
UNIVERSIDAD DE CASTILLA - LA MANCHA

Bayesian networks inference:
Advanced algorithms for

triangulation
and partial abduction

Bayesian networks inference:
Advanced algorithms for

triangulation
and partial abduction

Albacete, November 2005

Doctoral Thesis

M. Julia Flores GallegoM. Julia Flores Gallego

Departamento de Sistemas Informáticos

UNIVERSIDAD DE

CASTILLA - LA MANCHA

Bayesian networks inference:

Advanced algorithms for

triangulation and partial abduction

PhD Thesis dissertation

Departamento de Sistemas Informáticos

University of Castilla - La Mancha (UCLM)

European Doctorate

Maŕıa Julia Flores Gallego

Supervised by

Dr. José Antonio Gámez Mart́ın (UCLM)

Dr. Seraf́ın Moral Callejón (Universidad de Granada)

Albacete, November 2005

Acknowledgments

The development of this work can be seen as a long journey through study, knowledge,

discovery, endeavour,... that I definitively could never have done alone. There are many

people who, to a greater or lesser extent, have contributed to the accomplishment of this

thesis, my most important professional goal so far.

I will probably not be able to list every person, but I would at least like to express my

gratitude explicitly to those who have been outstanding colleagues either along this whole

journey or in certain key, and sometimes hard, moments.

First of all, I can not start without thanking my supervisors José Antonio Gámez Mart́ın

and Seraf́ın Moral Callejón, who certainly have given me the best guidance and advice I

could ever have received. I must say I appreciate all the time they have devoted to proposing

and discussing ideas, their bid to improve the designed methods and thoroughly read and

review these pages (even on their holidays). José A. is a wonderful person to work with,

he has treated me as an equal, being at the same time a great boss who directed my work

along the right path when necessary. On the other hand, Seraf́ın, in spite of the physical

distance between Albacete and Granada, has shown his proximity and involvement in the

fulfilment of this project with visits, meetings, and constant communication with us. Apart

from their valuable support, help and effort, I should also mention my admiration for their

human touch.

This journey has mainly taken place in the “Departamento de Sistemas Informáticos” in

Albacete, which has been a pleasant environment to develop my work. My research group

SIMD has been an important forum to discuss and learn, and I wish to thank all of its members

for their support, especially at the final stages of this thesis. My department colleagues have

also made the day-to-day problems and routine easier. I would like to mention those who have

especially influenced me with their professional help, but even further with their friendship:

Molina (my colleague since we started university), Kike and Blanca (who gave us the warmest

welcome to the department and still take great care over social relations in the workplace),

Encarni, Isma, Luis and the other fellow PhD travellers Vı́ctor, Paco and Goyito with who I

have shared both sweet and bitter moments. I want to specially thank Elena for her loyalty

always finding time to help me either with technical difficulties or personal ones. I would like

to extent my gratitude to all the mazmorreros as well as to the rest of my colleagues, from

the highest to the lowest.

My deepest gratitude to Finn V. Jensen and all members of the research group Decision

Support Systems Unit in the computer science department of Aalborg University. Every

time I have visited them, I have been welcomed with open arms, providing me with the best

working conditions. I found my stay in the Spring semester 2003 particularly profitable,

where I could learn from the numerous group’s workshops and seminars. I also wish to thank

their approachable attitude to solving my questions or doubts whenever I got stuck. Thanks to

Olav Bangsø because he gave me an insight into a completely new theory approach. Kristian

G. Olesen deserves a very special note of thanks for his assistance, advice and support,

but also his great kindness and geniality. He is always willing to help in spite of his usual

tight schedule. Our e-mail collaboration during the last five years has also provided valuable

feedback for me. I can not remember Denmark without mentioning Jens D. Nielsen and Jose

Peña, who made my stay in Aalborg even nicer, I recall having many interesting and funny

conversations as well as a few beers.

I must mention my short visit to Granada University, where again I was received in a

congenial atmosphere. In the course of these weeks, I could enjoy a helpful learning environ-

ment. Special thanks, apart from Seraf́ın, to my office partner Juan Huete, and also to Andrés

Cano, Manolo Gómez and Luis M. De Campos. These last three have also been collaborators

in the research project “Elvira II” which has given me not only quite useful financial support

but also the opportunity to attend such productive meetings and, furthermore, meeting very

good researchers and nice people from different Spanish universities.

During these travel years, my personal life has also been of great relevance to the achieve-

ment of this work. My family has always offered me their whole-hearted support and they

have encouraged me to persevere on the path to the completion of this thesis. They have

suffered my changing moods derived from the status of the thesis on most occasions. Work

and travel have deprived me of spending more time with them, but they have always been

very understanding and supportive. Thanks, mum, for being so proud of me, this confidence

always fed my enthusiasm for this project. Two very special people who deserve mention

are my sister, Marilén, and my little nephew Pablo. The former has given me the education,

also entertainment, when I was younger and still today she regales me with great fight & fun

moments. The latter came in the middle and busiest period of this thesis. Even though I can

not spend as much time with him as I would like to, he is always ready to offer me his best

smile, enough to cheer me up more than any of the words that he cannot pronounce yet.

Finally, I could devote several pages to those good friends who have accompanied me

during these years. I am afraid that would be too much, sorry if I haven’t named you, it does

not matter, because you already know how important you have been for me: when someone

feels good it is much easier to work better. I will make an effort to summarise people in

groups: of course thanks to las bolas (and los bolos as well) for being always so close, the

enterprising French course team, the traveller Murcianicas, that incredible group of Spanish Power

together in spite of distance, Caillebotte family, my Little Darlings (do not think badly), las

favoriras... I need to mention two particular friends who have always been there, from the

very beginning until today, every time I needed them: Glo (thanks for your attentiveness)

and Belén (thanks for all your listening and understanding).

Agradecimientos

El desarrollo de este trabajo podŕıa verse como un largo trayecto a través del estudio,

conocimiento, descubrimiento, esfuerzo, ... que sin duda jamás podŕıa haber recorrido sola.

Hay mucha gente que, en mayor o menor medida, ha hecho posible la realización de esta

tesis, el objetivo profesional más importante que me he marcado hasta hoy. Probablemente

no podré enumerar a todas estas personas, pero al menos me gustaŕıa expresar mi agradeci-

miento expĺıcitamente a aquellos cuya compañ́ıa a lo largo de este viaje ha sido especialmente

destacada o que han estado a mi lado en momentos clave, y a veces dif́ıciles.

No podŕıa empezar sino dando las gracias a mis directores José Antonio Gámez Mart́ın

y Seraf́ın Moral Callejón. Los dos me han guiado con gran maestŕıa y me han dado sabios

consejos. Debo decir que valoro especialmente todo el tiempo que han dedicado a proponer y

discutir ideas, su buena disposición para mejorar los métodos diseñados y para leer y revisar

concienzudamente estas páginas (incluso durante sus vacaciones). Trabajar con José A. es

una suerte, siempre me ha tratado como una igual, consiguiendo al mismo tiempo ser un jefe

estupendo que ha llevado siempre mi trabajo por el buen camino y lo ha reconducido cuando

ha sido necesario. Por otro lado, Seraf́ın, a pesar de la distancia entre Albacete y Granada, ha

demostrado siempre su cercańıa y su implicación en este proyecto mediante visitas, reuniones

y una comunicación constante con nosotros. Además de su valiosa ayuda, apoyo y esfuerzo,

debeŕıa mencionar también mi admiración por la gran calidad humana de los dos.

Este recorrido ha transcurrido principalmente en el “Departamento de Sistemas Informáti-

cos” en Albacete, ciertamente un agradable entorno donde desarrollar mi trabajo. Mi grupo

de investigación (SIMD) ha supuesto un foro importante donde discutir ideas y aprender, y

me gustaŕıa agradecer a todos sus integrantes el apoyo que de ellos he recibido, especialmente

al final. Igualmente mis compañeros de departamento han conseguido que los problemas del

d́ıa a d́ıa y la rutina resultaran más fáciles de llevar. Quisiera mencionar a aquellos que

han tenido una influencia especial por su ayuda profesional, y aún más lejos por su trato

personal: Molina (compañero desde el inicio de la carrera), Kike y Blanca (nos acogieron

muy cariñosamente desde el principio y aún hoy siguen cuidando con esmero las relaciones

sociales entre los compañeros), Encarni, Isma, Luis y mis colegas doctorandos Vı́ctor, Paco

y Goyito con quienes he compartido momentos buenos y malos. Quiero agradecer de manera

especial a Elena su amistad y fidelidad encontrando siempre tiempo para echarme un cable

ya fuese con problemas técnicos o personales. Me gustaŕıa además extender mi gratitud a

todos los mazmorreros aśı como al resto de mis compañeros, desde el primero al último.

Mi más profundo agradecimiento a Finn V. Jensen y a todos los miembros del grupo de

investigación de Sistemas de Ayuda a la Decisión (DSS) del departamento de informática en

la universidad de Aalborg. Siempre que les he visitado, me han recibido con gran hospitalidad,

y me han facilitado unas condiciones de trabajo inmejorables. Mi estancia en el 2003 fue en

especial fruct́ıfera, ya que tuve la oportunidad de aprender de sus numerosos seminarios y

reuniones. Asimismo quisiera agradecerles su accesibilidad para la resolución de mis dudas o

preguntas en los momentos en los que no sab́ıa por dónde o cómo continuar. Gracias a Olav

Bangsø que me ayudó a conocer y entender un enfoque teórico completamente nuevo para mı́.

Por supuesto, Kristian G. Olesen merece especial mención y mi sincero reconocimiento por

su ayuda, consejo y ánimo, pero también por su incréıble amabilidad y simpat́ıa. Él siempre

está dispuesto a contribuir con su trabajo, aun a pesar de su tan apretada agenda. Nuestra

colaboración de los últimos cinco años (principalmente v́ıa e-mail) ha sido muy enriquecedora.

No podŕıa recordar Aalborg sin nombrar a Jens D. Nielsen y Jose Peña. Ellos hicieron que mi

estancia en Dinamarca fuese aún más agradable, tengo en mi memoria muchas conversaciones

interesantes y divertidas con ellos, aśı como alguna que otra cerveza.

Mi visita a Granada también es digna de mención. De nuevo alĺı fui recibida en un

ambiente cordial y agradable. Quiero destacar, además de a Seraf́ın, a mi compañero de

oficina Juan Huete y en particular a Andrés Cano, Manolo Gómez y Luis M. De Campos.

Los tres últimos han sido también colaboradores en el proyecto nacional de investigación

“Elvira II”. Gracias a este proyecto he recibido ayuda económica para mi investigación y he

podido asistir a sus tan provechosas reuniones, posibilitándome además el conocer y trabajar

con grandes investigadores y muy buena gente de varias universidades españolas.

Durante estos años de camino, mi vida personal ha sido determinante para la consecución

de este trabajo. Mi familia me ha apoyado siempre incondicionalmente y ellos me han ani-

mado a seguir en la senda de la finalización de mi tesis. Son los que han tenido que sufrir

mis constantes cambios de humor, muchas veces derivados del estado de la tesis. Mi trabajo

y mis ausencias me han privado de pasar más tiempo con ellos, sin embargo siempre se han

mostrado comprensivos y me han ofrecido su ayuda. Gracias, mamá, por estar siempre tan

orgullosa de mı́, esa seguridad ha fomentado mi entusiasmo por este proyecto. Quisiera nom-

brar a mi hermana Marilén y mi sobrinete Pablo. La primera se ocupó mucho de mı́ cuando

era más joven y aún hoy me concede grandes momentos de diversión y peleas. El segundo

llegó a mitad de esta tesis, y en el periodo más atareado. Si bien no puedo pasar con él tanto

tiempo como yo quisiera, el siempre está dispuesto a ofrecerme su mejor sonrisa, capaz de

transmitirme más enerǵıa que cualquiera de las palabras que aún no es capaz de pronunciar.

Podŕıa dedicar varias páginas a todos los amigos que me han acompañado en estos años.

Como seŕıa excesivo, perdón si no te nombro expĺıcitamente, tú ya sabes el papel que has

desempeñado para mı́: cuando alguien se siente bien es mucho más fácil trabajar mejor. Me

esforzaré en resumir y agruparé a estas personas: gracias a las bolas (y bolos) por estar ah́ı, a

las estudiantes de francés, a las Murcianicas viajeras, al genial grupo de los Spanish Power (juntos

aunque lejos), a los Caillebotte, a mis cariñines (que nadie piense mal), a las favoriras... Tengo

que mencionar a dos personas en particular, cuya amistad y apoyo me han acompañado en

todo momento, desde el primer d́ıa hasta hoy, siempre que lo he necesitado: Glo (gracias por

estar siempre tan atenta) y Belén (gracias por escucharme tanto y por tu comprensión).

To my parents

(A mis padres)

Contents

Introduction 1

Description of the chapters . 2

1 The role of Bayesian networks and basic concepts about their infer-

ence 5

1.1 Expert Systems . 5

1.2 Treatment of Uncertainty . 8

1.3 Why Bayesian networks? . 10

1.4 Bayesian networks, causal nets and dependency models 12

1.4.1 Representation of dependency models 13

1.4.2 Probabilistic Dependency Model and Bayesian Networks 19

1.5 Inference processes in Bayesian networks 24

1.5.1 Inference in Bayesian networks 24

1.5.2 Join Tree Formation . 27

1.5.3 An example of Join Tree Propagation: Shafer and Shenoy Meth-

odology . 35

1.5.4 Example of other related techniques: Variable Elimination . . . 46

2 New approaches to the problem of triangulating Bayesian networks 49

2.1 Introduction . 49

2.2 The problem of triangulation . 51

2.2.1 Overview of the main existing methods for triangulation 52

2.2.2 Heuristic greedy methods . 53

2.2.3 Methods based on Evolutionary Algorithms 56

2.2.4 Other techniques relevant for triangulation 62

2.3 A new triangulation approach based on the divide & conquer methodology 65

2.3.1 Maximal Prime Subgraph Decomposition 65

ii CONTENTS

2.3.2 Triangulation of Bayesian networks by

re-triangulation . 73

2.3.2.1 Experimental Evaluation 74

2.4 Main conclusions and further research. 83

3 Incremental compilation of Bayesian networks 85

3.1 The interest of designing an IC method 85

3.1.1 Motivation . 85

3.1.2 Previous works . 86

3.1.3 Decomposition of the problem 88

3.1.4 Introductory issues . 90

3.2 MPSD-Based Incremental Compilation 91

3.2.1 The role of MPSD within Incremental Compilation 91

3.2.2 Possible modifications to be considered 92

3.2.2.1 Modification of potentials 93

3.2.2.2 Modification of the states of a variable 93

3.2.2.3 Modifying the graph structure 93

3.2.3 MPS as a tool for Incremental Compilation 94

3.2.4 Incremental Compilation Algorithm 98

3.2.5 Removing a link . 101

3.2.6 Removing a node . 105

3.2.7 Adding a node . 106

3.2.8 Adding a link . 107

3.3 Investigation of this method through a set of distinct networks 109

3.3.1 Networks and designed experiments 110

3.3.2 General idea for the experimental suite 112

3.3.3 Experiment 1: Random modifications 112

3.3.4 Experiment 2: Modifications closer to customary usage 113

3.3.5 Experiment 3: Impact of the number/size of modifications on IC

performance . 116

3.3.6 Experiment 4: Addition vs Deletion changes for IC 117

3.3.7 Experiment 5: Influence of IC when creating potentials 118

3.4 Analysis from the experiments . 119

3.5 Main conclusions and further work . 121

4 Revision on modular Bayesian structures 123

CONTENTS iii

4.1 Introduction . 123

4.2 Multiply Sectioned Bayesian networks: basics on MSBN 126

4.2.1 Basic Assumptions for MSBNs 128

4.2.2 Compilation and inference in MSBNs 134

4.3 Object Oriented Bayesian networks . 149

4.3.1 Basics on this OOBN framework 150

5 Combining the IC concept with modular Bayesian structures 159

5.1 Introduction . 159

5.2 The link between MSBNs – OOBNs . 160

5.3 A fill-in propagation scheme for inference in MSBNs 162

5.4 Plug & Play OOBNs . 170

5.4.1 Global compilation of the OOBN by means of IT-based fill-in

propagation. 171

5.4.2 Local re-triangulations using Incremental Compilation 174

5.4.3 Plug & Play behaviour . 174

5.5 Other possible benefits from the modular nature of IC 178

6 Incremental algorithm for performing parcial abductive inference 183

6.1 Abductive inference in Bayesian networks. Total and partial abduction

techniques . 183

6.2 On the search for minimal explanations: the Explanation Tree 188

6.2.1 Computation . 191

6.3 Examples for an initial testing: first study 192

6.3.1 Analysis of the obtained trees 193

6.4 Further experimentation . 197

6.4.1 Explanation Tree vs. Partial abduction 198

6.4.2 Looking into simplification methods. A new example: car-start 207

6.5 Discussion and further work . 214

Conclusions and further work 217

Conclusions . 217

Further work . 218

A Aspects of implementation 221

A.1 Triangulation by re-triangulation . 222

iv CONTENTS

A.2 MPSD-based Incremental Compilation 222

A.3 Explanation Tree . 225

Bibliography 228

Introduction

During the last decades, a remarkable development has taken place in the field of

artificial intelligence and, particularly, for expert systems. These systems attempt to

model concrete problems of the real world so that they face up to a certain restricted

situation in a way similar to a human’s behaviour.

In order to model a specific problem it is indispensable to consider both uncertainty

and vagueness, which are inherent to nature itself. The treatment of uncertainty is one

of the necessary tools for an expert system. Probabilities are among the different

approaches to deal with uncertainty. The idea of using probabilities to indicate a

certain degree of uncertainty is ancient. Nevertheless, due to the large number of factors

involved in a problem, it was unmanageable to store and compute all the probabilities

necessary to specify the joint probability distribution.

In the eighties different graphical representations driven by probabilistic information

appeared. These representations intend to model (in)dependencies between variables.

The common aim is avoiding the huge table needed to store the joint probability

distribution where every variable has to be related to all the rest. Since some variables

are clearly not related to others, this table may present many data that actually are

not necessary. From this idea Bayesian belief networks came up. They are normally

known as Bayesian networks, whose name comes from Bayes’ Theorem used to compute

probabilities.

So, the probabilistic expert systems have undergone a great growth lately, and

among them, Bayesian networks have become one of the most successful and common

choices. However, although a Bayesian network is a good tool for knowledge repre-

sentation, it is quite complicated to work directly on this structure. Inference over a

Bayesian network is usually done over a secondary/auxiliar structure known as junc-

tion or join tree. Once this tree is obtained, several probability propagations will be

carried out along it. These propagations are useful for both abductive and deductive

inference.

2 Introduction

Description of the chapters

Chapter 1 will then be devoted to define Bayesian networks (BNs), after having

located them in the Expert System environment, and to introduce some of the most

standard and known methods for inference which will be referenced along the remaining

chapters of this work.

To construct the junction/join tree, the Bayesian network should be processed by a

procedure called compilation. This process can normally take a considerable amount of

time, which is necessary to minimise. Compilation is divided in a series of operations.

Among them, the only problematical one is the graph triangulation. Moreover, the

resolution of this step presents an NP complexity. For this reason, the first part of this

thesis is focused on studying this triangulation process, which is, as explained above,

one key point when constructing the tree, and therefore, it will have an important

influence on propagation for inference. Chapter 2 will give an insight into this problem

first revising some existing techniques and later proposing a new distributive approach

for triangulation.

It is precisely inference in Bayesian networks the main point we intend to study in

this work. Apart from undertaking the triangulation problem itself, we have achieved

a great improvement for the compilation in BNs. We are not going to develop a new

architecture for BNs inference, but taking some already existing framework for prob-

ability propagation such as Hugin or Shenoy and Shafer, we have designed a method

that can be successfully applied to get better performance, as the experimental evalu-

ation will show. This method is called Incremental Compilation and will be described

in detail through Chapter 3.

In the field of Bayesian networks an Object Oriented extension has recently gained

relevance. The next part of this thesis will make a study on different approaches to

these structures. To clarify the contents we have decided to deal with this subject in

two differentiated chapters. In chapter 4 we introduce concepts related to the environ-

ment of modular Bayesian frameworks which will be necessary to assimilate when we

undertake chapter 5. In this chapter we take the inference problem up again, but for

Object Oriented Bayesian Networks (OOBNs).

There have also been some trouble to define correct and fast enough procedures to

carry out inference, since the complexity of the structures and objects communication

maintaining private data makes this process quite different from the “traditional” in-

ference in BNs. We have gone into this subject, studying the various approaches in

Introduction 3

the literature, and looking for the cooperation between them in some key aspects. Our

proposal to solve some of these arisen problems is the Plug & Play inference technique,

which is inspired in other inference techniques applied to the multi-agent paradigm

framework called Multiply Sectioned Bayesian Networks (MSBNs). Chapter 5 will

show Plug & Play OOBNs method. We will also analyse how this modular structures

can take advantage of certain techniques described previously in this report.

Finally, chapter 6 completes this work exploring the problem of finding explanations,

very useful, for instance, in diagnosis tasks or analysis problems. This is another kind

of inference that has aroused interest, since the user should not always want to have

the posterior probabilities for variables, but an explanation or a set of explanations

that could lead to the observed facts. This chapter will go through a new abductive

technique based on an explanation tree that attempts to improve the major drawbacks

of the main existing algorithms, such as overspecification.

4 Introduction

Chapter 1

The role of Bayesian networks and

basic concepts about their inference

Man is a reasoning rather than a reasonable animal.

Alexander Hamilton. (1755-1804)

One of the United States’ founding fathers

1.1 Expert Systems

Some decades ago certain problems as speech or pattern recognition, determined

games such as chess, or even quite complex deterministic or stochastic systems were

thought to be solved only by persons, since the formulation and resolution of those

problems required specific skills exclusively from human beings (the ability of thinking,

observing, learning, seeing, ...).

Anyhow, the number of achievements obtained in the last three decades by re-

searchers from different fields have shown that many of these problems can actually be

formulated and solved by machines.

These endeavours have participated in constructing the wide knowledge field known

as Artificial Intelligence (AI). The expert systems constitute one of the areas that form

AI. But, furthermore, most of the other areas inside AI have intersection with the field

of expert systems.

There are many distinct definitions for an expert system. We could summarise

them like that:

Definition 1 (Expert System [21])

An expert system could be understood as a computerised system (hardware and software)

6 Chapter 1: The role of Bayesian networks and basic concepts about their inference

that emulates human experts in a given specification area. 2

It is said that an expert system should be able of processing and memorising infor-

mation, learning and reasoning in deterministic and uncertain situations, communicate

with people and/or other expert systems, take suitable decisions, and explain why these

decisions have been taken. It could also be thought as a kind of advisor which provides

aid to the human experts with a reasonable degree of reliability.

A general scheme for an expert system could be the one shown in figure 1.1. In the

left part we can find that there might be some interaction with the user(s). On the

right side the expert system is divided into two main components:

• Knowledge. It is normally associated to the so called Knowledge base which

contains the knowledge about the particular domain that has been previously

formalised and structured.

• Reasoning. There is another important module inside an expert system known as

Inference engine. This is in charge of the operations of search and selection of

the elements to be used in the reasoning process and of obtaining answers to the

posed queries.

This is a general overview, these two modules can also be divided into smaller

components. Besides, some authors consider the working memory as a separate tool.

Reasoning

User

Expert aptitudes

Facts
Knowledge

EXPERT SYSTEM

Figure 1.1: An expert system

Many examples of expert systems applications exist in the commercial market.

Historically we could remark two of them:

1.2. Expert Systems 7

• MYCIN [121] is an expert system for diagnosis, started by Feigenbaum and af-

terwards developed by E.Shortliffe and his collaborators. Its function is giving

advice to doctors in investigation and determination of diagnosis for diseases re-

lated to blood infections. MYCIN system, as it is queried by the doctor, first

asks general data about the patient: name, age, symptoms, etc. Once this infor-

mation is known by the system, the expert system gives one hypothesis. After, it

first checks the accuracy of the rule premises and then verifies or rejects the given

hypothesis. A series of tests have proven that the performance of MYCIN is bet-

ter than acceptable, when comparing its results to those provided by specialised

doctors.

• XCON for eXpert Configurer [8], is an expert system for making network configu-

rations developed by Digital Equipment Corporation. According to the individual

requests of the client the computer networks VAX are configured. On account

to the wide range of products offered in the market, the complete and correct

configuration of such a system is a problem of great complexity.

Among the functions of this expert system, the answers to the following questions

are given:

1. Can be the components requested by the client combined in a reasonable and

convenient way?

2. Are the system components compatible and complete?

These answers are obtained in a very detailed way. XCON is able to check and

complete the input requests much faster and more efficiently than the people in

charge of that task.

Nowadays, expert systems are used in many and diverse fields. The application

of expert systems will be suitable for those cases where the experts have complex

knowledge about one clearly delimited area, where no previously established algorithm

exists or none of the existing ones can solve some problems.

Another field for application will be those including theories where it is practically

impossible to analyse all the theoretically possible cases by means of an algorithm and

in a time period that is relatively short and reasonable.

8 Chapter 1: The role of Bayesian networks and basic concepts about their inference

1.2 Treatment of Uncertainty

If we observe the history of expert systems, and particularly of the methods with

uncertain reasoning, it is verified that most of the first ones (chronologically) and the

most important, have been developed in medicine. However, this uncertainty inherent

in the real world problems appears in any other field of the natural science, engineering,

law, humanities, ... and more especially in those problems of natural language recog-

nition, both written and spoken, where the implicit information, polysemy, ambiguity

and inaccuracy, make indispensable to deal with uncertainty. In fact, this necessity is

not only related to expert systems and natural language problems, but also to every

branch of artificial intelligence, such as learning, artificial vision, robotics, intelligent

interfaces, information retrieval, complex games, etc.

There are essentially three kinds of uncertainty sources [33, 70]: deficiencies in the

information, real world features and deficiencies inside the model.

Here we enumerate some of the problems caused by uncertainty:

• Incomplete information. When collecting information about one determined phe-

nomenon which involves several variables, it is quite usual that in some cases

such information cannot be found due to various reasons.

• Erroneous information. Within the several phases in which the process of collection

information is divided, we can usually find aberrant values, even though many

techniques to avoid this are being developed.

• Inaccurate information. Some interest data that are easily expressed by means

of natural language, are vague or fuzzy in nature and result too difficult to be

expressed in a numerical way.

• Non-deterministic real world. As a consequence of this feature present in the real

world, many times from the same causes the obtained effects are different.

• Incomplete model. In many occasions the model we use for approximating to the

reality of a certain problem, is incomplete, in the sense that the causes of many

phenomena are unknown.

• Inexact model. It could also happen that the model structure is the appropriate

one, although the determination of the parameters that rule this model behaviour

could have been carried out only in an approximate way.

1.3. Treatment of Uncertainty 9

In summary, the uncertainty treatment is, together with knowledge representation

and learning, one of the fundamental issues in artificial intelligence. Therefore almost

from the beginning of this field, AI, much attention has been paid to treat uncertainty

and many methods have then appeared, motivated by the diverse problems that have

been arising.

Methods of uncertain reasoning are classified in two large groups: numerical

methods and qualitative methods. When reasoning is uncertain it is usually done

by means of numerical methods and this is normally associated to approximate rea-

soning (though depending on authors this term can be also related to fuzzy logic or

similar models).

Among qualitative methods for treating uncertainty, we could point out those based

on non-monotone logics, such as default reasoning models (Reiter’s model [103] is prob-

ably the most famous), reasoned assumptions systems by Doyle [37] known as Truth

Maintenance Systems (TMS) and Assumptions based TMS (ATMS) and the theory of

endorsements by Cohen and Grinberg [24, 23]. All these methods work in such a way

that when there is no enough information, certain assumptions are done, that can be

subsequently revised after the reception of new information. The main problem they

present is due to their qualitative nature, so they are not able to consider the different

certainty/uncertainty degrees of one hypothesis. They normally lead to an unman-

ageable combinatory explosion. That is why they are mostly studied because of their

theoretical relevance (AI foundations) more than because of the practical applications

they could derive.

Regarding numerical methods, among which we find the basis of this thesis, the

first attempt was the probabilistic treatment. Bayes and Laplace proposed probability

as one measure of personal belief about 200 years ago. In the beginning of 20th century

there appeared interpretations of probability as frequencies (long term) associated to

situations or experiments that can be repeated; in this line, Fisher statistics’ work

can be particularly mentioned. But at early 30’s, due mainly to the work of L. J.

Savage and B. de Finetti, among others, probability as a measure of personal belief is

rediscovered.

Another possible classification is based on the differences between intensional and

extensional systems, that are better described in Section 1.4. At this point, we will only

comment that in this work we will focus on aspects related to an intensional model,

more concretely on probabilistic graphical models (Bayesian networks).

10 Chapter 1: The role of Bayesian networks and basic concepts about their inference

1.3 Why Bayesian networks?

Bayesian networks have become of great relevance in the last years. Nowadays

many researchers study them and work hard on achieving better efficiency for their

processing. But the importance of Bayesian networks is also due to the great number

of applications they have provided.

In this section, and before introducing a formal and detailed definition of Bayesian

networks, we have considered appropriated to remark those aspects that have made

them one of the most used representation formalisms for uncertain knowledge nowa-

days. We also try to explain the interest in going deeply into their structure as well as

how important an improvement of the different algorithms used for their treatment is.

Many of these algorithms will be studied in this thesis, and we will attempt to improve

some of them.

Bayesian networks have been proved as suitable to model a large number of systems

of distinct nature. Some reasons that yield the previous statement are:

• It is a probabilistic model. In order to reflect the uncertainty typical of our

environment, it is really important the ability of representing it in a way that,

at least, is somehow coherent and understandable. The probabilistic model gives

us this feature.

• Bayesian networks give us posterior beliefs given a set of observations. That is,

from a set of observable and true facts (this truth could be softened in some way)

we can obtain some conclusions with a belief degree (probability) associated to

them. That is what we call information updating.

• They can be used as a classifier. Classification becomes a hard task when it is

related to very complex domains.

• They not only provide one answer to our problem, but also they are able to explain

why this answer is right, they can even indicate us which reasoning process they

have followed [67].

• They are able to find those variables of greatest impact, those whose relevance

factor in the global system is critical.

• There exist many efficient algorithms that work with Bayesian networks even if

the number of variables is very high, and throughout the time others are refined

1.3. Why Bayesian networks? 11

and new methods are developed. This provides a basis for posterior studies

and shows a high interest for this representation and processing structure for

both scientific and industrial worlds. For that, the technological aspect is also

outstanding, since their performance is being improved time and again.

• They get to model the (subjective) knowledge from the expert. In Bayesian

networks, knowledge is taken from the experience and knowledge of specialists

in a concrete field, trying to produce a faithful representation of it. This leads

us to a better communication with experts (model-based representation that is

modular and easier to work with).

• They can also be learned from empirical data. At this moment many researchers

are working on Bayesian networks learning. There are very good results and a

very promising potential regarding this issue.

• It is quite easy to use them. Once the system is modelled, working with Bayesian

networks results very intuitive. Its graphical representation enables the visual

understanding of the relations among variables and the numerical values that

represent the probabilities associated to those relations, which make its manage-

ment quite simple.

• They offer a representation of uncertain knowledge which is basically more nat-

ural than rule-based systems. This makes them easier to be maintained and

adapted to different contexts. The possibility of taking decisions about uncertain

domains, together with this natural way of connecting elements and simplicity

for maintenance make Bayesian networks a very attractive tool, even though very

sophisticated methods can be applied.

As we have seen, many interesting features can be found inside Bayesian networks

techonology, which have given place to their great popularity within the expert systems

world.

A majority of authors coincide with concentrating their main interest in two aspects:

1. Contrary to other models as neural nets, Bayesian networks offer the advantage

that an expert can contribute knowledge to the model by means of a causal

structure which has a concrete interpretation. On the other hand, when it is

learned from data, the obtained representation provides us with a descriptive

model/prototype of the modelled world.

12 Chapter 1: The role of Bayesian networks and basic concepts about their inference

2. And moreover, the resultant network after being trained is comprehensible and

extendible producing probabilities over those variables of interest. This network

can be used in a simple way even with arbitrary unknown data (unknown both

in training and usage).

1.4 Bayesian networks, causal nets and dependency

models

Any system that pursues to imitate the behaviour of a human expert should be able

to reason from a knowledge base where most of it consists in sentences and rules that

can not be guaranteed as totally true and also containing inaccurate and ambiguous

terms in their expression. As a result, this system will have to imitate the procedure

of human reasoning, able to obtain valid conclusions in spite of incompleteness and

presence of uncertainty in the available information.

Uncertainty treatment can be approached from different points of view, each one

belonging to distinct classifications or taxonomies. A relevant one [99] classifies rep-

resentation systems and the use of uncertain knowledge in two kinds: extensional or

syntactic systems and intensional or semantic ones.

Extensional systems structure knowledge by means of productions or rules If - then

and one archetype could be the calculation of certainty degrees used by the expert

system MYCIN [121]. In these systems uncertainty is treated as a generalised truth

value, where the certainty of a formula is defined as a function of the certainty values

of its subformulas. Interdependencies between variables are not considered, uniquely

for those variables appearing in a same rule.

Rules for intensional models have a descriptive meaning (instead of a procedural

one) and they represent constraints on the current state of knowledge. Some exam-

ples of these schemes are the formalism of probability theory and the evidence theory

by Dempster-Shafer [112]. In contrast those rules of extensional systems do have a

procedural meaning. Hence, the rule A
m
−→B implies that being A true, B could be

added to the current knowledge (sometimes called working memory as well) with a

certainty value m, independently of the current state of knowledge. Conversely, for

intensional systems the rule A
m
−→B says uniquely that the set of worlds in which B is

false between those in which A is true has very little likelihood, and for that reason,

it should be excluded with probability m. Then, the rule does not let the system do

1.4. Bayesian networks, causal nets and dependency models 13

anything, it just describes a restriction on the current state of knowledge. In Bayesian

formalism this rule can be interpreted as ”if A is true and A is the only known fact,

then a probability of m can be assigned to B”. If other facts appear in the knowledge

base so that A is no longer the only known fact, the permission of assigning probability

m to B disappears; unless the knowledge contributed by the new facts is independent

with respect to B, in this case B can keep probability m.

Therefore, it is meaningful to know the dependencies between those variables in-

volved in the particular knowledge, since otherwise nothing could be deduced. When

existing dependencies and all necessary parameters are known, it is possible to act in

a procedural way in the framework of Bayesian systems.

1.4.1 Representation of dependency models

At this point we have reasoned the need for expressing (in)dependencies existing

among the variables involved in the knowledge domain. Now it is time we saw in which

form these (in)dependencies are going to be represented. In view of the fact that human

beings are able to detect independencies between variables in an almost intuitive way

and without need of calculations, this indicates that the notion of independency should

be a primitive concept that would be represented in a qualitative and also explicit

way. On the other hand, due to the primitive character of the independency notion,

this should have a set of common properties in respect to the distinct formalisms (of

quantitative type) with which knowledge can be represented.

Before going on with the corresponding definition, we should mention first the

notation that will be used. We will note propositional variables with capital letters

without subindex (A, . . . , Z) or with subindexes that can be numerical or lower case

letters (Xi, Xj, . . . , X1, X2, . . .). The set of variables will be noted with capital letters

with subindexes also in capital letters (XA, XB, . . .) and they might also be in italics

or calligraphic mode (V,A, . . .). Sometimes we will cite a set of variables as XD like

an n-dimensional variable. ΩXi
represents the set of values (states) that a variable Xi

can take. Here we remark that in this work we will always deal with discrete Bayesian

networks. Likewise, ΩXD
represents the set of values that an n-dimensional variableXD

can take and it is obtained by the cartesian product of ΩXi
for all Xi ∈ XD. Finally,

we will represent by (↓) the projection operator: given XI ⊆ XJ and xJ ∈ ΩXJ
, x↓XI

J

represents a configuration of ΩXI
that is obtained by removing from xJ the coordinate

of those variables which do not belong to XI .

14 Chapter 1: The role of Bayesian networks and basic concepts about their inference

(In)dependency relationships between variables can be formalised using the follow-

ing framework of abstract nature:

Definition 2 (Dependency model [99])

Let V be a finite set of variables. A dependency model is defined as a pairM = (V, I),

where I is a set of rules that assign truth values to the predicate.

I(XI |XK |XJ)M ≡ XI is independent1 of XJ when XK is known,

Being XI , XJ and XK disjoint sets of variables in V. 2

Intuitively, a set of variables XI is considered independent of another one XJ , given

the values taken by the variables ofXK , if our belief in the values taken by the variables

of XI is not modified when obtaining additional information about the values taken

by the variables of XJ . To simplify notationM is usually omitted from the predicate

I(.|.|.).

The problem that appears now is if the knowledge field is broad, the predicate list

I(XI |XK |XJ) necessary to describe the (in)dependencies between the model variables

becomes unmanageable and, hence, it is necessary to find a simpler and more compact

representation. Graphical representations seem to be a nice and befitting solution to

this problem, which are normally called dependency graphs. A dependency graph has

a node for each one of the variables in the problem.

Although dependency graphs can be undirected or directed, the latter are the most

widely used. The existence of one edge X → Y indicates dependency between variables

X and Y , but it can also show a causality relationship between them: X is cause of Y .

Nevertheless, this statement is not always true, it will depend on the particular case

we are attempting to represent.

The topological property that allows us to represent independence statements in di-

rected graphs is the concept of directed separation or just d-separation (Pearl [99],Verma

y Pearl [126]). Before a formal definition of this concept we will introduce some previous

definitions:

Definition 3 (Basic concepts about directed graphs)

Given a directed graph G = (V, E), we name:

• path, an ordered sequence of nodes (Xi1 , . . . , Xir), so that ∀j = 1, . . . , r−1 either

the edge Xij → Xij+1 ∈ E or Xij+1 → Xij ∈ E.

1In fact, we say (marginally) independent when XK = ∅ and conditionally independent otherwise.

1.4. Bayesian networks, causal nets and dependency models 15

• directed path, an ordered sequence of nodes (Xi1, . . . , Xir), so that ∀j = 1, . . . , r−

1 the edge Xj → Xj+1 ∈ E.

• cycle, a path (Xi1 , . . . , Xir) in which Xi1 = Xir .

• directed cycle, a directed path (Xi1 , . . . , Xir) in which Xi1 = Xir .

• parents of Xi, the set of nodes

pa(Xi) = {Xj ∈ V | Xj → Xi ∈ E}

• children of Xi, the set of nodes

chi(Xi) = {Xj ∈ V | Xi → Xj ∈ E}

• ancestors of Xi, the set of nodes

asc(Xi) = {Xj ∈ V | ∃ at least one directed path (Xj, . . . , Xi)}

• descendants of Xi, the set of nodes

des(Xi) = {Xj ∈ V | ∃ at least one directed path (Xi, . . . , Xj)}

• adjacent nodes to Xi, the set of nodes

Adj(Xi) = {Xj ∈ V | Xi → Xj ∈ E or Xj → Xi ∈ E} = pa(Xi) ∪ chi(Xi)

• directed acyclic graph (DAG), a directed graph which does not contain any

directed cycle.

2

It is clear that definitions of path, cycle and adjacent nodes are also applicable to

undirected graphs.

Definition 4 (Blocked path)

Given a DAG G = (V, E), a path α between nodes Xi and Xj, it is said to be blocked

by a set of nodes XZ if there is a node Xk ∈ α so that satisfies any of the following

conditions:

• Xk ∈ XZ and Xk is not a head to head node (→ Xk ←) in α.

16 Chapter 1: The role of Bayesian networks and basic concepts about their inference

• Xk is a head to head node in α and either Xk or any of its descendants do not

belong to XZ.

2

In an undirected graph a path is blocked by a set of nodes XZ if any node of XZ is

located in the path.

Definition 5 (D-separation)

Given a DAG G = (V, E) and three subsets of disjoint nodes XI , XJ and XZ, it is said

that XI and XJ are d-separated by XZ if every path between a node of XI and a node

of XJ is blocked by XZ. This is denoted by < XI |XZ |XJ >G. 2

When the context makes clear the graph we are referring we will omit G in the

predicate < .|.|. >. The analogous concept to undirected graphs is separation or U-

separation.

Example 1 In the DAG of figure 1.2 {B,D} and {C} are d-separated by {A}, while

{B,D} and {C} are not d-separated by {A,E}.

G

D

B C

A

E
R 	

R	

?

?
�

Figure 1.2: Graph example for d-separation

2

1.4. Bayesian networks, causal nets and dependency models 17

Given a dependency model M = (V, I) and a dependency graph G = (V, E) the

ideal target would be that the following relation is accomplished:

I(XI |XK |XJ)M ⇐⇒ < XI |XK |XJ >G .

This is called a perfect-map [99]. However, in practice this situation is not common,

usually this relation is at most accomplished in only one direction. That gives place to

the concepts listed below (Pearl, [99]).

Definition 6 (I-map)

A DAG G = (V, E) is said to be an I-map of a dependency model M if the relation

I(XI |XK |XJ)M ⇐= < XI |XK |XJ >G

is accomplished.

2

In an I-map it is guaranteed that all the variables corresponding to nodes that are d-

separated are variables independent in the model, but it does not guarantee that those

variables corresponding to non d-separated nodes in the graph are variables dependent

in the model. We say that a graph G is a minimal I-map of M if when deleting any

arc it is not anymore an I-map of the model.

Definition 7 (D-map)

A DAG G = (V, E) is said to be a D-map of a dependency model M if the relation

I(XI |XK |XJ)M =⇒ < XI |XK |XJ >G

is accomplished. 2

In a D-map the reciprocal situation to the previous one occurs, that is, the indepen-

dencies of the model are reflected in the graph, but it may be that variables dependent

in the model appear as d-separated nodes in the graph.

Within the field of uncertainty treatment of artificial intelligence dependency graphs

have become quite popular taking different names, among them we find influence net-

works, belief networks or causal networks or nets2. These names together with causal

2When causal net is used it is supposed to exist a causality relationship between those variables

linked by an edge. Nevertheless, in most cases this causality is not strictly necessary to construct a

model, but any weaker notion as a relevance relationship would be enough.

18 Chapter 1: The role of Bayesian networks and basic concepts about their inference

probabilistic networks have been launched and recommended by authors such as Pearl

[99], Lauritzen and Spiegelhalter [74] or Neapolitan [87]. In the following, a definition

of causal net as a dependency graph, that is, referring to only the qualitative part, is

given:

We are going to comment an example of causal net taken from Jensen’s book [62].

Example 2 We wish to model the following system by a causal net:

One morning when leaving home Mr. Holmes realises that the garden grass is

wet (H). The reason could be that it has rained during all night or that he forgot

switching the sprinkler off (S). At first, his belief on both events increases.

Next he sees that in the garden of his neighbour (Mr. Watson), the grass is also

wet (W). Now Holmes is almost sure that it has rained during the night and that

he effectively switched the sprinkler off.

Figure 1.3 presents a causal net that models this problem.

W

R

H

S

Figure 1.3: Causal net to model the wet grass example

Let us analyse some points about the previous example:

• If subgraph W ← R→ H is considered we can see that the rain is a common cause

of the humidity state in both gardens (Mr. Holmes and Mr. Watson gardens). In

this case W and H are dependent variables, since if the grass in Mr. Watson’s

garden is dry we can imagine that it has not rained and, therefore, that the grass

in Mr. Holmes garden should also be dry. Then, we have ¬I(W |∅|H). In the

network W and H are not d-separated by the empty set and hence the variables

are dependent; that is, ¬ < W |∅|H >. Nonetheless, if we know whether it has

rained, knowing the grass status will not add new information on the other grass

status. In this case we have the conditional independence I(W |R|H). In the

network it is easy to check that it also covers this situation, since < W |R|H >.

1.4. Bayesian networks, causal nets and dependency models 19

• If we consider the subgraph R → H ← S, we see that both the rain and the

sprinkler can provoke that the grass in Mr. Holmes’s house is wet. It is clear that

having rained during the night does not influence the fact that Mr. Holmes could

leave the sprinkler on or viceversa and, then, we have the marginal independence

I(R|∅|S). This independence is also reflected in the network because < R|∅|S >.

On the other hand, if the grass status is known the variables become dependent,

since if we know that it has not rained during the night and that the grass is wet

my belief in forgetting to turn the sprinkler off increases. This kind of reasoning

is called ”explaining-away”. Then, we will have the relationship I(R|H|S). In

the network it is easy to see that being H a head-to-head node in the only path

between R and S, the nodes are not d-separated by it and, hence, the relationship

¬ < R|H|S > occurs.

• Finally we want to comment the reasoning process done by Mr. Holmes. When

observing that the grass of his garden was wet Mr. Holmes had looked for the

causes that could have provoked this effect. Given that there are two possible

causes R and S and in absence of any other information Mr. Holmes considers

that both could have provoked this situation. But as he sees the grass of Mr.

