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Abstract. The clinical estimate of the foetal weight is probably one of the most 
difficult parameters to obtain in the prenatal control. Only very accurate foetal 
body measurements reflect the gestation age and the weight of the foetus. A 
model is presented that performs an automated foetal age and weight 
determination from ultrasound by means of biparietal diameter, femur lenght 
and abdominal circumference parameters. The model proposed in this paper 
exploits the data in the images in three general steps. The first step is image pre-
processing, to highlight useful data in the image and suppress noise and 
unwanted data. The next step is image processing, which results in forming 
regions that can correspond to structures or structure parts. The last step is 
image understanding, where knowledge on the specific problem is injected. 

1   Introduction 

By means of the prenatal control it is possible to watch over the evolution of the 
pregnancy. The general objectives of the prenatal control are: (a) to identify factors of 
risk, (b) to diagnose the gestation age, (c) to diagnose the foetal state, and, (d) to 
diagnose the maternal state.  

The elements that are used for the calculation of the gestation age are the 
amenorrhoea time, starting from the first day of the last menstruation, and the uterine 
size. The ignorance of the gestation age constitutes for itself a factor of risk. That’s 
why it is so important to have ultrasound resources.  

The clinical elements that allow to evaluate the foetal state are: (a) the foetal 
heartbeats, (b) the foetal movements, (c) the uterine size, (d) the clinical estimate of 
the foetal weight, and, (e) the clinical estimate of the amniotic liquid volume. The 
heartbeats can be identified with ultrasound from the tenth week of pregnancy. The 
uterine size may be obtained using a flexible ribbon and permits to estimate the foetal 
size in each prenatal control. The clinical estimate of the foetal weight is probably one 
of the most difficult parameters to obtain in the prenatal control, since it demands a 
good piece of experience for its determination. The error of estimate of the foetal 
weight in pregnancy during the third trimester is about a ten percent.  



The need for a quick and easy method for estimating foetal weight in uterus has 
been clearly established by a great number of professionals. Estimates by abdominal 
palpation and foetal hormone production have proved to be of limited value [17]. 
Only very accurate measurements of the foetus allow dating of the pregnancy and 
serial assessment of foetal growth in comparison with previous measurements. 

2   Foetus age and weight determination 

2.1 The most important measures 

In the 1980s the assessment of intrauterine growth retardation using ultrasonic 
parameters was the subject of many research papers. The aim to predict foetal weight 
from computer-generated equations produced normalised tables for every measurable 
parts of the foetal body [15] [18]. The arrival of the real time scanners have added 
further impetus to ultrasound techniques and have established ultrasound as the most 
important imaging modality on Obstetrics and Gynaecology. 

The advent of ultrasound in Obstetrics has created the new speciality called 
prenatal diagnosis that has developed since its early conception. Foetal body 
measurements reflect the gestation age of the foetus. The following measurements are 
usually made: 

1. The crown-rump length (CRL). This measurement can be made between 7 to 13 
weeks and gives very accurate estimation of the gestation age.  

2. The biparietal diameter (BPD) and the head circumference (HC). The biparietal 
diameter is the diameter between the two sides of the head. This is measured 
after 13 weeks. The HC is less often used than the BPD. 

3. The femur length (FL). This is the measure of the longest bone in the body and 
reflects the longitudinal growth of the foetus. Its usefulness is similar to the BPD. 

4. The abdominal circumference (AC). This is the single most important 
measurement to make in late pregnancy. It reflects more of foetal size and weight 
than age. Serial measurements are useful in monitoring growth of the foetus. 

2.2 The domain knowledge 

Expert or knowledge-based systems are the commonest type of Artificial Intelligence 
in Medicine system in routine clinical use. They contain medical knowledge, usually 
about a very specifically defined task [4]. This is precisely our aim in this paper. So 
we are going to explain the domain knowledge on the measures described before. But 
we have restricted to those measures characteristic of the second and third pregnancy 
trimester. 

