
Model-Based Design of Adaptive User Interfaces
through Connectors

Víctor López-Jaquero, Francisco Montero, José. P. Molina,
Antonio Fernández-Caballero, Pascual González

Laboratory of User Interaction and Software Engineering (LoUISE)
University of Castilla-La Mancha, Albacete, Spain

{victor|fmontero|jpmolina|caballer|pgonzalez}@info-ab.uclm.es

Abstract. For a long time standard desktop applications have ruled the market.
Nevertheless, the availability of information has made the user demand new
interaction techniques in completely different contexts and devices, but
requesting the same functionality. With this new situation application design
should be able to adapt to these differences. To design these adaptive interfaces
the specification of these user interfaces should support plasticity at runtime. In
this paper a first approach is proposed to support these plasticity features from a
formal point of view within a model-based user interface design methodology.
Connector paradigm is used to coordinate the communication between Concrete
Interaction Objects and Abstract Interaction Objects in a flexible way enough to
support adaptivity.

1 Introduction

For a long time standard desktop applications have ruled the market. Personal
computers became the main focus as the final target for both business and leisure
applications. At that time, a user was some kind of expert that had usually even some
programming skills. Thus, research in designing process was centred in those kinds of
target platforms for that kind of users. Then Internet flood the market with completely
different concepts, content was the main focus instead of the traditional focus on
functionality as data processing. Nevertheless, the availability of information has
made the user demand new interaction techniques. These new techniques need to
fulfil this new demand for information at any place and using any device. The ways
information is used, the contexts (situations and places) and the devices involved in
interaction are so assorted that it is almost impossible to predict every use for the
information available [19].

On the other hand, as a new generation of devices and new interaction contexts are
introduced another important fact needs to be taken into account: the diversity in the
level of experience of the users. When an application is made available through the
Internet it will be available to people from different countries, from different cultures,
with different skills and preferences. We talk about user-centred design. But, how
“user-centred” can this design be if we don’t know the user that will interact with the
system?

2 Víctor López-Jaquero et al.

User interface design must address these two up-to-date challenges: (1) designing
for many different interaction devices and, (2) designing for many different users.

To address these problems user interfaces should be able to adapt themselves to the
platform they run on and to each individual user (see figure 1). These properties for
user interfaces are referred to as adaptivity [2].

Fig. 1. Diversity in interaction: platform, capabilities, context and user aware design.

There are different ways to achieve this adaptivity, but one of the main ways to

support adaptivity is to design user interfaces with plasticity. The term ‘plasticity’ is
inspired from the property of materials that expand and contract under natural
constraints without breaking, thus preserving continuous usage. Plasticity [4] is the
capacity of a user interface to withstand variations of both the system physical
characteristics and the environment while preserving usability. One of the more
common ways to preserve usability at runtime is checking whether the identified
interaction patterns [13] are being used or not in the UI the user interacts with.
Usability metrics assessed at run time are a useful tool for that purpose too. In order to
design plastic user interfaces it is necessary to develop specification techniques for
dynamic user interfaces, which will evolve at run time while preserving the same
functionality and at the same time preserving usability too. In this paper our solution
for the specification of dynamic user interfaces is introduced.

2 Designing User Interfaces

HCI is becoming more and more important, because of the high cost associated to
user interface construction for applications, and the high exigencies users demand in
terms of usability. Different studies have shown that 48% of an application code is
dedicated to user interface development, and that 50% of implementation stage time is
dedicated to user interface construction [16].

Model-Based Design of Adaptive User Interfaces through Connectors 3

These facts have motivated the creation of different research projects
[6][24][18][12] that face these problems from an automatic user interface generation
point of view. These projects try to fill the gap in Software Engineering between
functional modelling and user interface development. Among these projects, model
based approaches [17] arise as a useful and powerful tool to develop user interfaces.
These approaches take as input a requirements specification that is converted into
different declarative models. The most widely used ones are the task, the user, the
domain, the dialogue and the presentation models. These declarative models are used
to generate automatically a user interface compliant with the requirements captured in
these models. In next section our model-based methodological approach for user
interface generation is introduced briefly.