Watson’s garden is also wet, this fact reinforces the possibility of rain during the

night. Therefore, it increases its belief in the wet grass being the true cause,

decreasing his belief in the other possible cause at the same time.

2

1.4.2 Probabilistic Dependency Model and Bayesian Networks

Until here, we have only referred to the qualitative part of the model, which is the

one that allows us to represent the (in)dependencies between the system variables and

variables sets. Next, we are going to add to this the quantitative part of the model.

The formalism we will use in this work to represent the quantitative part of the

model is the probability theory. In a probabilistic environment [28, 49, 75, 122] a

probability distribution P can be considered a dependency model using the relation:

I(XI |XK |XJ) ⇐⇒ P (xI |xK , xJ) = P (xI |xK),

for every configuration of values xI , xJ and xK from the set of variables XI , XJ and

XK .

20 Chapter 1: The role of Bayesian networks and basic concepts about their inference

There is a set of characteristics to be required for any relation that attempts to

catch the intuitive concept of independence. This set is known as axiomatic set of

independence. The following theorem contains some properties that are always verified

by the dependency model associated with a probability distribution:

Theorem 1 (Pearl and Paz [96])

Let us consider the sets of variables XI , XJ , XK and XW which are disjoint two by two.

Every probabilistic dependency model M verifies the following:

A0 Trivial independence:

I(XI |XZ|∅)

A1 Symmetry:

I(XI |XK |XJ)⇔ I(XJ |XK |XI)

A2 Decomposition:

I(XI |XK |XJ ∪XW)⇒ I(XI |XK |XJ)&I(XI |XK |XW)

A3 Weak union:

I(XI |XK |XJ ∪XW)⇒ I(XI |XK ∪XW |XJ)

A4 Contraction:

I(XI |XK |XJ)&I(XI |XK ∪XJ |XW)⇒ I(XI |XK |XJ ∪XW)

A5 Intersection:

I(XI |XK ∪XW |XJ)&I(XI |XK ∪XJ |XW)⇒ I(XI |XK |XJ ∪XW)

This axiom is only verified when the probability distribution P is strictly positive.

2

In a probabilistic environment the quantitative knowledge is usually represented by

a joint probability distribution defined over the variables of the system. This creates a

problem of representation, considering for example that every variable has two possible

states and there are n variables, the number of necessary entries to represent the joint

probability distribution is 2n. It is evident that this number is unmanageable even for

small values of n, then for n = 50 we will need 250 ≃ 1015 entries. So, this is needed to

represent in another way the joint probability distribution.

If the qualitative part of the knowledge has been represented as a dependency graph

G (concretely as an I −map of P) then the quantitative part could be represented in

1.4. Bayesian networks, causal nets and dependency models 21

a more efficient way. Let P be a joint probability distribution over variables V =

{X1, . . . , Xn}. We know that P can be expressed as

P (X1, . . . , Xn) = P (Xn|Xn−1, . . . , X1) · · · · · P (X3|X2, X1) · P (X2|X1) · P (X1) (1.1)

We assume now that the sequence X1, . . . , Xn constitutes a topological ordering3

of the graph G (when G is a DAG it is always possible to find a topological ordering).

Let us take any factor P (Xi|Xi−1, . . . , X1) from the previous expression. Being the

sequence of variables ordered topologically with respect to G it is clear that the set

{Xi−1, . . . , X1} contains pa(Xi) and does not contain any descendant of Xi, then the

following fact is ensured

< Xi|pa(Xi)|{Xi−1, . . . , X1} \ pa(Xi) >G .

Being G an I-map we will have

I(Xi|pa(Xi)|{Xi−1, . . . , X1} \ pa(Xi)),

which implies that

P (Xi|Xi−1, . . . , X1) = P (Xi|pa(Xi)).

This makes that joint probability distribution can be factorised by means of the next

expression, broadly known as the chain rule:

P (X1, . . . , Xn) =

n
∏

i=1

P (Xi|pa(Xi)) (1.2)

Thanks to this, we will only need to store one distribution of conditional probability

for every node in the graph. This representation achieves a great saving in the necessary

space to store the joint probability distribution. For example, if we suppose that

n = 50 and that the dependency graph contains 10 root nodes, 10 nodes with one

parent, 10 nodes with two parents, 10 nodes with three parents and 10 nodes with

four parents, the number of necessary entries to represent the conditional distributions

is 620 in contrast to the 250 that would be needed to represent the joint probability

distribution. Of course, this factorisation is also of great utility during knowledge

acquisition (probabilities).

Once we have seen how to represent both qualitative and quantitative parts of the

system, we are going to give a formal definition of Bayesian network.

3For a sequence X1, . . . , Xn of the nodes in a graph to be a topological ordering it is enough if the

following is guaranteed: if Xi → Xj is an edge in the graph, then Xi precedes Xj in the sequence.

22 Chapter 1: The role of Bayesian networks and basic concepts about their inference

Definition 8 (Bayesian network)

Given a probability distribution P over a set of variables V, a Bayesian network (BN)

is defined as a directed acyclic graph G = (V, E) so that

1. Every node in the graph represents a variable of V.

2. G is a minimal I-map of P .

3. Every Xi ∈ V has a conditional probability distribution P (Xi|pa(Xi)) associated

to it.

2

a

¬a

Asia (A)

0.01

0.99

s

¬s

Smoker (S)

0.5

¬aa

t

¬t

0.05

0.95

0.01

0.99

e

0.95

0.98

0.02

x 0.05

¬x

¬e
e e ¬e

¬b

0.9 0.8 0.1

0.1 0.2 0.3

0.7

0.9

b

¬e

¬b

s ¬s

0.010.1

0.9 0.99¬l

l

e

t

¬l ¬l

¬t

1 1 0

0 0 0

1

1

ll

0.6

¬s

b

¬e

d

¬d

Tuberculosis (T)

Tuberculosis or Cancer (E)

Lung cancer (L) Bronchitis (B)

Dyspnea (D)

X−Ray (X)

0.3

0.7

s

0.5

0.4

Figure 1.4: Asia network.

Example 3 One example of Bayesian network is the classical Asia or chest-clinic do-

main (see figure 1.4), which was first introduced by Lauritzen and Spiegelhalter [74]

and it seeks to model this problem:

1.5. Bayesian networks, causal nets and dependency models 23

Tuberculosis (T) and lung cancer (L) can provoke dyspnea4(D) and can also be

causes of a positive result in a X-ray chest test (X). Also, bronchitis (B) is the

other cause of dyspnea. Besides this, the fact of having visited Asia recently (A)

increases the probability of suffering from tuberculosis, whereas the fact of being

a smoker (S) is one of the possible causes of bronchitis and lung cancer.

In figure 1.4 we not only observe the variables that form the model and the relations

among them, which we have just described, but also the numerical values of the associ-

ated probabilities. These model the weight of every factor and of the relations among

them. For instance, a priori (if no evidence is introduced), the fact of having visited

Asia is rather improbable, barely 1%. We can see the probability conditional to the

parents, P (.|pa(.)) as well. For example, the probability of having lung cancer will be

greater for a smoker (S = s) than for a non-smoker (S = ¬s). As we mentioned in

section 1.3, it seems clear that the graphical structure of a Bayesian network results

very intuitive and working with probabilities in such a way makes easier the insertion

of knowledge about the problem by the experts. It should be remarked that in this

particular case we are dealing with a network of causal nature. 2

Lastly, we want to indicate that obtaining a Bayesian network that gets to model

our system is not an easy task. We could say that there are two basic approaches to

construct this network, that can be sometimes combined:

• Manual construction: in these cases the network is built by a knowledge engineer

aided by human experts in the domain s/he tries to model.

• Automatic construction : it covers a set of techniques that allow us to build the

network from data bases. These methods are known as learning algorithms and

can be used as a supplement to the knowledge the expert contributes (hybrid

learning), or individually. Learning Bayesian networks is a problem that has

taken the attention of many researchers in the last years [1, 25, 26, 53, 88]. There

have been great advances and many different techniques have lately appeared.

However, given the complexity of this task the issue can not at all be considered

as closed.

4From the Greek word Dyspnoia that means difficulty of breathing.

24 Chapter 1: The role of Bayesian networks and basic concepts about their inference

1.5 Inference processes in Bayesian networks

1.5.1 Inference in Bayesian networks

The inference process in Bayesian networks can generally seen as obtaining the

posterior probabilities for a set of interest variables XI ⊂ V given an evidence e, that

is, we want to obtain:

P (Xi|e) ∀Xi ∈ XI (1.3)

This is normally known as evidence propagation or probability propagation. We call

evidence those facts which are observed and therefore the involved variables are fixed

to a certain value. For example, in the network Asia whose probability tables and

graph structure was shown in fig. 1.4, if we know certainly that a patient has visited

Asia, we can introduce this evidence and then probabilities can be propagated and so

updated to their posterior values:

• The evidence to be propagated is {A = a}, so it is obvious that P (A = a|A =

a) = 1.0 P (A = ¬a|A = a) = 0.0

• If the interest variables are all the rest, after an inference process, the exact

posterior probabilities are:

P (B = b|A = a) = 0.45 P (B = ¬b|A = a) = 0.55

P (S = s|A = a) = 0.50 P (S = ¬s|A = a) = 0.50

P (T = t|A = a) = 0.05 P (T = ¬t|A = a) = 0.95

P (E = e|A = a) = 0.10 P (E = ¬e|A = a) = 0.90

P (L = l|A = a) = 0.06 P (L = ¬l|A = a) = 0.94

P (D = d|A = a) = 0.42 P (D = ¬d|A = a) = 0.58

P (X = x|A = a) = 0.15 P (X = ¬x|A = a) = 0.85

Many times, what the user seeks is an explanation for that evidence. The interest

goes further than the individual conditional probability of each variable and we are

also looking for the most likely overall hypothesis or explanation for the current ob-

servations. This abductive inference is also possible for Bayesian networks, but their

working scheme is different from the previous one. There are two types of abductive

inference in BNs:

• MPE (Most Probable Explanation) is the most probable configuration of all vari-

ables in the BN given evidence. We could call it total abduction as well.

1.5. Inference processes in Bayesian networks 25

• MAP (Maximum A Posteriori) is the most probable configuration of a subset of

variables in the BN given evidence (also called partial abduction).

In general the MPE cannot be found by taking the most probable configuration of

nodes individually, and the MAP cannot either be found by taking the projection of

the MPE onto the explanation set. Then, total abduction tries to obtain the so-called

Most Probable Explanation (MPE).

Definition 9 (Most Probable Explanation) Let G = (V, E) be a Bayesian network

and xO one observation of the variables set XO ⊂ V. We call x∗ ∈ ΩV Most Probable

Explanation (MPE) of xO if

x∗ = arg max
V ′

P (V ′|xO)

where V ′ = V \XO 2

The complexity of obtaining this MPE is equivalent to evidence propagation.

We go back to the example of Asia network but this time from the abductive point

of view. For instance, we could notice that the patient suffers from Dyspnea, but the

question is what might have caused it? After introducing the observation D = d we

obtain the configuration (explanation) {A = ¬a,B = b, T = ¬t, E = ¬e, L = ¬l, X =

¬x} as the most probable. From here the most important diagnosis is that the disease

the patient is suffering from is bronchitis and not tuberculosis or lung cancer and that

s/he did not visit Asia. This is only a first approach to illustrate the underlying idea,

a deeper study of abduction will be done in chapter 5.

So, we have seen what we want to get from inference processes when we work with

Bayesian networks. The next point will be how to obtain this probability values (poste-

rior probabilities used also for MPE). There are many techniques to carry out inference

for Bayesian networks. We could first distinguish between two main approaches:

1. Exact methods.- the computed probabilities are exact. It is obviously desirable

to have these exact values, but it has also been proven that it is not indispensable

for many cases and, on the other hand, quite resource consuming.

2. Approximate methods.- the computed probabilities are close to the exact values,

but the way of obtaining them introduces some error. The use of this kind of

methods is convenient for large networks or when a speed-up is necessary or a

small error is not really important.

26 Chapter 1: The role of Bayesian networks and basic concepts about their inference

Both exact and approximate inference are NP-hard in the worst case.

Secondly, we could think that inference is done directly over the network, but

that is not the usual case. In [98] Pearl presented a very efficient way to propagate

probabilities in polytrees. Those Bayesian networks whose DAG is a polytree could

use this scheme of message passing in order to compute every potential/probability.

The problem is that in most real cases a tree is not enough to represent the knowledge

domain. Recently, a technique called loopy belief propagation [92] was presented. It

uses Pearl’s polytree algorithm for Bayesian networks with loops giving place to a very

interesting approximate inference.

Nevertheless, what has been broadly used in order to propagate for any kind of

network is the clustering method. These methods group variables that are strongly

related together. If these groups are organised as a tree, then sophisticated adaptations

to the probability propagation can also be done such as Lauritzen & Spiegelhalter

method [74], Shenoy & Shafer propagation [113, 114] or Hugin architecture [60]. A

more recent technique is Lazy propagation [80, 81]. A more detailed explanation of

Shenoy & Shafer method is given below, when the concepts of tree of cliques and

join tree are presented. We have picked up this method because it is quite easily

understandable, and although there are differences [77] among the distinct techniques,

the core in all of them remains the same.

We can find many other methods based on the previous ones that seek a more

efficient evidence propagation and whose main feature is the possibility of an approxi-

mate inference to improve even more the speed-up, for instance Penniless propagation

[19]. There is even a combination of two different techniques as Lazy Propagation with

Penniless [20]. In the approximate methods we should also remark the Monte-Carlo

algorithms [107, 57].

As we have just introduced, there is normally a secondary structure, which is gen-

erally known as join tree (also junction tree), where this inference is performed. This

join tree represents in fact another factorisation of the joint probability distribution.

Fig. 1.5 illustrates this interpretation of probabilistic expert systems that use Bayesian

networks as knowledge representation.

Let us indicate how this join tree is formed and how the probability propagation is

performed. As it was said before we have chosen Shenoy & Shafer propagation method

for this more detailed description.

1.5. Inference processes in Bayesian networks 27

PROBABILISTIC EXPERT SYSTEM

ABC B

Bayesian network

Join Tree

Knowledge base

Inference engine

BD

A

C

B D

Figure 1.5: A general scheme for a probabilistic expert system.

1.5.2 Join Tree Formation

The tree we want to construct will be our tool to compute marginals of a function

given as a product of tables on different sets of variables. Let us remind the chain

rule (equation 1.2) which is satisfied by a Bayesian network. The clustering made in a

join tree tries to put variables in a same family together, emulating this factorisation.

Every conditional probability P (Xi|pa(Xi)) will be necessarily stored and associated

to some node of the tree by means of potentials.

Definition 10 (Potential) A potential ψ defined on a set of variables XI ⊆ V will be

the mapping ΩI −→ R
+, where R

+ is the set of non-negative real numbers, including

the value zero and where ΩI denotes all the configurations of the values taken by the

group of variables variables XI 2

If |ΩXi
| is the number of states for variable Xi, there will be

∏

i=0 |ΩXi
| elements,

and every one will have a real value associated in the potential function. A potential

can then be viewed as a function from the space of the possible values for a set of

one or more variables to real values. For us, probabilistic information, that is, both

conditional (a priori) and joint (a posteriori) distributions, will be represented using

potentials.

28 Chapter 1: The role of Bayesian networks and basic concepts about their inference

For example, in Asia network we can have the a priori potential of variable A

as ψA = (0.01, 0.99), or after introducing the evidence that S = s the probability

P (B|S = s) will be represented by the potential

s

ψB = b 0.6

¬b 0.4

Let us remark that in this example we have indicated a potential table, but there

are other ways to represent a potential function. In chapters 3 and 5 we will treat this

point and we will see the benefit of using probability trees [108] and potential trees

[19].

But as a tree it is not only a clustering technique, it also establishes links (by

branches) between nodes of the tree. These nodes are groups of variables. We remark

that a join tree could not be formed by maximal groups, that is, cliques. Then, a tree

of cliques will always be a join tree, but the contrary is not always true. The word

cluster will also be used for groups of variables. A clique will be a group of variables

that form a maximal complete subgraph in the triangulated graph Gt, which will be

reviewed later when the formation of the tree is described. This configuration of the

cliques in the tree will influence directly the propagation method, that is, the way

of performing the multiplications to compute the joint probability distribution, and

therefore posterior marginals. Those cliques directed connected in the tree will share

a separator, which will contain the common variables in both cliques.

Definition 11 (Separator) Let Ci and Cj be two clusters adjacent in the Join Tree

we call Sij their separator and this will be as follows:

Sij = {V |V ∈ Ci ∩ Cj}

2

These intersection sets are very important for the join tree structure, since the

running intersection property must hold for any valid join tree:

Definition 12 (Running Intersection Property) For every pair of clusters C1 and

C2 whose intersection is not empty, that is, V = C1 ∩ C2 6= ∅, it is verified that V is

contained in all nodes included in the path between C1 and C2. 2

It may seem that we have just skipped the definition of junction tree to jump

directly to its main components: cliques/clusters, potentials and separators. However,

we considered this way more suitable to present the foundations about using a junction

1.5. Inference processes in Bayesian networks 29

tree. Now, instead of giving a definition of join tree, we will first indicate how it is

constructed and how we make the transformation from a Bayesian network BN to one

possible join tree JT where inference will take place. This process is called compilation

and there are four basic steps:

1. Obtain the moral graph from the original DAG that represented the BN .

2. Triangulate this moral graph.

3. Identify all the cliques.

4. Connect these cliques in order to form a valid join tree JT .

Let us go through every step explaining what actions they involve and illustrating

them for the Asia example. In figure 1.6 we can see the nodes of this network (on the

left with whole names, as in figure 1.4, and on the right taking the abbreviations in

bracket to make the representation easier).

Lung cancer (L)

Dyspnea (D)

Bronchitis (B)

Smoker (S)

or Cancer (E)

Tuberculosis

X−Ray (X)

Tuberculosis (T)

Asia (A)

T B

X D

A S

L

E

Figure 1.6: The structure of the Directed Acyclic Graph for Asia network. (On the

right we show the abbreviated version we will use from here.)

1.- Moralise the graph

So, the first step about moralisation takes the initial DAG G that forms the graph-

ical part of the network and makes it undirected following these two rules: join those

30 Chapter 1: The role of Bayesian networks and basic concepts about their inference

nodes with common parents with a moral link5, figure1.7.(a), and drop directions of

the directed edges, figure 1.7.(b).

T B

X D

A S

L

E

T B

X D

A S

L

E

(a) (b)

Figure 1.7: Obtaining the moral graph for Asia, indicating the two-steps process.

2.- Triangulate the moral graph

Second phase for compilation is the most problematic step: triangulation, since

finding an optimal triangulation is an NP-hard problem [128]. To triangulate a graph

it is needed to introduce a chord in those cycles of length greater than 3.

Normally, this process is done as the search of a deletion sequence σ which represents

an ordering for all nodes in V (remember that G = (V, E)). Then, σ can also be seen

as a function which relates every node vi ∈ V with a unique number between 1 and

|V|. Therefore every node will have a position in the deletion sequence. Using this

deletion sequence σ the necessary links to add (called fill-ins) will be obtained. Thus,

the triangulating method will take in this order every node vi and (1)Remove from

the graph all its incident links together with itself, vi ; (2)Add links between all its

neighbours, if they did not exist before. Let us show one example for the moral graph

of Asia network (figure 1.8).

In figure 1.8.(a) we proceed to remove the first variable in σ, that is variable A,

so we remove its only incident link and itself. In part (b) the same happens with the

second variable in the deletion sequence, T , while in part (c) we can see that next

5The origin of the term moral comes from marrying nodes with common children.

1.5. Inference processes in Bayesian networks 31

T B

X D

A S

L

E

T B

X D

S

L

E

B

X D

S

L

E

(a) (b) (c)

B

S

L

E

BL

E

T B

X D

A S

L

E

(d) (e) (f)

Figure 1.8: Obtaining one possible triangulated graph for Asia. The used deletion

sequence is σ = {A, T,X,D, S,B, L,E}.

32 Chapter 1: The role of Bayesian networks and basic concepts about their inference

variables X and D do not produce any fill-in either. It is when the 4-length cycle

S − L − B − E is being processed that a chord will in fact be necessary. Since, our

sequence is fixed and S is the fifth element, figure 1.8(d) illustrates how this removal

of S will imply the addition of a fill-in (triangulating link) between its two neighbours

L and B. Finally, in step (e) of the figure we see how the three remaining variables are

still connected, so they will not provoke any other fill-in. In fig. 1.8.(f) the resulting

triangulated graph is shown.

So, as explained above, triangulation can be viewed as finding the deletion sequence.

The method described in the previous paragraph is not complex, but the determination

of a good deletion sequence is the most important step. For example, a sequence σ2

as {D,S, L,B,E, T, A,X} would produce the resulting triangulated graph shown in

figure 1.10. For a better description of every step, we could look at figure 1.9.

T B

X D

A S

L

E

T B

X

A S

L

E

T B

X

A

L

E

(a)Deleting node D. (b)When we delete S. (c)Removal of L.

T B

X

A

E

T

X

A

E

T

X

A

(d)Deleting B. (e)When removing E. (f)Removing T .

Figure 1.9: Obtaining another possible triangulated graph for Asia. The deletion

sequence used now is σ2 as {D,S, L,B,E, T, A,X}.

1.5. Inference processes in Bayesian networks 33

T B

X D

A S

L

E

Figure 1.10: Resulting triangulated graph when using deletion sequence σ2 =

{D,S, L,B,E, T, A,X}.

As we can see in figure 1.10 the graph is correctly triangulated, since there are no

cycles of length 4 or greater without a chord. However, we have introduced 4 fill-ins

instead of the only one needed with σ sequence. That introduces more unnecessary

relations among nodes that will make a more dense triangulated graph, and will con-

struct bigger clusters. The size of a cluster is crucial for the efficiency of join tree-based

algorithms. That will be justified below when the Shenoy-Shafer propagation method

will be reviewed. Notice that the triangulation could still introduce many more fill-ins,

for example if variable E is the first to be removed, 8 fill-ins in only one step will be

introduced!!. And Asia network is a very simple one, since it presents only 8 nodes. It

is obvious that the number of possible sequences is equal to all the possible permuta-

tions (|V|!), that is, it increases more than exponentially in the number of nodes. So,

finding a good triangulation, that is, a good deletion sequence is a very decisive step

that will influence the inference processes, and this effect will be more noticeable as

the size of the network grows. This fact has motivated that chapter 2 is mainly focused

on this issue. A more detailed description of different methods for obtaining deletion

sequences as well as new proposals for triangulation will be given in that chapter.

3.- Identify the cliques

Once the graph is triangulated it is time to determine which are the cliques in this

triangulated graph. Now we can give a proper definition:

34 Chapter 1: The role of Bayesian networks and basic concepts about their inference

Definition 13 (Clique) Let G be an undirected graph, then all the maximal complete

subgraphs in G are called cliques. 2

In our particular case we will be interested in identifying the cliques corresponding

to the triangulated moral graph, GT
m. As we have already explained, these cliques will

be the nodes of the join tree. Since they are extracted from the triangulated moral

graph they will also be dependant of the triangulation carried out, that is, of the

introduced fill-ins.

Apart from determining the cliques we have to place in a tree-shaped structure.

And that leads us directly to the next step.

4.- Build the tree

It implies the establishment of the connections between cliques. From a triangulated

graph there can be different possible join trees depending on the clique chosen as root,

and sometimes a clique could be connected to different parents.

In order to guarantee that the running intersection property holds (see definition

12), for example we could use the maximum cardinality search [124] for identifying

the cliques and then connecting them in a tree. When using maximum cardinality

search every node of the network, vi ∈ G will have a number associated to it, which

indicates the order of cliques in the tree formation. We could also have notated the

deletion sequence used for triangulation, and the corresponding clique formed from the

elimination of every node vi, so that cliques will be ordered in the same way (Cliquei),

as explained in [74]. This second part is only possible if the triangulation has been

done through an elimination sequence. Apart from the maximum cardinality search

there are other alternative methods of ordering the cliques if no deletion sequence is

available. And, on the other hand, it is possible to construct the tree from a deletion

sequence if we know the cliques formed when deleting vi and taking the reverse order of

these. Figure 1.11 shows this second procedure for the Asia example with the previous

deletion sequence σ.

In any case, both methods use he same idea: when identifying the cliques we need to

have them ordered in a certain way that will assure the running intersection property.

So that, this order will lead to an iterative way of constructing the tree: first clique will

be the root, second clique will be joined to this root (their intersection can not be empty

unless it comes from a disconnected network), and from there following cliques will be

connected to that one among those previously placed in the tree whose intersection

(separator) is maximum. If there is more than one, any of them can be chosen (in

figure 1.11 the chosen parent is marked in boldface).

1.5. Inference processes in Bayesian networks 35

i vi Cliquei

1 A {A, T}

2 T {T, L, E}

3 X {E, X}

4 D {E, B, D}

5 S {S, L, B}

6 B {L, B, E}

7 L

8 E

(a) σ order

i: vi Cliquei Sepi parents

8: E -

7: L -

6: B {L, B, E} ∅ -

5: S {S, L, B} [L, B] 6

4: D {B, E, D} [B, E] 6

3: X {E, X} [E] 6,4

2: T {T, L, E} [L, E] 6

1: A {A, T} [T] 2

(b) Inverse order

T,L,E S,L,B

A,T

B,E,D

E,X

L,B,E

2 5 4

3

6

1

L,E

T

L,B E,B

E

(c) Resulting join tree

Figure 1.11: Ordering of the cliques from the triangulation σ = {A, T,X,D, S,B, L,E}

in figure 1.8, identification of cliques and tree construction.

It is important to remark the extreme importance of this compilation process due

to the previously exposed reasons about the role of the join tree in probability propaga-

tions. In this work, we have not only tried to design new techniques for triangulation,

but we have also gone a step farther in order to modify the whole process of com-

pilation. Chapter 3 is dedicated to describe this new method that we have named

MPSD-based Incremental Compilation. The Maximal Prime Subgraph Decomposition

(MPSD), which will be properly explained in next chapters, will be a key element

for our new methods of both triangulation and compilation. It is time to indicate

that chapter 4 deals with exploiting the modular philosophy underlying in MPSD-

based Incremental Compilation linking it to Object Oriented frameworks as well as the

multi-agent paradigm.

There is still a last and very important point to review: how probabilities are

propagated through the tree. As seen before, there are several techniques to perform

these operations. In the next point we will detail one of them.

1.5.3 An example of Join Tree Propagation: Shafer and Shenoy

Methodology

As explained before a tree of cliques has been thought in order to provide a factori-

sation of the joint probability distribution. This tree will also serve as basis to operate

with these probabilities that will be propagated through the tree.

In this particular example of Shenoy-Shafer architecture, it has been proved that

binary trees6 are the most efficient [115, 116]. Since there is an easy procedure to

6Trees whose nodes have at most three branches: one from its parent and two to its children.

36 Chapter 1: The role of Bayesian networks and basic concepts about their inference

transform a join tree to a binary join tree, that is the first step to explain this technique.

So, algorithm 1 basically adds an intermediate node for those with more than three

neighbours (impossible in a binary tree), and this new node will maintain the properties

of a valid join tree.

Algorithm 1 Converts a join tree to a binary join tree.

1: procedure Binary Tree(JoinTree J)

2: while there is a cluster C in J with more than three neighbours do

3: Let C1 and C2 be neighbours of C.

4: Create a new node C3← (C1 ∪ C2) ∩ C

5: Connect C3 to C

6: Disconnect C1 and C2 from C and connect them to C3.

7: end while

8: end procedure

See figure 1.12 as an example of this method, where a new clique is introduced in

order to make the tree binary. Notice that 1.11.(c) is initially a binary join tree.

A,B

B,C B,E

B B

B,D

B

(a) Clique in the initial join tree

A,B

B,EB

B B

B,C B,D

B B

(b) Clique after applying algorithm 1

Figure 1.12: Example for algorithm 1.

Now, before undertaking the probability propagation, we are going to study how

variable potentials (φV) are assigned to a tree node. We dealt with potentials in

section 1.5.2 (see definition 10). But we have deliberately left it out until now, since

the way of assigning potentials is dependant to the particular architecture for local

computation. In Shenoy-Shafer we have a initial collection of potentials that define

the joint distribution. For example, for Asia we would have this set of potentials Φ =

{φA, φS, φT , φB, φL, φE, φX , φD}, one for every variable in the network. If there is no

1.5. Inference processes in Bayesian networks 37

observations, then in this set there is a conditional probability P (Xi|pa(Xi) for each

node Xi. So, in this case these potentials represent what figure 1.13 shows.

φA = P (A) φS = P (S) φT = P (T |A) φB = P (B|S)

φL = P (L|S) φE = P (E|T, L) φX = P (X|E) φD = P (D|B,D)

Figure 1.13: Potentials associated to Asia’s variables.

Every clique will have a potential associated to it. And every separator will present

two mailboxes that will enable us to send messages between two cliques. The initial

potentials φXi
need to be entered in the tree. So, for each one, it is necessary to find a

cluster C, containing all the involved variables, that is, vars(C) ⊇ {Xi} ∪ pa(Xi) and

then associate this potential to the corresponding cluster with this family. For example,

in figure 1.5.3 we have illustrated potentials in the join tree for Asia. Afterwards, the

list of potentials is transformed into one potential by multiplication (in the SS case).

If there is a clique without an initial potential associated to it, it will have the unitary

potential, that is a value 1.0 for every possible configuration of the variables belonging

to this cluster.

T,L,E S,L,B

A,T

B,E,D

E,X

L,B,E

φ
φB

DSφ

φ

φ φ

φTφ
A

X

E

L

L,E

T

L,B E,B

E

Figure 1.14: Binary join tree with the initial potentials associated to its cliques.

Regarding the mailboxes of the separator, they will also be represented as potentials

over its set of variables. If separator Sij is located between clique Ci and clique Cj

one mailbox will indicate a message in the direction Ci → Cj and the other one the

opposite direction Cj → Ci, as figure 1.15 indicates. The message from Ci that is,

the upper arrow, will be called Ci-outgoing or Cj-incoming and viceversa. To make

38 Chapter 1: The role of Bayesian networks and basic concepts about their inference

notation clear, we will use µ for potentials in the messages inside a mailbox, for example

µCi→Cj
(upper arrow in the figure).

Clique jClique i

Figure 1.15: Directions of the potential messages in a separator.

Then, this is the information about probabilities that cliques will contain and sep-

arators will help to communicate between them. To see the way in which this commu-

nication will be done, it is necessary to define a couple of operations over potentials:

marginalisation and combination. These two operations are the basic ones for propagat-

ing probabilities.

Definition 14 (Marginalisation)

Let XI and XJ be two sets of variables so that XI ⊆ XJ . Let ψXJ
be a potential on

XJ . We obtain the marginalisation of ψXJ
to XI by means of the result of the following

summation:

ψ↓XI

XJ
(xI) =

∑

x
↓XI
J

=xI

ψXJ
(xJ) (1.4)

2

Notice the double use of the operator ↓: used as a projection when it is applied

to configurations of states of variables; and also as the marginalisation operation, as

described above.

Definition 15 (Combination)

Let XI and XJ be two sets of variables. And let ψXI
and ψXJ

be two associated poten-

tials. Then, the combination of ψXI
and ψXJ

is a new potential defined over XI ∪XJ

which is obtained by pointwise multiplication:

ψXI∪XJ
(x) = ψXI

(x↓XI)⊗ ψXJ
(x↓XJ), ∀x ∈ ΩXI∪XJ

(1.5)

2

So, initially the probabilities given for every variable given its parents (ψXi
) is as-

signed to every clique. The rest have unitary potentials. If one clique C = {V1, V2, . . . , Vn}

1.5. Inference processes in Bayesian networks 39

has more than one initial potential associated to it, the potential associated to this

clique will be the combination of all of them. That is, if for example the associated

potentials are φV1
and φV3

, then ψC = φV1
⊗ φV3

. The messages in the separator mail-

boxes are initially empty. Once a message is placed on one mailbox it is said to be

full.

A node Ci in a join tree can send a message to its neighbour node Cj if and only

if all Ci-incoming messages are full except the one from Cj to Ci. Thus, initially leaf

nodes are the only capable of sending messages.

The message Ci-outgoing (and Cj-incoming) is computed as:

µCi→Cj
=

{

ψi ·

(

∑

Ck∈ne(Ci)−Cj

µCk→Ci

)

}↓Ci∩Cj

(1.6)

where ψi is the initial probability potential on Ci, µCk→Ci
represent the messages from

Ck to Ci and ne(Ci) are the neighbour clusters of Ci. With this scheme one message

contains the information coming from one side of the tree and transmits it to the other

side. It has been proved [114] that it is always possible to find, at least, one node to

send a message until all mailboxes are full. When the message passing ends it is said

that the tree is consistent and the following holds for all the nodes in the tree:

ψm
Ci

= ψi ·

(

∏

Ck∈ne(Ci)

µCk→Ci

)

(1.7)

where ψm
Ci

is the potential (probability distribution) resulted for the variables in Ci

after this propagation. In equation 1.7 we see that for calculating the probability for a

set of variables it is necessary to combine the initial potential (ψi) with all the incoming

messages. It is one of the main differences with other architectures. For example, in

Hugin architecture the potentials are directly updated over the clique potential.

The desired probability for a variable Xi can be calculated by marginalising ψm
Ci

,

where Xi ∈ Ci, over this variable and normalising7 the result. A probability distri-

bution is normalised when the sum of all probabilities is one (Σ
XI

P (Xi) = 1). Then,

normalisation is the process of transform a non-normalised probability distribution into

a normalised one. No matters which clique we choose this probability is the same, for

that reason the tree is said to be consistent (def. 16).

7This step is only necessary when evidence is introduced as we will see later in an example.

40 Chapter 1: The role of Bayesian networks and basic concepts about their inference

Definition 16 (Consistency of the join tree)

A join tree is called consistent after propagating probabilities when ∀Ck Xi ∈ Ck

normalisation

(

(

ψm
Ck

)↓Xi

)

returns the same probability distribution. 2

The propagation is usually divided in two stages: upwards and downwards. They

are also called collection and distribution. For this scheme it is necessary to select a

clique as the root one. The first phase (upwards/collection) collects from the root node

all the information (probabilities) from its neighbours and recursively they collect it

from their own neighbours and so, until reaching the leaves of the tree. In the second

phase this root clique sends the collected information to its neighbours, which will send

theirs recursively until the leaves again.

Shafer-Shenoy algorithm can be written as algorithm 2 shows. Notice that the

number of operations performed are depending on the number of cliques and their size.

This size is the number of entries for a potential, that is, the product of all the states in

the clique variable: if clique C contains a set of variables XI , then size(C)=
∏

i∈I |ΩXi
|.

So, as remarked before, a bad triangulation will yield to a less optimal tree, and less

efficient propagations. Normally, the goodness of a tree is measured in terms of its total

space size, which is the sum of all clique sizes
∑

Ci
size(Ci). Sometimes, the biggest

clique size is also considered due to its relative importance with respect to the total

size.

Algorithm 2 Shenoy-Shafer propagation scheme

1: procedure Shenoy-Shafer(JoinTree J)

2: Select a node as Root

3: for all C ∈ Ne(Root) do

4: upwards(Root,C)

5: end for

6: for all C ∈ Ne(Root) do

7: Compute message µRoot→C =

{

ψC ·

(

∑

Ck∈ne(Root)−C µCk→Root

)

}↓Root∩C

8: downwards(Root,C)

9: end for

10: end procedure

where upwards is a procedure that sends a message from leaves to root (see alg. 3)

and downwards sends messages from root to leaves (see alg. 4).

1.5. Inference processes in Bayesian networks 41

Algorithm 3 Upwards phase of messages’ propagation

1: procedure upwards(Cluster C1,Cluster C2)

2: for all C ∈ Ne(C2)− C1 do ⊲ C’s are every neighbour of C2 except C1.

3: upwards(C2,C)

4: end for

5: Compute message µC2→C1
=

{

ψC ·

(

∑

Ck∈ne(C2)−C1
µCk→C2

)

}↓C1∩C2

⊲ When all incoming messages has been received for C2, C2 → C1 can be computed.

6: end procedure

Algorithm 4 Downwards phase of messages’ propagation

1: procedure downwards(Cluster C1,Cluster C2)

2: for all C ∈ Ne(C2)− C1 do ⊲ C’s are every neighbour of C2 except C1.

3: Compute message µC2→C =

{

ψC ·

(

∑

Ck∈ne(C2)−C µCk→C2

)

}↓C∩C2

⊲ The information is sent from an upper node to its children and so . . . until leaves.

4: downwards(C2,C) ⊲ Recursively go downwards.

5: end for

6: end procedure

Once that the general scheme is presented, we can illustrate Shafer-Shenoy prop-

agation through Asia network and introduce some evidence previously to show the

target of the inference process. We can see the graphical illustration of upwards phase

indicating at the same time the involved operations in figure 1.17.

Let us suppose we are working with tree in figure 1.5.3, having assigned the indicated

potentials and using cluster [S, L,B] as the root. For instance, if we know that a certain

patient presents dyspnea, we can introduce this so-called evidence or observation in

no matter which potential containing D, combining it with the clique potential (ψi).

In this case clique number 4 with variables {B,E,D} is the appropriate one. The

introduced information (probability) is P (D = d) = 1.0 and then P (D = ¬d) = 0.0.

So, we calculate ψ4 = φB⊗
d ¬d

1.0 0.0
.

Since we had the initial probability table P (D|B,E) = ψ{B,D,E} =

=

e ¬e

b ¬b b ¬b

d 0.9 0.8 0.7 0.1

¬d 0.1 0.2 0.3 0.9

. And ψ{B,D,E} ⊗
d ¬d

1.0 0.0
=

e ¬e

b ¬b b ¬b

d 0.9 0.8 0.7 0.1

¬d 0.0 0.0 0.0 0.0

42 Chapter 1: The role of Bayesian networks and basic concepts about their inference

(a) (b)

(c) (d)

Figure 1.16: Example of upwards (a-b) and downwards stages (c-d)

Then, messages are as follows:

• µ6→4 = φ↓E
X = 1.0, that is

d ¬d

1.0 1.0
.

• µ5→3 = (φA ⊗ φT)↓T =
{ a ¬a

0.01 0.99
⊗

a ¬a

t 0.05 0.01

¬t 0.95 0.99

}↓T

=

=

{ a ¬a

t 0.0005 0.0099

¬t 0.0095 0.9801

}↓T

=
t ¬t

0.0104 0.9896

• µ4→2 =
[

φD ⊗ µ6→4

]↓{E,B}
=

{

e ¬e

b ¬b b ¬b

d 0.9 0.8 0.7 0.1

¬d 0.0 0.0 0.0 0.0

⊗ 1.0

}↓{E,B}

=

1.5. Inference processes in Bayesian networks 43

µC1 C2 µ C3C1

C2C4
µ

C5 C2µ

µC3 C6

C6 C3µ
C3µ C7

C7 C3µ

C2 C1
µ C3 C1µ

µC2 C1
µ

C2 C4

C4

C1

C2

C5 C6

C3

C7

(a) Initial tree before propagation. (b) Final (and consistent) tree after propagation.

e ¬e

b 0.9 0.7

¬b 0.8 0.1

.

• µ3→2=
[

φE⊗µ5→3

]↓{L,E}
=

{

t ¬t

l ¬l l ¬l

e 1.0 1.0 1.0 0.0

¬e 0.0 0.0 0.0 1.0

⊗
t ¬t

0.0104 0.9896

}↓{L,E}

=

{

t ¬t

l ¬l l ¬l

e 0.0104 0.0104 0.9896 0.0

¬e 0.0 0.0 0.0 0.9896

}↓{L,E}

=

l ¬l

e 1.0 0.0104

¬e 0.0 0.9896

.

• µ2→1=
[

µ3→2 ⊗ µ4→2

]↓{L,B}
=

{ l ¬l

e 1.0 0.0104

¬e 0.0 0.9896

⊗

e ¬e

b 0.9 0.7

¬b 0.8 0.1

}↓{L,B}

=

=

{

b ¬b

l ¬l l ¬l

e 0.9 0.00936 0.8 0.00832

¬e 0.0 0.69272 0.0 0.09896

}↓{L,B}

=

l ¬l

b 0.9 0.70208

¬b 0.8 0.10728

.

• µ1→2=
[

φS ⊗ φB ⊗ φL

]↓{L,B}
=

{

s ¬s

0.5 0.5
⊗

s ¬s

b 0.6 0.3

¬b 0.4 0.7

⊗

s ¬s

l 0.1 0.01

¬l 0.9 0.99

}↓{L,B}

=

44 Chapter 1: The role of Bayesian networks and basic concepts about their inference

A,T

B,E,D

E,X

S,L,B

T,L,E

L,B,E

Α Τ
µ

5 →3 = φ Ε
X

↓↓Τ
)(φ⊗φ

4→6
µ

4

1

2

3

5 6

=

E,BL,E

T E

L,B

A,T

B,E,D

E,X

S,L,B

T,L,E

L,B,E ⊗ (6 4D →
5 3µ →

↓{L,E}
φ)2→4µ µ

)(⊗
Ε

φ

1

2

3 4

5 6

↓{E,B}
=

=µ3→2

T

L,B

E

L,E E,B

[
[

]
]

(a) (b)

A,T

B,E,D

E,X

S,L,B

T,L,E

L,B,E

→2µ →µ 23()1 [
↓{L,B}

]→

2

3 4

5 6

1

⊗)(4 2µ=

E,BL,E

T E

L,B

A,T E,X

S,L,B

L,B,E

B,E,DT,L,E

⊗ (2 3)µ →
E

φ µ =4→ 6]φ
D
⊗ (2 4)µ →[

5→

φ φ
S B
⊗

3

[L
⊗φ2→1µ

2→ 4µ [= (1µ →2) ⊗]
{E,B}↓

(3µ →2)

=µ

→µ)21

↓

(

=

ET

][

2

4

5 6

1

=

{L,E}↓

{L,B}

]
↓

µ
⊗](4µ →2)

=2→ 3

[

3

↓
E

L,E

T

E,B

L,B

(d) (d)

Figure 1.17: Upwards phase for Asia in three steps (a-c) and downwards phase at one

sight (d)

{

s ¬s

l ¬l l ¬l

b 0.03 0.27 0.0015 0.1485

¬b 0.02 0.18 0.0035 0.3465

}↓{L,B}

=

l ¬l

b 0.0315 0.4185

¬b 0.0235 0.5265

.

• µ2→3=
[

µ1→2 ⊗ µ4→2

]↓{L,E}
=

{ l ¬l

b 0.0315 0.4185

¬b 0.0235 0.5265

⊗

e ¬e

b 0.9 0.7

¬b 0.8 0.1

}↓{L,E}

=

1.5. Inference processes in Bayesian networks 45

{

e ¬e

l ¬l l ¬l

b 0.02835 0.37665 0.02205 0.29295

¬b 0.0188 0.4212 0.00235 0.05265

}↓{L,E}

=

l ¬l

e 0.04715 0.79785

¬e 0.0244 0.3456

.

• µ2→4=
[

µ1→2⊗µ3→2

]↓{E,B}
=

{ l ¬l

b 0.0315 0.4185

¬b 0.0235 0.5265

⊗

l ¬l

e 1.0 0.0104

¬e 0.0 0.9896

}↓{E,B}

=

{

e ¬e

l ¬l l ¬l

b 0.0315 0.0043524 0.0 0.4141476

¬b 0.0235 0.0054756 0.0 0.5210244

}↓{E,B}

=

e ¬e

b 0.0358524 0.4141476

¬b 0.0289756 0.5210244

.

• µ3→5=
[

φE ⊗ µ2→3

]↓T
=

{

t ¬t

l ¬l l ¬l

e 1.0 1.0 1.0 0.0

¬e 0.0 0.0 0.0 1.0

⊗

l ¬l

e 0.04715 0.79785

¬e 0.0244 0.3456

}↓T

=

{

t ¬t

l ¬l l ¬l

e 0.04715 0.79785 0.04715 0.0

¬e 0.0 0.0 0.0 0.3456

}↓T

=
t ¬t

0.845 0.39275
.

• µ4→6=
[

φD ⊗ µ2→4

]↓E
=

{

e ¬e

b ¬b b ¬b

d 0.9 0.8 0.7 0.1

¬d 0.0 0.0 0.0 0.0

⊗

e ¬e

b 0.0358524 0.4141476

¬b 0.0289756 0.5210244

}↓E

=

{

e ¬e

b ¬b b ¬b

d 0.03226716 0.02318048 0.28990332 0.05210244

¬d 0.0 0.0 0.0 0.0

}↓E

=
e ¬e

0.05544765 0.34200576

.

