction that enlightened individuals
have an obligation to the rest of society, and that a
good society must be one in which the truly wise
(the Philosopher-King) are the rulers.
The allegory begins with a graphic picture of the
pathetic condition (see Fig. 1) of the majority of
mankind. We are like chained slaves living in an
underground den, which has a mouth open towards
the light and reaching all along the den. Here we
have been from our childhood, unable to move or to
see beyond, being prevented by the chains from
turning round our heads. Above and behind us a fire
is blazing at a distance, but between the fire and
ourselves there is a low wall like the screen which
marionette players have in front of them to foster the
illusion necessary for a puppet-show. We are like the
strange prisoners in this den who see only their own

shadows or the shadows of one another, which the
fire throws on the opposite wall of the cave. To them
the truth would be literally nothing but the shadows
of the images, and they cannot distinguish the voices
of one another from the echoes emanating from the
surrounding darkness

Figure 1: Graphical representation of Plato’s cave

Plato speaks of ascending and descending dialectic
in his purpose of Theory of the knowledge. The
ascending dialectic awakens the mind and the heart
to the presence of the highest principles. Once that is
achieved, the descending dialectic is the process of
going back into the cave in order to be a beacon
pointing others beyond the limitations of
particularity. This similar directions, ascending and
descending, can be found in Software Engineering
and Model Driven Architecture (MDA) and in our
framework.

2.2 Software Engineering: Model Driven
Architecture

Recently many organizations have begun to focus
attention on Model Driven Architecture (MDA) as
an approach to application design and
implementation. MDA encourages efficient use of
system models in the software development process,
and it supports reuse of best practices when creating
families of systems. As defined by the Object
Management Group (OMG), MDA is a way to
organize and manage enterprise architectures
supported by automated tools and services for both
defining the models and facilitating transformations
between different model types.

Models provide abstractions of a physical system
that allow engineers to reason about that system by
ignoring extraneous details while focusing on
relevant ones, in a similar way to Plato who had two
levels of knowledge (objects and concepts). All
forms of engineering rely on models to understand
complex, real-world systems. Models are used in
many ways: to predict system qualities, reason about

specific properties when aspects of the system are
changed, and communicate key system
characteristics to various stakeholders. The models
may be developed as a precursor to implementing
the physical system, or they may be derived from an
existing system or a system in development as an aid
to understanding its behavior.

Four principles underlie the OMG’s view of
MDA:

 Models expressed in a well-defined notation
are a cornerstone to understanding systems for
enterprise-scale solutions.

 The building of systems can be organized
around a set of models by imposing a series of
transformations between models, organized
into an architectural framework of layers and
transformations.

 A formal underpinning for describing models
in a set of metamodels facilitates meaningful
integration and transformation among models,
and is the basis for automation through tools.

 Acceptance and broad adoption of this model-
based approach requires industry standards to
provide openness to consumers, and foster
competition among vendors.

Figure 2: Model-driven architecture philosophy: one

origin many destinations

To support these principles, the OMG has
defined a specific set of layers and transformations
that provide a conceptual framework and vocabulary
for MDA. Notably, OMG identifies four types of
models: Computation Independent Model (CIM),
Platform Independent Model (PIM), Platform
Specific Model (PSM) described by a Platform
Model (PM), and an Implementation Specific Model
(ISM).

2.3 Human-Computer Interaction:
Model-Based User Interface
Development Environments

Model-Based User Interface Development
Environments (MB-UIDEs) provide a context within
which declarative models can be constructed and
related, as part of the interface design process
(Schulungbaum, 1996; Szekely, 1995). MB-UIDEs
use an explicit, largely declarative representation
capturing application semantics and other
knowledge needed to specify the appearance and
behavior of an interactive system. The goal of the
MB-UIDE is to identify reusable components of a
UI and to capture more knowledge in the model,
while reducing the amount of new procedural code
that has to be written for each new application. In a
MB-UIDE we can find several typical models:
domain, task, presentation, dialog, user, etc., many
of these models are independent of the platform.

Nowadays, we have many user interface
description languages (UIDL) and using them we
can work in an abstract user interface (AUI) level.
The AUI model separates a user interface into
concrete and abstract components so that a number
of concrete user interface styles may be specified for
a single abstract user interface. The AUI notation is
an executable specification language used to define
the abstract user interface. By only specifying
abstract interaction once, it is hoped that
development and maintenance costs will be reduced
and that interaction semantics of an interactive
system will remain consistent across multiple
concrete user interfaces.

Domain, task and abstract user interface model
are platform independent models that can be used to
describe an application in a platform-independent
manner. A domain model is an object model of a
problem domain. Elements of a domain model are
domain classes, and the relationships between them.
The user task model is a representation of the tasks
that the user can perform on the interface. These
tasks may differ from the system, or application,
tasks. The presentation model is a view of the static
characteristics of an interface, mainly its layout,
organization, and attributes such as fonts and colors.
Finally, the user model defines the types of users of
the interface and the relevant attributes of those
users. Its main purpose is to influence interface
generation. It is not designed to be a model of the
mental state of the user at a particular time during
the interaction.

3 OUR FRAMEWORK

In our framework (Montero et al., 2006) MB-UIDEs
and reflection, are used together. Reflection has been
proposed as a solution to the problem of creating

applications able to maintain, use, and change
representations of their own designs (Maes, 1987;
Smith, 1982). Reflective systems are able to use
self-representations to extend, modify, and analyze
their own computation.