3 IDEAS: A Model-Based Approach for User Interface Design

There are different proposals for model-based user interfaces design; IDEAS is one of
those proposals. IDEAS is a methodology for user interfaces development within the
framework of an automatic software production environment. This environment is
supported by the object-oriented model OASIS [11].

Abstraction is one of the basic principles needed to understand and model the
reality. The object-oriented paradigm favours this principle as it conceives the object
oriented development process as an iterative and incremental approach that
progressively allows a detailed specification of the system to be obtained.

Fig. 2. IDEAS methodology stages.

GRAPHICAL USER INTERFACE

IMPLEMENTATION

DESIGN

ANALYSIS

REQUIREMENTS
Use Case Model

User
Model

Task
Model

Sequence Diagram I, II
(behavior)

Roles Diagram
(structure)

DOMAIN MODEL

DIALOGUE
MODEL

PRESENTATION
MODEL

Dialogue
Interaction Diagr.

Component
Specification Diagr.

Internal State
Transition Diagr.

User Interface
Code Generation

REQUIREMENTS

ANALYSIS

DESIGN

IMPLEMENTATION

CIO AIO

Obj

Connectors
Diagr.

U
SA

B
ILITY

 EV
A

LU
A

TIO
N

GRAPHICAL USER INTERFACE

IMPLEMENTATION

DESIGN

ANALYSIS

REQUIREMENTS
Use Case Model

User
Model

Task
Model

Sequence Diagram I, II
(behavior)

Roles Diagram
(structure)

DOMAIN MODEL

DIALOGUE
MODEL

PRESENTATION
MODEL

Dialogue
Interaction Diagr.

Component
Specification Diagr.

Internal State
Transition Diagr.

User Interface
Code Generation

REQUIREMENTS

ANALYSIS

DESIGN

IMPLEMENTATION

CIO AIO

Obj

Connectors
Diagr.

GRAPHICAL USER INTERFACE

IMPLEMENTATION

DESIGN

ANALYSIS

REQUIREMENTS
Use Case Model

User
Model

Task
Model

Sequence Diagram I, II
(behavior)

Roles Diagram
(structure)

DOMAIN MODEL

DIALOGUE
MODEL

PRESENTATION
MODEL

Dialogue
Interaction Diagr.

Component
Specification Diagr.

Internal State
Transition Diagr.

User Interface
Code Generation

REQUIREMENTS

ANALYSIS

DESIGN

IMPLEMENTATION

CIO AIO

Obj

Connectors
Diagr.

U
SA

B
ILITY

 EV
A

LU
A

TIO
N

4 Víctor López-Jaquero et al.

The user interface development process within IDEAS is tackled following this
principle. This process is not flat, but it is structured in multiple levels and multiple
perspectives. The vertical structuring shows the reification processes followed from
the first and most abstract level passing through the following levels to finally reach
the system implementation, which constitutes the last level. On the other hand, the
horizontal structuring shows the different perspectives offered by the different models
developed in every one of the vertical levels. Thus, different models are used at the
same abstract level to describe the different aspects of the graphical user interface.

Following these ideas, we propose the user interface development process depicted
in figure 2. Due to space constraints, we cannot detail the different models proposed,
so we will briefly describe the methodological process.

3.1 Requirements Level

At requirements level three models are created: the Use Case Model, the Task Model
and the User Model. The Use Case Model captures the use cases identified within the
information system. Then, for every one of the use cases there will be one or more
tasks that the user may perform to accomplish the functionality defined by the use
case.

These tasks will be modelled in the Task Model. The Task Model defines the
ordered set of activities and actions the user has to perform to achieve a concrete
purpose or goal. We propose a template based on the one proposed by Cockburn [5]
to describe in natural language all these issues. The User Model describes the
characteristics of the different types of users. The purpose of this model is to support
the creation of individual and personalized user interfaces.