Then, since all the messages are computed, and propagation has finished, we could

calculate the posterior probability of any variables using formula 1.7. For example,

for computing P (B|D = d) we could do ψm
Ci

=

{

ψi ·

(

∏

Ck∈ne(Ci)
µCk→Ci

)

}↓B

=

46 Chapter 1: The role of Bayesian networks and basic concepts about their inference

{

ψ1 ·

(

∏

Ck∈ne(Ci)
µCk→Ci

)

}↓B

=
(

φS ⊗ φL ⊗ φB ⊗ µ2→1

)↓B
=

{

s ¬s

0.5 0.5
⊗

s ¬s

b 0.6 0.3

¬b 0.4 0.7

⊗

b ¬b

l ¬l l ¬l

e 0.9 0.00936 0.8 0.00832

¬e 0.0 0.69272 0.0 0.09896

⊗

l ¬l

b 0.9 0.80104

¬b 0.1 0.19896

}↓{L,B}

=

{ l ¬l

b 0.9 0.70208

¬b 0.8 0.10728

}↓B

=

{

s ¬s

l ¬l l ¬l

b 0.027 0.1895616 0.00135 0.1485

¬b 0.016 0.0193104 0.00028 0.3465

}↓B

=

b ¬b

0.32217048 0.07528292
. And normalising

b ¬b

0.8105868 0.189413199
.

To check the consistency of the tree, let us look to another clique containing B, for

example clique number 4, and let us compute P (B|D = d) again.

ψm
Ci

=

{

ψi ·

(

∏

Ck∈ne(Ci)
µCk→Ci

)

}↓B

=

{

ψ4 ·

(

∏

Ck∈ne(Ci)
µCk→Ci

)

}↓B

=

(

φD ⊗ µ2→4 ⊗ µ6→4

)↓B
=

{

e ¬e

b ¬b b ¬b

d 0.9 0.8 0.7 0.1

¬d 0.0 0.0 0.0 0.0

⊗

e ¬e

b 0.0358524 0.4141476

¬b 0.0289756 0.5210244

⊗
d ¬d

1.0 1.0

}↓B

=

{

e ¬e

b ¬b b ¬b

d 0.03226716 0.02318048 0.28990332 0.05210244

¬d 0.0 0.0 0.0 0.0

}↓B

=
b ¬b

0.32217048 0.07528292

.

We can then check how the two tables on B coincide.

1.5.4 Example of other related techniques: Variable Elimina-

tion

We can also find examples of algorithms that apply this clustering method but they

do not present explicitly a propagation. Variable elimination is the most representative

example in this direction [110, 79, 135]. Many author references are related to [30]

which uses the same variable elimination method but enhances it by means of one

organisation in buckets and the technique is called as bucket elimination.

1.5. Inference processes in Bayesian networks 47

We are going to present the basic algorithms for the general variable elimination

method. The name for this method, Variable Elimination (also VE) cames from the

way it is carried out: Variables from a list are summed out one by one. It is necessary

to have an ordering ρ by which variables outside X ∪ Y , being X the interest variable

and Y a list of observed variables, has to be summed out.This is called elimination

ordering. The underlying idea is similar to the elimination sequence for triangulation

previously reviewed.

Algorithm 5 Variable Elimination Algorithm

1: function variable elimination(F ,X,Y ,YO,ρ)

⊲ F → the list of conditional probabilities in a Bayesian network (potentials combined

with the observations).

⊲ X → a list of target variables.

⊲ Y → a list of observed variables.

⊲ YO → the corresponding list of observed values, the evidence e is then Y = YO .

⊲ ρ→ an elimination ordering for variables outside X ∪ Y .

2: for all y ∈ Y do y ← yO ⊲ yO represents the observed value for y, indicated in YO.

3: end for

4: while ρ 6= ∅ do

5: Remove the first variable v from ρ

6: sum-out(F ,v)

7: end while

8: h←
(
∏

fi∈F fi

)

⊲ fi are all the factors on F and h will be a function of variables in X .

9: return

(

h(X)
∑

X

h(X)

)

⊲ Renormalisation.

10: end function ⊲ The output is P (X |Y = YO).

The algorithm sum-out is also described (see alg. 6). If we have a joint probability

P (v1, v2, . . . , vn), that is, P (V1 = v1, V2 = v2, . . . , Vn = vn), and it is factorised into the

multiplication of a list F of factors, then sum-out(F ,v1) returns a list of factors whose

multiplication is P (v2, . . . , vn). It could also be expressed as a marginalisation:
[

P (V1 = v1, V2 = v2, . . . , Vn = vn)

]↓{V2,...,Vn}

.

48 Chapter 1: The role of Bayesian networks and basic concepts about their inference

Algorithm 6 Summing out a list of factors over a variable.

1: function sum-out(F ,V)

⊲ F → a list of factors.

⊲ V → a variable.

2: L ← ∅ ⊲ L will contain the partial list of summed-out elements.

3: for all fi ∈ F do

4: if fi contains V then

5: F ←
(

F\ fi

)

⊲ Remove fi from F .

6: L ←
(

L ∪ fi

)

⊲ Add fi to the list L.

7: end if

8: end for

9: F ← F ∪
{

⊗fi∈Lfi

}↓V
⊲ Add the new factors to F

10: return F ⊲ Returns the desired list of factors

11: end function

Notice that given X as a list/set of interest variables, if we wish to compute

P (xi|e)∀xi ∈ X, VE should be executed |X| times.

The complexity of VE can be measured by the number of numerical multiplications

and numerical summations it performs. An optimal elimination ordering is one that

results in the least complexity. The problem of finding an optimal ordering is NP-

complete [3] as it happened in triangulation.

Join Tree Propagation and Variable Elimination are different ways of performing

inference. Even if they present some common features each one encodes its particular

space-time tradeoff. Which one is more appropriate depends on the problem to treat:

which kind of queries will be done, the complexity of the network and other factors.

In general VE is more efficient when we have only one query (either containing one

variable or an n-dimensional list) since the tree construction is avoided and some parts

of the network can be discarded. Nevertheless, it becomes more inefficient if we wish

to compute all the marginal probabilities.

We have now introduced the science field where Bayesian networks are located, their

interest and importance, their definition and how inference is carried out for them. The

following chapters will cover distinct aspects of this inference providing algorithms

and techniques that get to optimise some inference processes in both inductive and

abductive8 directions.

8Inference processes specific for abduction will be reviewed in chapter 5.

Chapter 2

New approaches to the problem of

triangulating Bayesian networks

It is indeed wonderful that so simple a figure

as the triangle is so inexhaustible in properties.

How many as yet unknown properties

of other figures may there not be?

August Crelle. (1780–1856)

German civil engineer and mathematician.

2.1 Introduction

As explained in chapter 1 our departure point is the view of a particular proba-

bilistic expert system as Knowlegde Base (KB) + Inference Engine (IE). So, for us,

the knowledge base will correspond to the Bayesian network that models the particu-

lar problem and the inference engine tool is given by its associated join tree, which is

constructed from the network.

As seen in the previous chapter, compilation is the process of transforming a

Bayesian network into this secondary structure. We have also already introduced tri-

angulation as one necessary phase to get a valid join tree. Nevertheless, the resulting

join tree from this (compilation) process is not unique for a given BN. Thus, a quite

interesting feature is to have the ability of choosing the best tree among all possible

ones for a particular BN. When using the join tree for inference, it is clear that the

better this tree is the better our inference engine will work. Inference leads to a con-

siderable number of operations and computation, being our target to find a valid tree

50 Chapter 2: New approaches to the problem of triangulating Bayesian networks

for our network, but also as simple as possible1.

In compilation, the triangulation of Bayesian networks is the hardest task, although

it is easy to find a valid triangulation, there is not an efficient2 algorithm to get the

best one. Shachter et al. [111] showed that the different exact methods of probabilistic

propagation in causal networks, either based on the original DAG or in constraint-

based techniques or based on an undirected graph related to the original one or based

on node reducing techniques, are all particular cases of the general algorithm called

clustering algorithm, as mentioned in the first chapter. We should remark that the

complexity of a propagation algorithm is exponential in the number of variables of the

biggest clique in the tree.

The join tree is obtained directly from a double-step process of (1) moralise the

network and (2) triangulate the resulting moral graph. The common point for exact

methods is that all build the tree, and they differ in the way they do this construction,

each one constructs the tree which is most suitable for its inference operations. That is,

each method seeks the best possible triangulation to perform its particular operations.

Since posterior inference will be better when the sizes of the formed groups are smaller,

getting the best exact method is equivalent to getting the best triangulation in terms

of the sizes for the generated groups.

As a result, different join trees can be obtained from the same Bayesian network,

but due to the fact that the efficiency of propagation algorithms depends on the com-

plexity of the join tree over which the inference is carried out, it would be desirable to

find the best possible join tree from the given network. However, being triangulation

an NP-hard problem[128] (but of great importance for the efficiency of propagation

algorithms), generally, the real goal is to find a good3 join tree, even though this is

not the optimal one. Although obtaining this optimal triangulation in the context of

Bayesian networks is NP-hard, there exist algorithms getting good triangulations using

a reasonable amount of time, as we will review.

1A JT captures (in)dependence relations between variables, but the groups of dependent variables

might be bigger than necessary. Comparing two valid join trees, JT1 and JT2 related to the same

network, the more complex the tree is, the more unnecessary dependencies it is actually including.
2Of course, we could always try to test all possible triangulations and pick up the best one, but

that will be too expensive computationally speaking.
3For us the goodness of a join tree will be related to its (state space) size, interpreting this as the

number of necessary entries to store the probability tables associated to the join tree nodes (cliques).

2.2. The problem of triangulation 51

ABC

DEF

GH

2

2

22

2

3 3

2

ABC

DEF

GH

2

2

22

2

3 3

2

(c) A triangular graph(a) A Bayesian network

ABC

DEF

GH

2

2

22

2

3 3

2

(b) Moral graph

Figure 2.1: Example of a Bayesian network (a), its associated moral graph (b) and a

possible triangulation for it (c). Numbers next to each node indicate the number of

states for the corresponding variable.

2.2 The problem of triangulation

The usual technique to triangulate a graph is selecting a deletion/elimination/

removing/triangulation sequence containing all the nodes in the graph. The method

consists of an elimination process, following the sequence order, which will remove all

the nodes. If adj(Xi) denotes the set of nodes adjacent to Xi in the undirected graph,

then by deleting Xi we refer to the process of adding the necessary fill-ins in order

to make Xi ∪ adj(Xi) a complete subgraph, and subsequently remove it and all its

incident edges from the graph. The triangular graph GT will be the result of adding

to the moral graph the set (F) of fill-ins added during the deletion process. That is, if

GM = (V,EM) is the moral graph, then GT = (V,EM ∪ F).

In Figure 2.1 we can see, from left to right, a BN, the moral graph, and the tri-

angulated graph obtained by using the deletion sequence σ = (G,H,D,A,E, F,B, C).

Next section will show this triangulation method algorithmically.

Several approaches [106, 124, 63, 64, 18, 71, 56, 9, 2, 14, 47], most of them basically

heuristic, have been proposed to search optimal solutions for this triangulation prob-

lem. And subsequently, these algorithms attempt to solve the problem of obtaining a

good join tree from a BN, as next section will show. Some of these methods will be

commented in the next section, while section 2.3 will present a new technique for trian-

gulation, which is based on the graph decomposition into its maximal prime subgraphs

[93] that will let us perform an independent triangulation for every separate subgraph.

52 Chapter 2: New approaches to the problem of triangulating Bayesian networks

2.2.1 Overview of the main existing methods for triangulation

Algorithm 7 Performs the triangulation of an undirected graph.

1: function Triangulate Graph(Graph GM)

⊲ We assume we wish to triangulate a moral graph GM .

2: Sequence ordering σ ← Obtain Deletion Order(V) ⊲ V is the set of nodes in GM .

⊲ Obtain Deletion Order gives a permutation of all the nodes (size |V |).

⊲ σ can be seen as a function where σ(i) is the node in position i within this ordering.

3: E′ ← ∅

4: for i← 1 to n do

5: Vi ← σ(i)

6: E′′ ← ∅

7: for all Vj,Vk ∈ Adj(Vi) and j 6= k do

8: if {Vj − Vk} /∈ E
′ ∪ EM then

9: E′′ ← E′′ ∪ {Vj − Vk}

10: end if

11: end for

12: Add Links To Graph(GM ,E′′) ⊲ We add the links in E′′ to the graph.

13: Remove Node From Graph(GM ,Vi)

⊲ And we next remove the current and treated node Vi (and its incident links) from the graph.

14: E′ ← E′ ∪ E′′

15: end for

16: Graph GT
M ← (V ,EM ∪E

′)

⊲ E′ corresponds to the set of fill-ins (F). For other algorithms this set will be returned, which is

a slight modification of the method we will name Get Triangulation

17: return GT
M

18: end function

As already studied, to triangulate a graph G the basic technique is usually to add

a set of extra edges produced by the elimination of nodes in G one by one [63] (see

Algorithm 7). A node N will be deleted by adding arcs/links/edges in such a way

that nodes adjacent to it (its neighbours) become adjacent two by two, and then a

subsequent deletion of its incident links and the node N itself. This procedure does

not guarantee that we get an optimal minimum triangulation either in terms of amount

of added edges or in terms of the state space size when nodes are chosen randomly.

Moreover, on average these measures in random sequences would normally be much

larger than those corresponding to a minimum triangulation.

2.2. The problem of triangulation 53

Then, graph triangulation by means of this elimination technique is essentially a

problem of determining a sequential order of the nodes that indicates in which chrono-

logical order every node will be deleted. We need a specific strategy for the function

Get Deletion Sequence (line 2 of the alg. 7). Many algorithms to determine

this kind of orders have been proposed. Each one will satisfy certain goals specifically

sought, but getting away from other (also) interesting goals. In short, there is not a

method which results absolutely the best in all the cases. In the next point within this

section, we will describe some of the most known triangulation methods classified in

two different families (heuristic greedy algorithms and evolutionary algorithms).

2.2.2 Heuristic greedy methods

This group of techniques is characterised by establishing an ordering criterion based

on the search rule ”the next node to be deleted is that one minimising f()” where f() is in

function of one or several measures over the set of nodes within the graph G = (V,E)4.

The most used measures [63] are based on:

1. Nodes i ∈ V :

• Size.- the number of variables: s(i) = 1.

• Weight.- logarithm of the natural size: w(i) = log2c(i), where natural size,

c(i) = |ΩXi
|. Depending on the author Weight is seen directly as c(i)5.

• Incident.- number of incident arcs in node/variable i within the moral graph:

a(i).

2. Groups Ci ∈ P(V)

• Size of the group: V (Ci) = Σ
j∈Ci

s(j) = #Ci. Then it refers to the number

of variables in the group (or clique).

• Weight: W (Ci) = Σ
j∈Ci

w(j).

As it happened with the nodes, sometimes this name is used for denoting

the natural size: S(Ci) = Π
j∈Ci

c(j).

4V is the set of nodes/variables in the graph and E are the links/edges between those nodes in G.
5And that will be the approach when minWeight is referred in this chapter.

54 Chapter 2: New approaches to the problem of triangulating Bayesian networks

• (Fill-ins).- number of introduced edges while the triangulation process:

F (Ci) = V (Ci)∗(V (Ci)−1)
2

− A(i)

where A(i) =
Σ

Vj∈Ci

a(j)↓Ci

2
. That is, the number of edges necessary to make

the group complete except those links already belonging to the moral graph,

which are counted in A(i). It could also be expressed as A(i) = E↓Ci
m .

We should indicate that other authors use the term size also for the weight measure.

In this work we will try to write clearly which criterion we are referring to.

From these enumerated measures the following ordering criteria appear. We will

assume that Ci = {Xi} ∪ adj(Xi).

• Minimum size.- This criterion is based on selecting as the next node to be

deleted that one which minimises the function f(Ci) = S(Ci). At each step, it chooses

the variable, among those not yet deleted, which produces a clique of minimum size

and then this variable is deleted.

As Rose[105] noted minimum size heuristics is fast6, but it presents some drawbacks:

- It does not produce, in general, a perfect ordering7 if the graph is already trian-

gulated.

- It does not generally produce minimal triangulations.

- There exist examples for which the produced triangulation is arbitrarily greater

than the triangulation obtained by minimum fill.

• Minimum weight.- This heuristics presents exactly the same advantages and

disadvantages as minimum size. Note that when all vertices have the same weight both

heuristics are identical.

This heuristics gives good results on the whole. It tries to minimise the total sum

of the cliques sizes by minimising, at each step, the size of every clique which is being

created. This does not guarantee that the total tree size is optimal, since choosing one

variable that produces a minimal clique could force us to produce bigger cliques when

other variables are deleted later. However, in general, this method provides trees which

are relatively manageable.

6It can be implemented for a computation time of order O(n+ e′), where e′ = e+ |T |, being e the

initial links and T those links added during triangulation.
7If G# = (V ,E) is an ordered graph then # is called a perfect ordering if T (G#) = ∅. All

triangulated graphs G#′ = (V ,E ∪ T(G#)) have a perfect ordering, since # presents that feature for

graph G.

2.2. The problem of triangulation 55

In [18] another particular heuristics based on the same idea arise, but attempting

to avoid its weak points. The main underlying idea of these heuristics is that in the

moment of deleting a variable it should be sought to minimise the corresponding8

S(Ci). However, at the same time, the variable and all its corresponding links are

deleted, which simplifies the resultant graph. Therefore, what they pursue is that this

simplification for the resultant graph could also be taken into account.

Among the several heuristics that Cano and Moral [18] propose in their work,

we find this approach called H2. This is very similar to minimum weight, at each

case it chooses the variable Xi, among all the possible variables to be deleted, which

minimises S(i)/|Ω(Xi)|. H2 calculates the size of the environment of Xi (size of the

clique produced when deleting Xi) only with the adjacent nodes to Xi. In this way,

not only are the variables deleted with a less complex environment, but also there is

a possibility of deleting a variable with a large number of states which leads to less

complex cliques in the future formation of the tree.

• Minimum fill.- It considers the function f(Ci) = F (Ci). In each case, it chooses

the variable, among those not yet deleted, for which its elimination introduces a smaller

number of fill-ins. This method presents the advantage of producing a perfect ordering

when the graph is triangulated, but provokes the following drawbacks:

- It is slightly slower than the minimum weight heuristics, that is because the

adjacency set for every vertex has to be explored regarding arcs.

- In general it does not produce minimal triangulations.

There exist other heuristic techniques which attempt to tackle the problem of graph

triangulating. In [56] they are classified in several groups:

1. Heuristics based on the relation between measures for nodes and clusters. They

try to establish algebraic relationships between these two types of measures.

2. Heuristics based on measures for clusters and environments of nodes. They de-

fine the k-neighbourhood of a node by a distance k, which is determined as the

minimum number of arcs to go from one node to the other.

3. Compound heuristics. This sort of heuristics can be conceived as a hybridisation

where the criterion to be used will vary on the different temporal stages of the

triangulation process.

8Each deleted variable produces a group of variables, and when this is maximal it will therefore

produce a clique.

56 Chapter 2: New approaches to the problem of triangulating Bayesian networks

4. Iterative heuristics. Instead of using a single heuristic criterion to eliminate a

node, they can make several iterations (each one with a different measure) in

order to decide. They could be of k-iterations, where k could go from 1 (classical

approach) until n. 2-iterations methods are studied in [56].

Since the complexity of finding a minimal triangulation grows as n!, it is not possible

to carry out an exhaustive search directly, except when n is very small. Nevertheless,

to construct an elimination order successively and to stop the execution when the total

sum of the weights for the cliques (produced until this moment) exceeds the current

smallest weight of a complete ordering could be of use to make an exhaustive search even

for moderate-size graphs. Being an NP-complete problem, we can not generally expect

that a branch-and-bound algorithm could find an optimal ordering within certain time

limits. That is, the algorithm should finish either when the number of vertices exceeds

a certain limit or when the number of the permutations left as discarded increases

too slowly. Of course, the initial ordering will have a huge impact on the algorithm

success. Thus, a branch-and-bound algorithm should be preferably used combining

it with another quite faster algorithm (the first would be the last to apply) able of

setting a “good” initial ordering for it with the goal of avoiding examining too many

useless orderings and also with the goal of minimising the distance to some minimum

ordering (we assume that low cost orderings are closer to a minimum one than a high

cost ordering).

We could observe that the mentioned heuristics are only one-step lookahead, i.e.,

they just take into account that node which minimises a certain criterion if this node

was deleted in the next step. We could then think of other heuristics able to look

further than the next step. Unlike the heuristics above explained, about those looking

beyond the next step, there is not much literature. This makes us think that, although

they must produce better triangulations than the former, this improvement is not very

significant in contrast to the complexity increase.

2.2.3 Methods based on Evolutionary Algorithms

Due to the limitations found with heuristic methods and given that the use of

evolutionary algorithms is increasing within the field of computing, many evolutionary

variants have arisen trying to deal with the problem of triangulation.

Evolutionary algorithms are techniques for solving combinatory optimisation prob-

lems [86]. Among these methods Genetic Algorithms stand out because of their pop-

2.2. The problem of triangulation 57

ularity and their quite broadly extended use [34, 52, 58]. GAs are usually utilised

for optimisation problems and specific data structures and functions adapted to the

concrete combinatory problem are created. Typically, the form of an evolutionary

algorithm is the one indicated in algorithm 8.

Algorithm 8 Scheme for a general evolutionary algorithm.

1: function Evolutionary Algorithm(popsize, Mutation&Crossover)

⊲ The program will work with population in which every individual represents a possible

solution to the problem. popsize indicates the number of individuals considered at each

iteration.

⊲ Usually the evolutionary program will need specific parameters:

- mutation (or similar) will help to explore new portions of the search space

- and crossover (or similar) will mix good solutions (individuals) in order to (try to) get

better ones.

2: t← 0

3: Pob(t) ← Create population() ⊲ Pob(i) is a population with popsize individuals

(possible solutions) at instant i (Initially i = 0).

⊲ Create population() is usually created in a random way.

4: for all Individual Ik ∈ Pob(t) do

5: fitness[Ik] ← Evaluate(Ik) ⊲ If an individual in Ik has already been evaluated,

some computations could be saved skipping to redo the same evaluation.

6: end for

7: if stop condition() then

8: return Best(Pob(t))

⊲ Return as solution the best individual(s), determined by fitness.

9: else

10: t← (t+ 1)

11: end if

12: PobAux ← Apply Genetic Operators(Pob(t− 1))

⊲ As genetic operators we normally mean: selection + crossover + mutation

13: Pob(t) ← Combine(PopAux,Pob(t− 1))

14: Goto line 4

15: end function

As said before, this is a general algorithm. The various unspecified points will

depend on the particular case. For line 12 we indicate the typically applied procedure

(even if this could differ in some specific cases), which is: a selection is done choosing

pairs of individuals in the new population, and for every pair there can be or not an

58 Chapter 2: New approaches to the problem of triangulating Bayesian networks

interchange of the information contained in both individuals (if this is the mechanism

we refer to crossover operator). The selection of these pairs is done separately according

to a certain selection probability (which might be different for each one), and the process

takes place, with or without crossover, until all the selected pairs reach to complete all

the necessary elements for a new population.

Later on mutation could be applied where possible modifications are done to the

individuals in the selected and already crossed population. The point is to make

individual alterations (if applied) for some individuals, that is why this step is also

called mutation operator. The fact of leaving an individual altered or non-altered is

given by a certain mutation probability which is used for all elements in the iteration t.

On the other hand, there are many other unspecified points that will not depend

on the method, but on the particular problem, such as the structure of a solution

(individual) and the way of evaluating them.

Lately, numerous evolutionary and bioinspired methods have been used for trian-

gulation. Among the most outstanding, we can find:

• Genetic algorithms [56, 71]:

They basically follow the scheme of algorithm 8. When we attempt to solve a

problem by means of this type of algorithm, a series of decisions must be taken.

Firstly, it is necessary to determine how an individual will be represented. In the

case of triangulation, individuals may be the different permutations, which will

indicate the elimination order for variables.

Like other parameters as the population size, mutation or crossover, those works

in the literature have found those types and values which better behave for this

particular problem. [71] presents crossover and mutation operators adapted to

the case of permutations. These were later modified in [47] to get even better

results.

2.2. The problem of triangulation 59

Algorithm 9 Scheme for the algorithm Simulated Annealing.

1: function Simulated Annealing(Topology, t0, Ratio, Num it[])

⊲ Topology refers to the definition of the topology for the search space.

⊲ t0 is the initial temperature related to the “cooling” plan, being t0 > 0.

⊲ Ratio indicates the ratio of temperature decrease.

⊲ Num it determines the number of iterations to be carried out for each temperature,

being Num it[t] is the number of iterations for temperature t.

2: State s0 ← select state(Topology)

3: Si ← s0

4: Temperature T ← t0

5: conttemp ← 0 ⊲ cont is the counter of the temperature variations (initially set to zero).

6: repeat

7: contrep ← 0 ⊲ cont is the counter of repetitions.

8: repeat

9: State sj ← select state(Topology), sj ∈ Neighbourhood(si)

10: δ ← C(j)− C(i).

⊲ C() is a cost function, and our method attempts to reach a state in the Topology that minimises

this cost.

11: if δ < 0 then

12: i← j

13: else

14: if random(0,1)≤ e−δ/T then

15: i← j

16: end if

17: end if

18: contrep ← (contrep + 1)

19: until contrep == Num it [t]

20: T ← get Next Temp(conttemp, Ratio)

21: conttemp ← (conttemp + 1)

22: until stop condition() return si

23: end function

• Simulated Annealing:

This algorithm is not exactly evolutionary, it might be placed within the frame-

work of the nature-inspired algorithms, as it came from an attempt to “imitate”

a behaviour found in nature. Simulated Annealing is based on the physical pro-

cess called annealing by which a liquid is cooled down until it forms a crystalline

60 Chapter 2: New approaches to the problem of triangulating Bayesian networks

solid. During this process, some particles will occasionally move in such a way

that the stability for the developing crystal is reduced. Nevertheless, precisely

those movements can provoke the substance to reach a status more stable than

the resultant when the particles move only on directions which increase stability

immediately. Like evolutionary techniques, simulated annealing is a probabilistic

method, which initially moves from one solution to another at random; but as

time goes on and the simulation progresses, “temperature” decreases, the corre-

sponding crystal is being formed and the system can not be changed in a freer

way.

The general procedure [70] can be described by the pseudocode shown in algo-

rithm 9.

In [64] it is studied the behaviour of this technique for a set of networks, where

it was tested that this method was able to give good results. However, despite

the provided solutions are of a relative quality when tackling NP-hard problems

(like triangulation), it is also true that it cannot be guaranteed in general a

convergence of this algorithm less than exponential. For that reason, in [64] it

was analysed with limited resources, in cases with execution times independent

of the space search size and topology.

• Ant Colony System [47]:

None of the previously mentioned methods made use of the heuristic knowledge

attached to the problem, which is one of the main features presented by Ant

Colony Optimisation, and this helps to guide (and to speed up) the search process.

ACO algorithms are multi-agent systems in which every agent behaviour is in-

spired on real ants’ behaviour. Particularly, they model the process followed by

real ants when they seek the shortest path from the food source to their nest.

The manner in which the colony constructs the shortest path is based on the

ability of ants to deposit and to smell a chemical substance called pheromone.

In fact, when an ant goes from the nest to the food source and viceversa, it

deposits a small amount of pheromone on the ground. The pheromone placed

on the path is used for guiding the colony during the search, so that when an

ant finds a branch, it must take a decision, and this is actually a probabilistic

decision depending on the amount of pheromone that have been deposited in the

different branches.

2.2. The problem of triangulation 61

Then, at the beginning of the process, all paths have the same probability to be

chosen (because there is no pheromone), but during the continuous action of the

colony, the shortest paths start to be more frequently visited, receiving a larger

amount of pheromone and therefore becoming more attractive to the subsequent

coming ants. On the contrary, the longest paths will be less frequently visited

and this, together with the pheromone evaporation process, makes those paths

less attractive to the next ants coming. As a result, the final solution comes up

from the collaboration of every member in a colony.

Even though ACO algorithms were initially used to solve problems related to

graph path searches, mainly TSP (Travelling Salesman Problem) [35], in a later

work Dorigo and Di Caro [36] introduced a Meta-heuristics based on the ACO

approach, which is valid to deal with general optimisation problems if they can

be represented as a graph.

Thus, the representation that [47] uses for triangulation is not, as one could

expect, the graph associated to the network and the one we intend to triangulate.

This is because all possible permutations are not valid as paths within this graph

(cycles). This is the reason why they considered the complete graph defined over

the network variables, in such a way that it is always possible to reach a node i

from a node j for every pair of nodes (i,j). In consequence, there is a graph-form

representations equivalent to the one used for the TSP, but in the asymmetrical

case, on account of, in general, it is not the same deleting Xi before deleting Xj

as in the reverse order. A triangulation-oriented procedure for ACO is shown in

alg. 10.

In this technique a reduction step (it will be explained in the next point) is firstly

applied [56] with the purpose of reducing the cardinality of the search space. On

the other hand, the introduced heuristic knowledge that we mentioned earlier is

in function of the nodes that have been deleted before. This is then heuristic

information that have to be treated dynamically.

The obtained results turned out to be quite successful, regarding both accuracy

and efficiency, comparing it with other known techniques. It is worth mentioning

that these experiments did not need a previous study of the network, or refine-

ment of parameters, as it happens for GAs. It presents also the advantage of

having an ant-autonomy feature that could make them fit perfectly in a parallel

environment with the aim of gaining efficiency.

62 Chapter 2: New approaches to the problem of triangulating Bayesian networks

Algorithm 10 Triangulation-oriented algorithm with an Ant Colony System.

1: function Ant Colony System(Graph G, Ants)

⊲ G is the graph representation of the problem, so that it contains a set of nodes N .

⊲ Ants is the set of ants we are going to use in this algorithm.

2: repeat

3: for all Ant ai ∈ Ants do

4: j ← Random(|N |)

5: Locate Ant(ai,Nj)

6: end for

7: for all Ant ai ∈ Ants do

8: V ← N

9: repeat

10: Nj ← Choose Next Node(ai)

⊲ Notice that here we are taking a combined (probabilistic + heuristic) decision.

11: V ← V \Nj

12: Update Pheromone Levels(local) ⊲ This uses a local rule.

13: until V == ∅

14: for all Ant ai ∈ Ants do

15: Path[i] ← Return To Initial Node(ai)

16: end for

17: end for

18: Update Pheromone Levels(global) ⊲ This uses a global rule.

19: until stop condition()

20: return Best Path(Path[]) ⊲ This will be the shortest path.

21: end function

2.2.4 Other techniques relevant for triangulation

Apart from the two previous approaches which are probably the most widely used,

other triangulation techniques can be found in the literature, such as divide and conquer

techniques based on the concept of treewidth (number of variables, minus one, included

in the biggest clique in the join tree) [9, 2]. The idea here is to use a different algorithm

to triangulate in which the minimum vertex cut method is needed [40]. At each iteration

it finds a minimum set of vertices X which being removed from graph G splits it into

two disconnected components A and B such that A ∪B ∪X = V . This set X is then

called the minimum vertex cut. This general algorithm proceeds in the two smaller

problems G[A ∪X] and G[B ∪X], that is, those subgraphs obtained by projecting G

2.2. The problem of triangulation 63

on A ∪ X and B ∪ X respectively. And it goes on in this way so that each subgraph

is triangulated such that X becomes a clique in it. As we will see MPSD is somehow

based on this principle as well.

There exists another method capable of simplifying the triangulation task. In this

case, it deals with a process to be performed prior to triangulate with the chosen

method. In bibliography we can find it with different names, being simplicial (def. 17)

the most broadly used. In [56] it is presented as reduction, and consists in eliminating

all those nodes that, together with their neighbours, form a complete subgraph,i.e.,

no fill-in has to be added. This part of the network is then already triangulated and

deleting them is not going to add any new fill-in. Another approach uses the application

of preprocessing rules in order to reduce the graph [14]. In this approach the authors

have developed a set of sophisticated safe reduction rules to apply onto the graph before

triangulation. The results are good, but this complex technique requires, consequently,

more computation time.

Definition 17 (Simplicial node)

Let G = (V,E) be an undirected graph. A node N ∈ V is said to be simplicial

if this node N together with its set of neighbours form a complete node set. That

is, the projection on the graph G over the adjacency set plus the node N , subgraph

G′ = G↓{N∪Adj(N)}, is a complete graph. 2

On the other hand, it could happen, as MPSD demands, that we want/need a

minimal triangulation (def. 18) which basically means that removing any of the added

fill-ins in the triangulation for G would not yield a triangulated graph any more.

Definition 18 (Minimal Triangulation)

If we have a triangulation F for an undirected graph G, GT = (V,E ∪ F), denoting

the set of fill-ins adding during triangulation, F is said to be minimal if ∃/ F ′ so

that F ′ ⊂ F and F ′ is a valid triangulation for G. It is equivalent to say that ∀F ′,

being F ′ ⊂ F and F ′ 6= F , the graph corresponding to G′ = (V,E ∪ F ′) will not be

triangulated (presenting cycles of length 4 or greater without chords). 2

There are many methods and studies for getting a minimal triangulation. The most

known and first one is lexicographical search, LEX-M[106], providing a way of obtain-

ing directly a minimal triangulation. The method consists of a particularly designed

Breadth First Search (BFS), but labelling vertices (nodes) in a lexicographical way,

LEX-BFS. LEX-M applies this labelling procedure along paths. More recent studies

64 Chapter 2: New approaches to the problem of triangulating Bayesian networks

and (sometimes more efficient) methods have been designed [101, 54, 13, 12]. Among

them, there is a recent successful technique [10] called MCS-M. This is a simplifica-

tion of LEX-M where cardinality labels are used instead of lexicographical ones. In

a analogical way, it applies the cardinality labelling of (neighbour) nodes along the

path. MCS-M, as LEX-M, produces a minimal elimination ordering9. Even if both

techniques could give different orderings it has been proved [127] that they create the

same set of triangulations. The LB-triang algorithm [11] is another recent algorithm

that computes minimal triangulations with a computation complexity equal to the

most efficient methods, and presenting certain properties that could make it especially

interesting, such as it can also be implemented as an elimination scheme.

Apart from direct methods, there exist other approaches (as the one in [13]) where

the process identifies from a chordal graph the redundant fill-ins, so that eliminating

them, a valid triangulation will be transformed into minimal. If F is a set of fill-ins

that make a graph G triangulated, G = (V,E ∪ F), these methods identify a set of

links Rmin ⊂ F , so that Gmin = (V,E ∪ (F \ Rmin)) is minimally triangulated. The

resulting minimal triangulation is therefore Fmin = F \ Rmin.

Among them, we find the method called recursive thinning designed by Kjærulf

[63, 65]. This method is also called MINT and will be explained in more detailed in

next section, since it will be used for the decomposition in MPSs.

Even though we find strong foundations for triangulation on the theory of graphs

in literature, it is obvious that triangulation is still a quite open field to optimisation.

Proof of that, there is the important number of researchers currently working on this

subject, belonging to the domain of probabilistic systems, but also in the area of theory

of graphs and graph algorithms.

Although there is no general technique to perform always an optimal triangula-

tion for any graph, there exist attempts to go as closer as possible as the algorithm

QuickTree in [120], stated by the authors as the first algorithm that can optimally

triangulate graphs with a hundred nodes in a reasonable time frame. In [51] we find

a more modern branch and bound method, QuickBB with similar purposes. In [31]

graph triangulation is interestingly stated and solved as a constraint satisfaction prob-

lem. Another an more recent example is found in the commercial tool Hugin10 where

one technique for optimal triangulation has been implemented. This particular method,

as indicated in [59] is a combined exact/heuristic method capable of producing an op-

9A deletion sequence that provides a minimal triangulation.
10http://www.hugin.com

2.3. A new triangulation approach based on the divide & conquer methodology 65

timal triangulation, but only if sufficient computational resources (primarily storage)

are available.

Finally, as a remark, several research works have shown that all existing methods for

local computation will imply (maybe in a hidden way) a triangulation task. Besides,

those methods not using a secondary structure like the junction tree either are less

efficient or present another problem of NP-hardness [61].

2.3 A new triangulation approach based on the di-

vide & conquer methodology

In this section we are going to describe our method triangulation by re-triangulation

which combines most of the philosophies previously noted. Firstly, as treewidth-oriented

techniques, it uses a method for dividing the total graph in smaller components. Olesen

and Madsen[93] launched the possibility of applying the Maximal Prime Subgraph

(MPS) Decomposition to the problem of triangulation. So, the idea is to retriangulate

separately each MPS, since it has been proved to be perfectly valid for the final result.

And, secondly, for those portions it will apply some methods of triangulation based on

the two main procedures to get a elimination sequence reviewed above. Then, in this

work, we have exploited the previous idea by using both greedy heuristic algorithms

and stochastic ones (genetic algorithms).

Then, this section is going to describe MPSD first, and after that, our triangulation

method will be outlined. With the purpose of studying empirically the utility of ap-

plying this MPSD-based retriangulation we have also carried out experiments over 10

real complex networks. The data about the studied networks and a clear description of

the experiments will be given next. Finally, this section will be ended with an analysis

from the results and observed features.

2.3.1 Maximal Prime Subgraph Decomposition

The decomposition of an undirected graph has been used as a tool for different

tasks performed normally on this kind of graphs, as the triangulation procedure, but

also many others. When the decomposition obtains a set of solvable subgraphs, this is

a suitable tool for divide and conquer algorithms, getting a global solution as the sum

of local solutions for smaller and independent graphs.

66 Chapter 2: New approaches to the problem of triangulating Bayesian networks

In particular, we will use the maximal prime subgraphs (MPS) decomposition11 of

an undirected graph as an intermediate step in our new approach for triangulation.

This idea, already proposed as a possible application of the MPS decomposition by

Olesen and Madsen [93], consists of working separately on different parts of the initial

graph. In our case, the task to do separately will be the triangulation for each graph.

But the Decomposition using Maximal Prime Subgraphs (MPSD) has been used to

solve other problems related to graphs such as identification of maximum cliques [125].

In [93] the MPSD is used to construct a tree of MPSs, which is used as a graphical

structure over which probabilistic inference is performed by lazy propagation [80].

Let us just formalise the concept of maximal prime subgraph, for that, we also

introduce the definition for decomposition (def. 19) of a graph and the characteristic

for a graph of being decomposable (def. 20). Both of them can be easily related from

previously presented ideas, since for constructing the JT we have made some kind of

decomposition (MPS Tree will be the one which accomplishes the complete separators

condition) whereas triangulated graphs are guaranteed to be decomposable [73] and

that is somehow the justification for the necessity for a triangulation step. That is the

reason why from here, we will refer to a decomposable graph as a triangulated graph.

Definition 19 (Graph decomposition)

Let G = (V,E) be an undirected graph, and let A and B be two sets of vertices in G,

G can be decomposed in A and B if and only if the following conditions are satisfied:

- A ∪ B = V ,

- A \B 6= ∅,

- B \ A 6= ∅,

- Both A \B and B \ A are separated by A ∩ B and

- And A ∩B is a complete subset (called clique separator).

2

Definition 20 (Decomposable graph)

If a graph G and its subgraphs can be decomposed recursively until all the subgraphs are

complete, then the graph is decomposable12. 2

11Also known as decomposition by clique separators.
12Note that a graph can be decomposed without being decomposable.

2.3. A new triangulation approach based on the divide & conquer methodology 67

AB

DE

G

C

F

H

B

E

Figure 2.2: A simple example of graph decomposition where {B,E} is the clique

separator for the BN in fig. 2.1.a.

Then, it is said that a graph is reducible if it can be decomposed, that is, its set of

nodes contains a clique separator, otherwise the graph is said to be irreducible/prime/

non-separable. And this leads directly to def. 21:

Definition 21 (Maximal Prime Subgraph)

A subgraph G(A) = (V,E)↓A of a graph G is a Maximal Prime Subgraph of G if G(A)

is irreducible and G(B) is not irreducible ∀B so that A ⊂ B ⊆ V .. 2

Finally, from the previous concepts it just remains to indicate what the 13 Maximal

Prime Subgraph Decomposition is:

Definition 22 (Maximal Prime Subgraph Decomposition)

Let G = (V,E) be an undirected graph. Its Maximal Prime Subgraph Decomposition is

the set of induced maximal prime subgraphs of G resulting from a recursive decomposi-

tion of G. 2

Although other methods have been proposed to obtain the MPSD of an undirected

graph [124, 125, 76], the one presented by Olesen and Madsen [93] is especially inter-

esting for us, since it is based on the join tree constructed from a BN (see line 5 of

alg. 11 and the first input parameter of alg. 12). The decomposition of the graph in

MPSs is returned in a form of a tree, that we will call MPST Maximal Prime Subgraph

Decomposition Tree. A MPST, sometimes denoted as TMPD, is a junction tree for

13It can be proved that this decomposition is unique for an undirected graph, as it is the moral

graph.

68 Chapter 2: New approaches to the problem of triangulating Bayesian networks

the MPSD of graph G where the clusters will be the maximal prime subgraphs of the

corresponding G.

The process to get this particular tree is indicated in alg. 11 and 12. A deeper sight

into the relationship MPST and JT will be given (and necessary for the motivation)

when explaining Incremental Compilation, in chapter 4. But we should now point out

[93] that the tree of MPSs can be seen as an intermediate structure that is located in

between the moral graph and the triangulated graph, and so this can be useful for both

theoretical algorithms and implementation (data structures).

Algorithm 11 Obtain the MPS Tree or TMPD from a graph.

1: function Obtain MPSTree(Graph G)

⊲ We assume this graph G is the graphical part for a Bayesian network BN = (G,P).

2: GM ← Moralise Graph(G)

3: Triangulation T ← Triangulate Graph(G)

⊲ GT
M will be the triangulated moral graph.

4: Tmin ← Make Minimal Triangulation(T)

⊲ In our case we will use the algorithm called recursive thinning.

5: Tmin ← Construct Join Tree(GTmin

M)

⊲ This can be done for instance by means of the algorithms shown in chapter 1.

6: return Construct MPS Tree(Tmin,GM) ⊲ Alg. 12 shows this process.

7: end function

Algorithm 12 Obtain the MPS Tree or TMPD from a Junction Tree.

1: function Construct MPS Tree(Junction Tree T min,GM)

⊲ Junction Tree T min must have been obtained by a minimal triangulation.

⊲ GM is the corresponding moral graph to the network.

2: T ′ ← Tmin

3: repeat

4: for all Separator S ∈ T ′, S connects clusters C1 and C2 do

5: if ¬(Complete Graph(G↓S
M)) then

6: Aggregate(C1,C2,T ′)

7: end if

8: end for

9: until ∀Sk ∈ T
′, Sk is complete ⊲ Until All separators S in T ′ are complete for GM .

10: return T ′

11: end function

2.3. A new triangulation approach based on the divide & conquer methodology 69

Finally, and since this is the method we have used to guarantee that triangulations

are minimal (def. 18), we are going to present the algorithm by Kjærulff [63] that is able

of detecting those redundant fill-ins (if any) in a triangulation (see alg. 13). We have

used the so-called mint alg. in [65], but this author has designed another algorithm,

fmint, which is said to be more efficient. Then, eliminating these identified fill-ins that

avoid the triangulation T being minimal, we can convert it into a minimal one Tmin. It

is worth commenting that we needed a method for obtaining a minimal triangulation

of this kind, but not one finding directly a Tmin. The reason is that we pursue to com-

pare the behaviour of various triangulation methods, which do not necessarily produce

a minimal triangulation, among them and also to compare the same triangulatiom

method in the two phases of our designed algorithm Re-Triangulation.

Algorithm 13 Obtain the minimal triangulation corresponding to an arbitrary one.

1: function Recursive Thinning(T ,GT
m,R)

⊲ Both T and R are triangulations in the form of a set of fill-ins.

⊲ T is the input triangulation we wish to reduce to a minimal one if it is not.

⊲ R will keep those fill-ins that remain to be tested as redundant or not. For the initial

call R is set equal to T , R← T .

2: R′ ← {e1 ∈ T |∃e2 ∈ R : e1 ∩ e2 6= ∅}

⊲ R′ will contain those edges of T so that they have non-empty intersection with some other edge

of R.

3: T ′ ← {{X − Y } ∈ R′|{adj(X) ∩ adj(Y)}↓V is complete }

⊲ T ′ will contain those edges edges {X-Y} from R’ so that the their adjacent neighbour sets

intersect into a complete subgraph in G.

