
Comprehensive Task and Dialog Modelling

Víctor López-Jaquero, Francisco Montero

Laboratory on User Interaction & Software Engineering (LoUISE)
University of Castilla-La Mancha, 02071 Albacete, Spain

{ victor | fmontero }@dsi.uclm.es

Abstract. Task modelling has proven useful as a basis for user interfaces (IU)
design. Although different models have been pushed ConcurTaskTrees (CTT)
notation has become without any doubt the most extended notation for task
model specification. However, this notation suffers from a lack of modularity,
making the creation and modification of real-world applications a cumbersome
process. In this paper a notation that takes inspiration from CTT is described
that allows for the specification of the tasks the user is supposed to perform
through the user interface and the dialog between the user and the user interface
in an intuitive manner. Furthermore, the notation makes use of an abstract
operation set to help in the automatic or semi-automatic generation of a user
interface that conforms with the specified model.

Keywords: User interface design, abstract user interfaces, task models, dialog
models.

1 Introduction

The design of user interfaces has become a discipline of capital importance for most
software enterprises. Usable user interfaces leverage user’s satisfaction within an
application, and therefore leverage the potential success of any application.

UI development task is one of the main design challenges in the creation of an
application, since it must support the system’s acceptance and be accessible and
usable for everyone. Involving the users from the very beginning in the design
process and focusing on usability, and not just on technology, designers have tried to
address this difficult challenge.

Although different user interface design approaches have been used [13]
throughout the short, but intense, graphical user interfaces history, model-based
approach [17] is becoming the approach receiving a wider attention from both user
interfaces research community and industry during the last decade. This growing
interest in model-based development is not limited to user interface design, but it is
also used in the development of the whole application, as proposed in MDA (Model-
Driven Architecture) proposal.

Model-based approaches take as input a requirements specification that is
converted into different declarative models. The most widely used ones are the task,
the user, the domain, the dialogue and the presentation models, although currently
there is no standard describing which models should be used. These declarative
models are used to generate automatically or semi-automatically a user interface
compliant with the requirements captured in these models. The way the

López Jaquero, V. , Montero, F. Comprehensive Task And Dialog Modelling. HCI
International 2007 (HCII 2005). 22-27 July 2007, Beijing, China. In Human Computer
Interaction, part I, HCII 2007. J. Jacko (Ed.) LNCS 4550, Springer-Verlag, pp. 1149-1158,
Germany, 2007. ISSN: 0302-9743

transformation from a set of declarative models into a running user interface is
achieved can be made following different approaches. Nevertheless, the most widely
used approaches take as the cornerstone of their design process either a task model
[18][15], a domain model [1] or both [11].

In this paper a visual notation for a task model specification is introduced that is
used within a model-based approach: AB-UIDE [11] as the main model guiding the
whole model-based design method proposed. This notation takes inspiration from
ConcurTaskTrees notation [15], introducing a greater modularity and including dialog
modelling. This visual notation has been designed in a fashion close to UML
statecharts notation [7], to make easier for the huge mass of UML practioners to get
into model-based user interface development.

2 From Domain Model To User Interface Generation

Domain model encapsulates the important entities of a particular application domain
together with their attributes, methods and relationships. Within the scope of UI
development, it describes the objects that the user requires in order to carry out his
tasks.

Most applications rely on a database to perform its objectives. This data
dependency inspired the creation of some projects aimed at generating automatically a
user interface out of the data it was supposed to handle. Examples of such projects
were Janus [1] or Teallach [6].

Although these domain-based approaches are useful to quickly generate a user
interface to access some data, the usability of the resulting user interface is rather low.

These domain-based user interface generation approaches produce complex user
interfaces, because users can see many elements at the same time. Moreover, as long
as the user-tasks are not contemplated the dialog within the user interface is rather
limited and constrained, producing user interfaces quite static. Another drawback in
domain-based user interface generation approaches is the lack of a proper grouping
between the elements the user requires to perform a task, reducing the productivity of
the application.

Next, we elaborate on the task-driven model-based approach we use, and the
arguments that directed us towards this solution.