3.2 Analysis Level

At analysis level the Domain Model is generated. This model consists of two
diagrams. The first one is the Sequence Diagram, which defines the system behaviour.
The second one is the Roles Diagram, which defines the structure of the classes that
take part in the associated sequence diagram together with the relationships among
these classes, specifying the role of each one of them.

3.3 Design Level

At design level the Dialogue Model is developed. All the models that have been
generated up to now do not contain any graphical aspect of the final user interface. It
is from now on that these issues start to be addressed and the way in which the user-
system interaction will be performed is especially important.

The purpose is to describe the syntactic structure of the user-computer interaction.
It establishes when the user can invoke commands, select or specify the input data and
when the computer can require data from the user or display the output data. These
items are modelled by means of Abstract Interaction Objects (AIOs) [3].

Model-Based Design of Adaptive User Interfaces through Connectors 5

3.4 Implementation Level

At implementation level the Presentation Model is created. The Presentation Model
describes the Concrete Interaction Objects (CIOs) composing the final graphical user
interface, its design characteristics and visual dependencies among the objects. This
model leads to the visualisation of the final graphical user interface according to the
final platform style guides. The final graphical user interface generation is performed
by using XUL [14] [15], an XML based language, in order to make it as independent
as possible from the final platform where the application is going to run. Although
XUL language in not as portable as other XML-compliant user definition languages,
such as UIML [21], it has a full working runtime environment that renders XUL
language directly without translating the code into another language such as HTML,
WML or Java, as UIML does. This fact reduces the gap between the XML
presentation model generated and the final running code, making easier to modify the
running instance of our UI XML model to provide adaptivity according to user’s
skills and preferences [8], or according to the capabilities of the devices. Nowadays,
XUL language can only be run on desktop platforms (running under some different
operating systems such as Microsoft Windows, Linux or Mac OS), but we think that
this situation may change as long as Embedded Linux [7] could became the standard
operating system for new generation mobile devices.

The starting point for generating the graphical user interface in XUL is the Dialog
Model developed at design level, which, as stated before, models the structure and the
behaviour of the graphical user interface by means of AIOs. Therefore, the graphical
user interface structure is generated automatically from the Component Specification
Diagram created at design level.

Fig. 3. Object societies involved in user interface operation.

6 Víctor López-Jaquero et al.

As a result of IDEAS methodology applied to an application development three
different societies of objects will appear: (1) the functional domain object society,
which represents the objects that perform the functionality required in order to
achieve the identified tasks, (2) the abstract interaction object society, which includes
the objects that represent graphical user interface in an abstract manner, and finally
(3) the concrete interaction object society, which will contain the objects that
represent the graphical user interface in a specific platform.

Therefore, user interface operation will consist in the interaction between the
objects included in the same society (intra-society interaction), the interaction
between functional domain objects and abstract interaction objects, and the interaction
between abstract interaction objects and concrete interaction objects (intersociety
interaction) (see figure 3).

4 About Adaptivity and Plasticity

Adaptivity to user and platform is one of the most exciting challenges in user
interface research field. Adaptivity refers to the ability of user interfaces to adapt to
different platforms with different capabilities and in different contexts, and to the
ability of those interfaces to adapt to each user to meet user skills, preferences or
handicaps (accessibility) [21].

As stated earlier, there are different ways to achieve this adaptivity, but one of the
main ways to support adaptivity is to design user interfaces with plasticity, this way
preserving usability. Usability is the measure of the quality of a user's experience
when interacting with a product or system — whether a Web site, a software
application, mobile technology, or any user-operated device. This means that the
same task will be presented in different ways for different platforms or will even be
different for the same platform according to user characteristics; but all of these
different presentations of the task, that the user will interact with, should still remain
usable (see figure 4).

Fig. 4. Different presentations for the same task.