The BPD remains the standard against which other parameters of gestation age 
assessments are compared. The BPD should be measured as early as possible after 13 
weeks of dating. The problem of head moulding as it relates to the accuracy BPD of 
the foetal head has long been recognised. The anatomical landmarks used to ensure 
the accuracy and reproducibility of the measurement include: (a) a midline falx, (b) 



the thalami symmetrically positioned on either side of the falx, (c) visualisation of the 
septum pellucidum on one third the front-occipital distance. The BPD increases from 
about 2.4 cm at 13 weeks to about 9.5 cm at term. A wrong measurement plane can 
produce errors up to 2 cm. 

The FL is a mandatory measurement. By convention, measurement of the FL is 
considered accurate only when the image shows two blunted ends. The lateral surface 
of the femur is always straight and the medial surface is always curved. The use of FL 
in dating is similar to the BPD, and is not superior unless a good plane cannot be 
obtained. The FL increases from about 1.5 cm at 14 weeks to about 7.8 cm at term.  

Measurement of the AC should be made as accurately as possible. The best plane is 
the one in which the portal vein is visualised in a tangential section. The plane in 
which the stomach is visualised is also acceptable. The outer edge of the 
circumference is measured. With a good AC, one will be able to arrive at a very 
accurate foetal weight. Indeed, the weight of the foetus at any gestation age can be 
estimated with great accuracy using polynomial equations containing the BPD, FL and 
AC. One such possible equation is [15]: 

log10W = -1.7492 + 0.166⋅BPD + 0.046⋅AC – 0.002646⋅AC⋅BPD (1) 

3   The model 

The model proposed in this paper falls into the data-driven approaches and exploits 
the data in the images in three general steps. The first step is image pre-processing, to 
highlight useful data in the image and suppress noise and unwanted data. To fulfil this 
step some standard image filters have been employed. The next step is image 
processing, which results in forming regions that can correspond to structures or 
structure parts. Here, we have used the Lateral Interaction in Accumulative 
Computation Model [5]. This model formally splits into four stages, as depicted on 
figure 1. The last step is image understanding, where all knowledge on the specific 
problem is injected. 

Precise segmentation of underlying structures in medical images is a top cue. The 
existing work on image segmentation can be typically categorised into two basic 
approaches [2]: region-based methods relying on the homogeneity of spatially and 
temporally features, and, gradient-based methods looking for some kinds of 
boundaries. Our approach integrates both concepts to limit the intrinsic problems of 
both methods. 

Step 1. Image pre-processing by standard filters 

A major problem in medical image analysis is the potential variability in the image 
characteristics and object appearance. This first step aims to maximally improve the 
input images (ultrasonography images) in order to optimise the image processing step 
in time and quality. This problem has firstly been addressed by selecting a set of well-
known standard filters used in image pre-processing.   

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The model 

 
The final goal of step 1 is to reduce the textured aspect of the embryonic 

ultrasonography images and to concentrate on the desired regions or structures. In our 
particular cases, we have to highlight any aspects of the structure of the skull, the 
femur and the abdomen, whereas the rest of the image has to be considered as 
undesired background. 

Step 2. Image processing by lateral interaction in accumulative computation 

By image processing in automatic analysis of medical images we include all those 
techniques that help in diagnostic. We could mention among others: (a) objective 
quantitative parameter extraction on shape and texture, (b) change detection among 
two images, (c) information fusion from several modalities, (d) comparison of images 
from two different patients, (e) probabilistic anatomical and functional atlas 
construction, (f) motion measures of dynamic organs, and, (g) dynamic visualisation 
of images [1].  

Our model at this step 2 takes advantage of all information concerning motion 
analysis in foetal ultrasound. Motion analysis in dynamic image sequences is a really 
hard matter [9] and some approaches have been used in medicine [3] [10] [14] [8] 
[16]. This generic model is based on a neural architecture, with recurrent and parallel 
computation at each specialised layer, and sequential computation between 

Step 1. Image Pre-processing 
   Standard Filters 

Step 2. Image Processing 
   Lateral Interaction in Accumulative Computation 

Step 3. Image Understanding 
    Foetus Measurements (BPD, FL, AC) Knowledge Injection 

Stage 4. Structure Detection

Stage 3. Charge Distribution and Background Elimination 

Stage 2. Accumulative Computation from Motion

Stage 1. Segmentation from Grey Level 



consecutive layers. The model is based on an accumulative computation function [6] 
[7], followed by a set of co-operating lateral interaction processes performed on a 
functional receptive field organised as centre-periphery over linear expansions of their 
input spaces [11] [12] [13]. The model also incorporates the notion of double time 
scale at accumulative computation level present at sub-cellular micro-computation [7].  