3 From Task Model To User Interface Generation

Task model describes those tasks the user is allowed to perform through the user
interface. This task model can be modelled in many different ways, some of them
coming from Software Engineering community, such as UML statecharts, activity or
use cases diagrams [16] or Petri nets [2], and some of them more specific to human-
computer interaction community, such as CTT or User Action Notation (UAN) [8].

The derivation of a user interface out of a task model adds an additional view to the
design process: the user. Thus, taking into account which tasks the user is allowed to
perform and the temporal relationships between those tasks it is possible to increase
the overall system usability for example by grouping the related widgets or by hiding
all or most of the irrelevant information for the current task.

Therefore, relying on a task model for user interface generation rather than just on
a domain model is a important step forward to improve the usability of the user
interfaces built by applying model-based techniques.

3.1 Task & Domain: A Marriage of Convenience

A task model by itself is not enough to generate a high quality user interface,
additional information is required. Although the task model includes information
regarding which are the tasks the user is supposed to carry out with the application, it
does not include information regarding the data that those tasks require to be
performed.

Thus, we find it is necessary to relate the tasks and those data they require.
Therefore, a marriage between task and domain model is required in order to generate
a good user interface. For instance, if the user is supposed to perform an input task,
where the data type for the input data is integer, the generation process should
generate a set of widgets, which are appropriate for that kind of task and for that data
type.

Another fact that the generation process within a model-based approach relying on
task and domain models is the cardinality of the domain object the tasks are related to.
For instance, consider the user asks the system to show the phone numbers for a
client. Obviously, in this case the cardinality between the output task “Show phone
numbers” and the method of the domain object returning those phone numbers is one-
to-many (1,*). Therefore, the generation process should generate a set of widgets able
to show a set of data entries (for instance a list box). In some approaches this last
situation is modelled by specifying a single output task with one-to-one cardinality,
and marking that task as repetitive, but some tweaking is required to make it work
properly.

3.2 Dialog Modelling

By relating task model with domain model we get some more valuable extra
information for the generation of the user interface. However, for us it is not enough.

For instance, if a task model is created in CTT it is possible to describe the tasks
the user will be allowed to perform and the temporal constraints between those tasks.
However, it is not that easy to describe the dialog between the system and the user,
that it to say, describe the situation where different branches are available depending
on the actions the user take.

In figure 1 an example is shown where a user is authenticating in a webmail (i.e.
GMail1 application by providing a username and a password). The CTT notation is
powerful and useful to analyse the authentication task and describe which data the
user should provide and how he interacts with the system. Nevertheless, it is not
flexible enough to embrace the interaction in all its dimensions. For instance, if the
designer wants to specify a task modelling describing the behaviour exhibited in

1 http://gmail.google.com

figure 1, it is really hard to specify all those situations arising from user’s interaction.
In the example in the figure, it is hard to specify the possible error states that a login
task can produce (inform the user about a wrong password, a wrong username or
both).

 (a) User login in a webmail
application.

(b) The user enters a wrong password or
username.

Fig. 1. Authentication task in a webmail application.

This kind of exceptional situations shown in this tiny example, that have a direct
impact in the usability of a software product, are some of the limitations of current
task models that we overcome in our method.

Following, the description of our technique for task and dialog modelling will be
shown.

4 A Comprehensible Task And Dialog Modeling Approach

Because of the facts enumerated in the previous section, a task model has been
devised that takes inspiration from ConcurTaskTrees [15], the well-known technique
within human-computer interaction community, UML statecharts diagrams [7], and
the Canonical Abstract Prototypes [5].

Next, the most prominent features of the task-modelling approach introduced will
be described in-depth.

4.1 Closer to UML

In this approach, we bring closer to the huge mass of UML practioners human
computer interaction task modelling techniques by adopting a notation much alike
UML statecharts diagrams. A task or subtask model specification begins with a circle
whose background colour is black (starting state). On the other hand, the end of
specification is indicated by a circle whose background colour is black and
surrounded by another circle (see figure 2), as it is used in UML statecharts diagrams
(final state).

