
FACE RECOGNITION BY COUNTER-PROPAGATION
NETWORKS

Juan Moreno1, Miguel A. Fernandez2,
Francisco J. Gomez2 & Antonio Fernandez-Caballero2

1Departamento de Informatica, E.U. de Ingenieria Tecnica Industrial,
Universidad de Castilla-La Mancha, 45071 – Toledo, España

Mail: jmoreno@inf-cr.uclm.es
2Departamento de Informatica, Escuela Politecnica Superior,

Universidad de Castilla-La Mancha, 02071 – Albacete, España
Mail: {miki, fgomez, caballer}@info-ab.uclm.es

Abstract

The functionality of counter-propagation nets applied to face recognition is presented in
this paper. The chosen procedure basically transforms the image into a vector of numbers and
passes them to the net’s input layer. The tested input vector is either a vector of the image
grey levels or a vector of the histograms of the image’s rows. The counter-propagation
networks obtain an excellent result of over an 80% of guesses of face recognition in both
studied cases.

1. INTRODUCTION

This paper aims to check the efficiency of the counter-propagation nets (CPNs) in
face recognition. To do this, a simulator of a CPN has been software implemented.
Our simulator incorporates a learning process to remember the faces of 16 different
persons. Later on it receives as input 6 variations of the learned faces, providing as
output a code representing one of the learned faces.

Hecht-Nielsen [1] synthesised the CPN by combining a structure known as

competitive net with Grossberg’s outstar structure [2], obtaining this way the so
called counter-propagation net [3] [4]. The general operation for these kinds of nets
is as shown in figure 1.

Given a group of vectors (x1,y1), (x2,y2), ...,(xL,yL), the net is able to learn how to

associate a vector X of the input layer with a vector Y of the output layer. If the
relationship among X and Y can be defined by means of a continuous function Ω,
such that Y = Ω (X), then the net will be able to learn how to approximate that
correspondence for all value of X in the interval specified by the set of training
vectors.

As you may appreciate on figure 1 the architecture consists of three layers. Layer
1 units receive as input a face image. They then process the image either as a vector
of grey levels or as a vector of the image’s row histograms. Afterwards they
normalise this vector. All units of layer 2 receive the same normalised input vector,
and calculate their output intensity thanks to a learned weight vector and to the
specific vector got as input. The unit of maximal output intensity sends a 1 to layer 3
while the rest send a 0. Finally, layer 3 selects the output image of among all the
learned ones.

Layer 3

Layer 2

Layer 1

Input Face Input Face

Output Code

Figure 1: The CPN structure

2. THE CPN DESCRIPTION

2.1. Layer 1

Let us consider layer 1 on figure 1. The total intensity of the input vector is

governed by equation ∑=
i

iI I In close relationship to each Ii we shall define a

magnitude as the one shown in equation 2.1. Vector t
n),·····,,(21 ϑϑϑ is called a

reflectance plot as in Freeman and Skapura [5]. Observe that this plot is normalised,
that is to say ∑ =∂ 1i .

1−

= ∑

i
ii IIϑ (2.1)

The reflectance plot is independent of the total intensity of the corresponding

input plot. For example, the reflectance plot corresponding to a person’s face image
is independent of the person's image brightness. Equation 2.2 represents layer 1
output, where Bxi <<)0(0 , 0, >BA .

∑
≠

−−+−=
ik

kiiiii IxIxBAxx)(D (2.2)

The processing elements quickly reach a balance state once input vector X is

applied)0(=xD [5]. When software simulating the CPN you can simplify the
program just by normalising the input vectors. Our simulator normalises according
to equation 2.3.

= ∑

n
i

ii IIx
2

/ (2.3)

2.2. Layer 2

Layer 2 is what we know as a competitive network. It is also often called the

hidden layer. It consists of a series of processing elements called instars [2][5].
Input vector I and weight vector w have been normalised in this case. The instar’s
output is governed by equation 2.4, where neta=I*w and a,b>0.

netabayy *+−=D (2.4)

The instar units reach the balance value whenever netabayyeq *+−= . Values a

and b have been given the same value in simulation, so they are just eliminated of
the formula.