Any stage of step 2 is implemented as a neural layer as depicted on figure 2. This 
figure shows the intra- and interconnections of any element (i,j) of any one of the four 
layers. At each layer n, element (i,j) receives an input from element (i,j) of layer n-1 
and sends an output to element (i,j) of layer n+1 at global time scale t. At local time 
scale T (t = k⋅T), intraconnectios take place in the sense that data present at element 
(i,j) is exchanged with its neigbours data. These neighbours are (i-1,j), (i+1,j), (i,j-1) 
and (i,j+1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. A module’s connections 

Stage 2.1. Segmentation from grey level 
The aim of this stage 2.1,corresponding to layer 1, is to determine in what grey level 
stripe GLS a given pixel (i,j) falls. We consider the pre-processed image to segment to 
be the input to this stage. 
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Stage 2.2. Accumulative computation from motion 
Supstep 2.2 (layer 2) makes use of n sub-layers, one for each of the chosen grey level 
stripes. This stage incorporates the described lateral interaction mechanisms. We are 
to explain how this stage works on each of the central elements (i,j) at any sub-layer k. 
This stage is capable of modelling the motion on the image, starting from the pixel's 
grey level stripe and the element's state or permanence value PM. At each time instant 
t, the permanence value is obtained in two steps.  (1) At global time, a complete 
discharge (vdis), a saturation (vsat) or partial discharge (vdm) due to the motion 
detection, that's to say, due to a change in the grey level stripe, and, (2) at local time, a 
partial re-charge (vrv) due to the lateral interaction on the partially charged elements 
that are directly or indirectly connected to maximally charged elements. 
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Stage 2.3. Charge distribution and background elimination 
Starting from the values of the permanence memory PM in each pixel, it is possible to 
obtain the silhouette of all the parts of a moving object starting from the spots left by 
the different grey level stripes. That’s why, at this point, the charge of the permanence 
values is homogeneously distributed among all the elements that have the same grey 
level value, provided that they are directly or indirectly connected to each other 
through the necessary lateral interaction mechanisms of recurrent type. This way, a 
double objective will be obtained at this layer 3. First, the one of diluting the charge 
due to the background false motion detected on the image, only keeping the movement 
of the desired structures of the scene. And secondly, the one of obtaining a common 
parameter to all the elements of a same part of a structure.  
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Stage 2.4.  Structure detection 
So far, by means of the necessary co-operative calculation mechanisms, attention has 
been captured on anything that has moved at any grey level stripe, and motion due to 
the background has been eliminated. Now, at this layer 4, it is necessary to fix as a 
new objective to distinguish the different objects that conform the different parts of 
the structures obtained on a grey level stripe basis (spots). The discrimination of these 
structures is also performed by lateral interaction of recurrent type. Now, we will no 
longer work with sub-layers, but rather all the information of the n sub-layers of stage 



2.3 is integrated in a single layer. In this stage 2.4, the charge again will be 
homogeneously distributed among all the elements that have a charge value superior 
to a minimum threshold and that are physically connected to each other.  
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Step 3. Image understanding by foetus measurements knowledge injection    

In this last step all general knowledge on foetus measurements to obtain the age and 
the weight of the embryo is injected. Four stages are needed to obtain both 
parameters. (1) BPD determination, (2) FL determination, (3) AC determination, and, 
(4) age and weight calculation. We next offer the rules as applied from domain 
knowledge. 

 

BPD determination

Locate Skull;
Locate Biparietal extremities;
Obtain BPD;

FL determination

Locate Femur;
Locate Femur extremities;
Obtain FL;

AC determination

Locate Abdomen;
Locate Abdomen circumference;
Obtain AC;

Age and weight calculation

Find Age-BPD from BPD-Chart; Output Age-BPD;
Find Age-FL from FL-Chart; Output Age-FL;
Calculate Weight from Equation 1;



4   Learning in lateral interaction in accumulative computation 

Learning in lateral interaction in accumulative computation starts from the knowledge 
of the influence of the basic parameters of the model. Learning in lateral interaction in 
accumulative computation model consists in adjusting the parameters of the diverse 
layers to offer the best processing result of the image sequence when obtaining the 
silhouettes of moving elements present in the scene.  