Login Perform
operation

start start

(1,*)end

Fig. 2. Tiny example for a task model specification.

Each state in the diagram can be either a task or an action. Tasks can be further
refined, while actions are elemental tasks that can not be further refined. Tasks are
represented by using the same symbol that is used for a state in statecharts diagrams
(see figure 2a). To represent actions the states have been stereotyped. The stereotype
used has been called “action” (see figure 2b). All these tasks and actions have a set of
properties to better describe de purpose and presentation of the intended goal.

Tasks, actions, starting state and final state are linked by transitions. A transition
from a state S to another state R means that the task control flow can go from state S
to state R if the condition given in the label of the transition is met (sequentially). The
available labels for the transitions are detailed later on in the paper.

Login <<action>>
Enter pin

 (a) Task (b) Action

Fig. 3. Representation of tasks and actions.

4.2 Modularity

One of the most interesting things in modelling any complex system is modularity.
For instance, in UML the designer can split the design in packages to better organize
the structure and readability of the models. Moreover, it also allows the designer to
create a complex model where some parts are underspecified while some other parts
are fully specified.

In our approach modularity has been taken into account also. First, the designer
can design the general tasks structure (in our method this structure is derived out of a
previous enriched use case model, capturing the initial requirements). The tasks
created for that general structure are then refined either with new tasks or with the
actions that will allow the user to carry out those tasks.

In figure 4 an example of this kind of modularity is depicted. The task Login (it
represents the task of a login in a bank ATM) has been decomposed into two actions:
Enter login/card and Enter Pin. Notice the resulting actions have also a starting and a
final state that represent the beginning and the end of Login task. The designer is
allowed to edit/refine a task by double-clicking on the task to be edited. By right-
clicking the properties of either a task or an action can be edited.

Enter
login/card

<<action>>

Enter pin
<<action>>

Enter
login/card

<<action>>

Enter pin
<<action>>

Login Perform
operation

start start

(1,*)end

Refines

Fig. 4. Refining a task.

4.3 LOTOS-Based Temporal Relationships

This notation has been enriched by including the same Lotos [9] operators used
within CTT. The graphical notation for these operators has been adapted to make it
more easily usable within the statecharts notation used. For instance, in figure 2 the
repeat operator is represented as a transition from a state to the same state. Between
the parentheses the designer can specify the minimum and maximum number of times
that this task can be repeated.

By default, a transition between two states means a sequential temporal
relationship between those two states. Notice in figure 4 Enter login/card and Enter
pin have a concurrent temporal relationship. Therefore, both actions can be executed
concurrently in no particular order. The graphical representation used to represent
concurrency between two tasks is the same one used in CTT.

4.4 Detailed Dialog Modelling With Abstract Tools

Constantine [4][5] proposed a set of abstract tools that represent, in an abstract
manner, the complete set of actions that can be performed in an user interface. This
set of actions was devised after year experimenting and gathering feedback from
developers. Constantine uses this set of abstract tools to represent canonical user
interfaces (abstract user interfaces).

In our approach these abstract tools are applied to express the dialog between the
tasks and the actions. That is to say, which action from the user or the system are
required to take a transition in our task model from one state to another. A state can
have several outgoing transitions. Thus, the task flow control will choose the right
transition according to the actions taken by the user or the system.

For instance, figure 5 models a scenario where a bank client wants to make a
deposit. The client first enters the amount to deposit and puts the money on the ATM

slot (waiting for the ATM machine to acknowledge that the client puts the right
amount of money on the slot is expressed as a post-condition for Enter amount action
that needs to be held before Enter amount action is considered to be finished). If the
post-condition is not held, an error is raised and the transition for error abstract action
would be taken. Otherwise, the system would take the transition labelled start. For
this transition to be taken it is required that the user enters the amount to deposit and
to confirm/accept it.

Enter
amount

<<action>>
Show

balance

<<action>> start

InvalidAmount
<<action>>

start

error

start

Fig. 5. Example of dialog modelling.