4: if T ′ 6= ∅ then

5: return Recursive Thinning(T \ T ′,G = (V,E ∪ (T \ T ′)),T ′)

6: else

7: return T

8: end if

9: end function

To see how recursive thinning proceeds, let us check a triangulation we know that is

not minimal using again the same network. In fig. 2.3 where the initial triangulation T

is clearly not minimal, since there exist T ′ ⊂ T which still remains as a triangulation.

This figure illustrates the (two) different recursive calls to the alg. 13 for this case,

indicating the value of variables and parameters. Finally, it returns the corresponding

70 Chapter 2: New approaches to the problem of triangulating Bayesian networks

Tmin where unnecessary fill-ins has been identified and removed. Therefore, line 4 of

alg. 11 is solved in a satisfactory and proven to be correct [65].

ABC

DEF

GH

Recursive_Thinning({{D−B},{F−B},{G−H}}, ,{{D−B},{F−B},{G−H}})

adj(D) ∩ adj(B) = {A,B,E,G}∩ {A,C,E,D,F} = {A,E}

R’ = {{D−B},{F−B},{G−H}})

T’....

no

adj(F) ∩ adj(B)

∩ adj(H)

= {B,C,E,H}∩ {A,C,E,D,F} = {C,E}

= {E,D,H} ∩ {E,F,G} = {E}

no

adj(G)

complete?

yes

....T’ = {{G−H}}

Initial T First call

R’ = ∅ ∅T’ =

H G

is minimal triangulation

H G

C B A

F E D

Recursive_Thinning({{D−B},{F−B}}, ,{{G−H}})⇒

⇒ Return T = {{D−B},{F−B}}

was redundant!!!

ABC

DEF

GH

Second (and last) call Resulting Tmin

Figure 2.3: Application of recursive thinning to a simple example. It is clear that

triangulation T is still a valid triangulation without {H − G}. We see here how the

algorithm detects that. In this particular and easy example only two calls of Recur-

sive Thinning are necessary, but it will depend on the graph and the particular initial

triangulation T .

If we follow with the example of the network in Fig. 2.1 we can check that two

different (minimal) triangulations can produce two different junction trees: those in

fig. 2.4. Both JTs had added {F − B} as fill-in in GT
M , but in (a) the triangulation

includes {A−E} while in (b) it presents {B−D} instead. And in this simple example,

we also can notice a difference in the tree size, value that we seek to minimise. Notice

that in terms of tree topology the same triangulation can also lead to distinct trees,

although their total space size will be exactly the same, since they present the same

set of clusters.

Figure 2.5 shows the construction (fusion of cliques in MPSs) for the join tree in

Figure 2.4.a. In dotted lines we can see those cliques that can be fused. Notice that

{F,E}, {B,E} and {E,D} are completely connected subgraphs in the moral graph

2.3. A new triangulation approach based on the divide & conquer methodology 71

F,E

C,F,B12

F,B,E8

F,B

F,E,H8

12

E,B,A
E,B

E,A,D

E,A

12 E,D,G
8

E,D

C,F,B12

F,B,E

F,B

8

F,E,H8

F,E

E,B,D
E,B

B,A,D12

8
E,D,G

8

B,D

E,D

(b) size(JT) = 56(a) size(JT) = 60

Figure 2.4: Two junction trees for the network in fig. 2.1.a. Next to each group/cluster

its size is indicated.

of Figure 2.1, they subsequently did not need any merging to form a maximal prime

subgraph. In this case, from JT 2.4.b we will obtain the same MPST. This does not

always applies, since MPST structure depends on the initial tree (Fig. 2.6). Anyway,

as we will see later the resulting MPS decomposition is effectively exactly the same

for the same graph, because this is unique. The variations will only depend on the

topology of the tree, producing one tree or another is not related to triangulation.

Fill-ins are not considered in the completeness of a separator because only the moral

graph is now regarded. Moreover, the example graph in fig. 2.6 is already triangulated

(no need of fill-ins). Hence, here we observe that the distinction between two valid

MPSTs comes from constructing a different JT and it is a consequence of choosing a

father cluster from a set of possible ones (for example, in fig. 1.11(b)[i = 3, vi = X]).

C,B,F,E

F,E,H

B,A,E,D

E,D,G

B,E

E,DF,E

F,E

C,F,B

F,B,E

F,B

F,E,H

E,B,A
E,B

E,A,D

E,A

E,D,G
E,D

(b) Tree of MPSs(a) Join Tree

Figure 2.5: Construction of the MPSs tree and the obtained result.

We just finish this description enumerating and commenting the main proper-

ties/results shown for MPST:

1. The maximal prime subgraph decomposition of a moral graph GM is unique.

72 Chapter 2: New approaches to the problem of triangulating Bayesian networks

G A

F B

C

ED

G A

F B

C

ED

ABC

A A

ADE AFG ADE AFG

ABC

A

A

(a) (b) (c) (d)

Figure 2.6: Another example of BN (a), where the moral graph (b) is already triangu-

lated and at least two possible MPSTs exist, (c) and (d). Notice that here all cliques

are MPSs, so JTs and MPTs coincide in both (c) and (d).

2. The clusters of TMPD formed by aggregation of cliques of a join tree Tmin are not

cliques in GM .

3. The clusters of TMPD that are cliques of Tmin are also cliques of GM .

Result 3 (formulated as a theorem in [93]) yields the following corollary: “If C is

a clique of Tmin and all separators connected to C are complete in GM , then C is a

clique of GM .”.

These properties allow us to design the ReTriangulation method. The aim of

triangulation is to produce a graph that is definitively decomposable in cliques. A

maximal prime subgraph will always correspond to at least one clique or a set of them

(aggregated). So it is an intermediate division between the graph and the junction tree

that contains clusters (MPSs) with complete separators towards the rest of the graph.

This fact prevents any node in the tree subgraphs from producing fill-ins connecting

nodes not in this same subgraph14. We can also justify this point from the concept

of MPS (def. 21) which is prime or irreducible, that is, two neighbour MPSs (in

the MPS Tree) can be decomposed into two subgraphs by a clique separator and

subsequently complete. However, for a single MPS is not possible to going further

into decomposition. Suppose we have two subgraphs S1 and S2 adjacent in the tree.

Then, S1 ∩ S2 = CS will always be complete for GM and this guarantees that CS will

also separate two cliques in any junction tree15: one belonging to the “aggregation” of

cliques S1 and the other one belonging to S2 .

14This is the underlying idea of requiring a minimal triangulation for T .
15That is why MPSD is done over the moral graph.

2.3. A new triangulation approach based on the divide & conquer methodology 73

For all this, it is perfectly valid to triangulate every subgraph in an independent

way from the rest, and make a global triangulation of the graph by the combination of

these partial triangulations. And this will be the basis for the new divide and conquer

triangulation process we describe next.

2.3.2 Triangulation of Bayesian networks by

re-triangulation

Olesen and Madsen[93] identify a series of tasks that could benefit from the use of

MPSD, among them BNs triangulation. The idea is to transform the BN triangulation

into a set of triangulations, working separately/parallelly with each MPS.

Retriangulating a graph can be worthy, even when the same triangulation method

is used twice. That is to say, the same triangulation method is applied (first) when tri-

angulating the moral graph, and (secondly) when triangulating each MPS separately.

As an example, let us consider the moral graph represented in Figure 2.1. As a prepro-

cessing stage we could first remove (see the following paragraph) variables H and G

(reduction). Then, using heuristic minWeight, the candidate variables to be removed

in the first place are {A,C,D, F}, since all of them produce a clique of size 12. As

ties are broken randomly, let us suppose D is the one selected, we then obtain the tri-

angulated graph shown in Figure 2.1.c and the join tree shown in Figure 2.4.a (whose

size is 60, if we assume all variables have two states). Now, if we construct the MPSD

from this tree, we obtain the tree shown in Figure 2.5. If the subgraph {B,A,E,D}

is triangulated by using minWeight again, then the fill-in (B,D) will be added instead

of the (E,A) and, therefore, the join tree of Figure 2.4.b will be obtained (whose size

is 56).

The reduction preprocessing stage we have referred to in the previous example is a

well known preprocessing rule [56, 9, 14] which consists of first deleting simplicial nodes

(def. 17, that is, those nodes whose deletion does not introduce any fill-in, because they

induce a completely connected subgraph in the moral graph). The application of this

preprocessing rule decreases, sometimes drastically, the complexity of the triangulation

task, because it starts from a smaller graph, and so the cardinality of the search space

will be considerably smaller. In the moral graph depicted in Figure 2.1.b variables H

and G are simplicial nodes.

The construction of the MPSD is not affected by the removal of simplicial nodes

before the triangulation task begins, since all cliques obtained during this preprocessing

74 Chapter 2: New approaches to the problem of triangulating Bayesian networks

stage are in fact MPSs. This is because no fill-ins are added when a simplicial node is

removed, so the separator set connecting it to the join tree is a complete subgraph in

GM .

Finally, the algorithm of ReTriangulation is as alg. 14 shows:

Algorithm 14 MPSD-based triangulation of a Bayesian network.

1: function ReTriangulation(BN)

⊲ We assume, as usual, that BN = (G,P) and G = (V,E).

2: GM ← Moralise(BN)

⊲ We could indicate G instead of BN , in this case the action of moralising is equivalent.

3: GR
M ← Reduce(GM)

⊲ Obtain the reduced moral graph GR
M . That is, remove simplicial nodes which are already

triangulated.

4: T1 ← Get Triangulation(GR
M ,any method)

⊲ Triangulate GR
M by using whichever triangulation method you prefer, since MPSD has been

shown to be unique [93]. Get Triangulation returns a set of fill-ins, with a slight modification

to alg. 7.

5: T ′
1 ← Recursive Thinning(T1,G

R
M ,T1) ⊲ Now T ′

1 is minimal.

6: JT ← Construct Join Tree(BN ,T ′
1)

7: MPST ← Construct MPS Tree(JT ,GM) ⊲ Alg. 12.

8: MPSD D = {S1, . . . , Sk} ← Get Decomposition(MPST)

⊲ Notice this step is immediate, just given for clarity. D is then a decomposition of GR
M .

9: for all Si ∈ D do

10: Ti ← Get Triangulation(Gi,any method)

⊲ Triangulate each maximal prime subgraph Si of D. By any method we mean that it could be

used any triangulation technique. Ti will be the obtained triangulation.

11: end for

⊲ Notice that these triangulations can be done separately and in parallel.

return T = ∪k
i=1Ti.

⊲ The union of all partial triangulations is returned. We could have applied recursive thinning

again on T (optional).

12: end function

2.3.2.1 Experimental Evaluation

In this section we present the experimentation carried out in order to study the

impact of using the MPSD on the problem of triangulation.

2.3. A new triangulation approach based on the divide & conquer methodology 75

• Used networks

The test suite for the experimentation is made up of 9 complex networks taken

from the repository16 of the Decision Support Systems Unit17 in Aalborg Uni-

versity, plus a tenth BN which is a subset of a pedigree network. In Table 2.1

we can see some relevant information about these networks: name, number of

nodes and edges in both the moral and the reduced (without simplicial nodes)

moral graph. We also show the number of MPS that come from the reduction

process (#R), and those obtained in the decomposition of the reduced moral

graph (#DR), and the number of variables in the biggest MPS (#S∗) of #DR.

Finally, we also indicate information about the cliques in the reduced tree (TR)

obtained from GR
M : the average number of cliques µ(#cliques) and their average

size µ(size(Ci)). The total number of cliques in the obtained join tree for GM is

#cliques + #R.

Table 2.1: Some data about the BNs used in the experimentation.

Moral Graph GM Reduced graph GR
M MPSs TR

Network #nodes #links #nodes #links #R #DR #S∗ µ(#cliques) µ(size(Ci))

Water 32 123 24 101 8 1 24 11 730079,182

Mildew 35 80 20 40 14 1 20 15 285122,667

Barley 48 126 35 92 12 2 33 24 822157,042

Munin1 189 366 108 241 69 1 108 93 2516647,896

Diabetes 413 819 335 665 76 1 335 261 74514,153

Pedigree4 441 806 163 305 223 4 155 144 15619,211

Link 724 1738 494 1349 218 1 494 373 2183041,696

Munin2 1003 1662 449 826 470 13 309 394 16024,985

Munin3 1044 1745 419 790 523 7 289 380 8453,979

Munin4 1041 1843 436 920 493 5 342 382 102551,711

Studying this table, we can observe that for some networks, all the nodes of GR
M

form a unique MPS. Clearly, in these cases the use of MPSD does not offer any

advantage.

16The updated web page is: http://www.cs.aau.dk/research/MI/Misc/networks.html
17From 2005, Machine Intelligence Group.

76 Chapter 2: New approaches to the problem of triangulating Bayesian networks

• Triangulation methods used for our experiments

As we have reviewed in section 2.2, there are many possible techniques to trian-

gulate, and we have mainly divided them into two groups. Specific algorithms of

both kinds have been proved in our experiments:

1. Greedy methods. These are heuristic algorithms in which at each step we

select the following variable to be deleted according to a determined criterion to

be minimised, breaking ties randomly. The three most used criteria [63] are: the

number of fill-ins to add when a variable Xi is deleted (minFill); the number

of variables included in the clique formed with the elimination of a variable Xi

(minSize); and the weight/size of the clique formed by eliminating a variable Xi

(minWeight). With regard to the last criterion, in this study we will consider the

heuristic proposed by Cano and Moral [18], which can be seen as an optimisation

of minWeight. In this heuristic (CanoMoral), the size of the clique formed by

the elimination of Xi is divided by |ΩXi
|(the number of different states for Xi),

thus favouring the elimination of the variables with a greater number of states.

The algorithms belonging to this approach provide a good solution quickly.

2. Genetic algorithms and other techniques of combinatorial optimisation [71,

56, 64, 128, 47]. The idea is to apply an algorithm of metaheuristic nature

taking as score function the state space size of the obtained join tree. Therefore,

each individual or potential solution is represented as a deletion sequence and

its score/fitness is calculated as the sum of the cliques’ size obtained from the

triangulation of GM using this sequence. We try to minimise this score.

In this study we will use the genetic algorithm (GA) proposed by Larrañaga

et al.[71] with the modifications made in Gámez and Puerta [47]. Basically it

is a steady state GA using the mutation and crossover operators that gave the

best results in the experimentation carried out in Larrañaga et al. [71]. The

modification made by Gámez and Puerta[47] consists of generating one half of the

initial population randomly and the other half by means of the greedy algorithms

previously mentioned, thereby helping to accelerate the convergence. On the

other hand, the population size and the number of generations is calculated

depending on the number of nodes of the graph [47].

We should remark that these methods usually produce better results than the

previous ones, but they require much more CPU time.

2.3. A new triangulation approach based on the divide & conquer methodology 77

• Experiments design

For each network with #DR > 1, we have carried out the following experiments:

1. All the networks have been triangulated using greedy heuristic algorithms

(minFill, minSize and CanoMoral) and genetic algorithms (GA). For the greedy

algorithms each network has been triangulated 500 times. With respect to genetic

algoritms, the number of runs is between 3 and 10 depending on the complexity

of the network. Table 2.2 shows the results (on average) for the state space size

µ(sizei) of the resultant join tree and the required CPU time µ(timei) in seconds.

2. As recursive thinning has to be applied before obtaining the MPS decompo-

sition, we show in Table 2.3 the average CPU time for its application over each

network µ(timeii). The effect of applying recursive thinning with respect to the

state space size of the obtained join tree depends mainly on the triangulation

technique. Thus, for the networks considered in our study this effect is quite

important for the minFill criterion while for the rest (minSize, CanoMoral and

GA) it has very little effect or none at all.

3. Then, we obtain the MPS decomposition of each network, and each subgraph is

(re)triangulated independently. The following retriangulations have been carried

out:

– Each subgraph is retriangulated using the same criterion (minFill, minSize,

CanoMoral). In these three experiments 500 runs were carried out for each

network.

– Each subgraph is retriangulated using a genetic algorithm. In this experi-

ment 10 runs were carried out for each network.

– Finally, it seems that the success of each heuristic criterion considered in

this study (minFill, minSize and CanoMoral) depends on the graph being

triangulated. Therefore, the best choice in a MPS decomposition may be to

apply different criteria to each subgraph. For this reason, we propose to use

a combination of the three greedy heuristics. Thus, in this experiment each

subgraph will be retriangulated three times, first with minFill, secondly with

minSize and finally with CanoMoral. We then construct the triangulation

of the whole graph by picking out the best solution found for each subgraph.

This method will be notated as FSCM (because the three heuristic criteria

used: minFill, minSize and CanoMoral). In this experiment 500 runs were

carried out for each network.

78 Chapter 2: New approaches to the problem of triangulating Bayesian networks

The results obtained in these experiments are shown in table 2.4. In this table

we show the average, the standard deviation and the best result obtained for

state space size (µ(sizeii), sd(sizeii), best(sizeii)). The required CPU time (con-

struction of the join tree graphical structure + MPSD + retriangulation) is also

shown, µ(timeiii).

Table 2.2: Results when triangulating the entire graph.
minFill minSize CanoMoral GA

Barley µ(sizei) 100.270.844,88 93.788.131,01 19.807.811,00 17.224.064,00

µ(timei) 0,0060 0,0059 0,0059 17,1

Pedigree4 µ(sizei) 1.135.222,88 2.218.223,23 2.199.486,96 574.781,40

µ(timei) 0,226 0,2254 0,2254 5613,1

Munin2 µ(sizei) 7.863.143,87 9.683.889,09 6.575.016,40 3.844.803,00

µ(timei) 1,0192 1,0222 1,020 86765,8

Munin3 µ(sizei) 7.980.516,15 3.349.001,45 3.290.505,65 3.099.098,67

µ(timei) 1,1533 1,1485 1,1488 78626,2

Munin4 µ(sizei) 36.931.253,19 31.685.429,42 39.118.690,00 12.836.469,67

µ(timei) 1,1934 1,1942 1,1918 92260,0

Table 2.3: CPU time of applying recursive thinning to the previous triangulation.
Barley Pedigree4 Munin2 Munin3 Munin4

µ(timeii) 0,0049 0,0521 0,4085 0,2834 0,4763

• Analysis of the experimental results

From the study of the obtained results, we can state the following about the state

space size of the resultant triangulation.

– With respect to the comparison of applying the same greedy heuristics over

the entire (reduced) graph and over each subgraph separately, it seems that

on three of the five networks (Barley, Munin2 and Munin3) the quality of the

obtained triangulation improved, while in the other two networks (Pedigree4

and Munin4) the differences are not so noticeable or indeed in certain cases

the tree sizes are slightly worse.

2.3. A new triangulation approach based on the divide & conquer methodology 79

Table 2.4: Results when triangulating each subgraph independently
Barley µ(sizeii) sd(sizeii) best(sizeii) µ(timeiii)

minFill 79.498.638,41 60.404.822,3 17.189.541 0,0239

minSize 80.768.310,89 74.433.727,8 17.247.576 0,0227

CanoMoral 19.807.811,00 0,0 19.807.811 0,0238

GA 17.261.540,00 180.603,6 17.140.796 14,3

FSCM 19.537.148,10 693.475,0 17.247.266 0,0648

Pedigree4 µ(sizeii) sd(sizeii) best(sizeii) µ(timeiii)

minFill 1.112.433,70 410.181,6 612.873 0,5882

minSize 2.623.774,73 1.780.432,6 609.093 0,5745

CanoMoral 2.423.613,74 1.695.900,1 615.600 0,5771

GA 591.281,10 74.663,2 486.270 1331,9

FSCM 937.174,16 330.518,6 615.492 1,1864

Munin2 µ(sizeii) sd(sizeii) best(sizeii) µ(timeiii)

minFill 4.648.878,25 1.435.180,4 2.490.948 12,1374

minSize 9.113.417,60 2.174.335,1 4.291.740 12,0303

CanoMoral 6.320.234,00 14.106,6 6.299.540 11,973

GA 3.511.745,70 485.903,4 2.781.769 12796,4

FSCM 3.677.987,29 633.450,7 2.371.904 15,2893

Munin3 µ(sizeii) sd(sizeii) best(sizeii) µ(timeiii)

minFill 4.164.286,56 116.483,1 3.975.007 8,1726

minSize 3.292.094,68 20.142,1 3.263.225 8,0471

CanoMoral 3.258.919,65 15.716,2 3.246.682 7,9502

GA 3.102.859,20 27.168,6 3.077.688 10079,9

FSCM 3.250.990,61 3.789,1 3.242.927 10,763

Munin4 µ(sizeii) sd(sizeii) best(sizeii) µ(timeiii)

minFill 23.638.148,95 1.988.804,0 19.696.135 10,4849

minSize 33.657.482,14 5.430.024,2 19.845.117 10,4098

CanoMoral 39.028.386,00 126.303,0 38.892.306 10,1736

GA 13.760.914,20 920.248,9 12.704.946 16811,4

FSCM 17.808.169,56 1.825.221,8 11.675.944 13,872

80 Chapter 2: New approaches to the problem of triangulating Bayesian networks

The discovery that we sometimes achieved (slightly) worse results when tri-

angulating each subgraph separately as opposed to triangulating the entire

graph, was quite a surprise for us. However, one explanation18 could be

that although the maximal prime subgraphs can be triangulated optimally

in an independent way in order to obtain an optimal result, the problem is

caused by the heuristic nature of the triangulation algorithms. The trian-

gulation algorithm is a zero step look-ahead algorithm. When triangulating

the subgraph more degrees of freedom are available. Thus, due to the limited

look-ahead the heuristic algorithm may choose to eliminate a node which will

produce a bad result.

– When genetic algorithms are used as the triangulation method, it seems

that the results are quite similar with respect to these metrics (state space

size). That is, when genetic algorithms are used for triangulating the entire

graph they produce results similar to those achieved by the application of

genetic algorithms to subgraphs, outperforming them in four of the five

networks. This could be due to the global behaviour of genetic algorithms

when performing the optimisation task.

– With respect to FSCM, it clearly overcomes the results obtained when just

one greedy heuristic criterion is applied in the retriangulation. As we can

see, FSCM sometimes yields join trees with a size two or four times smaller

than that obtained by the individual application of minFill, minSize or

CanoMoral.

By applying FSCM we are taking advantage of the main feature of using

MPS decomposition during the triangulation task, because it is in the nature

of a network that a certain heuristic criterion perform better for only some of

its portions, but in the other portions it might be wiser to choose a different

criterion.

With respect to the efficiency of the algorithms, we can state the following about

the required CPU time19:

– We have to bear in mind that the time values shown in Table 2.2 refer to

the initial triangulation process. Since no graphical structure is necessary,

18This possible explanation was provided by an anonymous reviewer
19The experiments have been carried out using our own software written in Java, running over the

virtual machine JDK 1.3 in a computer Pentium III 830 MHz and 512 MB of RAM

2.3. A new triangulation approach based on the divide & conquer methodology 81

we only obtain the set of cliques. By contrast, the time values for the

retriangulation (Table 2.4) show also the cost of building the join tree and

the MPSD tree associated to it. In view of this, depending on the complexity

of the network, the time for retriangulating is between 2 and 12 times greater

than the initial triangulation time.

Taking into account the improvement in tree sizes, we feel that this result is

quite good. In general, retriangulating gives better results, the most notable

differences being found with the FSCM method. For example, for network

Munin2 (449 nodes in GR
M) it would take about 1.5 sec. to make the trian-

gulation + RecursiveThinning, and about 15 seconds for JT construction +

MPSD building + retriangulation.

– In the FSCM method the CPU time is greater than for the other heuristic

methods, since each MPS is retriangulated 3 times. The difference is never

more than 3 extra seconds, as the JT + MPSD construction is more CPU-

consuming than the retriangulation process.

– Without doubt the greatest difference in regard to CPU time is seen in

genetic algorithms, due to the number of generations and the population size

computed according to the size of GR
M . For example, for network Munin2,

GAs is almost 8 times faster than GA.

From the previous observations it is clear that genetic algorithms get better

solutions than greedy heuristics, but they also need much more time. In our

opinion, both kind of algorithms are really useful although at different stages

of the probabilistic expert system development. In fact, we can distinguish (at

least) two different situations in which the knowledge engineer performs the task

of compilation:

– During the construction of the knowledge base, i.e., the Bayesian network. At

this stage of the process, the knowledge engineer (KE) builds the network(s)

in the edit window and tests the results of the modifications carried out in the

run window20. Due to the fact that each time the KE switches from the edit

window to the run window, a compilation occurs, and due also to the large

20This is the typical way of working in the most popular knowledge engineering tools oriented toward

the development of PESs, as HUGIN (www.hugin.dk) or NETICA (www.norsys.com) or other research

tools as Elvira (http://leo.ugr.es/elvira/) and GeNIe (http://www.sis.pitt.edu/∼genie/).

82 Chapter 2: New approaches to the problem of triangulating Bayesian networks

number of modifications carried out by the KE over the network before the

final version is obtained, it is obvious there is a need for a fast compilation

process. Deterministic heuristics are therefore particularly suitable at this

stage. We will refer to compilation at this stage as on-line compilation.

– Before the final product is given to the user. At this stage, our goal should

be to produce a join tree as good as possible, because hundreds or thousands

of propagations will be carried out over it. At this stage we can therefore

spend more time on the compilation process, in order to achieve a better

join tree. Algorithms requiring more CPU time are also suitable. We will

refer to compilation at this stage as off-line compilation.

As an example let us consider the Pedigree4 network. For this network,

propagation over a join tree of size about 1.15e+6 requires about 800 sec-

onds, while propagation over a join tree of size about 5.7e+5 requires less

than 300 seconds, by using the platform described in footnote 20. In view

of these values, it is worthwhile producing a very good tree, if time permits.

• Discussion about the method

With this work, we have tested our method and studied the applicability of the

MPSD to the problem of triangulation in BNs. At first blush, this technique

seems to be quite promising because of the great number of MPSs in which the

moral graph is usually decomposed. However, a more detailed study shows us that

many times most of these subgraphs come directly from the reduction process, so

that they do not need to be triangulated. If we exclude these subgraphs from our

analysis, in many cases (half of the networks studied here) only one MPS is left,

so that we are in the position as with general triangulation. In the other cases

it is usual to have one MPS that is much bigger than the rest[93]. Nevertheless,

as we have observed in the experimentation, in these cases the retriangulation is

normally profitable with regard to the obtained result (specially when applying

the FSCM algorithm), or with regard to CPU time in case of a genetic algorithm.

In conclusion, our aim is to show that since the MPSD can be rapidly obtained

from a join tree, this procedure is well worth carrying out, the decision whether or

not to apply retriangulation being taken on the basis of the number of obtained

MPSs and their sizes.

2.4. Main conclusions and further research. 83

2.4 Main conclusions and further research.

From the previous point we can mainly conclude that there exist some possibilities

to optimise these results and to explore new combinations to get even better triangu-

lations.

We think that it may be feasible to design an α-MPS triangulation method (α-

completeness will be roughly introduced at the end of chapter 4). Maximal Prime

Subgraphs present really interesting properties based on graph theory results. The

drawback is that for some real cases this decomposition given by MPSs turns out to be

a little unbalanced. Therefore, for that networks the benefit of MPSD is reduced. So,

we are working on some kind of heuristic/approximate decomposition method which,

combined with MPSD, could produce better results for those particular cases.

Another idea that can be tested in order to study the behaviour of the ReTrian-

gulation technique is the use of LB-triang method when obtaining initial elimination

orderings, since this produces minimal triangulations and is claimed to be very efficient.

Finally, since MPSs can be triangulated independently among them, it seems a

nice try to test how a real parallel execution could impact on the performance of the

triangulation process.

On the other hand, from this whole chapter and the previously analysed issues we

can draw the following main conclusions:

• Triangulation is still an unsolved problem, at least for a general case.

• But triangulating has also been proved to be an unavoidable step in the compu-

tation of Bayesian networks.

• This necessity for triangulating has brought about several endeavours to handle

this problem, and the techniques found in literature are of distinct nature. In

our case we tried to exploit the natural decomposition of a graph into its prime

subgraphs.

• In any manner, this decomposition tool is not reserved for triangulation itself,

it can become even more powerful. The use of MPSD can be extended to the

whole process of compilation. Since triangulation is the most expensive phase of

compilation and this can be correctly and separately distributed among MPSs,

we could sketch other techniques so that compilation could be less “dependent”

on the global triangulation. For that, we propose to look more closely into the

84 Chapter 2: New approaches to the problem of triangulating Bayesian networks

possibility of retriangulating some portions of the BN, and to use MPSD to per-

form incremental triangulations. This idea leads us directly to next chapter that

will expound our approach for Incremental Compilation of Bayesian networks.

Chapter 3

Incremental compilation of

Bayesian networks

Technology is the effort to spare an effort.

José Ortega y Gasset. (1883–1955)

Spanish philosopher and essayist.

3.1 The interest of designing an IC method

3.1.1 Motivation

When a Bayesian network is modified, for example adding or deleting a node, or

changing the probability distributions, we usually will need a total recompilation of

the model, despite feeling that a partial (re)compilation could have been enough.

Specially when considering dynamic models, in which variables are added and re-

moved very frequently, these recompilations are quite resource consuming. But even

further, for the task of building a model, which is in many occasions an iterative pro-

cess, there is a clear lack of flexibility.

When we use the term Incremental Compilation or IC we just refer to the possibility

of modifying a network and avoiding a complete recompilation to obtain the new (and

different) join tree.

In the previous chapters we have been looking into the compilation process, which

takes a considerable amount of time to be completed, particularly for big networks.

Hence, incremental compilation tries to give an answer to the following question:

“When modifying a Bayesian network, is it absolutely necessary to recompile it from

scratch?”. We could guess that if this modification does not affect the network globally,

86 Chapter 3: Incremental compilation of Bayesian networks

it might be possible to find a manner to save some time in obtaining the associated

tree. Fig. 3.1 tries to illustrate this simple idea: let us assume that we have an initial

Bayesian network BN and its associated join tree T , obtained by a compilation pro-

cess. Later, at a certain moment, a set of modifications have to be done on this initial

network, which will be transformed into a different network BN ′. For this new network

T will clearly not be a valid join tree, but it must be another one T ′ which is. The key

point for the incremental compilation would then be to find a way (obviously, quicker

than a complete recompilation of BN ′) that allows us to reach from this new network

the/a new tree that corresponds to it. Thus, somehow, the question we previously

launched could be reformulated as follows: ”If we know the performed modifications

in our network, and from the initial join tree corresponding to the initial network (T),

could we reach the new join tree (T ′)?”. This is precisely the question annotated as

a question mark in fig. 3.1, since this is exactly what we are looking for. And the

answer will be our concrete method to carry out this incremental compilation process

as section 3.2 describes.

BN
Compilation

- T

?

BN ′
(Re)Compilation

- T ′
?

?

Figure 3.1: Scheme that represents the general idea for our approach for the incremental

compilation of a Bayesian network BN .

3.1.2 Previous works

Little attention has been directed towards incremental compilation in the liter-

ature. Darwiche considers dynamic generation of join trees [27], but his aim is to

produce efficient elimination orders for specific queries posed to the model rather than

modifications over the network. His method is focused on efficient processing by online

generation of specific join trees and it does not take modifications of the structure of

the underlying network into account. There is another work by Draper [38] that will

be reviewed later in which the main goal is to show how to build join trees avoiding

3.1. The interest of designing an IC method 87

(thinking about) triangulation. To do this, a family graph is initially computed and

then transformed into a join tree by using a set of heuristics. This approach can also

be applied in case of dynamic changes in the network structure where the same set

of heuristics are applied to dynamically maintain the join tree. A disadvantage of

the method is that it is difficult to identify the relevant set of heuristics and that the

resulting join trees are often suboptimal.

Thus, this issue is relatively new in the framework of Bayesian networks, and has

been little studied in the literature. In 1999, Olesen and Madsen [93] launched the idea

of using MPSD to perform an IC. I considered this idea in 2000 for my MSc degree

report [41], where the problem was approached in a systematic way. Like that, in this

work, it was shown that for simple modifications, the complete construction of the new

tree was unnecessary. Single modifications were used, that is, in this work there is a

study of the impact on the join tree T ′ in the moment of adding or removing a single

element (node/variable or arc/link) and also, when modifying the table of associated

probabilities.

The cases that were included in this preliminary work are:

1. Potentials: changing the probability values (the simplest case).

2. Graph: changing the network structure and, then, the associated moral graph.

(a) Variables or nodes: varying the information about nodes in the graph, in

such a way that

i. We could modify the number of states that the variable has. For ex-

ample, it could happen that at a certain moment we find suitable to

add a new case in the set of possible states for a particular variable

ii. Or we could also realise that a certain variable does not introduce any

new information for the system and we decide its elimination.

iii. Finally, when modifying a network, it might arrive that we find inter-

esting to consider a new factor that we have not previously foreseen,

which will directly take us to the insertion of a new node.

(b) Links: similarly to the variables case, we could introduce changes in a net-

work with respect to its arcs.

i. We could detect that a relation does not really reflect on the system,

producing then the elimination of the corresponding link.

88 Chapter 3: Incremental compilation of Bayesian networks

ii. To the contrary, it is possible that we identify a direct relation/depen-

dency between two variables that we did not previously catch on the

network. Hence, this will yield the insertion of a new link.

Apart from this classification of the single modifications, in the work [41] it was

observed that we should take into account which node or which link we are modifying.

Because of that, in this first try of incremental compilation, it was distinguished, for

example, among nodes without parents, nodes that do not have children, nodes that

are parents of one unique node, nodes with various children,... And in an analogous

way, the links were treated differently according to their nature, if they were involved

in an undirected cycle, if they had caused a moral link or a fill-in edge,...

Easy examples for all these cases were studying using the Asia network, a simple one,

but still presenting some of the most representative cases in a Bayesian network. In [41]

an example for each of the previously listed cases is found, the particular modification

is studied and we proposed an alternative solution to the complete recompilation. In

a reasoned way, but not fully theoretically demonstrated, this situation was extended

to all similar (single) cases provided that certain requirements hold. Also, a complete

recompilation is performed in order to compare the two resulting trees.

In some cases the proposed solution gave rise to an identical tree to that reached

after a total recompilation. In other cases, the obtained tree was valid but of less

quality (larger total state space size) than the one obtained by the traditional process.

And finally, in the most complex cases1 a clear solution for the problem was not found.

3.1.3 Decomposition of the problem

So, in the commented work, there were some cases that could not be solved and

for those that could, the given alternative solution resulted too specific, which took us

to think of the problem from a different perspective: using the graph decomposition

(MPSD in our case) in subgroups that could be treated independently. This decom-

position has been studied for independent triangulations (chapter 2), but it also seems

valid for reusing old triangulations that do not need to be reprocessed. This technique

will be thoroughly explained along all the remaining of this chapter.

Before going directly to our designed method, we should first make a comment on

a different decomposition method published in 1995 [38]. This paper was presented

1Even though modifications were single, when a node was involved in too many families it was

difficult to find a general solution.

3.1. The interest of designing an IC method 89

as an alternative way to tackle the clustering task that underlies the notion of join

tree. They take a graph (not a tree) of clusters that must fulfill a modified version

of the running intersection property of the join trees. And this graph is posteriorly

and iteratively transformed until finally finding a tree. That is, the main goal of this

work is to skip the triangulation step as it is normally performed, and work with

the modifications directly on the graph of clusters. They present distinct methods to

reflect in this graph the modifications done in the network. They start from an empty

network and the technique proceeds to add its elements incrementally, obtaining after

each modification the new join tree. The results are quite satisfying, but this method

presents some main drawbacks:

• Although its main foundation is to reach the join tree without thinking in trian-

gulation, the triangulation process is implicitly in the transformations the graph

is undergoing.

• The processing that is carried out implies a great number of verifications, and

the fact that this is performed from the empty network until the complete one

step by step makes its execution very slow.

• Finally, and even more important, the obtained trees, are in most of the cases

non-optimal, and they turn out to be quite worse than those reached by means

of a traditional triangulation using any of the heuristic methods reviewed in the

previous chapter.

Anyway Draper’s work resulted quite enriching to understand and to gain an insight

to start a deeper study of the possibility for an incremental compilation.

The feasibility of reusing an already existing JT in order to obtain the new one

regarding only the modifications in the network had not really been studied thoroughly

before. In this chapter we present a method for incremental compilation of a Bayesian

network, following the classical scheme in which triangulation plays the key role. In

order to perform incremental compilation we propose to recompile only those parts

of the JT which may have been affected by the network’s modifications. To do so,

we exploit the technique of maximal prime subgraph decomposition in determining

the minimal set of subgraphs that have to be recompiled, and thereby the minimal

subtree(s) of the JT that should be replaced by new subtree(s). Changes are normally

located in the same area, and if the network is large, a set of changes will typically

influence only a little part of the network. These two reasons encouraged us to work

on a compilation that could be carried out partially.

90 Chapter 3: Incremental compilation of Bayesian networks

3.1.4 Introductory issues

Most popular knowledge engineering tools for construction and execution of proba-

bilistic expert systems based on Bayesian networks (BNs), such as for example HUGIN

[59] or NETICA [89], work with two representations: 1.- A direct representation of the

BN as illustrated by the edit window in figure 3.2 and 2.- A computational structure

also known as the junction tree or the join tree (JT), illustrated by the run window in

figure 3.2.

COMPILATION

AD

ABD

D

A B

C D

E F DF

CD

CDE

Edit Window

ACD

Run Window

Figure 3.2: Two representations of a Bayesian network.

A BN is constructed or modified in the first representation and inference is per-

formed over the second representation. Each time the knowledge engineer switches from

editing to execution, a compilation builds the join tree from scratch. If the network

is large, then the CPU time required to perform a new compilation will be consider-

able. Therefore, it will be desirable that once a join tree representation of the Bayesian

network has been generated, incremental changes in the network should produce an up-

date of the previous join tree, and not a new full compilation process. Apart from the

efficiency reason, there could be more reasons to prefer incremental compilation over

total compilation. Draper emphasises stability of the join tree as a desirable property

of incremental compilation [38]. It is anticipated that a considerable effort is made

to produce an efficient join tree and that incremental changes to an existing (near)

optimal join tree will produce more stable results.

The method we propose for incremental compilation identifies the parts of the join

tree that are affected by changes in the BN, reconstructs only those parts of the join

tree and glues the new substructures into the original join tree instead of the outdated

parts. This approach ensures a stable and, most of the times, efficient resulting join

tree. The method builds on a third representation of the underlying BN the Maximal

Prime subgraph Decomposition (MPD) tree [93]. As seen in chapter 2, maximal prime

subgraph is a subgraph that is d-separated from its surroundings by complete (i.e.

fully connected) separators, which enables divide and conquer algorithms for various

graph operations, triangulations for instance. There is a direct correspondence between

3.2. MPSD-Based Incremental Compilation 91

maximal prime subgraphs (MPS) and subtrees in the join tree, such that a maximal

prime subgraph always corresponds to one or more cliques in the join tree. It is this

correspondence that is exploited in the present work, by identification of the MPSs

that are affected by modifications in the BN. These MPSs determine the parts of the

join tree that have to be altered, and an updated join tree can then be constructed

incrementally.

3.2 MPSD-Based Incremental Compilation

3.2.1 The role of MPSD within Incremental Compilation

Our main concern is therefore to get a general procedure to solve the problem of

getting to the new join tree T ′ from the initial one T (plus the performed changes)

as Fig. 3.1 illustrates. And we have already anticipated our proposal is an algorithm

that utilises the MPSD. The Maximal Prime Subgraph Tree (TMPD) is, as explained in

chapter 2, a structure obtainable from the join tree. To remember the necessary steps

to attain from one to the other we have summarised them in figure 3.3. Starting from

the Bayesian network BN , one of its components is the graph G (the other one is the

probability distribution), from which we compute the moral graph Gm. Immediately

afterward(s), the graph is triangulated, being this triangulation necessarily minimal,

which gives rise to GTmin . Last, from this chordal graph we can construct the cor-

responding join tree, T and with algorithms 11 and 12 we can identify the maximal

prime subgraphs and get the tree TMPD.

BN = (G,P) - G - GM - GTmin

T

q

9

TMPD

R

Unknown

Figure 3.3: Graphical process that indicates how to reach the MPST TMPD from a

Bayesian network BN , using as an intermediate step the join tree T .

92 Chapter 3: Incremental compilation of Bayesian networks

What is the role of the MPS Tree in our alternative compilation process? As fig.

3.1 represents, we were searching a manner to go from T to the new tree T ′, without

requiring a full recompilation. And the MPS Tree TMPD can be understood as an

intermediate structure between the BN and the tree T , bearing also in mind that (see

figure 3.3) from this one (T) TMPD can be easily construted.

Hence, the intention now is to go through the (previously questioned) path from the

original join tree to the modified one passing by their corresponding MPSTs. Figure

3.4 attempts to illustrate this path. Question marks refer to the two steps for which

the execution is not initially clear, while the rest has just been described (see fig. 3.3

or in detail chapter 2). It is precisely these two particular unknown points that our

proposed algorithm will give an answer for.

BN
Compilation

- T

)

TMPD

T ′
MPD

j

?

?

BN ′
(Re)Compilation

- T ′

?

?

Figure 3.4: Sketch that represents an overview of our Incremental Compilation process

for a Bayesian network BN by means of the MPSD.

3.2.2 Possible modifications to be considered

The starting point in our approach to incremental compilation is a set of changes

in an existing BN. Such changes range from simple modifications, e.g. adjustments

3.2. MPSD-Based Incremental Compilation 93

of numerical parameters in the (conditional) distributions for variables, to complex

structural reorganisation of variables and their links, possibly altering large parts of

the BN. In the following we will briefly go through the possible modifications we will

look into. They will be close to the set of variations considered in the preliminary

approach in [41]. Nevertheless, there are two outstanding novelties: first, this view

is done towards the generation of a general (and more efficient), always valid method

that could process all kinds of situations; and second, we also wish a method able of

treating more than one modification at a time, that is, able of processing group of

changes as well as single ones, according to user preferences.

3.2.2.1 Modification of potentials

The simplest modification of a BN is altering the (conditional) probability distri-

bution for a variable. Such a change is purely quantitative, and it is straightforward

as the structure of the join tree will remain unchanged. In this case we simply replace

the current table with the modified one.

3.2.2.2 Modification of the states of a variable

Changes in the state space of a variable can alter the structure of the optimal join

tree, because the triangulation typically takes the state space of variables into account.

Notice that these state variations will not affect when treewidth is considered. A full

treatment of incremental compilation should, of course, consider this class of changes,

but the overall efficiency of the resulting computational structure remains roughly the

same. We shall therefore disregard the structural implications of such changes from

further considerations in the present treatment of the subject. What remains is then

the modified structure of the potentials of the altered variable and its children and

this is again taken care of by replacing old potentials with new ones for the affected

variables.

3.2.2.3 Modifying the graph structure

•Removing an arc

Removal of an arc in a BN can be a straightforward change. If, for example, two

nodes without parents share a child and is not otherwise connected, removal of an arc

between them will not lead to changes in the moral graph, as the link would appear

94 Chapter 3: Incremental compilation of Bayesian networks

here anyway due to moralisation. At the other extreme the removal of an arc could

break several loops in the BN and a considerable simpler join tree could result from

a retriangulation of the network. In such cases it is beneficial to be able to identify a

minimal part of the join tree that could be affected by the change and concentrate on

a retriangulation of only that part.

•Adding an arc

As for removal of an arc the addition of a new one is sometimes straightforward.

A simple situation is symmetric to the simple case above, where two nodes without

parents share a child and is not otherwise connected. Addition of an arc between them

will not lead to changes in the moral graph, as the link would appear here anyway due

to moralisation. At the other extreme the addition of an arc could create several cycles

in the BN and in this case large parts of the join tree could be affected. Sometimes

a complete retriangulation of the network is required, and again it is beneficial to be

able to identify the minimal part of the join tree that could be affected by the change

and concentrate on a retriangulation of only that part.

•Removing a node

The removal of a node from the BN will include removal of all arcs connected to that

node. If all arcs are removed first the removal of the node is simple. If not connected

to any other node, the node will constitute an island in the BN and consequently

it can simply be deleted. We should remark here that we refer to the removal of a

node graphically (edit mode) from the network. This has nothing to do with other

probabilistic techniques such as the removal of a node by marginalisation.

•Adding a node

The addition of a new node is similarly simple, if we connect it to the BN afterwards

arc by arc. The node is simply added to the BN and the procedure for adding arcs is

called when it is linked with the existing BN.

3.2.3 MPS as a tool for Incremental Compilation

In this chapter we are primarily interested in structural changes over the network.