The competitive net classifies any input vector. That particular instar with the

greatest output value is the winner of the competition, and it will be the only one

offering a non null output. So the winner will send a value of 1 to the outstar, and
the rest of the competitive net’s instars will send the value 0.

2.3. Layer 3

Layer 3 consists of some processing elements called outstars. Each outstar takes

an output value according to equation 2.5, where wi
eq is the weight value found

during the learning phase [1] [2].

wcayy eq
iii +−= ''� (2.5)

The outstar quickly reaches a balance value equal to the weight value existing in

the connection coming from the competitive net’s winner unit. An easy way to
understand this processing is to realise that the outstar’s balance output is equal to
equation 2.6, where jz is the input received from the corresponding instar of the
competitive net.

∑=
j

jkjeq
k zwy' (2.6)

Moreover, since jz = 0 unless j = i, equation 2.7 represents the outstar’s output.

kiikieq
k wzwy ==' (2.7)

In our particular simulation, the outstar’s output is actually obtained by means of

equation 2.7.

3. OUR PARTICULAR CPN IMPLEMENTATION

As commented before, our system carries out a learning phase. The CPN

memorises the faces of the series 1 of the 16 different persons of figures 2 and 3. In
a second step, all faces of figures 2 and 3 are shown to the system. Later on, the
system returns as a result a code representing each of the learned images. In the
example shown in this paper, our application worked with 256 grey level images of
112 lines per 92 columns each.

The outline of our CPN is the following one:

• Layer 1 consists of 112*92 nodes in input vector x corresponding to the input
vector length. With regard to inputs y, we use 4 nodes corresponding to the 4
binary values composing the code for each face to learn.

• The hidden layer, that’s to say, the competitive net, is formed of 16 instar

nodes, where each instar learns one single face.

• Layer 3, the output layer, consists of 4 nodes, each one learning a binary

number that identifies one of the components of the output code. The output
of this layer will be the selected face.

We have chosen the counter-propagation net to implement this system due to a

couple of strong reasons. First there is our previous experience in using it for the
detection of vectors. In Moreno et al. [6] [7] some good results were obtained. So
we have continued looking for even better results. We have also kept in mind that
the greater the number of the vector’s co-ordinates the better the classes should be
distributed in space. And finally, the counter-propagation nets use different learning
algorithms for each layer, allowing the net to be trained very quickly.

To explain why we have chosen the possibility to work with histograms of image

rows, think about the problem that occurs to the CPN when the face doesn't appear
exactly in the same position as in the learned image. Using histograms solves
problem related to this fact.

We consider that a set of 16 faces is a significant sample to check the validity of

the counter-propagation net for these kinds of problem statements, although we are
certain that with a greater number of faces the CPN would arise a worse behaviour.

Before closing this section, let’s comment that for each input value i an input

intensity value of i+1 has been chosen, so that when i=0 an input value different
from 0 is provided.

4. THE CPN LEARNING PHASE

The CPN learning phase is carried out at a layer by layer basis. Let’s then focus

on learning by the same basis.

Layer 1 doesn't incorporate any learning at all, since it has only to normalise the

input values.

Consider again that, as it has already been said, layer 2 is formed by some
elements called instars. Each instar learns the weight vector w. The learning phase
as described in Moreno et al. [6] [7] is carried out starting from the initial weight
vector w that goes evolving according to differential equation 4.1, where y is the
output value, and c, d > 0.

dIycww +−=D (4.1)

The mission of any instar is to memorise an input vector, providing a greater

intensity output the more the input vector resembles the learned vector. When
software simulating, it is possible to simplify the instar’s learning phase by
assigning the weight values of vector w directly starting from the values of the
already normalised vector y .

Finally, the learning phase [6] [7] of each outstar of layer 3 evolves according to

equation 4.2, where parameters a, b, c>0 and the value of netai is calculated as
previously described.

iiii netacbyayy *'' ++−=D (4.2)

To the effects of the digital simulation, this learning may be approximated

assigning the weight values of the outstar directly from the input vectors.