In short, by adding the abstract tools to the specification of our task model we
provide the designer with a powerful tool to make dialog modelling easier and
intuitive. Moreover, it also make generation/transformation process much more
easier, by providing additional meaningful information regarding the transitions from
one task to another and the type of operation required from the user in order to force
each transition.

4.5 Tasks and Actions Properties

Tasks and actions need to be described in order to provide meaningful information for
the generation process. In our approach a set of predefined properties has been
defined (see figure 6), although it can be extended by the designer to add custom
properties. A priori it is almost impossible to cover every potential property a
designer might need to apply the transformation process leading to the generation of
the final user interface, since different sets of properties are required to apply different
heuristics or transformational approaches.

Each task or action has a descriptive name, a description in natural language that
describes which is the goal of the task or action, a type that specifies whether it is
abstract, for input, for output, etc. They also have a frequency attribute that stores the
task/action frequency the designer expects that task/action will be executed by the
user/system. This attribute is quite useful to help in finding out a good task layout in
the final user interface generated. Precondition attribute includes a set of expressions
that must be evaluated to true for the task to be enabled. The expressions are
evaluated as a logical program. It means that the precondition will failed whenever
any of the expressions that it includes is not successfully evaluated. Postconditions
work in a similar manner. Nevertheless, in this case all the expression should be
evaluated to true before a transition to other state is taken. Resulting from either
evaluation the precondition or the postcondition, error exceptions can be raised. These

error exceptions can be handled within the dialog modelling by means of error
abstract tool. For the specification of both precondition and postcondition attributes
OCL [19] (Object Constraint language is used. OCL is widely used among UML
practioners to express constraints in a variety of UML diagrams. Finally, any task can
be represented at the abstract level either in a FreeContainer or in a Container [16].
The difference between both kinds of Containers is that the first one is a root
container that cannot be included within any other container. Designers can choose to
leave black this attribute, and to postpone this decision until generation process.

HighFrecuency

The bank customer enters the
card or the login.

Description

AbstractType

FreeContainerPresentation

Customer.checkLogin()Postcondition

NULLPrecondition

LoginTask name

HighFrecuency

The bank customer enters the
card or the login.

Description

AbstractType

FreeContainerPresentation

Customer.checkLogin()Postcondition

NULLPrecondition

LoginTask name

HighFrequency

InputType

Customer.currentLogin!=“”Postcondition

NULLPrecondition

The user types in the login or
enters the card.

Description

EnterLogin_cardAction name

HighFrequency

InputType

Customer.currentLogin!=“”Postcondition

NULLPrecondition

The user types in the login or
enters the card.

Description

EnterLogin_cardAction name

HighFrequency

InputType

Customer.currentPassword!=“”Postcondition

Customer.currentLogin!=“”Precondition

The user types in the password
for the login.

Description

EnterPinAction name

HighFrequency

InputType

Customer.currentPassword!=“”Postcondition

Customer.currentLogin!=“”Precondition

The user types in the password
for the login.

Description

EnterPinAction name

Fig. 6. Properties for Login task and its associated actions.

Notice the expressions used in either precondition or postcondition attributes can
included any valid OCL expression. In the expressions created the designer can also
make use of any public method or attribute of the classes defined for the domain
model.

5 Conclusions

Task modelling has become the cornerstone for model-based user interface design.
Different approaches have been pushed, but CTT seems to be the most widely used.
Nevertheless, CTT is not as used as it should, because of a lack of tools integrating
that task modelling technique within the whole development process and because is

quite far from what most developer are used to when modelling their applications:
UML.

In this paper a task modelling approach is introduced that takes inspiration from
the strong points of CTT to create a graphical notation alike UML statecharts
diagrams to bring closer to the huge mass of UML practioners HCI community
modelling techniques. Moreover, the notation has been enriched with abstract tools to
provide an easy and clear notation for the dialog between the system and the user.

Although, model-based user interface design approaches have reached some kind
of maturity, they are not as much used as they should by developers. To build a bridge
between HCI research community and developers we need to devise notations able to
attract developers towards the good practices for user interface design. In this paper,
we have tried to make another step forward to build the bridge between both
communities.