We shall therefore concentrate on the addition and deletion of nodes and arcs. The

problem we investigate is summarised in figure 3.1, and partially answered in 3.4. As

mentioned earlier, modifications of the BN can result in everything from trivial to very

3.2. MPSD-Based Incremental Compilation 95

A S

T L B

E

X D

A S

T L B

E

X D

A S

T L B

E

X D

(a) (b) (c)
AT

EX

TLE LBE

DEB

LBS

LE

LB

EBE

T

AT

EX

TLE

DEB

LE

EB

LBES

E

T

A

T

L

E

T

X

E

E

S

BL

D

E

B

(d) (e) (f)

Figure 3.5: (a) The Asia network. (b) Moral graph for Asia. (c) Triangulated graph for

Asia. (d) A join tree for Asia. (e) Maximal prime subgraph tree for Asia. (f) Maximal

prime subgraph decomposition for Asia.

complex modifications of the join tree. We are therefore looking for ways to limit the

parts of the join tree that have to be recompiled. The maximal prime subgraphs of the

graph of the BN is the intermediate structure that can resolve this issue. We should

therefore review the method by Olesen and Madsen [93] for identification of a maximal

prime subgraph decomposition explained in previous chapter.

The decomposition of the graph of a Bayesian network into its maximal prime

subgraphs is integrated into the well known procedure for construction of join trees for

Bayesian networks. We know that the maximal prime subgraphs of GM are formed by

aggregating adjacent cliques of Tmin connected by a separator which is incomplete in

GM . Algorithm Construct MPD Tree (alg. 12) performs this process and returns

a join tree TMPD, where the nodes represents the maximal prime subgraphs.

Figure 3.5 illustrates the application of the algorithms on the well-known Asia

example. Part (a) shows the BN for the example and in part (b) the moral graph is

obtained by adding arcs between common parents of all nodes (arcs (T, L) and (E,

B)), and dropping the directions of the original arcs. In part (c) the triangulated graph

results from adding the arc (L, B). The triangulation is minimal and no arcs have to

be removed by the recursive thinning step. The resulting join tree is shown in part (d)

and a check of the separators in the moral graph yields the maximal prime subgraph

decomposition tree shown in part (e). Part (f) gives the maximal prime subgraphs of

96 Chapter 3: Incremental compilation of Bayesian networks

the Asia network. Let us remember that this decomposition is unique.

As can be seen there is a direct correspondence between MPSs and cliques in the

join tree. The structure of the join tree is a refinement of the MPD tree (although

constructed in the opposite order), where a node in the MPD tree may be expanded

into one or more cliques in the join tree. It is this structural correspondence that is

exploited in our method for incremental compilation.

As also known the maximal prime subgraphs can be triangulated independently.

Then, to attain our goals we can proceed as follows: Each time a BN is recompiled we

identify the set of MPSs affected by the modifications since the last compilation, and

only these MPSs will be re-triangulated. Our expectation is that only a few subgraphs

of TMPD will be influenced by the modifications, and consequently only a small part

of the graph has to be re-triangulated. Thus, the major part of the join tree remains

unmodified and can be reused.

Before explaining in details how to cope with the four basic modifications (remove

arc, add arc, remove variable and add variable), we give the general procedure to

perform MPSD-based incremental compilation. Figure 3.6 illustrates the whole process

and will be referred during the explanation provided below. Notice that this figure

summarises those given before to reason the way this method was being designed and

developed.

Let us suppose that the process starts with a user making modifications in the edit

window of figure 3.2. The result of this editing process is an updated version of the

BN (G′) (step (1) in figure 3.6). A list of the modifications2 is constructed during this

step. This list serves as input to algorithm 3, that is activated when the user decides

to obtain a new join tree.

G - GM
- GT

- T -TMPD

(3)

gM
- gT

- t -

?

(4)

T ′

tMPD

?

T ′
MPD

(5)

	

?

(1)

G′
-

(2)G′M

R

(3)

Figure 3.6: Integrated overview of the MPSD-based incremental compilation process.

2Remark how we can group modifications as we want.

3.2. MPSD-Based Incremental Compilation 97

Once the user decides to produce a join tree for the new network G′, the first step

of incremental compilation is to modify the moral graph (Step (2) in figure 3.6). Notice

that the moral graph plays a crucial role in MPSD and TMPD construction. We will

pay special attention to this step in algorithm 16.

As an example, let us suppose that the user has removed link L → E and has

invoked the IC algorithm. Then, the updated moral graph is the one depicted in part

(b) (and the modified BN is shown in part (a) of figure 3.7). Remark that the moral

link T-L has also been removed.

A S

T L B

E

X D

A S

T L B

E

X D

S

T L B

E

(a) (b) (c)

fB

fL
fS

fE

EB

BS

B

LS

S

E

TE

fD

fS
fL
fB

fB

fS

fL

fE

fX

fE

fT

fA
AT

EX

TLE LBE

DEB

LBS

LE

LB

EBE

T

B

LS

TE

EB

BS

E

S

fA
fT

fX

fE

fB

fL
fS

fD

AT

EX

TE

BS

E

B

LS

S

T

E

DEB

(d) (e) (f)

Figure 3.7: MPSD-based incremental compilation of Asia when removing L→ E.

Now, we proceed to step (3) in figure 3.6. This is the key point in our algorithm,

where we identify the minimal set of MPSs which may be affected by the modifications

performed over the BN. Shortly we shall detail this for the different modifications,

but for the moment, let us assume the existence of an algorithm which marks the

MPSs in TMPD affected by a modification. In the example, this algorithm marks

MPSs (TLE) and (LBES) (to be detailed in subsection 4.1). In the example, there

is only one connected marked subtree (TLE)− [LE]− (LBES), but in general, when

all modifications have been processed by the marking algorithm, there may be more

connected parts of TMPD that have been marked. As an example, consider the scenario

98 Chapter 3: Incremental compilation of Bayesian networks

in which the marking algorithm marks MPSs: (AT), (TLE) and (DEB); which gives

rise to two marked connected subtrees: (AT)− [T]− (TLE) and (DEB). For each of

these marked connected subtrees we proceed, in turn, with the following steps.

Let gM be the subgraph of G′M induced by the set of variables included in a con-

nected marked subtree of TMPD. Figure 3.7.c shows gM as the projection of GM over

{T, L,E,B, S}. In step (4) in figure 3.6 we obtain a JT and a MPD tree for gM . We

obtain a join tree t by applying algorithm 11 (avoiding step in line 1, since the graph is

already moralised) and the corresponding MPD tree tMPD by applying algorithm 11.

In the example, part (d) of figure 3.7 shows both structures, because in this case every

MPS corresponds uniquely to one clique.

Finally, during step (5) in figure 3.6 both T and TMPD are updated by using the

newly obtained structures t and tMPD. The process is completely analogous in both

cases and it only differs in the tree to which it is applied.For each separator S con-

necting a marked subtree with an unmarked cluster we reconnect S to a cluster of t

(tMPD) having maximal intersection with S. Upon completion, the marked clusters

(and separators between them) are deleted. In the example, the separators connecting

the marked connected subtree with the rest of TMPD are [T], [E] and [EB]. These

separators are connected with the new graphical structure as shown in part (e) of fig-

ure 3.7. Finally, part (f) of the same figure shows the final structure, obtained after

removing the outdated part of the tree (the marked MPSs). Algorithm 17 details this

procedure.

3.2.4 Incremental Compilation Algorithm

Algorithm 15 details the incremental compilation process described above. In order

to simplify the header of the algorithms presented in this section, we suppose that the

main graphical structures are accessible, that is, we will refer to GM , T and TMPD

without the need of passing them as a parameter to the algorithms. Before we proceed

we need some notation. The potential of X is assigned to a specific clique in T , which

contains the family of X. In the following, we will use CX to identify this clique and,

likewise, MX will identify the MPS in TMPD which has the family of X associated. In

figures this will be indicated with a fX next to the corresponding clique/MPS.

The first loop of algorithm 15 iterates over all modifications. For each modification

we adjust the moral graph by algorithm 16. Algorithm 16 maintains a list of all links

that are affected by the actual modification. This is relevant for addition and deletion

of arcs, and algorithm 16 returns a list, L, with the added (deleted) link and with the

3.2. MPSD-Based Incremental Compilation 99

induced added (deleted) moral links.

Algorithm 15 Performs Incremental Compilation when introducing a list of modifi-

cations in the network.
1: procedure IncrementalCompilation (Modification list ModList)

2: for all Modificaction mod ∈ ModList do

3: L← ModifyMoralGraph(mod)

4: switch mod do

5: Case Add node X: AddNode(X)

6: Case Delete node X: RemoveNode(X,MX ,nil)

7: Case Delete link X → Y : RemoveLink(L,MY ,nil)

8: Case Add link X → Y : AddLink(L)

9: end switch

10: end for

11: for all Connected marked subtree TMPD ∈ TMPD do

12: T ← T corresponding to TMPD

13: for all Clique Ci ∈ T do MarkClique(Ci)

14: end for

15: C ← any cluster of T

16: M ← any cluster of TMPD

17: V ← {all variables included in TMPD}

18: t← ConstructJoinTree(gM)

⊲ gM is the projection of the current moral graph GM over the set of variables included in TMPD.

19: tMPD ← AggregateCliques(t)

20: T ← connect(t, C, nil)

21: TMPD ← connect(tMPD,M, nil)

22: delete(T)

23: delete(TMPD)

24: end for

25: end procedure

100 Chapter 3: Incremental compilation of Bayesian networks

Algorithm 16 Performs the corresponding modifications to the moral graph implied

by the mod which is being processed.

1: function ModifyMoralGraph(Modification mod)

⊲ This function will also return the set of links relevant for the modification if that applies.

2: L← Ø ⊲ L will be a LinkList containing the relevant links in this operation.

3: switch mod do

4: Case Add node X: add a new (isolated) node X to GM

5: Case Delete node X: remove X from GM

⊲ We assume that we are going to delete a disconnected node, if it presents edges they will be

removed by means of modification Delete link first.

6: Case Add link X → Y : add X → Y to L together with all new links needed to

make Y ∪ parents(Y) a complete sub-graph.

7: Case Delete link X → Y :

8: if (children(X) ∩ children(Y) = Ø) then

9: delete (X,Y) from GM

10: add (X,Y) to L

11: end if

12: for all Zi ∈ parents(Y) \ {X} do

13: if ((children(Zi)∩ children(X) = {Y }) and (Zi → X or X → Zi) not in G) then

14: delete (X,Zi) from GM

15: add (X,Zi) to L

16: end if

17: end for

18: end switch

19: return L

20: end function

The list, L, returned by algorithm 16 is passed on as argument to the relevant

procedure, that marks affected MPDs in TMPD. This result of steps 1-10 in algorithm

15 is an MPD-tree with (possible several) connected marked subtrees. In the second

part of algorithm 15 (lines 11-24) we iterate over these subtrees and adjusts T and TMPD

by algorithm 17. The pattern for this algorithm may not be immediately transparent.

The recursive control structure acts on the two last parameters where the former (the

second parameter) is the cluster to which the algorithm is applied, and the latter (the

third parameter) is the caller. The structure traverses a marked subtree, avoiding loops

by a check that the caller is not re-visited. This pattern is also used in algorithms 18

and 19.

3.2. MPSD-Based Incremental Compilation 101

Algorithm 17 Performs the connection between the new partial (JT or MPS) tree to

the old remaining part.

1: procedure Connect(Cluster Tree t, Cluster Ci, Cluster Cj)

2: for all Separator S between Ci and Ck 6= Cj do

3: if Ck is unmarked then

4: locate cluster C ∈ t such that C ∩ Ck is maximal

5: Connect C with Ck by S

6: if S == C then amalgamate C and Ck

7: end if

8: else Connect(t, Ck, Ci)

9: end if

10: end for

11: end procedure

We shall now go through the details of the marking of MPDs, that is, the procedures

called from the first loop of algorithm 15. It is silently assumed that whenever a MPD

is marked, the corresponding cliques in the join tree will also be marked.

3.2.5 Removing a link

Let us suppose that the link X → Y has been deleted from G. Then MY has been

affected and we have to investigate if more MPSs have to be re-triangulated due to

a side effect of the deletion of X → Y . Therefore, we should include the neighbours

of MY in the set of MPSs to re-triangulate, only if the separator between them is no

longer complete. To do this, we look if the disappearance of the link X − Y or of any

other induced link Z − X causes some separator to become incomplete in G′M . Of

course, if a new MPS is marked because of this search, then we have to verify the same

condition among their neighbours and so on.

The following algorithm marks the MPSs affected by the removal of X → Y . Pa-

rameter L is the list of (induced) moral links (returned by ModifyMoralGraph). Notice,

that when the algorithm is called the first time (from Incremental Compilation) then

MZ = nil.

As a case of study, let us pick up the example used during the overview of our IC

method, that is, the removing of link L → E from the Asia network. In this case,

the parameters received by algorithm 18 are L = {(L,E), (T, L)}, MY = (TLE) and

MZ = nil. Therefore, MPS (TLE) is marked in step 2. From the three separators

102 Chapter 3: Incremental compilation of Bayesian networks

connected to (TLE), only [LE] will be considered, because the other two contain only

one variable. As [LE] contains one of the removed links, the MPS (LBES) connected

to (TLE) by this separator, is also marked by a recursive call of RemoveLink. Therefore,

in this case, the subtree (TLE)− [LE]− (LBES) is marked by the algorithm.

Algorithm 18 Algorithm that performs the marking of subgraphs when deleting a

link in the Incremental Compilation process.

1: procedure RemoveLink(LinkList L,MPS MY ,MPS MZ)

2: Mark MY

3: for all Neighbour MK 6= MZ of MY do

4: S ← separator between MY and MK

5: if L ∩ links(S) 6= ∅ then

6: RemoveLink(L,MK,MY)

7: end if

8: end for

9: end procedure

One could think that the recursive call of RemoveLink is avoidable. Effectively,

in some cases this will not be necessary, but in some other occasions this further

checking is absolutely needed to produce the valid result. To prove that, we are going

to present a simple example. In fig. 3.8.(a) the BN is depicted whereas fig. 3.8.(b)

represents the corresponding moral graph. Notice that this moral graph is already

triangulated, to check that it is enough to use, for example, deletion sequence σ =

{I,H,D,A, F, C,G,B}. This elimination order will not introduce any fill-in, and the

initial graph is then already triangulated (Tmin = ∅).

A

D

C

F H

I

B

G

A

D

C

F H

I

B

G

(a) (b)

Figure 3.8: Network example to prove the necessity of recursively RemoveLink.

The corresponding tree will be the one in figure 3.9. Notice that families for C

3.2. MPSD-Based Incremental Compilation 103

and G could have been located in another clique/mps containing this variable. Let

us suppose that we intend to remove the link B → D. The MPS which contains the

family of D, MD is [ABCD]. The elimination of this arc also makes the moral links

B − C and A− C disappear (as illustrated in fig. 3.10.(b)).

BC

BCF BC BCG

fD

CFCFH

fA

fB

CGI

CG

fI

fH
f

fC

fG
ABCD

F

Figure 3.9: Join Tree and MPD Tree (they are equivalent) for network in figure 3.8.

In the removing processing of this link, as B − C is in L we should call then

RemoveLink(L,[BCF],[ABCD]) and these two MPSs will be marked. The question

now would be if we stop there or we need to go further. In case that we stop, the IC

process is summarised in figure 3.11. It is clear (see fig. 3.11.(c)) that this does not

produce a valid tree. The marked part is the retriangulated portion and disappears

because it is substituted by the new tMPD. Nevertheless, this connection task gives

rise to an erroneous situation: if [BF] is joined to the [CFH] node ([BF] ∩ [CFH] =

F) it will not be a tree anymore, since there is a cycle and besides the tree would

become inexplicably disconnected. Otherwise, if [BF] is joined to the [BCG] node

([BF] ∩ [BCG] = B) the running intersection property is violated, since there would

be a path from [BCG] to [CFH] where their intersection, C, is not contained.

In this example, if we had followed with the recursive call RemoveLink(L,[BCG],

[BCF]) the MPS [BCG] would have been also marked and the process will be as

depicted in figure 3.12. Notice that gM has been triangulated adding the fill-in F −G

and that is why separator [FG] is not complete in the moral graph, and it therefore

aggregates two cliques in one MPS of tMPD. Remark that now the process can be

executed smoothly and that the resulting tree is the correct one (equal to the one in

fig. 3.10.(d)).

104 Chapter 3: Incremental compilation of Bayesian networks

A

D

C

F H

I

B

G

A

D

C

F H

I

B

G

(a) (b)

BCF BC BCG

CGI

CG

ADC

C

CFCFH CFCFH CG CGI

ADC

C

BCFG

(c) (d)

Figure 3.10: Modifications when B → D is deleted: (a) BN (b) Moral graph (c) Possible

JT and (d) The corresponding MPS tree (B − C is not complete in the moral graph,

that comes as a fill-in from an elimination order as σ = {A,D,H, I, F, C,B,G}).

A

D

C

F

B

F

C

CF

ADC

BF

BC

BC BCGCFCFH

CGI

CG

CF

C

F BF

ABCD

BCF

ADC

???

(a) (b) (c)

Figure 3.11: IC processing without recursion. Notice that again (the partial) JT and

MPS trees coincide here.

3.2. MPSD-Based Incremental Compilation 105

A

D

C

F

B

G

C

ADC

CFG

BFG

FG

BCFG

C

ADC

(a) (b) (c)

BC

BCCFCFH

CGI

CG

ADC C BCFG

CF

CG

ABCD

BCF BCG
CFH CGI

CG

BCFGCADC

CF

(d) (e)

Figure 3.12: IC processing with recursion.

3.2.6 Removing a node

Algorithm 19 marks all MPSs containing X. The algorithm also deletes X from all

MPSs and separators containing it in order to obtain the correct set V in step (c) of

the second loop of algorithm 15.

As an example, let us consider the removal of variable D from the Asia network.

This operation results in the following list of modifications: (remove E → D, remove

B → D, remove D), which is passed to alg. 15 from the edit mode. Subsequently,

the moral link (E → D) is removed during the first loop of algorithm 15. In the

second loop of algorithm 15 the MPSs (DEB) and (LBES) are marked. In this case,

the effect of algorithm 19 is just to remove D from (DEB). Therefore, we have to

re-triangulate G′M ({E,B, L, S}), see figure 3.13(c). Part (d) of the same figure shows

the obtained tree from this graph. In part (e) the connecting process of the old and

new structure is shown, where marked clusters are highlighted by filling them. Finally

fig. 3.13(f) shows the obtained result after absorbing non maximal cluster (LE) into

cluster (TLE).

106 Chapter 3: Incremental compilation of Bayesian networks

Algorithm 19 Algorithm that performs the marking of subgraphs when deleting a

node in the Incremental Compilation process.

1: procedure RemoveNode(Node X, MPS MX , MPS MY)

2: Delete X from MX

3: Mark MX

4: for all Neighbour MZ 6= MY of MX do

5: S ← separator between MX and MZ

6: if X ∈ S then

7: Delete X from S

8: RemoveNode(X,MZ, MX)

9: end if

10: end for

11: end procedure

A S

T L B

E

X D

A S

T L B

E

X

S

L B

E

(a) (b) (c)

SB

SL

LE

S

L

fA
fT

fDfX

fS
fL
fB

fE

fB
fS

fL

AT

EX

TLE LBE

EB

LBS

LE

LB

EBE

T

SB

SL

LE

S

L

fA
fT

fX

fE fL

fB
fS

AT

EX

TLE

E

T

SB

SL

S

L

(d) (e) (f)

Figure 3.13: MPSD-based incremental compilation of Asia when removing variable D.

3.2.7 Adding a node

This a very simple operation. As X is a new variable, it will be an isolated node

in the network, so, the modification consists of the addition of a new MPS/clique

3.2. MPSD-Based Incremental Compilation 107

containing only variable X. In order to maintain single structures (trees) rather than

sets (forests), we connect new clusters to the respective trees by picking up any existing

cluster and connect the new cluster by an empty separator. In the case that this

structure was used to propagate this separator will have capacity 1 in order to store

the constant number to be passed from one cluster to the other. The process is detailed

in algorithm 20.

Algorithm 20 Algorithm that performs the marking of subgraphs when adding a node

in the Incremental Compilation process.

1: procedure AddNode(Node X)

2: CX ← new created marked Clique containing only X

3: MX ← new created marked MPS containing only X

4: Connect CX to T by an empty separator

5: Connect MX to TMPD by an empty separator

6: end procedure

As an example, the result of adding a new variable Z to the Asia network is shown

in figure 3.14.

fA
fT

fX

fS
fL
fB

fE

fD

fZ

AT

EX

TLE LBE

DEB

LBS

LE

LB

EB

T

Z

E

Figure 3.14: MPSD-based incremental compilation of Asia when adding a new variable

Z.

3.2.8 Adding a link

Finally, we will consider the addition of a new arc X → Y . This change will (at

least) modify MY . If X is already included in MY , then only this MPS has to be

re-triangulated. Otherwise, we have to look for a MPS, MX , in which X is included

(MX is not necessarily the MPS to which X originally was assigned). MX and MY are

marked and so are all the MPSs on the path between them.

108 Chapter 3: Incremental compilation of Bayesian networks

This is the general idea of the method for adding a link, however, there is a tricky

point that should be discussed. Due to the presence of empty separators, it is possible

to modify the tree structure after having located MX , in order to achieve a better

(more efficient) structure for our goal. For example if A→ Z is the link to be added to

the structure in figure 3.14, then we will mark all the MPSs in the tree except (EX).

However, as MZ is connected to the tree by an empty separator, we can connect it

to MPS (AT) instead. By using this new tree, only MPSs {(AT), (Z)} have to be

re-triangulated, which leads to a (far) more efficient process.

Algorithm 21 marks the MPSs affected by the addition of X → Y .

Algorithm 21 Algorithm that performs the marking of subgraphs when adding a (set

of) links in the Incremental Compilation process.

1: procedure AddLink(LinkList L)

2: for all Link X → Y ∈ L do

3: MX ← the nearest neighbour to MY containing X.

4: if ∃ an empty Separator S (S == ∅) on the path between MX and MY then

5: Disconnect TMPD and delete S

6: Connect MX to MY by an (artificial) Separator containing X

7: end if

8: Mark MX , MY

9: for all MZ on the path between MX , MY do Mark MZ

10: end for

11: end for

12: end procedure

As an example, let us consider the addition of two new links: A→ Z and Z → X

to the structure depicted in figure 3.14:

Adding A→ Z: as there is an empty separator in the path between (Z) and (AT),

the tree is modified to the one depicted in figure 3.15(a). Algorithm 21 marks MPSs

(Z) and (AT). Also, the separator is set to A.

Adding Z → X: Now, there is no empty separator along the path between (Z)

and (EX), so no modification is performed over the tree. The algorithm marks

(Z), (AT), (TLE) and (EX) as the MPSs to be re-triangulated.

Remark that the moral link Z −E has been added to G′M (by algorithm 16).

We get {(Z), (AT), (TLE), (EX)} as the set of MPSs to be re-triangulated. The

subgraph of G′M induced by the set of variables in these MPSs ({Z,A, T, L, E,X})

3.3. Investigation of this method through a set of distinct networks 109

fX

fS
fL
fB

fE

fD

fT

fA

fZ

AT

EX

TLE LBE

DEB

LBS

LE

LB

EB

T

E

Z A
A

T L

E

X

Z

ZT

ZE

ZEX

ZET

AZT

TELTE

f

f

f
f

f

X

A
T
Z

E

(a) (b) (c)

fS
fL
fB

fD

fT

fA

fE

fX

ZT

ZE

ZEX

ZET

AZT

TELTE

f

f

f
f

X

A
T
Z

AT

EX

TLE LBE

DEB

LBS

LE

LB

EB

T

E

Z

Ef

fZ

fD

fS
fL
fB

ZT

ZE

ZEX

ZET

AZT

LB

EB

TELTE LBE

DEB

LBS

EL

f

f

f
f

f

X

A
T
Z

E

(d) (e)

Figure 3.15: Incremental compilation of the structure in figure 3.14 when adding links

{A→ Z,Z → X}.

yields the graph shown in part (b) of figure 3.15, and re-triangulating this we get the

tree depicted in part (c) of figure 3.15. Finally, the connecting process is illustrated in

fig. 3.15(d) and the final result (after removing marked clusters) is shown in part (e)

of the same figure.

3.3 Investigation of this method through a set of

distinct networks

The implementation of the method described before has been integrated into the

programming code of the Elvira project3, where several universities participate. The

Elvira system [39] is a Java tool (GUI + API) to construct probabilistic graphical

models and also to evaluate new algorithms (inference, learning, ...).

In this section we design a series of experiments in order to study the impact of

incremental compilation when modifying a Bayesian network. Although the skeleton

of experiments presented here is quite similar to the explained in [44], the results

3http://leo.ugr.es/∼elvira

110 Chapter 3: Incremental compilation of Bayesian networks

are different. During the last year, we have introduced improvements in basic classes

of Elvira system (e.g. a faster search to access a certain variable of the graph) in

order to get a better overall efficiency. This has a bearing on the total time for normal

compilation as well as in IC, but this gain has been more clear in the first one, since it is

applied to longer lists of elements, and reducing these access times is even more crucial

when the list of elements is larger. Although the results, as we will next examine, show

that IC is advantageous against traditional compilation (and this difference will be

more obvious when the changes are reasonably realistic), we feel that IC programming

code can also be optimised in order to get even a better performance for it. We expect

to work on that enhancement in a near future.

3.3.1 Networks and designed experiments

We have tested our approach over two different kind of networks:

• Ten real complex networks (most of them) taken from the repository4 of the

Machine Intelligence Group in Aalborg University and one more, prostanet, taken

from [69, 67].

• A set of artificially generated networks. These networks have a sliced-like struc-

ture (see figure 3.16) as some times happens in temporal/dynamic and parametric

Bayesian networks. What makes these networks interesting is the fact that every

two slices (i and i+ 1) are completely separated by the MPS {X4.i, X6.i, X3.(i+1),

X5.(i+1)}. As {X1.i, . . . , X(n−3).i} and {X(n−1).i, X(n−2).i, Xn.i} are the two MPSs

in each slice, then the number of MPSs in a network is 2 · s + (s − 1), s being

the number of slices in the network. Finally, although the structure of each slice

is the same, they can have different optimal triangulations because the number

of states for each variable has been randomly generated (by using a Poisson dis-

tribution of mean 4 and minimum equals to 2). We have generated ten random

networks, termed as RbNxS, with N the number of variables in each slice and S

the number of slices.

To avoid the reader to be overwhelmed from too many data and graphics, we have

later made a selection of the most representative cases, since there is a common trend.

We only reproduce here the experiments carried out over 4 real networks and 4 artificial

ones. We have selected this subset in order to have networks with different complexity

4www.cs.aau.dk/research/MI/Misc/networks.html

3.3. Investigation of this method through a set of distinct networks 111

�
�
�
�

��

�
�
�
�

��

X0.1

X1.1 X2.1

X3.1 X4.1

X5.1 X6.1

Xn.1

X
.1
n−1 Xn−2

.1

�
�
�
�

��

�
�
�
�

��

�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��

��

��

��������
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��

��
��
��

��

X0.2

X2.2

X3.2 X4.2

X5.2 X6.2

Xn.2

X
.2
n−1 Xn−2

.2

X1.2

Figure 3.16: Basic structure for the artificially generated networks.

(measured in terms of number of nodes and links). Table 3.1 shows some information

about the networks: its name [Net], the number of variables [#V], the mean number

of states per variable [µ(#St)] and the number of links/arcs in the network [#E].

Besides, table 3.1 also shows information of interest for the incremental compilation

process: the number of links/edges in the moral graph [#EM], the number of Maximal

Prime Subgraphs [#S], the mean number of variables per subgraph [µ(#Vs)] (plus the

standard deviation [σ(#vs)]), and the number of variables in the largest subgraph [S∗
v].

Table 3.1: Description of the networks.

Net #V µ(#St) #E #EM #S µ(#Vs) σ(#vs) S∗
v

Prostanet 47 2.21 81 116 28 3.71 2.88 17

Munin1 189 5.26 282 366 70 4.14 12.61 108

Pigs 441 3.0 592 806 227 3.68 10.09 155

Munin4 1041 5.42 1397 1843 498 3.51 15.40 342

Rb10x5 50 4.36 58 71 14 5.43 2.79 9

Rb10x10 100 3.82 118 146 29 5.38 2.70 9

Rb20x20 400 4.05 438 496 59 8.74 7.42 19

Rb20x50 1000 4.06 1098 1246 149 8.70 7.36 19

112 Chapter 3: Incremental compilation of Bayesian networks

3.3.2 General idea for the experimental suite

The scene where the Incremental Compilation (IC) plays its main role is the fol-

lowing one: a user modelling a BN that has been previously compiled decides to make

some changes on it. A real study with users is not feasible, so, we have made a simu-

lation where we consider some of the possible situations. We carried out experiments

according to the following criteria:

1. The four basic modifications should participate in the simulation, that is, addi-

tion/deletion of nodes/arcs.

2. The modifications should be realistic.

3. Both the amount (ratio) of nodes/arcs changed and their relative positions (whether

they are located in the same area or not) should be studied.

3.3.3 Experiment 1: Random modifications

The immediate approach for generating modifications would be to randomly select

nodes and arcs to add to (or remove from) a network. However, this would probably

give rise to unrealistic modifications, as linking nodes which are too far in the graph.

Because of this, to generate a list of realistic modifications, we propose the following

procedure:

1. modListD = {}

2. for n=1 to numCases do

2.1 Randomly select a node X from the network B

2.2 modListD.append({del(X,Y) | X→Y or Y→X are in B})

2.3 modListD.append(del(X))

3. modListA = (reverse(modListD) replacing del by add)

4. return modListD and modListA

Thus, we generate two modification lists which are close to realistic, in the sense

that both come from the real network. Moreover, by modifying the network in two

steps, applying modListD followed by modListA, we get the original network.

Note that deleting/adding a node involves deleting/adding first/after the incident

links (e.g. in figure 3.5.(a) deleting the node L will provoke a previous deletion of both

S → L and L → E). So, even selecting a few nodes, the impact of the modification

over the network can be significant.

3.3. Investigation of this method through a set of distinct networks 113

Finally, experiment 1 consists in:

1. Let B the network, T a join tree for it, and numCases.

2. Get modListD and modListA by using the previous method.

3. BD = modify(B,modListD)

4. Obtain T I
D by using incremental compilation from T and TN

D

by compiling BD from scratch

5. BA = modify(BD,modListA) // note that BA == B

6. Obtain T I
A by using incremental compilation from T I

D and TN
A

by compiling BA from scratch

In this experiment, the number of variables (numCases) deleted/added is controlled

by the parameter n. Depending on the complexity of the network, n has a different

meaning: If #V ≤ 100 then numCases=n, otherwise numCases is the n% of #V. Notice

that even when n = 1 that could imply multiple modifications that will depend on how

many children and parents the corresponding nodes present. In order to compare

incremental compilation (IC) with traditional re-compilation, we collect different data:

time (seconds) and number of nodes/links affected by the modifications.

Tables 3.2 and 3.3 shows the results obtained for n=1 and n=2. The data shown

in the table are: the ratio between the time required by re-compilation [tN] and IC

[tI]; The time required by re-compilation [tN]; the number of variables [V] and edges

[E] modified in the moral graph; the ratio5 (re-compilation/IC) of variables [V r
N/V

r
I]

and edges [Er
N/E

r
I] involved in the triangulation process. All the data are on average

(µ(·)) over the number of runs carried out. For the number of variables involved

in the triangulation process also the standard deviation is shown [σ(#V r
I)]. In our

experiments 20 series have been carried out, which gives rise to 40 runs, because every

series produces two experiments (modListD and modListA).

3.3.4 Experiment 2: Modifications closer to customary usage

Although the modifications carried out in experiment 1 seem realistic, the random

selection of nodes may not reflect reality. In fact, when a user or knowledge engineer is

creating or modifying a large network it is very difficult to have a broad wide scope of

it, or even to have the possibility of viewing the whole model. Thus, s/he usually con-

centrates on a limited region of the model, exploring the nodes and relations included

5Note that this ratio is in fact the fraction of the whole network which has to be triangulated in

Incremental Compilation.

114 Chapter 3: Incremental compilation of Bayesian networks

Table 3.2: Experiment 1 (Random), n=1.

Network µ(tN
tI

) µ(tN) V E µ(
V r

I

V r
N

) µ(
Er

I

Er
N

) σ(#V r
I)

Prostanet 7.596 0.047 1 6.15 0.32 0.34 9.86

Munin1 2.952 0.564 2 9.25 0.55 0.63 23.16

Pigs 8.769 3.143 4 16.9 0.33 0.34 47.85

Munin4 1.758 19.064 10 37.55 0.36 0.43 30.55

Rb10x5 4.839 0.040 1 3.05 0.23 0.20 3.28

Rb10x10 8.355 0.160 2 6.1 0.22 0.19 6.02

Rb20x20 12.103 2.228 4 10.25 0.20 0.18 12.59

Rb20x50 17.663 17.624 10 25.9 0.19 0.17 32.59

Table 3.3: Experiment 1 (Random), n=2.

Network µ(tN
tI

) µ(tN) V E µ(
V r

I

V r
N

) µ(
Er

I

Er
N

) σ(#V r
I)

Prostanet 6.934 0.047 2 10.85 0.42 0.43 9.95

Munin1 1.092 0.855 4 17.05 0.60 0.67 3.61

Pigs 1.411 3.236 9 35.4 0.40 0.40 10.41

Munin4 1.492 19.339 21 77.6 0.42 0.47 33.16

Rb10x5 2.980 0.038 2 5.9 0.40 0.35 5.88

Rb10x10 4.317 0.153 4 12.25 0.41 0.35 9.82

Rb20x20 6.542 2.169 8 21.15 0.36 0.33 21.31

Rb20x50 9.227 17.284 20 52.15 0.35 0.32 57.42

3.3. Investigation of this method through a set of distinct networks 115

in that region.

To reflect this more realistic behaviour we change the manner in which the nodes

to be modified are selected. First, we randomly select a leaf node X1 from the network

and all the nodes linked to it are included in a set N . This set, that will incrementally

receive new elements, is the container of the next nodes candidates to be selected.

Then, at stage i the next node Xi is randomly selected from N , and all the neighbours

of Xi are added to N . In this way all the modifications are concentrated in the same

region of the network. We have denoted this experiment as neighbour while experiment

1 is termed random. Tables 3.4 and 3.5 show the results of this experiment.

Table 3.4: Experiment 2 (Neighbour), n = 1.

Network µ(tN
tI

) µ(tN) V E µ(
V r

I

V r
N

) µ(
Er

I

Er
N

) σ(#V r
I)

Prostanet 14.136 0.048 1 1.75 0.15 0.14 7.31

Munin1 3.249 0.850 2 9.15 0.57 0.65 17.35

Pigs 20.909 3.111 4 31.85 0.33 0.33 60.43

Munin4 16.001 19.075 10 31.75 0.22 0.26 149.43

Rb10x5 5.463 0.039 1 3 0.22 0.18 1.99

Rb10x10 16.651 0.165 2 4 0.11 0.09 2.81

Rb20x20 44.711 2.285 4 6 0.05 0.05 3.97

Rb20x50 164.202 18.428 10 12.2 0.02 0.02 7.93

Table 3.5: Experiment 2 (Neighbour) ,n = 2.

Network µ(tN
tI

) µ(tN) V E µ(
V r

I

V r
N

) µ(
Er

I

Er
N

) σ(#V r
I)

Prostanet 2.222 0.046 2 15.65 0.50 0.47 7.81

Munin1 1.079 0.856 4 16.35 0.59 0.67 4.08

Pigs 2.842 3.174 9 61.7 0.40 0.39 32.56

Munin4 13.587 19.750 21 67.65 0.24 0.27 158.85

Rb10x5 5.626 0.039 2 4 0.21 0.18 2.48

Rb10x10 12.941 0.159 4 9.05 0.14 0.12 6.00

Rb20x20 46.252 2.300 8 10 0.04 0.04 5.99

Rb20x50 76.699 18.705 20 28.8 0.04 0.03 16.10

116 Chapter 3: Incremental compilation of Bayesian networks

3.3.5 Experiment 3: Impact of the number/size of modifica-

tions on IC performance

In the previous experiments we have modified the network by using n = 1 and

n = 2 which in some cases produce a big impact on the resulting model. Also, many

statistics about the process have been collected. In this experiment we ran the process

described in experiments 1 and 2, but we only focused on the ratio tN
tI

. On the other

hand, we ran the experiment for numCases = 1, 2, (that is, the parameter n is not

used in this experiment6). Figures 3.17 (real networks) and 3.18 (artificial networks)

show the results of this experiment averaging over 10 different runs, where numCases

is represented in axis X and the ratio tN
tI

is represented in axis Y . Note that in some

cases logarithmic scale has been used in axis Y so as to offer a finer visualisation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

Random
Neighbour

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

Random
Neighbour

(a) Prostanet (b) Munin1

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

Random
Neighbour

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

Random
Neighbour

(c) Pigs (d) Munin4

Figure 3.17: Impact of numCases over the ratio tN/tI for the real networks.

6Notice that for example in network Munin4 n = 1 implies numCases=10.

3.3. Investigation of this method through a set of distinct networks 117

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10

Random
Neighbour

 2
 4
 6
 8

 10
 12
 14
 16
 18

 5 10 15 20

Random
Neighbour

(a) Rb10x5 (b) Rb10x10

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50

Random
Neighbour

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

Random
Neighbour

(c) Rb20x20 (d) Rb20x50

Figure 3.18: Impact of numCases over the ratio tN/tI for the rhombus networks.

3.3.6 Experiment 4: Addition vs Deletion changes for IC

In this experiment we want to compare the effect of the two types of modifications

(deletion and addition) when performing incremental compilation. To do this, we

base our study on experiments 1 and 2, but now we show the ratio tN/tI separately

for runs involving deletions (type D – modListD) and runs involving additions (type

A – modListA). Table 3.6 shows the results obtained for a representative subset of

the networks used in this paper, where we distinguish between random and neighbour

modes as usual. We should note that, due to the experiment design, in the deleting (D)

phase the network is decreasing incrementally in size, because we are deleting elements

(nodes together with their incident links) while in the second stage (adding - A) the

network will grow again until adopting the original structure.

118 Chapter 3: Incremental compilation of Bayesian networks

Table 3.6: Results for modifications of type: deletion (D) and addition (A).

Random Neighbour

D A D A

Network (n) µ(tN
tI

) µ(tN) µ(tN
tI

) µ(tN) µ(tN
tI

) µ(tN) µ(tN
tI

) µ(tN)

Munin1 (1) 7.183 0.820 6.611 0.668 5.383 0.823 1.114 0.877

(2) 1.088 0.811 1.095 0.897 1.086 0.814 1.073 0.898

Pigs (1) 16.055 3.063 1.483 3.223 30.481 2.997 11.336 3.225

(2) 1.368 3.093 1.453 3.379 4.271 2.942 1.413 3.407

Rb20x20 (1) 14.813 2.134 9.394 2.316 56.980 2.249 32.442 2.321

(2) 8.112 2.010 4.972 2.328 62.83 2.262 29.674 2.338

Munin4 (1) 1.811 19.028 1.704 19.100 22.034 19.086 9.968 19.063

(2) 1.550 18.834 1.434 19.843 19.568 19.489 7.606 20.011

3.3.7 Experiment 5: Influence of IC when creating potentials

Compilation of a BN is the process that takes a network as input and produces

an initialised join tree, that is, a join tree over which inference can be carried out.

Depending on the inference method, the meaning of an initialised join tree differs.

Thus, if Lazy Propagation is used [81] it is enough to build the join tree and to establish

the assignment of the network probability families (conditional probabilities) to the

cliques in the join tree. This is just the process we have measured in experiments 1

to 4. However, if lazy propagation is not used (which is the case for most Bayesian

network tools), then the potentials associated to each clique have to be initialised as

the product of the probability families assigned to it. In this experiment we analyse

the effect of using IC when potentials are initialised as probability tables (the usual

representation, e.g. [74]). Table 3.7 shows the data for this experiment with n = 1 and

n = 2. In this case the measures times TN and TI include compilation (triangulation

+ JT construction) together with potentials initialisation.

We have only included one of the artificial networks: Rb20x20. This is because

they are not our particular aim in this case as their structure provokes that nearly all

the cliques contain only one family. So, there is barely multiplication of tables and we

would be in a situation very close to that in experiments 1 and 2. For real networks,

we skipped Munin1 due to the memory resource required by the large state space of

its probability tables.

3.4. Analysis from the experiments 119

Table 3.7: Results for experiments initialising tables (n = 1 and n = 2).

Random Neighbour

Network µ(tN
tI

) µ(tN) µ(tN
tI

) µ(tN)

Prostanet (1) 11.859 0.084 18.471 0.086

(2) 5.986 0.084 3.480 0.082

Pigs (1) 11.740 7.272 56.144 7.158

(2) 2.255 6.659 2.204 6.520

Rb20x20 (1) 11.113 2.543 41.016 2.585

(2) 5.996 2.455 41.795 2.572

Munin4 (1) 1.249 156.525 26.436 177.676

(2) 1.191 146.357 30.353 169.48

3.4 Analysis from the experiments

From an examination of the results obtained we are in a position to draw the

following main conclusion: with respect to the parameter analysed in this chapter

(CPU time), Incremental Compilation is always beneficial.

A careful examination of the experimental results leads us to a more specific anal-

ysis:

• When modifications are selected randomly (exp. 1) the gain provided by IC

increases with the complexity of the BN and the MPD (number of subgraphs

and number of variables per subgraph) and decreases with the modified portion

of the network (parameter n).

• When a real behaviour is simulated (neighbour) the previous observation also

holds and now the gain obtained by IC is severely increased. For example, with

Munin4 and n = 2, even though a big fraction (≃ 25%) of the BN is affected by

IC, our method is 13 times faster than Non-IC.

• As it has been pointed out the larger the network is the bigger the gain is.

Moreover, it is important to notice that precisely these large networks are those

that require more CPU time to be compiled. As an example, a speedup of 1.09

in Munin1 means that 0.78s are needed instead of 0.86s while in Munin4 the

120 Chapter 3: Incremental compilation of Bayesian networks

speedup of 1.76 means that less than 11s are needed instead of 19s. For that

reason, larger networks are the ideal target for IC.

• In experiments 1 and 2 a moderate number of modifications has been considered.

The purpose of experiment 3 is to illustrate how IC behaves as a function of the

number of modifications. From the graphics shown in figures 3.17 and 3.18 we

can observe a huge speedup obtained when only a few variables (and their links)

are modified. Remark that for large networks (Munin4) even modifications based

on up to 30 variables yields a considerable speedup.

• The graphics in exp. 3 are also very useful to compare random and neighbour

modifications. As we can see, in general, IC works better when realistic changes

are performed.

• Exp. 4 has confirmed that adding links (A) affects more MPSs than removing

links (D), so a bigger part of the network has to be retriangulated. To check this,

just compare D and A columns for both Random and Neighbour forms in all the

cases. This conclusion would be stronger when the network has a homogenous

MPS Decomposition, as Rb20x20’s results prove.

• In exp. 5 we go beyond structure construction and we also initialise the clique

potentials. This procedure involves the multiplication of probability tables which

is a time consuming process for large tables such as in Munin4. That is why

recompiling with n = 2 Munin4 needs 6s (IC) vs 3 minutes (Non-IC). IC also

improves its speedup with respect to Non-IC in Pigs network, however the im-

provement is smaller than in Munin4. This is caused by the fact that in Pigs all

the probability tables are rather small (3 variables × 3 states, at most).

• The results obtained for small networks7 of around 40-50 nodes are quite partic-

ular when the BN only presents one or just a few leaf node(s). In the neighbour

case the selected node is almost always the same and the next node to delete

will be its parent, which normally belongs to a big clique. So it is curious that

under these circumstances random experiments avoid this situation and could

give better results.

7Not all reproduced here, but tested in our whole experimentation.

3.5. Main conclusions and further work 121

3.5 Main conclusions and further work

We have developed a method for incremental compilation of Bayesian networks, as

we aimed at the beginning. This method is based on the MPS decomposition. So,

it depends on a maximal prime subgraph representation of the graph of the Bayesian

network, which is easily obtainable from the join tree representation. The key point is

that the maximal prime subgraphs are the minimal subgraphs that can be triangulated

independently, and the method thereby ensures that no superfluous computations are

carried out. Moreover, the method supports stability of the join tree as existing parts

are recycled and only the parts that have been affected by changes in the BN are

modified.

The method saves time in situations with frequently changing BNs. This is typically

the case during construction and tuning of models, but also during learning of BN

models minor modifications are often systematically applied. In such processes huge

model spaces are searched and modifications will most often consist of addition or

removal of a single arc and we have verified that for small changes IC provides a huge

speedup.

The main algorithm IncrementalCompilation is constructed such that it can

be activated at any time. This enables the procedure to operate both in simple mode,

where it is called for each simple modification to the BN, and in batch mode, where

several modifications are processed simultaneously. Thus, a situation similar to infer-

ence, where inference can be performed either for each piece of evidence or for a group

of findings, can be obtained. This feature is seen in most tools for construction and

execution of BN models.