Model-Based Design of Adaptive User Interfaces through Connectors 7

5 Connectors for Adaptive and Plastic UI Specification

A connector [1] consists of a set of roles and the specification of glue to keep them
together. Roles model the behaviour for each part involved in interaction. Glue, on the
other hand, provides the coordination between instances for each role [25].

Connectors were originally proposed for software architecture specification to
provide a mechanism for software components interconnection, and to support
reconfiguration in the architecture. To use connectors in the construction process of a
specific system, roles will be instantiated. Nevertheless, a component will not be able
to instantiate the role if it doesn’t comply with the specified service that role should
play.

A connector is specified describing: (1) input variables that will be used as input
ports, (2) output variables that will be used as output ports, and (3) a set of actions,
which will be fired according to a guard condition. Both, variables and actions can be
declared as public or private items. Private items are only available to the connector
where they have been declared.

Communication between components is achieved in two different ways. On one
hand, input and output variables from different components are interconnected, and
on the other hand methods from several components may be synchronised (see figure
5).

Fig. 5. Connectors in IDEAS methodology.

5.1 Connectors in User Interface Design

When applying connectors to our object societies (Functional domain object society
for business model, Abstract interaction object society for the abstract user interface
and Concrete interaction object society for the actual user interface displayed) we will
need to encapsulate interacting objects within component interfaces, interconnected
using the connector paradigm [10]. All these three societies are composed of a
structural (static) part (ΣS) and their behaviour (ΣB).

8 Víctor López-Jaquero et al.

There will be two different kinds of communication between components [8] in our
object societies at runtime. On one hand, there will be communication between
functional domain objects requesting basically input/output operations, and on the
other hand there will be a communication between user interface abstract and
concrete components. A mapping process is needed between processing objects
(requesting or providing data) and abstract interaction objects that will interpret the
requests from functional domain objects. Then abstract interaction objects will map
these requests in a one-to-many relationship with concrete objects (see figure 6).

Fig. 6. Mappings between abstract level and concrete (base) level.

This component interface for communication between objects in Abstract

interaction object society and Concrete interaction object society should be based
upon World Wide Web Consortium Document Object Model (DOM). DOM provides
a platform and language-neutral interface that allows programs and scripts to
dynamically access and update the content, structure and style of documents [23].
DOM has been designed to handle HTML and other user interfaces specified using
XML-based languages (for example XUL language). Using DOM model an interface
created using XUL can be updated at runtime to reflect user preferences and even to
introduce mixed-initiative [9] user interfaces where software agents [26] are engaged
in a collaborative process to complete the tasks by means of DOM model to
manipulate user interface on behalf of the user.

5.2 A Formal Approach to Connector Design

The name "Document Object Model" was chosen because it is an "object model" in
the object oriented design sense: documents are modelled using objects, and the
model encompasses not only the structure of a document, but also the behaviour of a
document and the objects of which it is composed. As stated before, in our model-
based methodology, OASIS specification language is used. OASIS is a formal
approach for conceptual model specification following the object-oriented approach.

Model-Based Design of Adaptive User Interfaces through Connectors 9

The visibility between objects is determined by an interfacing mechanism. In
OASIS every object encapsulates its own state and behaviour rules. As usual in
object-oriented environments, objects can be seen from two points of view; static and
dynamic. From the static perspective the attributes are the set of properties describing
the object structure. The object state in a definite instant is the set of structural
property values. From the dynamic perspective the evolution of objects is
characterized by the “change of state” notion. Making use of these features of OASIS,
connectors are specified expressing DOM properties, events and objects using this
formalism.

6 An Illustrative Example

To illustrate how to use connectors to specify user interfaces in a flexible way enough
to support an adaptive behaviour, an excerpt of a study case based on [20] is provided
as an example. This study case we have chosen models a typical conference review
system. For the sake of simplicity, we will focus on the task when the accepted papers
are chosen according to the reviews provided by reviewers.