A reflective architecture yields a flexibility level
that allows designers not only to extend a language
itself but also to adapt and add functionality to
existing systems in a transparent way. Reflection is
used in several domains, such as concurrency
programming, distributed systems, artificial
intelligence, and expert systems. Not only functional
requirements can be achieved using computational
reflection,

In reflective architectures, components that deal
with the self-representation and the application
reside in two different software levels organized in a
hierarchical manner, such as Plato’s cave: metalevel
and base level, respectively.

 Metalevel: formed by objects that carry out

computation about a system materialized by
objects at the base level. The computational
domain, or system internal domain, deals with
the information relative to structures and
mechanisms that fit into the program
execution

 Base Level: contains program objects that

solve a problem and return information about
the application domain.

Two processes, abstraction (bottom-up

transformations) and reification (top-down
transformations), occur between the levels of this
hierarchy. We have adopted the word reification to
indicate the inverse operation to abstraction.
Abstraction implies a many-to-one transformation
from the many possible variants to a single invariant
form. Reification on the other hand implies not a
one-to-many transformation, which would
potentially produce an infinite variety of variants,
but rather a one-to-one-of-many transformation,
although the exact variant that is generated could be
any one of the infinite variety of variant forms. We
implemented these processes, abstraction and
reification, using design patterns from (Gamma et
al., 1994).

3.1 Abstraction process (bottom-up)

The state of an object is a combination of the current
values of its attributes. When you call a set- method,
you typically change an object's state, and an object
can change its own state as its methods execute.

Objects are often discussed in terms of having a
state that describes their exact conditions in a
given time, based upon the values of their properties.
The particular values of the properties affect the
object's behavior. For instance, one can say that the
exact behavior of an object's getColor() method
is different if the color property of the given
object is set to blue instead of red because
getColor() returns a different value in the two
situations. In this sense, Context in Fig. 3 is our
application described in a platform-independent
manner, that is, in Context we can find task,
domain and presentation in an abstract way. In State
we can find concrete presentation associated with
different devices so many as we are considering.

Figure 3: State pattern structure

At base level, the Decorator Pattern is used for
adding additional functionality to a particular object
as opposed to a class of objects. It is easy to add
functionality to an entire class of objects by
subclassing an object, but it is impossible to extend a
single object this way. With the Decorator Pattern,
you can add functionality to a single object and
leave others like it unmodified. Decorator pattern
can be used at our base level to added additional
functionality in concrete presentation reusing
concrete interaction objects functionality without use
of inheritance (Fig. 4).

Figure 4: Decorator pattern structure

Fig. 4 shows several classes located at our base
level. These classes are related with concrete
interaction objects (CIOs) in different devices
(concreteComponent), and Decorator
classes are associated with additional functionality
that can be added dynamically to CIOs.

Figure 5: Observer pattern structure

3.2 Reification process (top-down)

The Observer pattern (Gamma et al., 1994) (Fig.
5) allows one object (Observer) to watch another
(Subject). The Observer pattern allows the
subject and observer to form a publish-subscribe
relationship. Through the Observer pattern,
observers can register to receive events from the
subject. When the subject needs to inform its
observers of an event, it simply sends the event to
each observer.
A casual connection, between base and meta level, is
implemented using Observer pattern. Subject
classes are models located at meta level and
observer classes are platform-dependent
descriptions of our application, that is, concrete
interaction objects.

4 CONCLUSIONS AND FUTURE
WORKS

In the developed world, information technology
is being embedded into more and more everyday
items, and many people are increasingly reliant on
electronically delivered information diversity of
devices with which individuals access these
electronic services. Abstraction and reification are
efficient tools to address the flexible user interface
development problem. This paper presented
different design patterns that are successfully used in

user interface development under a model-based
user interface development environment. Future
works will include use this approach to implement
different kinds of user interfaces and applications.
Non-functionality requirements and design patterns
is just another challenge.

ACKNOWLEDGEMENTS

This work was supported by the Spanish CICYT
project TIN2004-08000-C03-01 and the grant
PCC05-005-1 from the Junta de Comunidades de
Castilla-La Mancha.

REFERENCES

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).
Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, Massachusets, US:
Addison-Wesley

López Jaquero, V. , Montero, F., Molina, J.P., González,
P. Interfaces de Usuario Inteligentes: Pasado, Presente
y Futuro. VII Congreso Internacional de Interacción
Persona-Ordenador, Interacción 2006, Puertollano,
Spain, 13-17, november, 2006.

Maes P. Concepts and Experiments in Computational
Reflection. In Proceedings of OOPSLA'87, ACM
Sigplan Notices, p.147-155, Orlando, Florida, October
1987

Model-Driven Architecture (MDA).
http://www.omg.org/mda/

Montero, F., López Jaquero, V., Lozano, M., González, P.
A User Interfaces Development and Abstraction
Mechanism. In HCI related papers of Interacción 2004.
Navarro Prieto, Raquel; Lorés Vidal, Jesús (Eds.)
Springer.Verlag, Germany, 2005. ISBN: 1-4020-4204-
3.

Roser, C. Platón. Libro VII de la República. Editorial
Diálogo. 2001

Schulungbaum, E. Model-based user interface software
tools – current state of declarative models. Graphics,
visualization and usability centre, Georgia Institute of
Technology, GVU Tech #96 #30. 1996

Smith, B.C. Reflection and Semantics in a Procedural
Programming Language. PhD thesis, MIT, January
1982

Szekely, P. Retrospective and challenges for model-based
interface developments. In: Bodart, F., Vanderdonckt,
J. (eds.) Design, Specification and Verification of
Interactive Systems. 1995