After a first methodological work to devise this technique [43], we started investi-

gating the programming of the given algorithms to test their practical impact. Then,

in the second part of this chapter an experimental evaluation of Incremental Compi-

lation of Bayesian networks has been presented, completing the first algorithmic part

[44]. To tackle this practical work, we designed first a set of experiments that could be

representative for distinct real cases and taking into account all kind of modifications

and particular conditions that could make IC easier or harder to perform. From the

analysis of the experiments carried out we can conclude that IC is an advantageous

method with respect to compilation from scratch, in particular when the network is

large and slightly modified. But these two particular conditions were the ones we were

really interested to solve, since large networks was the problematic case for a recom-

122 Chapter 3: Incremental compilation of Bayesian networks

pilation and the changes done on them (when modelling or other iterative tasks) are

quite usually restricted to a little amount of the network located in a limited area.

We reckon that this method has been proved of interest even in networks having a

(by far) non-uniform MPS Decomposition. Since, this is finally a divide and conquer

approach it is expected its efficiency grows if the division is more balanced. It is for

that reason that the speedup increases enormously when the network has a nice MPSD.

Apart from an optimisation of the programming code in general, we would like to

characterise theoretically certain unusual situations that need extra processing tasks.

By this, we could save the computational time needed to guarantee that the method

is always correct. We believe that it is possible to detect when to apply these secure

processes and that characterisation will allow us to escape from the unnecessary use of

resources that occurs in some occasions.

For further research, we plan to test the behaviour of IC vs Non-IC in terms of

stability, i.e. how (dis)similar the structure of the obtained Join Tree is compared to

the initial one.

Also as a future work it would be possible to investigate about the extension of this

method from discrete Bayesian networks to other kinds of graphical models, such as

CG-models and influence diagrams.

We would like to point out that the Incremental Compilation task can be interpreted

as well as a modular collaborative distribution of the network that is obtained directly

from it. That is, we partition the network in subgroups that correspond to the MPSs.

In the literature we find many attempts to do this modular division from the opposite

point of view, that is, constructing a total and larger network from smaller items that

might be seen as subgroups or subnetworks. This is another incremental perspective,

were the elements are accumulated, connected and integrated to form bigger structures.

These conceptions are usually located in the framework of Knowledge Engineering

and the Object Oriented philosophy. From this basis, we will devote next chapter

to comment the main proposals for diverse modular structures, and to analyse the

connections between IC and them which can be of great utility for certain purposes,

as the inference process.

Chapter 4

Revision on modular Bayesian

structures

Divide each difficulty into as many parts

as is feasible and necessary to resolve it.

René Descartes. (1595–1650)

French mathematician, scientist and philosopher.

4.1 Introduction

Recently, there has been a great interest in obtaining modular Bayesian Networks.

There have been different approaches to do so. The main motivation of all of them

coincides. When tackling complex problems a single BN presents many difficulties:

• The modelling task is quite hard, since we need to consider all the factors involved

in the problem at a unique stage.

• Once we have obtained this total model, the resultant inference construction

seems to be unmanageable or it just takes too much time and space for compu-

tation.

• Afterwards, for future modifications, additions or removals, it is again necessary

to face up to the whole representation, even when many parts should not be

affected by these changes. Thus, it is muddling to work with big structures, as

the overall view sometimes do not let us be able to detect the elements involved

in one concrete part of the problem.

124 Chapter 4: Revision on modular Bayesian structures

There have been several trials in order to deal with these complex, but very usual

problems. Since normally Bayesian networks turned to be inadequate as a general

representation language for large and complex domains [82], a combination of net-

work fragments in order to form problem-specific models to reason about particular

applications was discussed in [72]. This work presented a framework to support au-

tomated model construction from a knowledge base expressing generic probabilistic

relationships. These foundations have also given rise to many further research fields

and applications, such as network construction [83], learning [85] or the possibility of

working with partially specified Conditional Probability Tables [84].

Another contemporary, yet independent, approach are the Object-Oriented Bayesian

networks (OOBNs) by Koller and Pfeffer [66]. Both frameworks work in the same di-

rection, but using different tools. They share some features such as the incremental

construction from simpler structures (let us call them fragments or objects) to complex

ones. However, they differ not only in the usage of their representation, but also in

their nature: network fragments build complex models procedurally while OOBNs use

a declarative object-oriented representation language. As a result, this latter approach

allows the organisational structure of a model, in particular the encapsulation of ob-

jects and the reuse of OONFs within a model, to be expressed explicitly and utilised

by the inference algorithm. This object-oriented framework defines a basic unit, which

is the object, as a collection of properties (attributes) associated to some entity in the

problem domain. These properties will belong to a certain and previously defined type.

And there is an important distinction between what they call input (like parameters

passed to an object), output (as the information produced by the object) and encap-

sulated attributes (internal to the object and unknown to the outside). An example of

this framework is given in figure 4.1. Also, in figure 4.2 we can see an overview of the

interconnection between elements. A more detailed study of this latter framework can

be found in [102]. It presents some common features with another OOBN approach

that will be seen in detail later in this chapter.

Apart from the previous brief review of various relevant proposals in the field, we

will focus on two other concrete frameworks: Multiply Sectioned Bayesian Networks

(MSBNs) by Xiang [133] and the Object Oriented Bayesian Networks (OOBN) ap-

proach by Bansgø and Wuillemin [4]. The first one is particularly interesting for us,

since we find close similarities with Incremental Compilation procedure in a way that

both can be benefitted from each other and collaborate. That will be more deeply pre-

4.1. Introduction 125

Current-Val Braking-Power Steering-Safety Max-Speed

Car

Weather

ConditionSpeed-Limit

Road

Car-Speed

Accident

Accident-Level

Damage

Age Income Driving-Skill

Driver
Aggression

Figure 4.1: OOBN model for a car accident.

Original-Val MaintenanceAge

Mileage

Type

Steering-Safety Braking-PowerCurrent-ValMax-Speed

TiresEngine
Power Balance

Owner

Steering Brakes
Power

IncomeAge

Handling TractionReliability

Figure 4.2: Interconnection model in an example OOBN modelling for a car.

sented in the following sections. On the other hand, OOBNs1 inference has also taken

advantage of the Incremental Compilation technique collaborating in the achievement

of the so-called Plug & Play OOBNs [6] as section 5.4 will describe. In addition OOBNs

and MSBNs are also closely related, and there exist techniques for mutual translation,

which can also be quite useful for our proposals.

But again, even if they present analogies their view and nature are clearly separated.

MSBNs can be understood as an extension of the traditional Bayesian network as a

single-agent paradigm to the multi-agent scope. On the other hand OOBN, as well

as the first commented frameworks, can be located closer to the discipline of Software

1From now we will refer to OOBNs considering the framework presented by Bansgø and Wuillemin.

126 Chapter 4: Revision on modular Bayesian structures

Engineering. Besides, in MSBNs the partitioning of the undertaken problems is natural,

and the hidden or internal information is originally like that. On the contrary, OOBNs

are normally suitable for exploiting repetition, for reusability or for dynamic structures.

4.2 Multiply Sectioned Bayesian networks: basics

on MSBN

Multiply Sectioned Bayesian Networks have been mainly developed by Xiang. The

first work about this structure is covered in his Ph. D. thesis [129]. In this thesis we

can find the theory for MSBNs and junction forests as well as its implementation in

WEBWEAVR (see figure 4.3), for which version IV is about to be released. The first

version of this software was used in order to develop PAINULIM, a real system for

neuro-muscular diagnosis [130]. But an overall of the research done over this subject

and a more complete work is on his recent book [133].

Figure 4.3: Screen shot of the software tool WEBWEAVR-III. On the left: the MSBN

editor window showing the example MSB network 5part. On the right side it is shown

the BN corresponding to one of the agents of this MSBN.

The idea behind the MSBNs is the possibility of obtaining the natural modularity

of many problems we commented above. Xiang sees Bayesian networks as a graphical

model used by an intelligent system to be able to reason. What he proposes is that we

can have a multi-agent system that combines different parts of a problem. These parts

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 127

can be Bayesian networks that together form an MSBN. Basically, MSBNs present

these main features:

1. A set of Bayesian networks, called subnets, collectively define a BN.

2. Interface between subnets that render them conditionally independent.

3. Top level structure as a hypertree.

4. This hypertree is compiled into a Linked Junction Forest (LJF) for inference.

5. Coherent inference operations are defined for a LJF.

These main points can help for a global overview of the theory for MSBNs, it is

nevertheless necessary to go further in their description in order to study the problem

we try to undertake. And that is the purpose of the following subsections.

At this point we refer to figure 4.4.(a), that describes a system for diagnosis of faulty

gates, the next figure (4.4.(b)) is the resultant MSBN that this example yields. This

can give a first intuitive glimpse to the problem we try to deal with. Of course, this is

a very simple example, but that illustrates quite well the type of situations we would

like to model and it is easy to follow, but we should remark that MSBN are thought

to work with more complex domains. Let us see figure 4.4.(a). We find a digital

system, with some signals (lower case letters) and some digital gates (OR, AND and

NOT gates) we name as Gi. In this particular problem, there is a natural partitioning

since the whole circuit is supposed to be composed of different parts that might come

from various circuit vendors. So, every subsystem may be not only different in nature,

but also unknown for the rest, and this lack of information could even be introduced

deliberately in order to hide the specifications from other (market competitor) vendors.

The dotted line areas indicate the different subsystems U0 to U5. We can see there

are some shared signals as f between U0 and U1 or g between U0 and U2. This will be

translated into the communication elements, but there will be some other components

only known by the subsystem that contains them. For instance, signal m, or gate G6

are internal information for only subsystem U2.

The associated set of subnets could be the one depicted in figure 4.4.(b). If we look

as just one of them it is a traditional BN, where both signals and gates are represented

by nodes in the network, and for every gate we have the conjunction of the gates and

input signals will affect the output signal, represented by the links. For example, in

the subnet D0, the subgraph formed by a,e,g and G2 comes from the or-gate G2 in

128 Chapter 4: Revision on modular Bayesian structures

the previous figure. We can see that the output signal (g) depends on the input signals

a and e, and also on the gate G2, that can work properly or otherwise it could be

faulty. This diagnosis of faulty-gates is what the system tries to determine. But the

particularity of these nets is that they have some nodes in common as the system

presented some elements in common.

a
b

c

G4

G2

G10

G9

G11

h

j

U1

G12

G5

U4

r

s
u

vt

G13

G14

G15

G16

U3

U0

l

i

m

G3

G1
e

f
d

n
o

p

w

q
x

y

z

G6

G7

G8

G17

G19

G18
U2

g

k

b

e

a

g

g

n

o p

w

x y

G4

k
q

G9

m

D2

G18

q

k

G12

i j

h

G10

l

G11

D0

D1

D4

D3

G3

p

z

r
us

k

g

f

f
c

d

G1

G2

G5

G7

G8

G6
G17

G19

G13

G15

l t v

G14
G16

(a) (b)

Figure 4.4: (a) Digital circuit for detecting faulty gates. (b) Corresponding MSBN.

4.2.1 Basic Assumptions for MSBNs

As we have already seen MSBNs is a generalisation of BNs taken them to a multi-

agent paradigm. It is obvious that this translation will require some new concepts.

Firstly, we are going to define some of these concepts and we will also sketch out the

set of basic assumptions that Xiang outlines in his book. What he makes is a kind of

travel where he shows those conditions that seem to be desirable in order to have an

efficient and safe way of treating these structures.

An agent will be an element of the system that deals with a concrete part of the

overall system (subsystems), interacting with the rest of the agents, but containing its

own information that will be private and hidden to the rest of the system. Agents will

communicate through common components. Two neighbours agents share one or more

components that will constitute their interface. In this approach each agent can be

seen separately as a small Bayesian network, subset of the global one, which is called

subnet. These subnets must be seen from the point of view of cooperating agents.

Let us see now the five basic assumptions we need to take:

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 129

Basic Assumption 1 Each agent’s belief is represented by probability. 2

What remains behind this statement is that we must be able to perform belief

updating in an exact way (at least theoretically it would be possible). Also, if we

assume that the total domain V is populated by a set of agents {Ai}, each agent Ai has

knowledge (structural knowledge and also numerical by this probability representation),

over the subdomain Vi ⊂ V .

Basic Assumption 2 An agent Ai can in general influence the belief of each other

agent through direct or indirect communication but can communicate directly to another

agent Aj only with Pj(Vi ∩ Vj) where Vi ∩ Vj 6= ∅. 2

This second assumption considers that the communication between adjacent agents

can be done directly and only with a concise message: a belief table over the variables

both of them share. As said before an agent Ai covers a subdomain Vi. In order to

communicate to other agent it is needed a common subset Vi ∩ Vj = I 6= ∅. The

other variables (Vi \ I) will be private for the current agent (unless they belong to the

interface of Ai to another agent Ak, k 6= j).

Basic Assumption 3 A simpler agent organisation (as a subgraph of the communi-

cations graph) is preferred. 2

With this third assumption he recommends that a tree-organisation for agents com-

munication should be adopted. This result is already known from the single-agent field

research, as cluster trees were normally preferred to clusters graphs for belief updating.

That structure will help for a better cooperation process. It will facilitate the messages

flow.

Basic Assumption 4 A Directed Acyclic Graph (DAG) is used to structure each

agent’s knowledge. 2

This requirement is necessary on the sake of efficiency. To encode domain depen-

dence correctly graphical structure should be an I-map. We need to guarantee that

restriction. Also, in order to organise agents, we also have to decide the conditions for

the bounds between agents. So a separation criterium will be covered here (d-sepsets).

Basic Assumption 5 Within each agent’s subdomain, a Joint Probability Distribu-

tion (JPD) is consistent with the agent’s belief. For shared variables, a JPD supple-

ments an agent’s knowledge with others’. 2

130 Chapter 4: Revision on modular Bayesian structures

This final postulate enforces cooperation among agents and interprets the JPD as

the collective belief of all agents.

Basically, the way in which Xiang presents all these assumptions follows the scheme

depicted below:

• Firstly, Basic Assumption (hereafter BA) 1 comes from our interest about using

the Probabily Theory, mainly because of the origin of MSBNs, based on the

original BNs.

• Then, BA 2 is due to the inheritance of this new theory from the communication

between clusters in the traditional methods of inference over BNs.

• At this point we can state that if we have a communication graph H of a multi-

agent system presenting both BA 1 and 2, then H is connected.

• BA 3 just guarantees that the communication process between agents will be

relatively simple as trees present the desirable features for it (we can think about

the junction tree for propagation, for instance).

• In this reasoning line, a multi-agent system that observes the first third BAs

can use its tree organisation of agents for communicating beliefs. And we could

therefore make a sort of junction tree organisation of agents for this purpose.

• If we wish to work independently with every agent, then we should pursue that

the interface in this tree organisation renders subdomains in the two induced

subtrees conditionally independent. Remember that we call interface the shared

variables between two adjacent agents.

• Since the representation using a graphical model seems to be quite suitable when

the domain is complex, we assume that a DAG will be used to structure the

agent’s knowledge about a subdomain. As we already said BA 4 is not a neces-

sary characteristic, but quite convenable because knowledge acquisition can be

performed quite compactly using this DAG structure.

• So, in this stage of the analytical thread, if a multi-agent system observes BAs

from 1 through 4 we can assure that each subdomain Vi is structured as a DAG

over Vi and besides the union of these DAGs is a connected DAG over V. This

statement as well as many of the results we are presenting here are written in

Xiang’s book as propositions with their corresponding proofs.

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 131

• From the previous points we are just ready to present the concept of d-sepset

(recall definition of d-separation in chapter 1, def. 5)

Definition 23 Let Gi = (Vi, Ei)(i = 0, 1) be two DAGs such that G = G0 ⊔G1

is a DAG. A node x ∈ I = V0 ∩ V1 with its parents pa(x) in G is a d-sepnode

between G0 andG1 if either pa(x) ⊆ V0 or pa(x) ⊆ V1. If every x ∈ I is d-sepnode,

then I is a d-sepset. 2

Figure 4.5 shows an example where the condition either pa(x) ⊆ V0 or pa(x) ⊆ V1

is necessary to obtain the d-sepset.

• Thus, the next requirement will be that each agent interface Z should be a d-

sepset. Until here, we have described a multi-agent dependence structure at two

levels: the agent modelling and the cooperative system organisation. Now the

tool that joins both levels is the hypertree notion.

c

g

e

f

...

......

...

... d

G 0 G 1e
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

a

h

f

Figure 4.5: An agent interface e,f that is not a d-sepset. G0 and G1 represent agents

and dots additional variables we just don’t need to show.

Definition 24 Let G = (V,E) be a connected graph sectioned into subgraphs

{Gi = (Vi, Ei)}. Let the Gis be organized as a connected tree Ψ, where each

node is labelled by a Gi and each link between Gk and Gm is labelled by the

interface Vk ∩Vm such that for each i and j, Vi∩Vj is contained in each subgraph

on the path between Gi and Gj in Ψ. Then Ψ is a hypertree over G. Each Gi

is a hypernode, and each interface is a hyperlink. 2

Let us see the hypertree of figure 4.6.(b). It comes directly for the graph G in

4.6.(a).

132 Chapter 4: Revision on modular Bayesian structures

o

mn
k

l

i

g

f

hb

e
d

c

a

p

j

{f,g,h} {j,k,l}

{f,i,j}

3G1G

2G

0G

(a) (b)

G 0

o p

jif

G 1

g

hb

e
d

c

a

f

G 2

k

l

i
jf

g

h

G 3

mn
k

j

l

(c)

Figure 4.6: (a) A graph G. (b) The hypertree Ψ over the Graph G. (c) The four

subgraphs G0 to G3 in which G has been sectioned and that yield hypergraph Ψ.

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 133

In some cases the d-sepset definition (Def. 23) can fail when talking about nodes

shared by more than two subgraphs. For that, Xiang after a deeper analysis of the

situation extends the definition of d-sepset as follows:

Definition 25 Let G be a directed graph such that a hypertree over G exists. A node

x contained in more than one subgraph with its parents pa(x) in G is a d-sepnode if

there exists one subgraph that contains pa(x). An interface I is a d-sepset if every

x ∈ I is a d-sepnode. 2

• In a next step, it is proved that if Ψ is a hypertree over a directed graph G =

(V,E), for each hyperlink I splits Ψ in two subtrees over U ⊂ V and W ⊂ V ,

respectively U \ I and W \ I are d-separated by I if and only if each hyperlink

in Ψ is a d-sepset.

• From all this, the concept of hypertree multiply sectioned DAG or MSDAG (see

def. 26) comes, having the certainty that a multi-agent system presenting BAs 1

to 4, can be structured as a hypertree MSDAG

Definition 26 A hypertree MSDAG G = ⊔iGi, where each Gi = (Vi, Ei) is a

DAG, is a connected DAG such that (1) there exists a hypertree Ψ over G, and

(2) each hyperlink in Ψ is a d-sepset. 2

• We then can say that the MSDAG is the dependence structure equivalent to the

DAG structure in a BN. What we finally want to compute is the belief, so we

need in some extent to be able to know the JPD from each agent’s belief, and

we also wish to have consistent information. For that, the fifth and final BA is

presented.

This assumption attempts to integrate independently the construction of agents

into a coherent system.

• Going through all these BAs we have finally reached the definition of a Multiply

Sectioned Bayesian Network:

Definition 27 An MSBN M is a triplet (V ,G,P) where

- V = ∪iVi is the total universe where each Vi is a set of variables called a

subdomain.

134 Chapter 4: Revision on modular Bayesian structures

- G = ⊔iGi (a hypertree MSDAG) is the structure where nodes of each sub-

graph Gi are labelled by elements of Vi. For each x, exactly one of its

occurrences (in a Gi containing x∪ pa(x)) is assigned P (x|pa(x)), and each

occurrence in other subgraphs is assigned a uniform potential.

- P = ΠiPi is the JPD, where each Pi is the product of the potentials associ-

ated with nodes in Gi. Each triplet Si = (Vi, Gi, Pi) is called a subnet of M.

Two subnets Si and Sj are said to be adjacent if Gi and Gj are adjacent in

the hypertree.

2

Notice that this definition of MSBN is the logical consequence of the previous

five basic assumptions.

• To finish with this detailed description Xiang just proves that a multi-agent

verifying BAs from 1 to 5 can be represented by an MSBN or equivalent. That

is, from BAs on a multi-agent reasoning task we got the requirements needed on

the representation formalism.

4.2.2 Compilation and inference in MSBNs

In contrast to the single-agent paradigm in Bayesian networks where the reasoning

is a process completely centralised, in MSBNs inference needs to be done in an inde-

pendent way for every agent. Anyhow, this independence, that comes from the nature

of the system, can not be total, and then a collaborative method is also a requirement.

Xiang’s work has been directed to develop a computational framework to allow such

a multi-agent uncertain reasoning. The basic assumptions previously described were

set to facilitate this collaborative inference. Thanks to the way the agents (DAGs) are

structured in the hypertree it is possible to establish communication among the agents

necessary for an inference process where all agents need to cooperate with their own

information.

In [131] there is a thorough description on how inference could be done for an MSBN.

In that work, there exist six different types of dlink2 and the transformation form an

MSBN to a Linked Junction Forest (the corresponding entity to a Junction Tree for

Bayesian networks) is explained. But further work, summarised in [133] redefines this

2D-link is a link between two d-sepnodes.

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 135

compilation process in order to simplify the process. It is this latter approach the one

that we will review below.

As in Bayesian networks probabilities need to be represented and inferred. Xiang

proves that given a multi-agent system that observes BAs from 1 to 5, it is then

structured as a hypertree MSDAG. Therefore, the dependence structure of this multi-

agent system is a connected DAG G. This assures that a joint probability distribution

over the set of variables V (G = (V,E)) can be defined by specifying a local distribution

for each node and applying the chain rule. That was considered to set out the BA 5.

From this last BA and from the definition of an MSBN (def. 27), we could compute

the joint probability distribution as indicated in the following example.

S1

S0

S2

S3

P(d|e) P(e|f,g) P(f|g)

P(c|d)

P(a|b) P(b|h) C(h)

P(g|h)

i
f

g

h

j

k

l

m

j

k

l

n
P(f|g) P(i|f,g) C(j|i)

C(g|h)

C(l|k)
P(h)

P(l|k)

P(m|j)

P(n|k,l,m)

P(p|f)

C(i|f)C(f)

P(o|f)

P(j|i,p)

C(j)

P(k|h,i)

C(k)

hb

e

c

a

d

g

f

f

o

i
j

p

{f,g,h} {j,k,l}

{f,i,j}

3G1G

2G

0G

Figure 4.7: An example of MSBN with probabilities indicated.

Example 4 Considering the MSBN in figure 4.6 we now have to add the probabilistic

information as 4.7 illustrates. Each C() denotes a uniform potential. To facilitate

reading, subindexes have been omitted, that is, in the figure it is written P () instead of

Pi() and C() instead of Ci(). For subnet S0 = (V0, G0, P0), we have V0 = {f, i, j, o, p}

and P0(V0) = P (j|i, p)P (p|f)C(i|f)P (o|f)C(f). Note that P (p|f) and P (o|f) are

specified by the vendor of A0
3, whereas P (j|i, p) could be the result of combining

P0(j|i, p) from A0, P2(j|i) from A2 and P3(j) from A3.

So, the joint probability distribution for this whole MSBN is

P (V) = P0(V0) · P1(V1) · P2(V2) · P3(V3)

3Since we are supposed to use a logical circuit example, every agent Ai associated to a graph Gi

is supposed to correspond with a certain vendor.

136 Chapter 4: Revision on modular Bayesian structures

2

This previous formula is equivalent to the JPD obtained in a single-agent Bayesian

network (remember Equation 1.2).

It is also remarked the possibility of a shared node x to co-exist in multiple local

DAGs also containing its parents, pa(x). For example in figure 4.7 pa(f) = {g},

pa(g) = {h} and pa(h) = ∅. Both graphs G1 and G2 contain each of these parent sets.

In these particular cases the occurrence of the shared node x to which P (x|pa(x)) is

assigned can be determined arbitrarily, since this assignment will no make any difference

to the resultant JPD. In the previous figure, the occurrence of f – P (f |g) – is assigned

in G1, the occurrence of g – P (g|h) – is assigned in G1 and the occurrence of h – P (h)

– is assigned in G2.

It is assumed that for every variable x internal to a subgraph, P (x|pa(x)) is specified

by the corresponding agent and for each shared variable x, P (x|pa(x)) is specified

by combining beliefs from all agents involved. Then, BA 5 requires that the joint

probability distribution of the universe P ′(V) satisfies

P ′(V) =
∏

v∈V

P (v|pa(v))

being pa(x) the parents of a node x in the total graph G. According to def. 27

P (V) =
∏

i

∏

v∈Vi

f(v|pai(v))

where:

- pai(x) denotes the parents of x in the graph Gi

- f(v|pai(v)) = P (v|pai(v)) if pai(v) = pa(v) and P (x|pa(x)) is assigned to the

occurrence of x in Gi, and f(v|pa(v)), is a uniform potential otherwise.

Since a one-to-one mapping exists between terms P (v|pa(v)) in P ′(V) non-uniform

terms in P (V), and the uniform potentials do not affect the value of P (V), we have

P ′(V) = P (V).

Linked Junction Forests
As we already know it is possible to convert a multiply connected Bayesian network

(BN) into a junction tree (JT) to perform belief updating by message passing (chapter

1). So, the same would be desirable for its multi-agent extension. Since, each subnet

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 137

in an MSBN is also multiply connected in general, a similar compilation method has

been developed to perform belief updating in an MSBN by message passing. In fact,

all the previous BAs were directed to achieve this objective.

The alternative dependence structure to the single-agent Join Tree (from a specific

BN) is, as already commented, the so-called Linked Junction Forest (LJF). The way

of its construction is inspired in the JT building. This LJF building from an MSBN

is then somehow parallel to the compilation of a BN. We will refer to it as distributive

compilation, because it will imply distributing each agent shared information to the

rest. Figure 4.8 illustrates this relation. Hence, distributive compilation foundations

imitate traditional compilation.

BN
Compilation

- JT

MSBN
Distributed Compilation

- LJF

Figure 4.8: Parallelism between compilating BNs and MSBNs.

Yet this variation needs a more complex solution, since we are dealing with a more

complex problem. The new compilation procedure needs to include new features and a

non trivial adaptation of the algorithms to the distributed scope has to be done. As an

initial approach, see figure 4.9 where the main three steps of distributed compilation

are enumerated and also connected with the corresponding steps in a BN compilation.

step compilation distributive compilation

1. Graph moralisation (Gm) Cooperative Moralisation

2. Triangulation of Gm Cooperative Triangulation

3. Join Tree construction Linked Junction Forest construction

Figure 4.9: Compilation vs Distributive compilation

Next, we will make a brief description on how these three basic steps: Cooperative

Moralisation, Cooperative Triangulation and LJF construction should be performed.

For very interested readers, these processes are explained in detail in book [133]. Here

we just summarise them in order to show the more important points for the particular

138 Chapter 4: Revision on modular Bayesian structures

research of this work. Our greatest interest will of course be the compilation process and

especially triangulation, as we have examined the two of them thoroughly in previous

chapters. Also, we will see how MSBN could be benefitted from IC mechanism, and

moreover, how an alternative way for triangulation [132] can be applied in combination

to maximal prime subgraphs decomposition and independent MPS triangulations.

For a single BN the moral graph, the triangulated graph and the JT are all produced

in order to preserve the dependencies originally in the network also in the JT (each

of them is an I-map). A similar aim is pursued in MSBNs: its graphical structure

(MSDAG) is a graph that will also be moralised, triangulated and will give rise to a

LJF. The difficulty now is that each agent only has access to its local subnet and none

of them perceives the entire MSB network. So, cooperation among them is necessary

for both moralisation and triangulation, which are subsequently called cooperative.

1.- Moralise cooperatively/distributely the graph

Cooperative moralisation will be performed in an analogous way to probability

propagation schemes. So, in the corresponding hypertree4 one agent will act as the

root, Aroot. This root agent performs its local moralisation on its own graph (Groot),

calling next to the adjacent agents in the hypertree. By this call, the recipient agents

will also moralise themselves locally and later they will send the caller those moral links

that affect uniquely nodes in the shared set (d-sepnodes). This process is repeated until

all agents have carried out their own graph’s moralisation and all common moral links

have been communicated through neighbour agents in the hypertree.

Figure 4.10 indicates MSBN status for every step in the cooperative moralisation

in an example hypertree whereas figure 4.11.(a) illustrates the final situation for this

example and finally 4.11.(b) shows an overview of the entire process indicating the

previous notated phases. Thicker lines indicate the moral links that has just been

added from the local moralisation in the current phase. Blue lines indicate those moral

links added because they have been received from other adjacent agent message.

The cooperative moralisation algorithm performs the moralisation in a distributive

way, using two main algorithms: one for collecting moral links (which reminds the

downward phase of probability propagation) and the second for distributing them (sim-

ilar to the upward phase).

It has been proved that this cooperative moralisation produces exactly the same

moral graph as is the MSDAG would have been treated as a whole DAG correspond-

ing to a single BN. This proof can be found in bibliography, but we will omit it in

4We know that we will always have this hypertree from MSBN definition.

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 139

G0

G1

G2

a

k

b

dc

f
a

c d

be

i
c

b

a

G0

G1

G2

a

k

b

dc

f
a

be

i
c

b

a

dc

Phase (1)

G0

G1

G2

a

k

b

dc

f
a

be

i
c

b

a

dc

Phase (2)

G0

G1

G2

f
a

d

be
a

c

a

k

b

dc

i
c

b

Phase (3)

Figure 4.10: Example of applying Cooperative Moralisation .

this chapter to avoid excessive length in this particular look at MSBNs. Again, we

should remark that this method is not only valid, obvious as it has been proved, but

also attaints the goal of enabling agents’ privacy, since only information (moral links)

between adjacent nodes (Ii) is revealed.

2.- Triangulate cooperatively/distributely.

Before going further on triangulation, it would be convenable to introduce the con-

cept of Linkage Tree. Xiang presents this linkage tree as an alternative representation

of the agent interface that will support concise interagent message passing. The need

to construct linkage trees will impose additional constraints when the moral graph

structure is triangulated into the chordal structure (the step we are explaining now).

To understand what a linkage tree consists of, we could look at it as the construction

of a JT from the subgraph projected over the interface node between the two adjacent

graph agents we intend to communicate. This reminds how Incremental Compilation

constructed partial trees, as we will comment later, but that is not the way it is

presented in [133] where other method of obtaining it is developed and justified. We

140 Chapter 4: Revision on modular Bayesian structures

G0

G1

G2

f
a

d

be

c

a

a

k

b

dc

i
c

b

Final status

G2

G0 G1

(1)call

(2)local−moral (3)local−moral

(1)call

(1)local−moral

(final)All received

(2)send (3)send

(a) (b)

Figure 4.11: (a)Final situation (and phase) of applying Cooperative Moralisation to

the previous example. (b)Global overview of the phases on the hypertree.

find that both are equivalent, and the main goal is to introduce the most important

elements in a summarised form, but also in our personal form.

An example of linkage tree could be the following that comes from graphs G0 and

G2 in figure 4.6. In figure 4.12 we can see the full hypertree graph that will be used to

illustrate the concept of linkage tree.

In figure 4.13 both local graphs appear already moralised (moral graphs are in this

case chordal) and their corresponding local JTs.

And in figure 4.14 the construction of the linkage tree and its situation between

the two agents is shown. Every cluster Q in a linkage tree L is called a linkage and

a cluster in T that contains Q, Q ⊆ T (breaking ties arbitrarily), is called the linkage

host. This connection is shown graphically with a grey-shaded thick line.

So, the purpose of linkage tree5 is to manage interagent messages. We should at this

point comment on the two kind of messages that are considered in MSBNs framework:

- i-message, where i stands for internal, that is, message internal in an agent.

- e-message, where e stands for external (message), that is, from/to another agent.

As we saw in BA 2, direct communication between agents can only be done on

shared variables with an adjacent agent on the hypertreee. Such condition was estab-

lished for the sake of efficiency, since this will minimise e-messages. There are further

5Notice that a linkage tree, as a JT, is composed of clusters and separators.

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 141

G 2

k

l

i
jf

g

h

G0

o p

jif

0G

2G

1G 3G

Figure 4.12: The two agent graphs adjacent in the hypertree we will show the linkage

tree for. On the left the whole hypertree, the area included on the dashed blue box is

the one we are dealing with.

advantages of using this type of communication such as protection of agents’ privacy

and more autonomy for them as well.

To use the linkage tree in a valid way new restrictions in the local triangulation arise.

As moralisation, triangulation will be performed in a message propagation scheme.

Hence, a root agent will be chosen in order to collect and distribute information, in

this case triangulation links or fill-ins. Previously in this work, triangulation task has

been described (section 1.5) and also widely studied (chapter 2). We have therefore

already seen how a triangulation is generally determined by a certain elimination order

of the variables. For cooperative triangulation the elimination order (σ) is so important

that there will be specific orders not producing a correct linkage tree.

Then, the main constraint to be accomplished (refer to [133] for details) is the

following: given an agent Ai and its corresponding moralised graph Gi, the order σi

has to satisfy

σi = (Vi \ Icaller, Icaller) (4.1)

where Vi are the variables in Gi, that is Gi = (Vi, Ei), and Icaller is the d-sepset interface

between this agent and the one that demands the fill-ins from it.

Basically, this means that d-sepnodes to the upper agent cannot be removed in the

triangulation process until all the rest have been removed. The main drawback of this

constraint is the big amount of fill-ins that might be introduced.

142 Chapter 4: Revision on modular Bayesian structures

G0

o p

jif

T 0o,f

f,p,i

p,i,j G 2

k

l

i
jf

g

h

T 2
f,g,i

f,h,i

h,i,ki,j

k,l

Figure 4.13: Local moral graphs and local JTs for agents A0 and A2.

jif

i,j

f,i
L

T 0
o,f

f,p,i

p,i,j

T 2

k,l

i,j h,i,k

f,g,i

f,i

L

i,j

g,h,i

(a) (b)

Figure 4.14: (a)Obtaining the linkage tree. (b) Its connection to the two local JTs as

an interagent communicator.

The main method sketch (called Depth First Eliminate in [133]) is similar to the

moralisation, and is written in. As said before, we need to previously determine a

root agent that will start the procedure. The first call to Depth First Eliminate will

go through its adjacent agents and so recursively until reaching a leaf agent, Aleaf .

Then, this/these Aleaf will perform a local triangulation subject to the previous re-

striction (Eq. 4.1). Once Aleaf has finished its own triangulation the corresponding

fill-ins restricted to Icaller will be sent to the adjacent agent Acaller that calls to its

Depth First Eliminate method. Acaller will add these received links to afterwards trian-

gulate itself again taking into account the order restriction.

If we follow the previous Collect & Distribute algorithms, we can see that the process

is roughly the following one: the root triangulates its graph (Groot) once per every

adjacent agent Ai subject to the elimination order σri = (Vr \ Ii, Ii). Then it sends the

resulting fill-ins (between shared nodes) of the corresponding triangulation to these

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 143

agents Ai , and so recursively, returning the fill-ins of Gi restricted to Ii. Once a

leaf is reached, Aleaf includes the received fill-ins in its graph and it uses a sequence

σic = (Vleaf \Icaller, Icaller) to triangulate this resulting own graph, including the new fill-

ins and finally sending the corresponding fill-ins to the caller. This process is recursive

as well until reaching the root agent again. See figure 4.15 for an example with seven

agents. Notice that downwards arrows are the transmitted fill-ins from a caller to

its adjacent agent while upwards arrows indicate the returning fill-ins from a called

adjacent agent when the function has finished. Finally in order to make the graph

“fill-in consistent” all triangulating links are communicated through the tree, and that

is what algorithm Safe Cooperative Triangulation is charged of, again form the root

agent.

A 0

A 2

A 1 A 3

A 4

A 5 A 6

1

2
3

4

5
6

7 8

9

11
10

12

A 0

A 2

A 1 A 3

A 4

A 5 A 6

1

3
4

2

5

6

(a) (b)

Figure 4.15: (a)An example for the method Depth First Eliminate. Arrows indicate fill-

ins messages and the number next to them the relative order in the algorithm process.

(b)Distribute Fill-ins, which communicates the produced fill-ins from root to the leaf

agents.

Xiang sees that Cooperative Triangulation does not guarantee that each Gn is elim-

inable in an order (Vn \ Ii, Ii), although this circumstance is quite rare. To ensure

completely this requirement, he added a final algorithm to perform triangulation.

144 Chapter 4: Revision on modular Bayesian structures

The situation that provokes the necessity of applying this algorithm for safe trian-

gulation does not arise often, but it is possible anyway. So, we have to assure that the

obtained triangulation is completely valid in all cases. Basically the problem comes

from a situation where fill-ins received in a collect phase, which takes place after a

certain local triangulation when Depth First Elimante, could provoke a change in such

a previous triangulation. Let us see an example: an agent A1 can be adjacent in the

hypertree to more than one agent, let us say A2 and A3 for example. At some point

agent A1 will locally triangulate its graph G1 in an elimination order σ12 with the re-

striction (V1 \I2, I2) producing or not a set of fill-ins. But then, in the collecting phase,

it can happen that A1 receives, for example, a fill-in from A3. And maybe now, with

this new link, unknown by A2, since I2 6= I3 the order σ12 will include new fill-ins that

are impossible to be considered if we do not make another iteration, and that is what

Safe Cooperative Triangulation does.

Finally, in this step it could be interesting to mention that obviously Cooperative

Triangulation includes more fill-ins than a global triangulation. That is logical, but

it is a price to be paid in order to guarantee privacy and autonomy for every agent.

Nevertheless, this amount of extra fill-ins is not so big as could have been expected.

Experimental studies have shown that cooperative triangulation produces reasonably

sparse chordal graphs.

3.- Construct the corresponding Linked Junction Forest.

Once local graphs have been moralised and triangulated, it is possible to construct

also local Join Trees. Notice that this reminds the partial trees we obtained in the

Incremental Compilation technique. So, local JTs can be obtained in the same way we

did for a single BN (chapter 1) and as we introduced previously when explaining the

use of Linkage Trees. So, for every agent Ai we will have its graph Gi already moralised

and triangulated Gi
t
m and through a typical compilation process its local JT Ti can be

easily reached.

There is another element needed to construct the LJF, and it is the Linkage Tree.

There must be a linkage tree Li,j from a Ti to every Tj iff Aj ∈ adj(Ai). The formation

method for this linkage tree was briefly explained in the triangulation step, as well as

the way it should be connected to the clusters in the trees T . Here we will not add

more detail about this creation process. It is important to remark that the require-

ment about the elimination order was closely related to this linkage trees, and in fact,

this requirement will guarantee that there exists such a linkage tree. Also, again the

hypertree structure and a selected agent as Aroot will mark this step. For example in a

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 145

MSDAG structure as the one depicted in figure 4.16, local trees T0 to T4 together with

the linkage trees L0,2, L2,1, L2,3, L3,4 will constitute the LJF structure.

G 1

g

hb

e
d

c

a

f

G 0

o p

jif

G 2

k

l

i
jf

g

h

G 3

mn
k

j

l

G 4

q
k

j

rl

G 0

G 2

G 1 G 3

G 4

{f,i,j}

{j,k,l}{f,g,h}

{j,k,l}

Figure 4.16: Example MSBN to be moralised and its hypertree (right part).

Then, with the local JTs and the linkage trees constructed by each agent, the

hypertree MSDAG in the original MSBN has been converted into a different structure,

which is termed linked junction forest (LJF). That was the purpose of what we called

the Distributive Compilation (see fig. 4.8). In def. 28 a formal definition of this LJF

structure is given.

Definition 28 A linked junction forest F is a tuple (V ,G,T ,L):

- V = ∪iVi is the total universe where each Vi is a set of variables called a

subdomain.

- G = ⊔iGi, where each Gi=(Vi,Ei) is a chordal graph such that there exists a

hypertree Ψ over G.

- T = {Ti} is a set of JTs, each of which is a corresponding JT of Gi.

- L = {Li} is a collection of linkage tree sets. Each Li = {Li,j} is a set of linkage

trees, one for each hyperlink incident to Gi in Φ. Each Li,j
6 is a linkage tree of

Ti to respect to a hyperlink Vi ∩ Vj.

2

6Notice that Li,j = Lj,i.

146 Chapter 4: Revision on modular Bayesian structures

See that the LJF is an alternative dependence structure for a multi-agent system

whereas the JT is the local dependence structure of a certain agent Ai. Xiang also

proves that this structure represents the dependencies of the original MSBN and per-

mits message passing for inference being LJF also an I-map. For that proof he refers

to the concept of graphical h-separation.

Inference in MSBNs

As it happened for BNs, multi-agent inference will manage the probability propa-

gation using potentials (def. 10). They will allow this scheme of belief updating by

concise message passing. So, the conditional probability distributions in an MSBN

are converted into potentials in the LJF in order to make inference process available.

The potentials will not only be assigned to cliques (clusters) and separators in a JT,

because LJF contains also linkage trees. These linkage trees will be charged of inter-

agent communication, so they will need to register probabilistic information as well.

We could distinguish three kinds of potentials then: (1)a potential for each local JT,

(2)a potential for each separator in each linkage tree and (3)a potential for each link-

age tree. Finally, we could consider a joint system potential (JSP) for the entire LJF

representation.

To do this brief explanation, we will use a simple example MSBN whose structure

and conditional probabilities P (x|pa(x)) are in figure 4.17. If we follow the distributive

compilation process that has just been detailed, the corresponding LJF could be that

in figure 4.18.

As we saw in chapter 1, initially the CPTs have to been assigned in some clique

of the tree and the other potentials remained as unitary (probability trees) or uni-

form (probability tables), that is, they do not contain information until propagating

messages. In LJF some potentials are assigned and the rest are defined (or just say

derived) in terms of these potentials.

We are not going to look these into detail, just remark that the procedure of as-

signment for potentials is similar to the single-agent method. Every CPT has to be

reflected in one potential that contains all the affected variables, that is, for variable x,

the chosen cluster must contain x and its parents. The rest of the clusters, separators

and linkages in the linkage trees will have initially a uniform potential. On the other

hand, the derived potentials will be in terms on the previous ones.

There exists an analogous concept to the JPD in BNs. This is called the joint

system potential, JSP, and it is defined over the universe V associated with the LJF

4.2. Multiply Sectioned Bayesian networks: basics on MSBN 147

G 1
a

i

b

P(i|a,b) d
P(d)

G 0

a

b

kc d

P(a

P(k|a,b)P(c|b)

G 2f

a

d

b

c

e

P(f|a,c)

P(e|c)

P(b|c,d)

Figure 4.17: Simple MSBN to illustrate the LJF for inference.

F .

We have decided to skip details (probabilistic formulas) about messages passing,

since it goes beyond the scope of this revision. We just remark this is a more elab-

orated version than the single-agent paradigm frameworks. Let us simply remind

the difference between i-messages and e-messages. The former are intra-agent and

there will be similar to a scheme of probability propagation, the latter are inter-

agent and will do the communication the potentials over the shared variables (Ii,j).

In figure 4.19 a global overview of this agent communication is given for the previ-

ous example. Blue arrows illustrates the process when the communication is acti-

vated: A0 first, then A2 and finally A1. When A1 is activated, it passes the message

to A2 over their linkage trees. After local processing A2 will pass the message over

their linkage trees. The black arrows indicate the sequence of the message passing.

When the first round (Communicate Belief) is completed, the second round starts

(Distribute Belief). After local processing, A0 passes the message back to A1 (fol-

lowing blue arrows). In [133] it is shown that after these two rounds of interagent

passing, all agents’ beliefs are updated correctly.

Then, this method could be finally summarised with a familiar scheme: Belief Collection

+ Belief Distribution, where the two methods (phases) are more complex than previ-

ous. They include new operations such as absorption through linkages, unification and

updating of beliefs.

148 Chapter 4: Revision on modular Bayesian structures

c,e

a,c,f

a,b,c

b,c,d

a,b,i

a,b,c

b,c,d

T1

L1,2

T2

L0,2

a,b,k

a,b,c

b,c,d

T0

a,b,c

a,b,c

P(i|a,b)

P(c) P(d)

P(k|a,b)

P(f|a,c)

P(e|c)

P(a)

P(b|c,d)

Figure 4.18: Linked Junction Forest for the MSBN in figure 4.17.

It is clear that this inference process is more complex than the single-agent proce-

dure with JTs (chapter 1), even if it is based somehow on it.