To specify how AIOs, CIOs and functional domain objects interact (our three
object societies) we will need to create the connectors to model which information is
sent when interacting, and the actions and its guard conditions for each task that the
connector can carry out. In figure 7 the AIOs involved in the task modelled in the
example are shown. Notice that when selecting final accepted papers two classes from
functional domain will be accessed: (1) Paper, (2) Review.

Fig. 7. Abstract Interaction Objects (AIO) involved in our case study.

Taking into account all the models built throughout the methodology stages
described at section 3, connectors are specified to complete a connector diagram

10 Víctor López-Jaquero et al.

(figure 9). In this connector diagram the interaction between the user interface
components is described graphically.

In this diagram there are three different elements: (1) components (AIOs, CIOs,
and functional domain objects), (2) input/output variables, and (3) actions.
Components are depicted using a box with rounded edges. Input variables are
depicted using small white boxes, while output variables are depicted using small
black boxes. Actions are represented using a white circle and a label (see figure 5).
There are two types of actions: synchronized and not synchronized. The actions,
which are connected to each other, are synchronized, so whenever one is executed the
other one will be executed too (always checking guard conditions before). Input and
output variables are connected too. When an output variable is changed, automatically
the input variable it is connected to will reflect those changes and guard conditions for
actions will be checked to find out whether they should be fired or not.

In figure 8 you can see a possible presentation for the task modelled using
connector paradigm. In this example we have used XUL language for the final
concrete user interface implementation.

Fig. 8. A concrete presentation for the specified example task.

7 Conclusions and Future Work

Although model-based approaches have been a research field for more than a decade,
it is now when the new interaction paradigms are requesting new design techniques

Model-Based Design of Adaptive User Interfaces through Connectors 11

for these new paradigms. User interaction today demands adaptive, and therefore
plastic, user interfaces.

However, plastic interfaces will need to preserve the functionality they were
designed for while meeting user characteristics and different platforms capabilities.
To design these plastic interfaces the specification of these user interfaces should
support plasticity at runtime. In this paper a first approach has been proposed to
support this plasticity features from a formal point of view.

Nevertheless, still much work is left to complete the mapping of connectors from
an abstract design to a concrete user interface at runtime. This mapping would allow
an automatic adaptive user interface generation from a model-based point of view.

Fig. 9. Connectors diagram for study case.

12 Víctor López-Jaquero et al.

Acknowledgements

This work is supported in part by the Spanish CICYT TIC 2000-1673-C06-06 and
CICYT TIC 2000-1106-C02-02 grants.

References

1. Allen, R., Garlan, D. A Formal Basis for Architectural Connectors, ACM TOSEM, 6(3),
pp. 213-249, July, 1997.

2. Benyon D., Murray D.. Developing adaptive systems to fit individual aptitudes.
Proceedings of the 1st international conference on Intelligent User Interfaces, pp. 115-121,
Orlando, Florida, United States, ACM Press, 1993.

3. Bodart, F. ,Vanderdonckt, J. On the Problem of Selecting Interaction Objects, Proc. of
HCI’94, Cambridge University Press, Cambridge, pp. 163–178, 1994.

4. Calvary, G., Coutaz, J., & Thevenin, D. A Unifying Reference Framework for the
Development of Plastic User Interfaces. In Proceedings of IFIP WG2.7 (13.2) Working
Conference EHCI'2001 (Toronto, May 2001), M. Reed Little & L. Nigay (Eds.), Springer
Verlag Publ.,LNCS 2254, pp.173-192.

5. Cockburn, A. Writing Effective Use Cases. Addison-Wesley, 2001.
6. Elwert, T., Schlungbaum, E. Modelling and Generation of Graphical User Interfaces in the

TADEUS Approach. In: Designing, Specification and Verification of Interactive Systems.
Wien: Springer, pp. 193-208, 1995.