6 Acknowledgments

This work is partly supported by the Spanish PAI06-0093-8836, CICYT TIN2004-
08000-C03-01 and PCC05-005-1 grants.

7 References

1. Balzert, H., Hofmann, F., Kruschinski, V., Niemann, C. The JANUS Application
Development Environment - Generating More than the User Interface. CADUI 1996: 183-
208

2. Bastide, R., Palanque, P.A. Implementation Techniques for Petri Net Based Specifications
of Human-Computer Dialogues. CADUI 1996: 285-302, 1996.

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.. A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computers 15,3 (2003) 289–308

4. Constantine, L. L., Lockwood, L. A. D. Software for use. Addison-Wesley. 1999.
5. Constantine, L.: Canonical Abstract Prototypes for abstract visual and interaction design.

Proceedings of DSVIS’ 2003, 10th International Conference on Design, Specification and
Verification of Interactive Systems. LNCS, Vol. 2844. Springer-Verlag, Berlin, 2003.

6. Griffiths, T., Barclay, P., McKirdy, J., Paton, N., Gray, P., Kennedy, J., Cooper, R., Goble,
C., West, A., Smyth, M. Teallach: A model-based user interface development environment
for object databases. In Proceedings of UIDIS'99. IEEE Press. 86-96.

7. Harel, D. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231--274, 1987.

8. Hartson, R., Gray, P., Temporal Aspects of Tasks in User Action Notation. In Human
Computer Interaction, vol. 7, pp1-45, 1992.

9. Information Process Systems - Open Systems Interconnection - LOTOS - A Formal
Description Based on Temporal Ordering of Observational Behaviour. ISO/IS 8807. 1988.

10. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López Jaquero, V. UsiXML: a
Language Supporting Multi-Path Development of User Interfaces, Proc. of 9th IFIP
Working Conference on Engineering for Human-Computer Interaction jointly with 11th
Int. Workshop on Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). LNCS, Vol. 3425, Springer-Verlag, 2005.

11. López Jaquero, V., Montero, F., Molina, J.P., González, P. Fernández Caballero, A. A
Seamless Development Process of Adaptive User Interfaces Explicitly Based on Usability
Properties. Proc. of 9th IFIP Working Conference on Engineering for Human-Computer
Interaction jointly with 11th Int. Workshop on Design, Specification, and Verification of
Interactive Systems EHCI-DSVIS’2004 (Hamburg, July 11-13, 2004). LNCS, Vol. 3425,
Springer-Verlag, 2005.

12. Montero, F., López Jaquero, V., Vanderdonckt, J., González, P., Lozano, M.D., Solving
the Mapping Problem in User Interface Design by Seamless Integration in IdealXML. 12th
International Workshop on Design, Specification and Verification of Interactive Systems
(DSV-IS’2005), Newcastle upon Tyne, England, July 13-15, 2005. Springer-Verlag, 2005

13. Myers, B., Hudson, S. E., and Pausch, R. Past, present, and future of user interface
software tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (Mar. 2000), 3-28, 2000.

14. Oeschger, I., Murphy, E., King, B., Collins, P., Boswell, D.. Creating Applications With
Mozilla. O’Reilly, September, 2002.

15. Paternò, F., Mancini and Meniconi, S. “ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models”. Interact' 97, Chapman & Hall, July 1997. pp.362-369.

16. Pinheiro da Silva, P. Object Modelling of Interactive Systems: The UMLi Approach. Ph.D
Thesis. University of Manchester, N.W. Paton (supervisor), UK, 2002.

17. Puerta, A.R. A Model-Based Interface Development Environment. IEEE Software, pp. 40-
47, 1997.

18. Reichart, D., Forbrig, P., and Dittmar, A. 2004. Task models as basis for requirements
engineering and software execution. In Proceedings of the 3rd Annual Conference on Task
Models and Diagrams. TAMODIA '04, vol. 86. ACM Press, New York, NY, 51-58.

19. Warmer, J., Kleppe, A. The Object Constraint Language: Precise Modeling with UML.
Object Technology Series. Addison-Wesley. 1999.