From this inference framework, some relevant points can be extracted. First, there

is a well studied and defined proposal to perform inference in MSBNs, and that will be

used for other approaches as OOBNs (see next section). And second, and even more

important for this whole work, triangulation becomes again in a decisive point since

the complexity7 of the triangulation carried out is going to influence how complex the

inference process results. And here the inference gets even more complicated. The

reason for that statement is that both local JTs Ti and the inter-agent linkage trees

are constructed from that triangulation process. And since the LJF is the structure

used for inference and it is made up of these two kind of trees, the effect of triangula-

tion on inference is clear. Although the proposed method is correct, this commented

fact has favoured the search of other alternative methods to optimise this distributive

triangulation. If normal (single-agent) inference could in occasions be quite hard to

perform, multi-agent inference can make some efficiency problems even more serious.

7This can be seen as the number of fill-ins and more precisely as the total (sum) size of the formed

clusters.

4.3. Object Oriented Bayesian networks 149

c,e

a,c,f

a,b,c

b,c,d

a,b,i

a,b,c

b,c,d

T1

L1,2

T2
a,b,k

a,b,c

b,c,d

T0

L0,2

a,b,c

a,b,c

P(a)

Figure 4.19: Communication among agents for MSBN in figure 4.17.

The work [132] presents a quite attractive fill-in propagation scheme for inference in

MSBNs, that will be reviewed in subsection 5.3. The main interest of this new idea is

its double relation with MSBNs and OOBNs, together with a third connection to IC

we will try to justify at the end of the current chapter.

4.3 Object Oriented Bayesian networks

To start with, we could say that Object Oriented Bayesian networks try to put into

practice the ideas of the Object Oriented Approach in the field of BNs specification.

This general approach has achieved great significance in the last decades in many

situations. For that, several works ([66, 72, 5]) has been directed to obtain an Object

Oriented Specification of BNs with the purpose of incorporating most of the modular

but cooperating features this Object Orientes philosophy offers. We are going to focus

on the approach in [4], whose specification is more recent. For further knowledge of this

approach, we refer to [7] where apart from the foundations, other detailed processes

and applications of OOBNs can be found.

The commercial tool HUGIN has added in the last releases the OOBN functionality,

150 Chapter 4: Revision on modular Bayesian structures

based on this specific approach, and providing a nice graphical interface to model this

kind of networks.

As we did with the MSBN a description of this approach will be presented below.

4.3.1 Basics on this OOBN framework

The main purposes of [4] were:

1. Top-down methodology for construction.

2. Easy-to-use tool for constructing large BNs.

3. Encapsulation and hierarchy as in OO.

With this new OO Specification the modelling task is simplified, but also we get a

very compact specification of knowledge that can be really exploited. Figure 4.20 is an

example of this approach. In this sample OOBN, we can find familiar and BN-related

elements such as variables (nodes) and directed links (relations). It is evident that

OOBNs are Bayesian networks (fragments), but other new elements and relationships

appear in order to manage the OO features: double-line links, shaded nodes, dashed

nodes, boxes, ... represent extended definitions that we will next review.

Food

Milk Meat

Mother Music MusicFood Mother

Milk Meat

Cow5:Milk cow Cow6:Meat cow

Food Mother

Milk Meat

Cow10:Meat cow

Weather

MusicMathilda
WeatherDaisyFood

Milk income

Milk total Milk price

Food Mother Weather

Milk Meat

Cow1:Milk cow

Meat price Meat total

Meat income

Food price

Total Income

Figure 4.20: Example of OOBN

In this framework the concept of class is used. A class will be a description of a set

of objects with the same structure, behaviour and attributes. An object will present

4.3. Object Oriented Bayesian networks 151

its own identity, status and behaviour. One class encapsulates nodes and restricts the

scope of its nodes to the interior. Then, a node inside a class can not be seen from

outside and also this node will not see that information external to its containing class.

The basic element in this object oriented framework is effectively the object. We

should look at an object as a class instantiation, i.e. the class is a kind of specification

and instances of the class (objects) are being created along they are needed for the

system. There will always be an outermost class denoted as encapsulating class, since

from the current scope, there is no other class outer than this. This special class is

viewed as both a class and instance.

It is possible that a class has instances of other classes. For example, in figure

4.20 there are 10 instances (objects) of the class Cow. Also, in this figure, we observe

links between nodes in the OOBN and nodes inside Cow objects. This interaction is

indispensable, and the OOBN framework defines how it should be done. Basically, two

circumstances are permitted for class interaction: (1) a node inside one class could

have parents outside and (2) a node outside a class can have parents inside this class.

Definition 29 A class is a Bayesian network fragment defined by a triplet of nodes

set (O, I,P) where

- O is the set of output nodes, which can be parents of other nodes outside instances of

this class.

- I is the set of input nodes. These nodes are not in the class, but are used as parents

of nodes inside instances of this class. Input nodes can not have parents in the class.

- P the set of protected nodes (or private nodes), which can only have parents and

children inside the class.

And O, I and P must be three disjoint sets.

These nodes will be related by links of two main types: (1)regular links: directed

links as those in BNs and (2)reference links: special kind of links that will correspond

an input node to some external one. 2

In graphical representation input nodes are dashed-line limited and output nodes

are shaded. Protected nodes do not have any special representation, since they are the

traditional nodes.

The input nodes of a class could be understood as its input parameters. So, what

an instance needs in order to be created is values to these input nodes. That is also

necessary in order to specify the CPTs, and we need to specify the parents of a node

152 Chapter 4: Revision on modular Bayesian structures

during probability specification, that is, class specification, not during instantiation (to

instantiate a class we need first its specification). For that, no node inside a class can

have parents from outside. But that also provokes the introduction of a new type of

node, needed for this assignment of input nodes: the reference node.

A reference node will point to a node (in this case referenced) in another scope

(class). It is similar to a pointer, but in fact it maintains its proper characteristics and

it is somehow a copy of the node it refers to. The states and the potential have to be

the same as its referenced node. And the link that connects a reference node to its

corresponding referenced node is named reference link.

In the previous example, let us focus on instance Cow6 (see fig. 4.21). In the

specification of cow, there are three input nodes (Food, Mother and Music) and two

output nodes.8 If we look at the input node Mother (reference node) there is another

external node pointed to it (referenced node), Mathilda. Sometimes double-line is used

to represent graphically a reference link. So, this means that the node Mother in the

instance Cow6 has been bound to Mathilda. The most important implications of that is

that all possible children that Mother had in the specification of Cow will be children of

Mathilda. Notice that arrows have the direction “referenced node → reference node”.

Food

Milk Meat

Mother Music

Cow6:Meat cow

Mathilda

Figure 4.21: Example of reference node and reference link (double line).

8Note that the rest of nodes do not appear, since this specification is of a more external class, and

then these protected nodes are hidden or unknown for it.

4.3. Object Oriented Bayesian networks 153

To simplify specification, it is also allowed that a reference node presents a default

potential used to create a regular node with the same states as the reference node when

no referenced node has been specified.

All input nodes are reference nodes. But this is not uniquely reserved to them,

extending the use of reference links and reference nodes we can get other functionalities.

For instance, to enlarge the scope of a node in an instance to outside the encapsulating

class output nodes could be reference nodes9. Every node, except input nodes, of a

class can be marked as an output node, becoming them visible from outside instances

of a class. And the interface of a certain class is the union of input and output nodes

(I ∪ O).

A class is then a fragment of BN (nodes and directed links) which may contain

special nodes (instances and reference nodes) and special links (reference links). Clearly

this is an extension of the definition of BN, a class with no instances, no reference nodes

and empty input and output sets will be a normal BN.

One structure of great utility for OOBNs is the Instance Tree (IT). Because when

constructing OOBNs instances of other classes are inside a unique encapsulating class,

this tree of instances can always be built. This method is shown in alg. 22.

Algorithm 22 Constructs an IT from an OOBN.

1: function Get Instance Tree(Class C)

⊲ C is a class, and then a Bayesian network fragment.

2: IT ← ∅

3: tn ← C.getEncapsulatingClass()

4: IT .addTreeNode(tn)

5: for all Instance node INi ∈ C do

6: IT .newChildBranch(Get Instance Tree(INi))

7: end for

8: Return IT

9: end function

An easy example of this procedure can be seen in figure 4.22.

As we can see this instance tree will have the encapsulating class as the root, and

each instance inside this class will define a subtree with the instance as the root, and

so on. In figure 4.22, the instance B for example will produce the subtree J1← H1←

B → H2→ J2, where the root is B.

9Graphically a reference output node will be shaded and will be draw in a dashed line.

154 Chapter 4: Revision on modular Bayesian structures

Class C

A B

D E F
G

H1 H2

J1 J2

B

Class C

A

D E

G

H2

J1 J2

H1F

Figure 4.22: Example for constructing and Instance Tree. Left: the class specification.

The corresponding IT.

This instance tree will play a role for communication among classes, as section 5.4

will indicate. See that interface nodes of an instance are the only nodes that allow

links to upper nodes in the instance tree, since only input/output nodes are allowed to

interact with other nodes in the encapsulating class. Then, all communication between

nodes will be through these interface nodes in such a way that if two instances which

are not adjacent (neighbours) in this IT intend to communicate, the communication

should follow the path in the tree between them. A more real example where a class

is specified with its nodes and links is shown in figure 4.23.

Apart from the already commented links: reference and regular links, there is a

possible third kind called construction links. These are useful for the construction or

modelling of an OOBN. Since this task goes beyond the scope of this work, we just

comment their existence.

In order to assure that the constructed OOBN is not illegal, i.e., is a valid OOBN,

there are some restrictions over the reference links. Basically, these restrictions try to

avoid cycles in the network and other structural problems for the IT, since referencing

can finally provoke regular links that are not so immediate. Including the so-called

reference tree restriction (see def. 30) these cycles are avoided.

Definition 30 Let us call reference tree a tree whose root is a referenced node and

whose branches are formed by all the nodes that reference this root node, and so. 2

4.3. Object Oriented Bayesian networks 155

FodderDrinkWeather

Parent_1

Parent_2

Parent_3

Parent_4

Parent_5

Lise

Yrsa

Milk Milk

DMC Milk DMC Meat JC Milk

Meat

JC Meat

Meat sumMilk sum

Cash

Nora

Mathilda

Weather Music

Meat

DMC: Danish Milk Cow JC: Jersey Cow

Parent_1

Parent_2

MusicFodderDrink

Drink Fodder

Stock

Parent_3

Parent_4

Parent_5

5 5

DMC

DMC_1

DMC_2 DMC_4

JC_1

JC_2 JC_4

JC_5JC_3

JC

Stock

DMC_3 DMC_5

Figure 4.23: Another example for constructing and Instance Tree taken from [7]. The

number X in a small square box on the right bottom corner of an instance means

that there are X instances of that class. It is for simplicity in visualisation. Notice

that Parent i means the input node Parent for instance i, the same happens with the

instances DMC i and JC i in the instance tree.

Then the reference tree restriction imposes that reference links cannot be specified

between two simple nodes in the same class, and no node can be the referenced node

156 Chapter 4: Revision on modular Bayesian structures

for more than one reference node in the same instance.

The implications of this restriction can be listed as:

1. Input nodes cannot be used as reference nodes for simple nodes specified in the

same class but only for input nodes of (other) instances. Two input nodes in an

instance cannot have the same referenced node.

no!!
yes!

no!!

Figure 4.24: First implication: valid and invalid situations

2. Output nodes can be used as referenced nodes for output nodes in the encapsu-

lating class and for input nodes in a different instantiation in the encapsulating

class. Two output nodes of a class can not have the same reference node.

no!!
yes!

yes!

Figure 4.25: Second implication: valid and invalid situations

3. Protected nodes can be used as referenced nodes for input nodes of other instances

only. Protected nodes will always be referenced roots if they occur in a reference

tree, as they can never be reference nodes.

4. A chain of reference links can go in both directions (further inside instances or

further out) but once it begins going inside, it cannot go out again.

4.3. Object Oriented Bayesian networks 157

no!!
protected nodes

no!!

are not reference nodes

yes!

no!!

(a) (b)

Figure 4.26: (a)Third implication: valid and invalid situations. (b)Fourth implication:

what cannot happen with the reference tree.

It has also been proved that, despite this reference tree restriction, OOBNs do not

lose expressiveness, because there is always a valid alternative way to express whatever

needed without the previous prohibited operations.

It is important to recall the Instance Tree at this point and be aware of the following

theorem [7]: ”All nodes in an instance are independent of nodes in instances higher up

in the IT given its interface“.

So, we could also say that the interface d-separates an instance from those instances

containing it.

There are many other issues on OOBNs that are necessary to know properly the

framework, but which do not affect so directly to the triangulation and inference tasks.

So, here we will just go quickly over them.

Firstly typing, that is, the kind and set of states for a node has to be defined and

checked to avoid errors. Also, one very nice utility of this OOBN framework is the

ability of working with dynamic domains, and also with repetitive structures. For the

dynamic environment, they have designed a time slice class that could be instanced in

different temporal moments. This particular usage has also introduced a new kind of

link, the temporal dependence link.

158 Chapter 4: Revision on modular Bayesian structures

Another point to analyse is the class hierarchies. This is another object oriented

feature which can be quite interesting for model construction and the current frame-

work takes advantage of it. So, thanks to this hierarchy it is possible to simplify the

specification of similar classes, and also to organise knowledge in a hierarchical (and

normally better organised) way. But for us, it will be specially interesting because it

may allow automatic updates in classes sharing some properties. This quick updating

presents a certain relationship with the Incremental Compilation method and is one

of the advantages Plug & Play OOBNs have. Details about how hierarchy is defined

in OOBNs will be omitted. We just indicate that a subclass S from a certain class C,

must have at least the input, protected and output nodes of C, although S can present

other extra ones. It is similar to class inheritance in an OO programming language.

And the links in the structure if the subclass S could not be the same as C (as inherited

procedures in a subclass can be different too). See how the Danish Milk Cow and the

Jersey Cow in figure 4.23 could be sub-classes from a same class, for example, the one

depicted in figure 4.27

Generic Cow

Metabolism

DrinkFodder Parent

Milk Meat

State of mind

Figure 4.27: One possible specification for the class Generic cow, that could be a su-

perclass for Danish Milk Cow and Jersey Cow.

Chapter 5

Combining the Incremental

Compilation concept with modular

Bayesian structures

By three methods we may learn wisdom: First, by reflection, which is

noblest; Second, by imitation, which is easiest; and third by

experience, which is the bitterest.

Confucius. (551–479 BC)

Chinese philosopher and reformer.

5.1 Introduction

In the previous chapter, basic notions for Bayesian modular structures in general,

and for MSBNs and OOBNs in particular has been done. They will be needed to

present the issue treated in this chapter, where we will deal with inference in OOBNs.

Initially, OOBNs were presented as a fantastic tool for network modelling and con-

struction in large and complex domains. The possibility of dividing a big domain

in subdomains, their suitability for dynamic representation and repetitive structures

among other features make them a nice extension of BNs for systems with those re-

quirements.

However, since they were developed mainly for this modelling purpose, when rea-

soning and inference was necessary over an OOBN, no specific methods for inference

had been defined. Normally, the way to perform inference consisted of building the

equivalent Bayesian network, and then perform inference in the regular way. That was

160 Chapter 5: Combining the IC concept with modular Bayesian structures

perfectly valid, but it provoked some drawbacks:

- The philosophy of the OO framework is then lost. To transform an OOBN into

the corresponding BN, all protected nodes become visible, reference nodes and

links disappear making the corresponding substitutions and input/output nodes

do not have a special meaning anymore.

- Then, the capability of being easily used in dynamic and changing domains, or

with repetitive structures is also lost.

- And finally, since OOBNs were thought to manage big and complex domains, the

resultant BN can bee too big.

Thus, even if this inference method is perfectly correct and maybe needed for certain

situations, it seems quite desirable to have an inference procedure that allows us to

work with the OO paradigm. And this was the reason to design other alternative

mechanisms without failing to keep the original philosophy. As explained in [7] two

other inference ways are so far possible: building an equivalent MSBN (subsection 5.2)

or triangulate the instance tree (section 5.4).

5.2 The link between MSBNs – OOBNs

As we were describing the MSBN structure and also the OOBN approach we could

just find some common points. Let us return to some of the purposes that MSBN tried

to reach:

1. Capability of managing large and complex domains.

2. Modularity, in order to be able to treat some components independently.

3. Hidden parts, that is, some information that is private for the different agents.

4. And of course, some kind of communication between these agents to get a coop-

erating system.

It is clear that all the enumerated points remind an Object Oriented Approach.

Fortunately, this approach already exists, and we have just presented the main ideas in

the previous section. But then, these OOBNs presented one drawback when we wanted

to compute with them. Before, they had been quite useful for modelling systems.

5.2. The link between MSBNs – OOBNs 161

Nevertheless, when propagating they are just translated into a whole BN. Doing this

transformation means losing all the power of the OO utility. The process of inference

has been deeply studied for the MSBNs. Since the similarity MSBN-OOBN is obvious,

what had to be proved is that there exists a way of making a OOBN correspond to

an MSBN system. If this correspondence is possible, we will maintain the modular

structure of the OO approach. We could take advantage of the easy use of OOBNs

and of the well defined process over MSBN.

This structural1 equivalence is possible. In [4] a first method to translate an OOBN

to its corresponding MSBN is roughly outlined (see alg. 23).

An MSBN (set of Bayesian Network Fragments (BNFs)), representing the OOBN

is obtainable from the specification using the recursive algorithm shown in alg. 23,

where T is the class being compiled into an MSBN:

Algorithm 23 Obtains the corresponding MSBN to a given OOBN.

1: procedure Translate(OOBN O,MSBN M)

2: T ← O.encapsulatingClass() ⊲ T is a class

3: M ← ∅

4: for all Instantiation Insti ∈ T do

5: BNF t ← T .getFragment(Insti.simple nodes + Insti.linked output nodes)

⊲ t is a BNF, that is, a Bayesian Network Fragment.

⊲ Note that if an output node is referenced by an input node of another instantiation in T it is

also defined as being linked.

⊲ getFragment(set of nodes) takes obviously the corresponding links as well.

6: M .addSubnet(t)

7: InstE ← t.getEncapsulatingInstantiation()

⊲ The encapsulating instantiation will be T if t is the encapsulating class.

8: t’ ← M .getBNF(InstE)

9: Hyperlink HL ← {t → t’}

10: M .addHyperLink(HL)

11: end for

12: end procedure

Two things have to be considered in order to understand the previous algorithm:

• Each BNF represents the scope of a class. So we should add the reference linked

1Let us remind that OOBN and MSBN approaches can share some points, but their scenario and

nature are much different.

162 Chapter 5: Combining the IC concept with modular Bayesian structures

input or output nodes of each instantiation, but in fact, these reference linked

nodes are represented by the referenced nodes (for input nodes) or by the reference

nodes (for output nodes). That is because these will be the shared nodes (from

an MSBN point of view) with the upper (containing or encapsulating) class.

• If two BNFs have a hyperlink, then one of the instantiations they represent is

encapsulated by the other. The d-sepset between two such BNFs is the nodes they

have in common which can only be nodes from the interface of the encapsulated

instantiation.

In [4] it is justified that the obtained MSBN is correct. First, the set of subnets

(accumulated by statement in line 5) have no cycles, since there are none inside a class

specification, and this accumulation is made class after class. Secondly, the formed

structure, determined by the hyperlinks added by each statement of line 8, is effectively

a hypertree. This is sure because every fragment is created by an instantiation and

every instantiation can uniquely be inside one certain class (or instantiations of a class).

Finally, they also proved why interface between two subnets are d-sepsets (omitted

here).

On the other hand, it can be seen how an MSBN could give rise to a valid OOBN. We

could construct a valid OOBN from any given MSBN following the inverse procedure

to the one shown in alg 23. The idea is that every subnet could be a class and the

interface nodes the input/output nodes of the class, depending on the kind (direction)

of links they receive. Besides, if in an MSBN we always guarantee the existence of the

corresponding MSDAG which is an hypertree, this can be like the equivalent element to

the Instance Tree. See how in both cases interface renders an agent/class independent

from the rest of the tree (agents’ hypertree or instance tree) in a down-top direction.

So, a method for doing the translation OOBN →MSBN is valid, and it is possible

to find a way of making a certain MSBN be represented by an equivalent OOBN

(OOBN →MSBN).

5.3 A fill-in propagation scheme for inference in

MSBNs

As indicated before, apart from the message passing scheme on point 4.3.1, some

other alternative inference mechanisms have been developed to perform inference in

5.3. A fill-in propagation scheme for inference in MSBNs 163

MSBNs. A recent work [134] makes a revision on some of them, where some results

are said to be of relevance to improve certain single-agent oriented inference methods.

Among all these new methods, one specially appealing work for our particular

purposes is [132]. Since the original message passing method for inference can be seen

as an extension of HUGIN inference, in this work they seek some manner of reducing

space complexity. They succeed in obtaining an adaptation of Shenoy-Shafer and also

Lazy Propagation [81] for the multi-agent paradigm. This lazy way of proceeding seems

more suitable to modelling and inference in very large domains which also maintains

the flexibility for constructing MSBNs.

Lazy Propagation

We have already studied Shenoy-Shafer propagation. Let us give a basic notion on

lazy propagation. The underlying philosophy in this lazy framework is to retard any

mathematical operation (reduces computation by avoiding unnecessary combinations)

until it is really necessary. As Shenoy-Safer, Lazy Propagation is static. Each cluster C

in the junction tree will hold the assigned distributions, but as a set (combinations will

be done when needed). The belief table of a cluster C is defined the same as SS, but the

product is not explicitly computed. And finally, each message sent over a separator is

a set of tables which is over a subset of the variables in this separator. Its efficiency im-

provements are then obtained by maintaining a multiplicative decomposition of clique

and separator potentials.

Figure 5.1 illustrates an example of a Bayesian network already moralised (undi-

rected lines indicate moral links) and chordal (fill-ins are indicated by dashed lines).

On the right, one possible corresponding join tree for this triangulation. Next to a

clique are the potentials associated (prior probability distributions), but in contrast to

SS architecture, this is indicated as a list (set) of potentials. Remind that SS com-

bined them into a unique potential. Then, if for example the message from CDEF to

CBCD is sent, in Shenoy Shafer this message would be {
∑

E,F P (E|D), P (F |D)} with

complexity 8 whereas in Lazy the sent message would be {
∑

E P (E|D),
∑

F P (F |D)}.

Fill-ins Propagation

As seen in subsection 4.2, the linked junction forest (LJF) method compiles the

subnet at each agent into a junction tree (JT) that we denoted Ti. Messages between

two adjacent agents Ai and Aj are passed through the linkage tree Li,j , being this

structure the only element to communicate this pair of adjacent agents. What this

new approach proposes is a distributed ShenoyShafer propagation and distributed lazy

164 Chapter 5: Combining the IC concept with modular Bayesian structures

A

C

D

E

G

F

B

EFGABC

BC

BCD

EF

DEF

{P(G|E,F}

D

{P(D|B,C)} {P(E|D),P(F|D)}

{P(A),P(B|A),P(C|A)}

Figure 5.1: Example for Lazy propagation.

propagation to compile the subnet at an agent Ai into a set of JTs Tj→i, one for each

adjacent agent Aj . The JT will then be used for message passing with the agent.

Let us go back to the step of Distributive Triangulation in the MSBNs inference.

In the collect phase, when an Agent Ai calls method Depth First Eliminate, when the

current agent does is basically the following:

1. Triangulates its graph (Gi) using an order σij = (Vi\Vj , Vj) for every Aj adjacent

to it and different from the caller, adding the fill-ins and sending them to Aj.

2. When the recursive calls to all Aj return, Ai adds to its graph (Gi) the fill-ins

received from its adjacent agents.

3. With an elimination order σic = (Vi \ Vc, Vc), triangulates this graph, adding the

corresponding fill-ins2

4. Sends to the caller agent all fill-ins over the interface nodes between these two

agents, Iic.

Finally the call from the root agent to Distribute Fill-ins method makes all the

obtained fill-ins distributed through the agents’ tree.

2The elimination sequence σij denotes the same as σi→j .

5.3. A fill-in propagation scheme for inference in MSBNs 165

In this new approach the authors use the classical tandem of collect and distribute

information, in this case, fill-ins. So, the process of triangulation is controlled in a

different way:

1. From the root (Aroot) go deeper into its neighbours (adjacent agents) until a leaf

agent is reached.

2. Now this leaf agent is triangulated with restriction of a elimination order of type

σleaf,caller = (Vleaf \ Icaller, Icaller)

3. This leaf agent sends to the caller agent all fill-ins over the interface nodes between

these two agents, Ileaf,caller.

4. Once an intermediate agent Ai has received all the messages from its deeper

neighbours it can send up the corresponding message to the agent caller Ii,caller,

after having been triangulated with an elimination order σic = (Vi \ Ic, Ic). Here

the Collection phase finishes.

5. Again from the root agent, a distribution of fill-ins takes place. Aroot will send

all its neighbours Ai the fill-ins resulting of σroot,i = (Vroot \ Ii, Ii)

6. The previous step is repeated for every node until a leaf is reached.

7. To finish each non-root hypernode Ai performs one more triangulation process

as if they are the root:

• Add to Gi fill-ins received from each neighbour.

• Eliminate Vi \ Vj and add fill-ins to Gi.

• Set message to Gj as all fill-ins over Iij obtained above

Figure 5.2 represent an example for this method. Arrows indicate fill-in messages

sent.

Then Xiang and Jensen [132] study the impact of choosing a certain agent as root.

To experiment this behaviour of the fill-ins received depending on the direction of the

fill-ins messages, we are back to a previous triangulating example.

In figure 4.6.(a) there is an example MSBN. If we moralise this we obtain the graph

of figure 5.3 which is ready to be triangulated.

166 Chapter 5: Combining the IC concept with modular Bayesian structures

A 0

A 2

A 1 A 3

A 4

A 5 A 6

1
5

2
4

3

67 8

9

10

11

12

Figure 5.2: An example for Collect & Distribute fill-ins. Arrows in blue (upwards)

indicate the collection phase while black (downwards) arrows indicate the distribution

stage.

Let us assume that A1 is the root for the fill-in propagation. Then fig. 5.4 represent

a sequence of steps for triangulating: downwards arrows are collection of fill-ins while

upwards indicate distribution.

We denote as G∗
i→j as the triangulation that takes place when agent Ai sends fill-ins

to agent Aj . G
∗
i indicates the local triangulation for the agent Ai.

Thanks to this full propagation method we avoid performing n different triangula-

tions for every graph, being n the number of agents in the hypertree. It can be shown

that the fill-ins for the inter-agent messages are not dependent of the particular elimi-

nation orders used in the triangulations, but on the chosen root for a collection phase,

and that is why the previous method was designed like that.

The most important conclusion from this fill-in propagation scheme is how the

direction of the message changes the result. So, sometimes G∗
i will be sparser than, for

example, Gi→j, as happened with G∗
3, and usually this happens the other way around.

This characteristic is what the authors wanted to exploit.

To do so, they have slightly modified the way that compilation is carried out for

MSBNs. As we have differentiated between G∗
i and Gi→j, we could too differentiate a

Join Tree T ∗
i and another one(s) Ti→j. The purpose is to take advantage of the sparse

5.3. A fill-in propagation scheme for inference in MSBNs 167

G 0

o p

jif

G 1

g

hb

e
d

c

a

f

G 2

k

l

i
jf

g

h

G 3

mn
k

j

l

Figure 5.3: Moralised MSBN to perform propagation of fill-ins.

A 2

3

A 1

A 0 A 3

4

2 1
56

Figure 5.4: Sequence of steps for fill-in propagation in the example if A1 is the root.

graphs. We already know that a less dense graph will yield a less complex tree and

that will redound to the benefit in a reduction of the computation time.

After triangulation, in this new approach compilation will convert each G∗
i into a

Join Tree for local inference and every G∗
i→j into a junction forest (JF) for comput-

ing messages from an agent Ai (subnet Si) to the agent Aj in the inter-agent belief

propagation. Then, JFs will be message passing structures whereas JTs will be local

inference ones.

Figure 5.6 shows some JFs and a JT for the previous example. Notice that Junction

Forest T1→2 can be basically broken apart by means of separator g joining [g, h] and

[e, f, g] because in graph G1→2∗ since the d-sepset in this case {f, g, h} is not complete

168 Chapter 5: Combining the IC concept with modular Bayesian structures

G 3

mn

j

l

k G 0

o p

jif G 2
l

i
jf

g

h

k

G 1

f

g

hb

e
d

c

a

G 1

f

g

hb

e
d

c

a

(a) G∗
3→2 (b) G∗

0→2 (c) G∗
2→1 (d) G∗

1 (e) G∗
1→2

G 2

k

l

i
jf

g

h G 2

k

l

i
jf

g

h G 2
l

i
jf

g

h

k

G 3

mn

j

l

k G 0

o p

jif

(e) G∗
2→3 (f) G∗

2→0 (g) G∗
2 (h) G∗

3 (i) G∗
0

Figure 5.5: Example for the Xiang & Jensen method of propagating fill-ins

and then messages are decomposable. For submessages during inference, those over

{g, h} can be computed using the equivalent clique ([g, h]) and for those over {f, g} we

will use clique [f, g, h] than contains this set of variables.

k,l,m,n

k,l,m

j,k,l,m
G3 → 2

∗

mn

j

l

k

Τ3 → 2 a,b

b,h

g,h e,f,g

d,e

c,d

b

h

g

d

e

G1 → 2
∗

f

g

hb

e

d

c

a

Τ1 → 2
a,b

b,h

f,g,h e,f,g

d,e

c,d

b

h

f,g

d

e

Τ1G 1

f

g

hb

e
d

c

a

∗

(a) (b) (c)

Figure 5.6: Formation of JFs T3→2 and T1→2 together with JT T1.

Then, for these inference messages again probability propagation (Collect & Dis-

tribute scheme) will be applied, in such a way that:

• Messages from Ai to Aj (adjacent agents in the hypertree) will be computed by

means of Ti→j.

• Once an agent Aj receives this message it will be processed by Tj and every Tj→k

(being Ak ∈ adj(Aj) and k 6= i). In this sending/reception of messages, again

the element of Linkage appears. For example, two linkages are shown in figure

5.4. A fill-in propagation scheme for inference in MSBNs 169

5.7 from T3→2 till T2 (complete d-sepset) and from T1→2 till T2→0 (incomplete

d-sepset).

k,l,m,n

k,l,m

j,k,l,m

h,i,j,k

f,g,h,i

f,h,i,j

j,k,l
j,k

h,i,j j,k,l

L 3 → 2 ,2

3 → 2Τ
f,h,i

Τ2

j,k
f,i,j.k

f,i,k

i,k

f,g

g,h

g,h
b,hh

a,b

b

d,e

e

c,dd

e,f,g

Τ1 → 22 → 0Τ
j,k,l

f,g,i,k

g,h,i,k

1 → 2L ,2 → 0

Figure 5.7: Two examples of linkage tree with this alternative method.

About assignment of conditional probability tables, they will be done in a similar

way to that in regular inference of MSBNs. It could happen that a subnet is associated

with various JFs, but only one copy of each CPT will need to be stored.

Then, the main benefit of this variation is that inference can be quite more efficient,

since at each step (belief messages) we get as simpler structures as possible, and more

simplified messages.

Besides, as mentioned at the beginning, an application of the previous method is

the possible adaptation to use other inference architectures as Shenoy-Shafer or Lazy

Propagation:

1. For Shenoy-Shafer.- The main procedure will do a collection SS propagation for

every Ti→j at the host linkage Aj, and then send a message as the marginal of host

belief to the linkage. After this extended SS propagation, also SS propagation

will be needed in the JTs for local inference.

2. For Lazy Propagation.- This will be implemented as an extension of the previ-

ous one, but avoiding multiplication of CPTs in an explicit way. For JFs SS

propagations will be replace by Lazy Propagation method. Thus, messages over

sep-sets and those over linkage will be constituted by a set of belief tables over

the corresponding set of variables without being multiplied. The main advantage

of this technique, as in the BNs case, the reduction of space complexity given by

the decomposition of messages and tables.

170 Chapter 5: Combining the IC concept with modular Bayesian structures

5.4 Plug & Play OOBNs

Most of the topics reviewed and studied in the previous sections motivated the

work in [6]. Those similarities between MSBNs and OOBNs, the initial lack of efficient

inference methods for OOBNs, the coherent theory behind MSBNs definition and their

well studied inference methods (including the powerful variation explained in subsection

5.3) and, finally, the design of our strategy of Incremental Compilation to fast re-

triangulations were (among others) elements that inspired us [6] to undertake the

challenge of creating a way of compiling OOBNs in a more dynamic and efficient

manner.

The inference method we have developed will use as tool the propagation of fill-ins,

inspired (yet different3) by Xiang and Jensen’s algorithm described previously. The

main element that enables us to do this propagation in a efficient way is the Instance

Tree (IT), which always exists and can also be easily and directly obtained from the

OOBN (see alg. 22). Besides this propagation scheme, other important improvements

for local triangulations have been introduced that will both enhance efficiency and

maintain the reusability principle inherent in an OO framework.

What our technique does is a redefinition of the compilation process of an OOBN

which has been proved to be valid, and then a correct alternative for inference. But even

more important is that this new proposal for OOBNs compilation has yielded two main

interesting contributions: (1)This inference can be done directly over an OO structure,

since the IT maintains (and differentiates) the various abstraction levels of the corre-

sponding network. (2)It also incorporates a mechanism that allows dynamic/changing

OOBNs to be compiled in a very fast way. That is why we chose the name Plug &

Play, since it allows addition/deletion/modification of classes in a dynamic and quick

way. Also, as we will discussed later, this scheme will be an advantage if we decide to

pre-compile OOBNs when they are being specified, exploiting the fact that we could

have several instantiations of a certain class.

To describe our technique, we will divide it into two different problem layers:

• The global problem, which is delimited by the corresponding OOBN, that is, the

encapsulating class. Here the Instance Tree will monitor which and how fill-

ins are propagating through the tree. For this fill-in propagation the internal

instantiations will have to be triangulated with a constrained elimination order.

3Since the nature of MSBNs and OOBNs are different, and also their secondary structures (Hy-

pertree and Instance Tree respectively)

5.4. Plug & Play OOBNs 171

• The local compilations, that will give rise to local inference structures obtained

from (locally) good elimination sequences. Moreover, they will be benefitted from

using Incremental Compilation to speed up re-triangulations.

The next two points expound better how these two layers are tackled in this par-

ticular approach.

5.4.1 Global compilation of the OOBN by means of IT-based

fill-in propagation.

As seen throughout this work, the compilation process of a BN is the process of

transforming it into JT (secondary structure for inference). The purpose of this method

is to find a way of obtaining this Junction Tree without renouncing the potential of

the modularity capability of OOBNs. As a result, our first concern is the construction

of a join tree that keeps the set of instances in the OOBN partitioned as originally. To

achieve this goal two conditions must be guaranteed:

• There will be no moral links between variables not in the same instance of the

Instance Tree IT4.

• During triangulation there will be no fill-ins between variables not in the same

instance of the IT.

First requirement is always true, since directed links are never between two variables

not in the same class5. Links between instances are restricted to interface nodes, and

these interface nodes will be together in one of the connected instances. Then, when a

moral link appear it will also be between variables in this same instance.

Regarding second point, this will be assured by the procedure that we have come

up.

IT-based fill-in propagation

To see details about our scheme for propagation of fill-ins algorithms 24 and 25 are

written below. Basically it consists in doing a collect phase of fill-ins from the root of

the Instance Tree. This collection will be done, as usual, from leaves to the root, where

4Regular links are not possible by the proper definition of OOBN.
5Note that one variable could be in two different instances only if it belongs to their interface

172 Chapter 5: Combining the IC concept with modular Bayesian structures

the elimination sequences are restricted to remove last those nodes in the interface to

the next upper instance in the IT (caller instance). Once these two algorithms are

executed, we will have a correct triangulation of our OOBN.

Algorithm 24 IT-based Triangulation over an OOBN.

1: procedure IT-based Triangulation(OOBN o net)

2: Instance Tree IT ← o net.get Instance Tree()

3: Instanceroot ← IT.get root()

4: Instanceroot.Collect Fill-Ins(null)

⊲ From the instance root of the IT perform a collect phase of fill-ins.

5: end procedure

Algorithm 25 IT-based Collection of fill-ins.

1: procedure Instancenow.Collect Fill-Ins(Instanceprevious)

2: Fill-ins ← ∅

3: for all Instance Ij ∈ IT Down Adjacent(In) do

4: Fill-ins ← Ij.Collect Fill-Ins(In) ∪ Fill-ins

⊲ Fill-ins are collected (propagated) from the downwards adjacent neighbours in the IT.

5: end for

6: σnp ← (In.Nodes \ Interfacenp,Interfacenp)

7: links ← In.Moral Graph.triangulate(σnp)

8: return links↓Interfacenp

9: end procedure

Since the interface sets between two instances in the IT d-separate them, we can

apply fill-in propagation as explained in [132]. Note that we will only propagate fill-ins,

moral links, and regular links between interface nodes (for ease of exposition we will

call them all fill-ins). We fix the root of the tree to be the the root instance of the IT,

and only a collect of fill-ins will be performed.

Any elimination order for the leaves of the IT can be used, with the constraint

that the input nodes and output nodes are not eliminated. Looking at the schematic

figure 5.8, the nodes {x, y} and z are not eliminated from the instance C. It is well

known that the fill-ins between nodes not yet eliminated will be the same no matter

the sequence so far, so any order will suffice in this step. This sequence yields a set of

fill-ins and those involving two interface nodes are propagated upwards in the IT. Note

that some input nodes may not be in the interface, these will be eliminated last, but

5.4. Plug & Play OOBNs 173

before fill-in propagation. In the example, the fill-in between x and y is propagated to

B. This process is repeated recursively until the root node has received fill-ins from all

its descendants. Using this kind of fill-in propagation we obtain a valid triangulation

[132]. This method of triangulation ensures that there are no fill-ins between variables

not in the same instance as any fill-in propagated will be between interface nodes

contained in the sending as well as the receiving instance in the IT.

D

C

B

A

(b)(a)

l

k

j

o

m

n

zx

D

C

B

A
y

m

x

m

y

y

z

x

n

y

y

z

my

y

y zx

y

n

n

y

Figure 5.8: (a) An IT where the fill-in messages can be seen. Note that y is in both A’s

interface to B and to D. (b) An OOBN inducing the IT. Note that the input nodes

are not in the IT, as they are overwritten by y.

From this triangulation it will be possible to construct a valid join tree for the

global structure as explained in [7]. So, the goal of obtaining a valid way to infer, but

maintaining the natural partitioning in trees, has been attained.

Once fill-ins have been properly collected, we can triangulate each instance sep-

arately as the interfaces d-separate an instance from the instances in the IT above

it. The only requirement is that the interface to the parent in the IT is eliminated

last. Time may be spent on finding an optimal triangulation of each instance in the

IT under this constraint. Optimal triangulation of the instances will, however, not

guarantee an optimal global triangulation. Instead we will look for a way of decreasing

174 Chapter 5: Combining the IC concept with modular Bayesian structures

the re-triangulation task if changes occur in the OOBN. Incremental compilation for

the local triangulations will be used, and it is explained in the next subsection.

5.4.2 Local re-triangulations using Incremental Compilation

The second great utility of this method is how instance triangulations can be im-

proved locally and, what is more important, how they will permit quick recompilations.

The MPSD-based Incremental Compilation (chapter 3) is going to be extended in

order to contemplate a couple of new operations: addition/deletion of fill-ins.

In fact, this extension is not hard to do. Adding a fill-in will be similar to add

a link between a node A and B, A → B, but without caring about moralisations.

Similarly, removing a fill-in is like removing a directed link, but again without tracing

which moral links should also be removed. Then, they could be seen as simplifications

of already existing IC modifications.

As mentioned before, our method not only infers properly without losing the OO

structure, but fast local re-triangulations make possible to manage efficiently those

networks in dynamic/changing environments. All the changes affecting classes inside

the OOBN will be fast and easily processed thanks to the Plug & Play scheme, that

we describe next.

5.4.3 Plug & Play behaviour

There will be certain environments where OOBNs suits perfectly such as automatic

model generation, dynamic domains, time-slice structures, complex problems,... To

manage this kind of particular situations efficiency problems must be solved. In auto-

matic model generation, new data will be received, and then addition/modification of

classes has to be done in a quick way. Dynamic domains will be continuously register-

ing new situations. In temporary structures, different slices are incorporated along the

time passes. And obviously, for complex domains, a total recompilation of the OOBN

will generally be unmanageable.

For all the previous, we found necessary to provide a way of making the correspond-

ing changes to an OOBN by means of a powerful and really dynamic scheme. After

having used the two-step method explained before: Propagation of fill-ins through the

Instance Tree + Local Triangulations and thanks to the fast local re-triangulations

provided by IC we have designed a general Plug & Play technique over OOBNs that

manages rapidly with any possible change that could be made in the network.

5.4. Plug & Play OOBNs 175

Only nine (four) different kind of changes are possible:

1. Adding/removing a regular link/node.

2. Adding/removing a reference link.

3. Adding/removing an instance.

4. Changing a class specification.

The first eight (three) can only occur in the outermost class, otherwise it will fall

under the last. This is because a class only sees its protected nodes and the interface

to other instance, which consequently are also inside the outer class.

Note that fill-in propagation only occurs in the fourth case, as the others happen

in the root instance of the IT, and fill-ins are only propagated upwards in the IT when

a class is redefined (re-specified).

Adding/removing a link/node will force a re-triangulation of the root instance,

but using IC, only the relevant subset of the graph will be re-triangulated. This will not

change the triangulation of instances in the root instance, as these can be triangulated

independently of the rest of the network due to the fill-in propagation scheme. If

moralisations between output nodes of an instance appear/disappear, the moralisations

will only be relevant for the root instance. Figures 5.9.(a)-(b) explain it graphically on

a concrete example.

Adding/removing a reference link will not affect the triangulation of the in-

stance where the child of the link is defined. The triangulation of all instances of a

class are identical, except for names of reference nodes. Notice that the class of an

instance is compiled independently of the uses of the instances. If a reference link is

added, the child (referenced node) of the reference link will have its name changed,

and the default potential for that node, which was used previously, will be removed

from the JT. If a reference link is removed, the name of the child will also change, and

the default potential will be added to the JT. None of these modifications changes the

triangulation.

However the interface to the parent in the IT will change, and hence the message

sent upwards during fill-in propagation may change. Adding a reference link will add

the parent of the link to the interface to the instance of the child. Removing a reference

link will remove the parent from that interface. Changing the interface like this will add

(or remove) the fill-ins already found by the propagate fill-ins step for the instance.

176 Chapter 5: Combining the IC concept with modular Bayesian structures

Class A

B2B1 C... B1 B2

Class A

C

B1 B2

Class A

C

D1 D2

E1 E2

(a) (b) (c)

Figure 5.9: (a)A schematic example of OOBN. (b)Its corresponding IT. If we make any

modifications on the definition of class C, for example, they will be performed there.

Notice that class A does not have access to C’s protected nodes. So, the only concern

is to test if the communication of links in the collection phase, over the interface, has

changed and if so, we should update that information.(c)Suppose that instance D2 is

removed from C. Then, we just prune the corresponding branch in the IT and ignore

the previously collected links from this branch (removing an instance).

If the message is changed, a re-triangulation of the root instance using IC will be

triggered. Again, only the relevant part of the root instance will be re-triangulated.

In Fig. 5.10.a an example of an OOBN is shown on top of the triangulation of the

IT and the fill-ins propagated. The JT for this OOBN will have the potentials for

A,B, Y and Z. If a reference link from B to Y is added the name of Y will change to

B in the triangulation, it will be added to the interface to the root instance of the IT,

the fill-in will be propagated, and the potential for Y will be removed from the JT as

Y no longer exists in the IT. This situation is shown in Fig. 5.10.b. If the reference

from B to Y is removed, the situation will return to that in fig. 5.10.a.

Adding/removing an instance will not affect the local triangulation of the in-

stance, as all classes will be triangulated when their specification is done. So the

5.4. Plug & Play OOBNs 177

A B

BA

B

Z

(b)(a)

Y

Z

Z

YX

A

A

BA A

A B

Z

YX

BA

Figure 5.10: (a) An OOBN and the triangulated IT achieved from it. (b) A reference

has been added and the triangulation of the IT has changed.

fill-ins induced by them will be known before they are instantiated. The only parts not

known are the reference links to input nodes, and some of the children of the output

nodes (those children outside the class specification). Note that the triangulation of

the instance will not change even if new moralisations occur, as these only affects the

encapsulating class. The names of input nodes may change if reference links are added,

but this is handled at that time.

Adding an instance with no links will not induce any fill-ins in other instances in

the IT, as the instance will be separated from the rest of the network until regular

links and reference links are added. So adding an instance will not require any fill-in

propagation or re-triangulation as this will be handled when links are added to or from

the instance (that would go in the previously described kind of operation). The IT will

be updated with the new sub-tree, and the overall JT will have the JT for the instance

added, and in effect become a forest.