5. RESULTS

Firstly, we are thankful to The ORL Database of Faces (www.cam-

orl.co.uk/facedatabase.html) for their courtesy in the public offer of images of
figures 2 and 3 used in our tests.

The simulator first carries out the learning phase of the diverse layers. And next it

sends to the input layers of both nets all the faces to be tested (images 1 to 16 of
figures 2 and 3), one by one.

Two kinds of tests have been performed: (a) passing each image as a vector of

grey levels, (b) passing each image as a vector of the image rows histograms. The
results obtained for both (a) and (b) are excellent, in both cases over an 80% of
guessed faces.

Table 1 shows the guessed images for case (a). The global success is of an 83.3%.

One of the detected problems appears when the input image takes a different
brightness from the learned image, despite the normalisation carried out at layer 1.

Some examples of it are images 1 (series 2 and 4), 15 (series 2 and 5) and 16 (series
2 and 3). Another less important problem is the presence or absence of glasses. See
image 4 (series 5 and 6), for example. Note nevertheless that for this same image the
absence of glasses in series 4 doesn't suppose any problem. See also that in images 7
and 13 this doesn't suppose any problem.

Table 2 offers a view of the images correctly guessed for case (b). The global

success in this case is of an 86.6%. In this series the previously described problem of
the glasses is completely solved. The change in brightness between the learned
image and the input image still continues causing confusions in the detection of the
images, as shown in images 3 (series 6), 9 (series 4,5,y 6) and 16 (series 2, 3, 4 and
5).

Images

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Series 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 4 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 6 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 1: Results for the CPN using vectors of grey levels

Images

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Series 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 4 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Series 6 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 2: Results for the CPN using vectors of row histograms of the images

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6

Image 1

Image 2

Image 3

Image 4

Image 5

Image 6

Image 7

Image 8

Figure 2: Series of faces (images 1-8)

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6

Image 9

Image 10

Image 11

Image 12

Image 13

Image 14

Image 15

Image 16

Figure 3: Series of faces (images 9-16)

6. CONCLUSIONS

The CPN is a good tool for face recognition, as demonstrated by means of the

obtained results, transforming the image into a vector of grey levels, as well as
taking the image as a vector of image rows histograms.

The difference of brightness between the learned image and the tested one may

cause confusions in occasions, although the normalisation phase of layer 1 avoids
the problem in many cases.

Transforming the images into a vector of image rows histograms enhances the

results of the previous case. This is due to the fact that the input is the row histogram
and the relative position of the face in the image doesn't alter the result.

References

[1] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, Reading MA, 1990.
[2] S. Grossberg, Studies of Mind and Brain. Boston Studies in the Philosophy

of Science, vol. 7, D. Reidel Publishing Company, Boston, 1982.

[3] R. Hecht-Nielsen, “Counterpropagation Networks”, Applied Optics, vol.
26, no. 23, pp. 4979-4984, 1987.

[4] R. Hecht-Nielsen, “Counterpropagation Networks”, in Proceedings of the
IEEE First International Conference on Neural Networks, II-19-II-32,
Piscataway, NJ, 1987.

[5] J.A. Freeman and D.M. Skapura, Neural Networks: Algorithms, Applications,
and Programming Techniques, Addison-Wesley, Reading, MA, 1991.

[6] J. Moreno, G. Sebastian, M.A. Fernandez & A. Fernandez-Caballero, “A
Telephone Number Corrector using a Counterpropagation Network”, in
Proceedings of the Fifth International Conference on Neural Information
Processing ICONIP´98, vol 2, pp. 1168-1171 Kitakyushu, Japan, 1998.

[7] J. Moreno, G. Sebastian, M.A. Fernandez & A. Fernandez-Caballero,
“Comparison of counter-propagation and spatio-temporal nets in the
detection of sequences of numbers”, in Proceedings of the Eighth Turkish
Symposium on Artificial Intelligence and Neural Networks TAINN’99, pp.
145-153, 1999.