7. Embedded Linux. http://www.linuxdevices.com.
8. Fernández-Caballero, A., López-Jaquero, V., Montero, F. and González, P. Adaptive

Interaction Multi-agent Systems in E-learning/E-teaching on the Web. In Web
Engineering: Proc. of International Conference, ICWE 2003 (Oviedo, Spain). J.M. Cueva
Lovelle, B.M. González Rodríguez, L. Joyanes Aguilar, J.E. Labra Gayo, M. del Puerto
Paule Ruiz (Eds.). Springer Verlag, LNCS 2722, p. 144-154.

9. Horvitz, E., Principles of Mixed-Initiative User Interfaces. Proc. ACM SIGCHI Conf.
Human Factors in Computing Systems, ACM press, New York, pp. 159-166, 1999.

10. López-Jaquero, V., Montero, F., Fernández, A., Lozano, M. Towards Adaptive User
Interface Generation: One Step Closer To People. 5th International Conference on
Enterprise Information Systems, ICEIS 2003. Angers, France. April 23-26, 2003.

11. Letelier, P., Ramos, I., Sánchez, P., Pastor, O. OASIS version 3: A Formal Approach for
Object Oriented Conceptual Modeling. SPUPV-98.4011. Edited by Universidad
Politécnica de Valencia, Spain, 1998.

12. Lozano, M., Ramos, I., González, P. User Interface Specification and Modeling in an
Object Oriented Environment for Automatic Software Development. IEEE 34th
International Conference on Technology of Object-Oriented Languages and Systems, pp.
373-381, 2000.

13. Montero, F., Lozano, M., González, P. and Ramos, I. A first approach to design web sites
by using patterns. In Proceedings of the First Nordic Conference On Pattern Languages of
Programs. VikingPLoP. Hojstrupgard. 2002. pp. 137-158. ISBN: 87-7849-769-8.

14. Mozilla Project. http://www.mozilla.org, 2003.
15. Oeschger, I., Murphy, E., King, B., Collins, P., Boswell, D. Creating Applications With

Mozilla. O’Reilly, September, 2002.

Model-Based Design of Adaptive User Interfaces through Connectors 13

16. Myers, B. A., Rosson, M. B. Survey on User Interface Programming. In Striking a
Balance. Proceedings CHI’92. Monterey, May 1992, New York: ACM Press, 195-202,
1992.

17. Paternò, F.. Model-Based Design and Evaluation of Interactive Applications. Springer-
Verlag, 2000.

18. Puerta, A.R. A Model-Based Interface Development Environment. IEEE Software, pp. 40-
47, 1997.

19. Rettin, M.. Designing for Small Screens. AMC SigWeb, Chicago, 2002.
http://www.marcrettig.com/writings/rettig,SmallScreens.pdf

20. Schwabe, D. A Conference Review System. First Workshop on Web-Oriented Software
Technology. Valencia, June 2001. http://www.dsic.upv.es/~west2001

21. UIML. http://www.uiml.org, 2003.
22. W3C. WAI. http://www.w3.org/WAI/, 2003.
23. W3C. DOM. http://www.w3.org/DOM/, 2003.
24. Vanderdonckt, J., Bodart, F. Encapsulating Knowledge for Intelligent Automatic

Interaction Objects Selection. In ACM Proc. of the Conf. On Human Factors in
Computing Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), S. Ashlund, K.
Mullet, A. Henderson, E. Hollnagel & T. White (Eds.), ACM Press, New York, 1993, pp.
424-429.

25. Wermelinger, M., Lopes, A., Fiadeiro, J.L. Superposing connectors, in Proc. 10h
International Workshop on Software Specification and Design, IEEE Computer Society
Press, pp. 87-94, 2000.

26. Wooldridge, M., Jennings, N.R. Agent Theories, Architectures, and Languages: A Survey,
Proc. ECAI-Workshop on Agent Theories, Architectures and Languages (eds. M.J.
Wooldridge and N.R. Jennings), Amsterdam, The Netherlands, pp. 1-32, 1994.