During the learning process, previous to the normal operation process, the 
architecture is offered an input image sequence, as well as the following reinforcement 
parameters (see figure 3):  

- Number of moving elements (Sm) to be detected in the sequence  
- Maximum size of a silhouette (Smax) to be detected in the sequence  
- Minimum size of a silhouette (Smin) to be detected in the sequence  
 

 

 

 

 

 

 

 

 

 

Figure 3. Inputs and outputs during learning phase 

Due to its simplicity, it doesn't seem necessary to explain the reinforcement 
parameter Number of moving elements (Sm). The other two parameters arise from the 
domain knowledge of lateral interaction in accumulative computation model. It is 
indispensable to introduce parameters Maximum size of a silhouette (Smax) and 
Minimum size of a silhouette (Smin) to capture the attention on those objects whose 
silhouette falls between these two magnitudes. 

  

 
 

Lateral Interaction in Accumulative 

Computation Model 

Number of detected silhouettes

Number of moving elements (Sm) 
Silhouette maximum size (Smax) 
Silhouette minimum size (Smin) 

Sequence 



Learning turns, in our case, into an iterative process where, for a given scene, the 
model is nurtured by a same image sequence, just modifying the basic parameters until 
the number of silhouettes obtained at layer 4 is close enough to Number of moving 
elements (Sm). The output obtained at layer 4 is called Number of Detected Silhouettes 
(Sd).  

The basic parameters of lateral interaction in accumulative computation model 
have been classified into two groups:  

- Parameters with constant values that don't evolve during the learning phase. 
These are vdis (minimum permanency value) and vsat (maximum permanency 
value) at layer 2.  

- Parameters with values that do evolve during the learning phase. These are: n 
(number of gray level bands) at layer 1; vdm (discharge value due to motion 
detection), vrv (recharge value due to vicinity), and, θper (threshold) at layer 2; θch 
(threshold) at layer 3; θobj (threshold) at layer 4.  

So, we use an error minimization function in the sense that the problem is now to 
find a procedure of estimating a set of values that best leads to the desired solution. In 
other words, we have to look for a set of optimal values  
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where  k is the number of images that form the learning sequence,  
Sm is the number of moving elements to be detected (constant through the 
whole training sequence),  
Sd (t) is the number of detected silhouettes at time instant t.  

5   Results 

The model has been tested with a series of ultrasound images of Sara Gómez at a 
gestation age of aproximately 18 weeks. This important information has helped us to 
confirm the results of our model. You may appreciate the results of the image pre-
processing and image processing steps of some of Sara’s skull, femur and abdomen 
images on figures 4, 5 and 6, respectively.  

You may appreciate on columns (a)the original input images. Column (b) presents 
the pre-processed images where only a few pixels of interest are taken. Lastly, on 
column (c) you may observe how our proposed model is capable of obtaining more 
significant information from the described region growing technique. Finally, table 1 
shows the results of the image understanding step. 

These results suggest that the proposed model is able to obtain accurate data for an 
automated foetal age and weight determination. 

 
 



                            
(a)           (b)    (c) 

Figure 4. Application of image processing model to Sara’s skull. (a) Original image. 
(b) Result of pre-processing step. (c) Result of processing step. 

 

                          
(a)           (b)    (c) 

Figure 5. Application of image processing model to Sara’s femur. (a) Original image. 
(b) Result of pre-processing step. (c) Result of processing step. 

 

                              
(a)           (b)    (c) 

Figure 6. Application of image processing model to Sara’s abdomen. (a) Original image. 
(b) Result of pre-processing step. (c) Result of processing step. 

 

Table 1. Results of image understanding model to Sara’s ultrasound images 

Computed Age-BPD = 17.6 weeks
Computed Age-FL = 18.2 weeks
Calculated Weight = 0.231 kg
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