Removing an instance will be handled by removing the sub-tree for the instance

from the IT, and removing the JT associated with it from the overall JT. The root

instance will be re-triangulated without the fill-ins received from the removed instance

using IC (see fig. 5.9.(c)).

Changing a class specification can include any of the previously mentioned

actions any number of times, so to avoid fill-in propagation more than once, propagation

178 Chapter 5: Combining the IC concept with modular Bayesian structures

will not occur before modification of the class is completed. The changes to the class

are handled by viewing the class as the root instance of its own local IT and using the

techniques described above.

Once modification of the class is finished, the fill-ins between the interface nodes are

found. The class will already be triangulated and the JT found by this triangulation

will substitute the JT part associated with each instance of the class in the overall

JT. Note that some names may be changed in the various instances, through reference

links, this should be handled when substituting the JT part.

All that remains now is to propagate the fill-ins. An instance only needs to send a

message if its fill-ins have changed. The propagation starts in the leaves of the IT and

stops when no instance can send a message. This is done by sending a message from

the instance in the IT that:

1. Has different fill-ins.

2. Has not sent the message yet.

3. Is farthest away from the root.

Every time an instance receives a message, the fill-ins to its parent will be found

and compared to the previous fill-ins to see if a message should be sent further upwards,

and it will be re-triangulated using IC. Once no more messages can be sent, the OOBN

is triangulated again, using only local operations.

In this scheme it is worth noting that all the information needed to re-triangulate

any instance will be available locally in each instance after propagation of fill-ins has

been done. Classes can be precompiled, and the JT obtained through this can easily

be incorporated into a JT for an OOBN that adds an instance of the class.

5.5 Other possible benefits from the modular na-

ture of IC together with the previous ones.

In chapter 3 we showed the method of MPSD-based Incremental Compilation [43,

44]. In this fourth chapter we have explained other modular structures that shared

with IC the principle of dividing a large problem into several sets of smaller ones in

order to get better performance and to improve efficiency. Of course, if we examine the

two main frameworks revised here (MBSNs and OOBNs) together with IC, we observe

how these divisions are of different origin and utility, and yet alike in some aspects:

5.5. Other possible benefits from the modular nature of IC 179

1. MSBNs approach deals with a multi-agent paradigm where, by definition, agents

are independent elements that should collaborate, but still they do not show each

others, for reasons tied to the own problem’s characteristics. For example, as in

the logical circuit, to hide certain valuable or private data. But it could be also

caused by the impossibility or the cost of communicating the whole information

of every agent. In general, as said before, they are thought to solve multi-agent

schemes.

2. OOBNs were initially designed to manage large Bayesian networks, with the

aim of modelling them in a much easier way that could provide the net builder

with the Object Oriented approach, a quite successful methodology for so many

other technical fields. They were proved to also enhance other particular needs

as dynamic domains, temporal networks or repetitive structures. We have also

seen how some MSBNs’ procedures have inspired researchers to design specific

techniques that improve considerably the process of inference in OOBNs, which

makes them even more powerful.

3. Incremental Compilation makes the same process of dividing the problem, but

this time in the opposite way. From the big structure, we extract its components,

while the previous two constructed incrementally a whole structure assembling a

set of basic units. IC’s point of departure is a unique Bayesian network, normally

of great size and complexity, that is quite hard (in time and computationally)

to be processed as a complete unit. Besides, this unitary treatment is not even

necessary most of the times, since the processes over the net would normally be

focused on a certain and localised part of the network.

Then, IC uses a well-known decomposition method that was proved to maintain

interesting properties, such as allowing independent triangulations for subgraphs.

And, as already explained, this division has leaded us to design not only a new

technique for triangulation (chapter 2) but also a completely new approach for

compiling Bayesian networks while editing them that saves time and computation

considerably.

The difference among the three listed approaches lies in the way we get the parti-

tioning of the problem, but in the three cases we tackle a complex problem (multi-agent,

large domains, big networks) splitting it into smaller pieces that we can work easily and

quicker with, having also a manner to re-integrate them when necessary. What this

180 Chapter 5: Combining the IC concept with modular Bayesian structures

particular section attempts to demonstrate is that taking as a basis their resemblances,

but having in mind their diversity these three modular structures can take advantage

one from the others to solve some of their own weaker points or just to improve deter-

mined methods. It has already been mentioned the link MSBN-OOBN. We want now

to indicate more particularly those benefits related to our own development, IC.

The first benefit is clear and has already been commented here: the integration of

IC in a modular and dynamic way of growing (or branching)the OOBNs: the so-called

Plug & Play OOBNs. It also reinforces the main purpose IC is thought for, which are

large and complicated domains.

On the other hand, the next step could be seeking the analogies and the bonds

between MSBN and IC. We really think there are and that they could both benefit

from the other. Next, we will expose the reasons for that statement, supported by an

analysis of similarities and differences.

Firstly, as we have shown IC is a method for making more efficient the (re)compilation

of a Bayesian network. We also have revised how MSBNs are an extension of BNs, and

because of that their compilation process, which we called Cooperative Compilation,

was inspired in the single agent paradigm. In fact, there was a clear parallelism between

both of them. So, the following ideas comes naturally: (1)could MSBNs use the de-

composition in SPMs? (2)If so, could this decomposition be of utility for triangulation

methods or for performing an adapted IC method?

If we think about first question, we could also look for the link MSBN-IC going into

their basic elements, which is the relation between an agent and a prime subgraph. If

an interface Iij between two agents Ai and Aj is completely connected (which could

easily happen as some examples illustrated), then in fact these two agents together

with the Iij set will be correspond to three maximal prime subgraphs. That makes

possible to triangulate them independently, without needing any fill-in propagation.

Even if this interface Iij is not complete, another way of constructing SPMs will be

aggregating several agents in an only subgraph.

From the previously explained, it is possible an application of the parallel/inde-

pendent triangulation scheme shown in chapter 2 in order to speed up the triangulation

process. We should remind that this process could became specially complicated in an

MSBN environment. Thus, any optimisation for it will be of great interest. Obviously,

the subgraph-level triangulation will differ from the regular one when a subgraph covers

several agents. In this case, it would be necessary to implement a variant algorithm

of the Cooperative Triangulation. This adaption can be seen as a partial Cooperative

5.5. Other possible benefits from the modular nature of IC 181

Triangulation and, at the same time, we would have to adapt the IC method to the

new scenery. We are not dealing exclusively with join trees any more, but also with

linked junction forests and their intermediate structures for communication: the linkage

trees. So, this Multiply Sectioned IC will need a mechanism able to manage this new

trees, still based on the original JT, which gives us the confidence that a design of

this transformation scheme is quite possible. So, this first cooperation MSBN-IC could

be seen as an application of the Incremental Compilation to the original compilation

scheme for MSBNs, which seems attractive due to the complexity of the multi-agent

domains and problems.

Moreover, from a different point, there is a second advantage that the tandem

IC-MSBN can imply. In this case the Incremental Compilation procedure could be

itself benefitted. One of the main drawbacks for the MPSD-based IC is that this is

quite dependent on the obtained decomposition. It is clear that subgraphs are the

smaller component we can treat. Hence, when a very large subgraph comes from the

decomposition, we still have to tackle it as a complete unit. In some cases, it could be

really a problem, because the MPSD can return an unbalanced decomposition, which

makes our modular tool less powerful. That is why we launched in previous chapters

the idea of using in those cases a kind of approximate IC. That implied breaking big

subgraphs in smaller pieces, but also dealing with the fact that the MPSs properties

were not applicable in those sub-divisions. We are investigating the possibility of using

α-MPSs, where α is a ratio of completeness. That is, if we have a separator containing 4

nodes, it will divide the graph into two MPSs only if the projected graph is completely

connected, which means that every node is linked to the rest (6 links in total). We

could consider quasi -complete subgraphs, i.e. in the previous example if 5 out of the 6

links exist, the corresponding subgraph will be said to be 0.83-complete (5/6 = 0.83).

And then it is also 0.80-complete, for example (see def. 31)

Definition 31 A graph G, being G = (V,E), is said to be α-complete if

|E|

|Ec|
≥ α

where α ∈ (0, 1] and |Ec| represents the number of links for Ec = ∪i6=j{Vi − Vj} =
|V |·(|V |−1)

2
, that is, there is a link between every Vi and Vj , being Gc = (V,Ec) the

corresponding complete graph.

2

Nevertheless, the alternative scheme for this approximation has not been defined

yet. In this sense the fill-ins propagation scheme used for MSBNs (and somehow

182 Chapter 5: Combining the IC concept with modular Bayesian structures

migrated to OOBNs) could again be useful for the IC technique. Those big subgraphs

split into several α-subgraphs can then be triangulated through a propagation scheme.

We could basically used the method by Xiang & Jensen over certain portions of the

Bayesian networks when they are involved in re-compilations. The main idea is to treat

big subgraphs by means of the Cooperative Triangulation method, by an artificial

MSBN, where we can choose the features of the subnets, their sizes, their common

links, the (almost complete) interfaces, and so on. This α-decomposition could also

be applied to the triangulation by re-triangulation method. If this scheme is used,

those subgraphs sub-divided in smaller pieces (subnets) will communicate through

this α-MPST as agents did in the hypertree. Of course, as remarked above, it is only

necessary to those big subgraphs that present a really unbalanced size and that produce

big clusters in the tree. It would also be useful a study about which values of α and

under which specific situations (partitions) this technique can present a real advantage.

Chapter 6

Incremental algorithm for

performing parcial abductive

inference

A little inaccuracy sometimes saves tons of explanation.

H.H. Munro. (1870–1916)

Burman born English novelist and short-story writer, under pseudonym Saki.

6.1 Abductive inference in Bayesian networks. To-

tal and partial abduction techniques

Until here, we have been dealing with inference in Bayesian networks from the most

typical and classical approach, that is, looking for the posterior probability distributions

of the variables when some evidence has been observed. This is indeed the most

common probabilistic inference in Bayesian networks (BNs) where normally probability

or evidence propagation [99, 21, 62] is used. In this case, as reviewed, the look for

the computation of posterior probability for all non-observed variables given a set of

observations (XO = xO) (the evidence) was the main goal. But this is not the only

existing view we can have from BNs computation, and there are also other interesting

inference tasks.

In this category we can find abductive reasoning, which represents another type

of propagation and has also a great relevance within this BNs field. Abduction is a

method for inference used for finding/generating explanations to some observed facts.

Generating explanations in Bayesian networks can be understood in two (main) differ-

184 Chapter 6: Incremental algorithm for performing parcial abductive inference

ent ways:

1. Explaining the reasoning process (see [68] for a review). That is, trying to justify

how a conclusion was obtained, why new information was asked, etc.

2. Diagnostic explanations or abductive inference (see [48] for a review). In this case

the explanation reduces to factual information about the state of the world, and

the best explanation for a given evidence is the state of the world (configuration)

that is the most probable given the evidence [99].

In this case we will focus on the second approach. Therefore, given a set of obser-

vations or evidence (XO = xO or xO in short) known as the explanandum, we aim to

obtain the best configuration of values for the explanatory variables (the explanation)

which is consistent with the explanandum and which could be assumed to predict it.

As the abductive task is mostly considered as the search of explanations its major

application has been done for diagnosis and analysis problems [104, 100], where medical

diagnosis stands out especially. In the last years various authors have directed their

research endeavours to the study of performing abductive inference for the formalism

of Bayesian networks. Two main abductive tasks in BNs are identified1:

• Most Probable Explanation (MPE) or total abduction. In this case all the unob-

served variables (XU) are included in the explanation [99]. The best explanation

is the assignment XU = x∗U which has maximum a posteriori probability given

the explanandum, i.e.,

x∗U = arg max
xU∈ΩXU

P (xU |xO). (6.1)

Searching for the best explanation has the same complexity (NP-hard [119]) as

probability propagation, in fact the best MPE can be obtained by using prob-

ability propagation algorithms but replacing summation by maximum in the

marginalisation operator [29]. However, as it is expected to have several compet-

ing hypothesis accounting for the explanandum, our goal usually is to get the K

best MPEs. Nilsson [91] showed that using algorithm in [29] only the first three

MPEs can be correctly identified, and proposed a clever method to identify the

remaining (4, . . . , K) explanations.

1We introduced them in chapter 1, but we have considered that it is worth re-writing basic concepts

as the same time as we complement them with further detail.

6.1. Abductive inference in Bayesian networks. Total and partial abduction techniques 185

This kind of problems has been studied by several authors who developed exact

algorithms [78, 109] and there are also works using approximate methods [50] in

order to solve them. Nilsson proved that under certain assumptions, his algorithm

to obtain K-MPEs has a similar complexity to the computation of posterior

probabilities by Hugin algorithm [91, 90]

One of the main drawbacks of the MPE definition is that as it produces complete

assignments, the explanations obtained can exhibit the overspecification problem

[117] because some non-relevant variables have been used as explanatory.

• Maximum a Posteriori Assignment (MAP) or partial abduction [87, 117]. The

goal of this task is to alleviate the overspecification problem by considering as

target variables only a subset of the unobserved variables called the explanation

set (XE). Sometimes certain variables clearly have no explanatory value (e.g. in

network of figure 6.20 ”radio does not work“ is not explanatory); others will be

just intermediate nodes (e.g. in the network of fig. 6.2 markTP is a combination

of Theory and Practice, which are the real, let us say ”input“ values); and in

general there could be variables useless in an explanation because they simply

not give any information from an abductive point of view or we are just not

interested in them.

Then, we look for the maximum a posteriori assignment of these variables given

the explanandum, i.e.,

x∗E = arg max
xE

P (xE|xO) = arg max
xE

∑

xR

P (xE , xR|xO), (6.2)

where XR = XU \XE.

In principle it could seem that the solution for this problem would arise by means

of an adaptation of those methods developed for total abduction. However, a

deeper study of the problem reveals that this does not always hold, and moreover

those resolution methods will be in general less efficient. Therefore, algorithms

are almost always approximate (such as local search, Simulated Annealing or

Genetic Algorithms). This problem is therefore more complex than the MPE

problem, because it can be NP-hard even for cases in which MPE is polynomial

(e.g., polytrees) [95, 16], although recently Park and Darwiche [94, 95] have

proposed exact and approximate algorithms to enlarge the class of efficiently

solved cases. With respect to looking for the K best explanations, exact and

186 Chapter 6: Incremental algorithm for performing parcial abductive inference

approximate algorithms which combine Nilsson algorithm [91] with probability

trees [108] have been proposed in [17].

In general, we could say that partial abduction has been less studied than total

abduction [46].

The problem in both cases is set out as the search of the instantiation values for

all (total) or a subset of (partial) non-observed variables in such a way that the joint

probability of the configuration is maximum. Besides, since it is not generally enough

by finding the best explanation, but we need the K best explanations, this K number

is usually added to the problem statement.

The question now is which variables should be included in the explanation set.

Many algorithms avoid this problem by assuming that the explanation set is provided

as an input, e.g., given by the experts or users. Many others interpret the BN as a

causal one and only ancestors of the explanandum are allowed to be included in the

explanation set (sometimes only root nodes are considered) [78]. However, including

all the ancestors in the explanation set does not seem to avoid the overspecification

problem and even so, what happens if the network does not have a causal interpreta-

tion?, e.g., it has been learnt from a data base or it represents an agent’s beliefs [22].

Shimony [117, 118] goes one step further and describes a method which tries to identify

the relevant variables (among the explanandum ancestors) by using independence and

relevance based criteria. However, as pointed out in [22] the explanation set identified

by Shimony’s method is not as concise as expected, because for each variable in the

explanandum all the variables in at least one path from it to a root variable are included

in the explanation set. Henrion and Druzdzel [55] proposed a model called scenario-

based explanation. In this model a tree of propositions is assumed, where a path from

the root to a leaf represents a scenario, and they look for the scenario with highest

probability. In this model, partial explanations are allowed, but they are restricted to

come from a set of predefined explanations.

As stated in [22] conciseness is a desirable feature in an explanation, that is, the

user usually wants to know only the most influential elements of the complete expla-

nation, and does not want to be burdened with unnecessary detail. This follows the

logical principle known as Occam’s razor 2 which can be stated as one should not in-

crease, beyond what is necessary, the number of entities required to explain anything.

This criterium for deciding among scientific theories or explanations is also said to be

2Attributed to the medieval philosopher William of Occam (or Ockham).

6.2. Abductive inference in Bayesian networks. Total and partial abduction techniques 187

parsimonious. Because of this conception of choosing the simplest explanation for a

phenomenon, a different approach is taken in [15]. The idea is that even when only

the relevant variables to the explanandum are included in the explanation set, the ex-

planations can be simplified due to context-specific irrelevance. This idea is even more

interesting when we look for the K MPEs, because it allows us to obtain explanations

with different number of literals. In [15] the process is divided into two stages: (1) the

K MPEs are obtained for a given prespecified explanation set, and (2) then they are

simplified by using different independence and relevance based criteria.

In our work we try to obtain simplified explanations directly. The reason is that

the second stage in [15] requires to carry out several probabilistic propagations and

so its computational cost is high (and notice that this process is carried out after -a

complex- MAP computation). Another drawback of the procedure in [15] is that it is

possible, that after simplification, the explanations are not mutually exclusive, we can

have even the case of two explanations such that one is a subset of the other. Here,

our basic idea is to start with a predefined explanation set XE , and them we build a

tree in which variables (from XE) are added in function of their explanatory power

with respect to the explanandum but taken into account the current context, that is,

the partial assignment represented by the path obtained from the root to the node

currently analysed. Variables are selected based on the idea of stability, that is, we

can suppose that our system is (more or less) stable, and that it becomes unstable

when some (unexpected) observations are entered into the system. The instability of a

variable will be measured by its entropy or by means of its (im)purity (GINI index).

Therefore, we first select those variables that reduce most the uncertainty of the non-

observed variables of the explanation set, i.e., the variables better determining the

value of the explanation variables. Of course, the tree does not have to be symmetric

and we can decide to stop the growing of a branch even if not all the variables in XE

have been included. In any case, our set of explanations will be mutually exclusive,

and will have the additional property of being exhaustive, i.e., we will construct a full

partition of the set of possible configurations or scenarios of the values of the variables

in the explanation set.

Along the subsequent sections we will describe our method in detail (section 6.2)

and afterwards illustrate it: first (section 6.3), by using some (toy) study cases. These

two first points will be a slightly extended version of the published paper [45]. Section

6.4 will do a further analysis on the obtained trees and another example (used in [15])

is added to our experiments in order to compare both techniques.

188 Chapter 6: Incremental algorithm for performing parcial abductive inference

6.2 On the search for minimal explanations: the

Explanation Tree

Our method aims to find the best explanation(s) for the observed variables that do

not necessarily have a fixed number of literals and we want to achieve that directly.

The provided explanations will adapt to the current circumstances. Sometimes that

a variable X takes a particular value it is an explanation by itself (Occam’s razor)

and including other variables to this explanation will not add any new significant

information.

We have then decided to represent our solutions by a tree, the Explanation Tree

(ET). In the ET, every inner node will denote a variable of the explanation set and

every branch from this variable will indicate the instantiation of this variable to one of

its possible states. Each node of the tree will determine an assignment for the variables

in the path from the root to it: each variable equal to the value on the edge followed

by the path. This assignment will be called the configuration of values associated to

the node. In the explanation tree, we will store for each leaf the probability of its

associated configuration given the evidence. The set of explanations will be the set of

configurations associated to the leaves of the explanation tree ordered by their posterior

probability given the evidence.

For example, in figure 6.1 we can see three variables X,Y and Z that belong to the

explanation set, since they are nodes in the tree. In this particular example there are

four leaves nodes, that is, four possible explanations, each of them labelled as Explan i.

What this ET indicates is that, given the observed evidence, that X has the value x1

is a valid explanation for such situation (with its probability/weight associated). But

if it is not the case then we should look into other factors, in this case Y . For example,

we can see that adding Y = y2 to the explanation will be enough. Otherwise, when Y

takes value y1 the node needs to be expanded and we have to look for other involved

factors in order to find a valid explanation (in this example, variable Z).

Although the underlying idea is simple, how to obtain this tree is not so evident.

There are two major points that have to be answered:

• As the ET is created in a top-down way, given a branch of the tree, how to select

the next variable?

• Given our goals, i.e. allow asymmetry and get concise explanations, how to decide

when to stop branching?

6.2. On the search for minimal explanations: the Explanation Tree 189

Y

Z

X

x1 x2

y1 y2

z1 z2

Explan_1: P(X=x1|e)

Explan_2:
 P(X=x2,Y=y1,Z=z1|e)

Explan_3:

Explan_4: P(X=x2,Y=y2|e)

P(X=x2,Y=y1,Z=z2|e)

Figure 6.1: An example of explanation tree.

To solve the two previous questions we have used information measures. For the

first one, we look for the variable that once instantiated the uncertainty of the rest

explanation variables is reduced at maximum. In other words, given the context pro-

vided by the current branch, we identify the most explicative as the one that helps to

determine the values of the other variables as much as possible.

Algorithm 26 (Create-New-Node) recursively creates our ET. In this algorithm

we assume the existence of an inference engine that provides us with the probabili-

ties needed during tree growing. We comment on such engine in Section 6.2.1. The

algorithm is called with the following parameters:

1. The evidence/observations to be explained xO.

2. The path corresponding to the branch we are growing. In the first call to this

algorithm, i.e. when deciding the root node, this parameter will be null.

3. The current explanation set (XE). That is, the set of explanatory variables

already available given the context (path). In the first call XE is the original

explanation set. Notice also that if XE = XU in the first call, i.e., all non-

observed variables belong to the explanation set, then the method has to select

those variables relevant to the explanation without prior information.

4. Two real numbers α and β used as thresholds (on information and probability

respectively) to stop growing.

190 Chapter 6: Incremental algorithm for performing parcial abductive inference

5. The final explanation tree that will be recursively and incrementally constructed

as an accumulation of branches (paths). Empty in the initial call.

Algorithm 26 Creates a new node for the explanation tree.

1: procedure Create new node(xO,path,XE ,α,β,ET)

2: for all Xj ,Xk ∈ XE do

3: Info[Xj,Xk] = Inf (Xj ,Xk|xO, path)

4: end for

5: X∗
j = arg maxXj∈XE

∑

Xk
Info[Xj,Xk]

6: if continue(Info[],X∗
j ,α) and P (path|xO) > β then

7: for all state xj of X∗
j do

8: new path ← path + X∗
j = xj

9: Create new node(xO,new path,XE \X
∗
j ,α,β,ET)

10: end for

11: else

12: ET ← ET ∪ <path,P (path|xO) > ⊲ update the ET adding path

13: end if

14: end procedure

In algorithm 26, for each variable in the explanation set, Xj , we compute the sum

of the amount of information that this variable provides about all the current ex-

planation variables conditioned to the current observations x∗O = (xO, path). We are

interested in the variable that maximises this value. In our study we have consid-

ered two classical measures: mutual information (Inf (Xj , Xk|x
∗
O) = I(Xj, Xk|x

∗
O) =

∑

xj ,xk
P (xj, xk|x

∗
O) log

(

P (xj ,xk|x
∗
O

)

P (xj |x∗
O

).P (xk|x
∗
O

)

)

) and GINI index (Inf (Xj , Xk|x
∗
O) =

GINI(Xj , Xk|x
∗
O) = 1 −

∑

xj ,xk
P (xj, xk|x

∗
O)2). Thus, there are different instances of

the algorithm depending on the criterion used as Inf.

Once we have selected the next variable to be placed in a branch, we have to decide

whether or not to expand this node. Again, we will use the measure Inf. The procedure

continue is the responsible to take this decision by considering the vector Info[].

This procedure considers the list of values Info[X∗
j , Xk] for Xk 6= X∗

j , then it computes

the maximum, minimum, or average of them, depending on the particular criterion we

are using. If this value is greater than α it decides to continue. Of course the three

criteria give rise to different behaviour, being minimum the most restrictive, maximum

the most permissive and having average and intermediate behaviour.

Notice that when only two variables remain in the explanation set, the one selected

in line 5 is in fact that having greater entropy (I(X,X) = H(X)) if mutual information

6.2. On the search for minimal explanations: the Explanation Tree 191

(or MI) is used. Also, when only one variable is left, it is of course the selected

one, but it is necessary to decide whether or not it should be expanded. For that

purpose, we use the same information measure, that is, I(X,X) or GINI(X,X), and

only expand this variable if it is at least as uncertain (unstable) as the distribution

[1/3, 2/3] (Normalising with more than two states3). That is, we only add a variable

if it has got more uncertainty than a given threshold.

6.2.1 Computation

Our inference engine is (mainly) based on Shenoy Shafer propagation algorithm

running over a binary join tree [116]. Furthermore, we have forced the existence of a

single cluster (being a leaf) for each variable in XE , i.e. a clique which contains only a

variable. We use these clusters to enter as evidence the value to which an explanatory

variable is instantiated, as well as to compute its posterior probability.

Here we comment on the computation of the probabilities needed to carry out the

construction of the explanation tree. Let us assume that we are considering to expand

a new node in the tree which is identified by the configuration (path) C = c. Let x∗O
be the configuration obtained by joining the observations XO = xO and C = c. Then,

we need to calculate the following probabilities:

• P (Xi, Xj |x
∗
O) for Xi, Xj ∈ XE \ C. To do this we use a two stage procedure:

1. Run a full propagation over the join tree with x∗O entered as evidence. In

fact, many times only the second stage (i.e., DistributeEvidence) of Shenoy-

Shafer propagation is needed. This is due to the single cliques included in

the join tree, because if only one evidence item (say X) has changed4 from

the last propagation, we locate the clique containing X, modify the evidence

entered over it and run DistributeEvidence by using it as root.

2. For each pair (Xi, Xj) whose joint probability is required, locate the two clos-

est cliques (Ci and Cj) containing Xi and Xj. Pick all the potentials in the

path between Ci and Cj and obtain the joint probability by using variable

elimination [30] (Alg. 5). In this process, we can take as basis the deletion

3This normalisation has been done by using H(Xi)
log|ΩXi

| for entropy (MI) and GINI(Xi)
|ΩXi

|−1

|ΩXi
|

for GINI index.

4Which happens frequently because we build the tree in depth, and (obviously) the create-node

algorithm and the probabilistic inference engine are synchronised.

192 Chapter 6: Incremental algorithm for performing parcial abductive inference

sequence implicit in the joint tree (but without deleting the required vari-

ables) and then the complexity is not greater than the complexity of sending

a series of messages along the path connecting Ci with Cj for each possible

value of Xi. But, the implicit triangulation has been optimised to compute

marginal distributions for single variables, and it is possible to improve it

to compute the marginal of two variables as in our case. The complexity of

this phase is also decreased by using caching/hashing techniques, because

some sub-paths can be shared between different pairs, or even a required

potential can be directly obtained by marginalisation from one previously

cached.

• P (C = c|xO) = P (C=c,xO)
P (xO)

. This probability can be easily obtained from previ-

ously described computations. We just use P (xO) that is computed in the first

propagation (when selecting the variable to be placed in the root of our explana-

tion tree) and P (x∗O) = P (C = c, xO) which is computed in the current step (full

propagation with x∗O as evidence).

Though this method requires multiple propagations, all of them are carried out

over a join tree obtained without constraining the triangulation sequence, and so it

(generally) has a size considerably smaller than the join tree used for partial abductive

inference over the same explanation set [95, 16]. Besides, the join tree can be pruned

before starting the propagations [16].

6.3 Examples for an initial testing: first study

Because we were in an initial stage of research about the ET method, in order to

show how it works and the features of the provided explanations, we found interesting

to use some (toy) networks having a familiar meaning for us, to test whether the

outputs are reasonable.

We used the following two cases:

1. academe network: it represents the evaluation for a subject in an academic envi-

ronment, let us say, university, for example. This simple network has got seven

variables, as Fig. 6.2 shows. Some of them are intermediate or auxiliary vari-

ables. What this network tries to model is the final mark for a student, depending

on her practical assignments, her mark in a theoretical exam, on some possible

6.3. Examples for an initial testing: first study 193

extra tasks carried out by this student, and on other factors such as behaviour,

participation, attendance... We have chosen this particular topic because the

explanations are easily understandable from an intuitive point of view.

In this network we consider as evidence that a student has failed the subject, i.e.,

xO ≡{finalMark=failed}, and we look for the best explanations that could lead

to this fact. We use {Theory, Practice, Extra, OtherFactors} as the explanation

set. In this first approach we run our ET-based algorithm with β = 0.0 (i.e.

the growing of the tree is not limited when the explanations have very little

probability), α=0.05|0.07 and criterion = max|min|avg. Figure 6.4 summarises

the obtained results (variables are represented by using their initials).

2. gates network: this second net represents a logical circuit (Fig. 6.3.a). The net-

work (Fig. 6.3.b) is obtained from the circuit by applying the method described

in [32]. The network has a node for every input, output, gate and intermediate

output. Again, we use an example easy to follow, since the original circuit only

has got seven gates (two not-gates, two or-gates and three and-gates) and the

resulting network has 19 nodes.

In this case, we consider as evidence one possible input for the circuit (ABCDE =

01010) plus an erroneous output (given such input), KL=00. Notice that the cor-

rect output for this case is KL=01, and also notice that from the transformation

carried out to build the network, even when some gates are wrong the output

could be correct (see [32]). So our evidence is ABCDEKL = 0101000 and we con-

sider XE = {A1, A2, A3, O1, O2, N1, N2} as the explanation set with the purpose

of detecting which gate(s) is(are) faulty. Figures 6.5 and 6.6 show the trees ob-

tained for mutual information (I) and GINI respectively. The same parameters

as in the previous study case are used but β = 0.05.

6.3.1 Analysis of the obtained trees

The first thing we can appreciate from the obtained trees is that they are reasonable,

i.e., the produced explanations are those that could be expected.

Regarding the academe network, when a student is failed, it seems reasonable that

the most explicative variable is theory because of the probability tables introduced in

the network. Thus, in all the cases Theory is the root node, and also in all the cases

194 Chapter 6: Incremental algorithm for performing parcial abductive inference

theory practice

markTP Extra

globalMark otherFactors

finalMark

1.0 (g,g)

0.85 (g,a)

0.0 (g,b)

0.9 (a,g)

0.2 (a,a)

0.0 (a,b)

0.0 (b,g)

0.0 (b,a)

0.0 (b,b)

= pass
markTP (M) (T, P)

1.0 (y,p)

0.25 (y,f)

1.0 (n,p)

0.0 (n,f)

(g, a, b)

(0.4, 0.3, 0.3)

(g, a, b)

(0.6, 0.25, 0.15)

(y, n)

(0.3, 0.7)

(+, −)

(0.8, 0.2)

Theory (T)

Practice (P)

Extra (E)

Others (O)

= pass

finalMark (F) (O, G)

1.0 (+,p)

0.7 (−,p)

0.0 (−,f)

0.05 (+,f)

= pass

globalMark (G) (E, M))

Figure 6.2: Case of study 1: academe network.

E D C B A

L K

H

G F

I

J

N1

A3

A2 A1

N2

O1

O2

A1 A B C DA2 N1

H O2E

J A3

FO1

IN2

K

G

L

(a) (b)

Figure 6.3: (a) Original logic circuit. (b) Network gates obtained from (a) by using the

transformation described in [32].

{theory=bad} constitutes an explanation by itself, being in fact the most probable

explanation (0.56).

The other common point for the obtained ETs is that the branch with theory as

good is always expanded. It is clear that being theory ok another reason must explain

the failure. On the other hand, the main difference between the two ETs is that 6.4.(a)

expands the branch {theory=average} and (b) does not. It is obvious that a bigger α

makes the tree more restrictive. If this tree is expanded, as α=0.05 does, is because

when theory is average it can be interesting to explore what happens with the practical

part of the subject.

It is possible that variables that are not part of an explanation and that change

their ’a priori’ usual value or that have an important change in its ’a priori’ probability

6.3. Examples for an initial testing: first study 195

P

T

P

0.00540

a
b

O

E E

0.03034 0.11283

+ −

y n y n

0.004790.01681

bad

0.56418
average

good

g g a b

0.01195 0.00648

y

0.02018

O

E E

0.01965

+ −

n y n

0.00802

0.11473

0.08463

0.03895 0.05433

T

P

O

E E

0.03034

0.00540 0.01195

0.11283

0.25369
0.56418

good bad

a
g b

average

+ −

y n y n

0.004790.01681

0.03895

(a) (b)

Figure 6.4: Results for academe: (a) is the obtained tree for all MI cases except

(MI,α=0.05,min) which produces tree (b) together with all (gini,α=0.05) cases and

(gini,α=0.07,max). Finally it is necessary to remark that (gini,α=0.07,min|avg) leads

to an empty tree, ∅, that is no node is expanded. β is 0.0.

A2

N1

N2

A1

A2

A1

A2

O1

ok

ok f

0.21082

ok

ok f

0.32775

f

fault

ok f

0.32775
0.01510

min: 0.10809

0.00373

f

f

ok f

ok

ok

0.10593
0.00216

0.00333

0.00343

A2

N1

N2

A1

A2

A1

ok

ok f

0.21082

ok

ok f

0.32775

f

fault

ok f

0.32775
0.01510

f
ok

0.11141 0.00343

min: 0.11484

0.00373

(a) (b)

Figure 6.5: Results for gates and MI: (a) is the obtained ET for (MI,α=0.05,max|avg)

and also (MI,α=0.07,max); (b) is for (MI,α=0.07,avg). In both cases min prunes more

the tree than avg, so the dotted area would not be expanded. β is 0.05.

196 Chapter 6: Incremental algorithm for performing parcial abductive inference

A1

N2

A2

fault

ok fault

ok

0.21456

ok f

0.32775

0.11141

0.34628

A1

N2

A2

A2

fault

ok fault

ok

0.21456

ok f

0.32775

0.11141
ok

0.015200.33107

f

(a) (b)

Figure 6.6: Results for gates and GINI: (a) represents the tree for all gini cases, except

(gini,α=0.05,max) which produces tree in part (b). β is 0.05.

distribution could be added to the explanation as this could be useful to the final user

to fully understand some situations. An example can be the case of academe network

with {theory = good, practice = good}. This branch is not expanded. The reason is

that in this situation, the other variables have small entropy: Extra should be ’no’ and

OtherFactors ’-’, with high probability. This implies an important change with respect

to ’a priori’ probabilities for these values, and then these variables with their respective

values could be added to the explanation {theory = good, practice = good}, making

its meaning more evident.

We also used this case to show the influence of β. As β = 0.0 was used, we can see

that some branches represent explanations with a very low posterior probability (those

in the dashed area in Fig. 6.4), and so they will not be useful. The dashed areas in

Fig. 6.4 represent the parts of the tree that are not constructed if we use β ≃ 0.05,

which apart of producing a simpler and more understandable tree is also of advantage

to reduce the computational effort (probabilistic propagations) required to construct

the tree.

With respect to the resulting trees for the gates case, we can appreciate two clear

differences: (1) GINI produces simpler trees than MI, and (2) the most explicative

variable is different depending on the used measure. Regarding this last situation,

we can observe in the circuit that there are many independent causes5 (faults) that

5However, it is interesting to observe that applying probability propagation, the posterior proba-

bility of each gate given the evidence, e.g. P(A1|xO), indicates that that for all the gates it is more

probable to be ok.

6.4. Further experimentation 197

can account for the erroneous output. Choosing the and gate A1 as GINI does is

reasonable (as well as choosing A2) because and gates have (in our network) greater a

priori fault probability. On the other hand, choosing N2 as MI does is also reasonable

(and perhaps closer to human behaviour) because its physical proximity to the wrong

output. If we were a technician this would probably be the first gate to test. In this

way, it seems that MI is more sensitive to the fact that the impact a node has in the

value of the remaining nodes is attenuated with the distance in the graph.

Once the first variable has been decided, the algorithm tries to grow the branches

until they constitute a good explanation. In some cases, it seems that some branches

could be stopped early (i.e. once we know that N2=fault), but these situations depend

on the thresholds used and it is clear that studying how to fix them is one of the major

research lines for this work.

Perhaps an interesting point is to think about why O1 is not selected by MI when

N2=ok as could be expected given the distance-based preference previously noticed.

But, if we look carefully the circuit, we can see that output L (which is correct) also

receives as input the output of gate O1, so it is quite probable that O1 is working

properly.

Of course, we get different explanations depending on the used measure, the value

of α or the criterion, but in general we can say that all the generated explanations

are quite reasonable. Finally, in all the trees there is a branch, and so an explanation

which indicates that a set of gates are ok. Perhaps this cannot be understood as an

explanation to a fault, but we leave it in the tree in order to provide a full partitioning.

Some advice about these explanations can be given to the user by indicating for example

if such explanations raise or not the probability of the fault with respect to its prior

probability.

6.4 Further experimentation

From the previous study and these simple examples we can extract that the expla-

nations given by our ET -method are quite reasonable, as has been examined before.

Anyway, this reasonability term might be a quite vague concept and we wish to rein-

force the believe on the goodness of the generated explanation tree. Hence, we have

figured out a more systematic way to contrast the obtained results to an already ex-

isting technique with the same purpose: K Most Probable Explanations search. In

subsection 6.4.1 we will apply both techniques to the academe and gates problem in

198 Chapter 6: Incremental algorithm for performing parcial abductive inference

order to compare the quality of explanations, and the differences in the format of giving

them (always using global configurations or not). With the aim of going into greater

detail, the next step will be a comparison with the already cited method using simpli-

fication of explanations[15]. To do so, we will use again the gates network and another

of the networks employed in that work which models the start mechanism for a car

(subsection 6.4.2).

6.4.1 Explanation Tree vs. Partial abduction

In this part of the chapter we intend to see the behaviour of our method and set

the given solution against the K-best explanations generated by partial abduction. To

be fair, and since the output of both methods is different, we will try to make a kind

of translation from one to the other, in such a way that:

1. ET → K-best explanations: From an Explanation Tree we will indicate the

corresponding ranking of explanations, ordered by probability. In our method

every leaf node represented one explanation, that one from the root until this leaf.

Thus, this is almost immediate to be done, but that will make easier the search of

similarities/differences when it is contrasted with the K-best explanations. With

this, we can see if the ET is able of representing these K-best explanations and

in which form.

2. K-best explanations→ ET : The K-best explanations provided by the abduction

task will be reflected in a tree structure similar to the resulting ET. So we will

annotate, how many explanations are included in each branch (and which ones).

In this case we will measure the distributions of explanations along the tree, and

see that, as expected, in partial abduction there are sets of configurations that

could be aggregated in only one solution for the sake of simplicity (Principle of

parsimony).

In this case, we do not deem necessary to go through all examples, covering the

whole bunch of versions for ET provided before. We have decided to perform this

illustrative proof with the most representative examples.

Academical example

For the academe network, we will look at the tree in figure 6.4.(a). We assume

β-pruning has been performed, so the dotted area is removed as 6.7 shows. We have

6.4. Further experimentation 199

chosen this tree (the largest one) on purpose, to avoid starting from an advantageous

situation. To get the K-best explanations, we have fixed the K value to 20. We think

it is a big enough number to guarantee that we allow partial abduction to have quite

a lot explanations, more than the number of leaves, by far. In this academe problem

MI and GINI happened to behave quite similarly, so we have not considered relevant

to distinguish both cases.

P

T

P
a

b

bad

0.56418
average

good

g g a b

0.11473

0.08463
0.03895

0.112830.03034 0.05433

Figure 6.7: ET for academe and MI used for comparison and which is α,β-pruned.

In figure 6.8 we reproduce the output of running partial abduction (Elvira software)

on academe network with K = 20, just for the same example we went through in the

previous section. On the other hand, figure 6.9 has transformed the corresponding tree

(fig. 6.7) into another ordered list of explanations to have the same arrangement style.

In the second figure we have preferred not to add a column for every variable, since

most of them will not be instantiated to a particular value.

First, if we just watch the first explanation in both cases, they coincide on the value

of Theory which is equal to bad. This is a good sign in the sense that the most probable

explanation is the same with the two techniques, but is this really exactly the same?

Since the initial problem solving assumptions are different, these explanations are too.

In MAP the first explanation is {Theory = bad,Practice = good,OtherFactors =

+,Extra = no}. It seems quite logical that a student having a bad theoretical part

had failed, but why should we assume he has done good practical assignments as this

explanations says? That could lead to think that having bad practical assignments

would not be a so nice explanation for this fact, and actually that would give even more

reasons to think that the student has failed. The same happens with the otherFactors

value, it is positive, but what if otherFactors would have been negative? Even worse,

that will increase the possibilities of the student to fail the subject. That leads us to

think that ET-explanations are more appropriate than K-MPE ones.

200 Chapter 6: Incremental algorithm for performing parcial abductive inference

Theory Practice Other Extra Prob.

1 bad good + no 0.201776

2 bad avg + no 0.084076

3 avg avg + no 0.067259

4 good bad + no 0.067259

5 bad good + yes 0.064857

6 bad good - no 0.053099

7 avg bad + no 0.050044

8 bad bad + no 0.050044

9 bad avg + yes 0.027024

10 avg avg + yes 0.027024

11 bad avg - no 0.022124

12 good bad + yes 0.021619

13 good good - no 0.021240

14 avg good + no 0.020178

15 bad good - yes 0.019877

16 avg good - no 0.019647

17 avg avg - no 0.019027

18 good bad - no 0.017699

19 good avg + no 0.016815

20 avg bad + yes 0.016214

Figure 6.8: 20-best explanations for the academe model when XO = {finalMark =

failed} and XE = {theory, practice, otherFactors, Extra}.

Configuration Prob.

1 {theory = bad} 0.56418

2 {theory = average, practice = average} 0.11473

3 {theory = good, practice = bad} 0.11283

4 {theory = average, practice = bad} 0.08463

5 {theory = average, practice = good} 0.05433

6 {theory = good, practice = average} 0.03895

7 {theory = good, practice = good} 0.03034

Figure 6.9: Explanation ranking corresponding to ET in figure 6.7.

6.4. Further experimentation 201

Once the explanation content has been regarded, we should also look at the asso-

ciated strength. In MAP the most probable explanation is 20% let us say acceptable.

But in our ET the first explanation “Theory is bad” covers more than the half (56%)

of the explanation space. We find this second number much more accurate: in most

of the cases where a student has failed a bad theoretical exam seems a good enough

explanation. If we observe the prior probability tables Theory was precisely the most

influential factor. This confirms our believe that when abduction requires configura-

tions always with |XE| elements, there are some unnecessary variablesXunnecessay ⊂ XE

that change their states in the configurations in a counter-intuitive way (they are in

fact being tuned), since this variable instantiation is not really significant for the ex-

planation.

To understand better this important point, we jump to the other related illustration

(translation K-best expl. → ET) in figure 6.10. Here we tried to make a picture on how

the K-best explanations would be distributed in the ET. So, the structure is identical

to the ET, i.e. a tree node is a variable, a branch indicates the state associated to

this variable and leaf nodes represent explanations. Precisely at this lower level, where

explanations are implicitly depicted, we have included the K-best explanations data:

• Together with the last branch configuration, and between brackets [], we anno-

tate the explanations that would fall in that branch/explanation. The number

indicates the ranking, as column # in figure 6.8.

• Just on the leaves a triangle indicates the number M of explanations that are

included in this position (Mexpl.) and below it we write the sum of their prob-

abilities, that is:

Σ
xE∈Explpath

P (xE|xO)

where Explpath is the set of explanations in path going from root to the leaf and

|Explpath| = M .

For example explanation #14: {Theory=avg, Practice=good, OtherFactors=+,

Extra=yes} belongs to path <Theory=avg, Practice=good>.

• Finally, in braces we indicate the branch/path probability as usual in the ET

representation.

Then, in figure 6.10 we can see how {Theory = bad} piles up the biggest number

of explanations (8 expl.), even if we look at all the branches at the same detail level

{Theory = good} has 5 and {Theory = avg } presents 7. However it is not so a

202 Chapter 6: Incremental algorithm for performing parcial abductive inference

practice

avg
avg bad

practice

bad
avg

theory

bad
8 expl.

[1,2,5,6,8,9,10,17]
good

(0.4693)

(0.1079)
3expl.

good
[7,20][3,11,16][14,15]

(0.03982)
2expl.

[13]
good

1expl.

[10] [4,12,18]

(0.1066)
3expl.

(0.0168)
1expl.

(0.0666)
2expl.

{0.03034}

{0.03895}

{0.11283} {0.05433}
{0.11473}

{0.08463}

{0.56418}

(0.0216)

Figure 6.10: ET structure for academe including 20-best explanations.

question of quantity, but mainly quality and what is clear is that branch {Theory =

bad} includes 7 of the 10-best explanations!!! Notice that in figure 6.8 if we apply a

similar criterion to our β-pruning, with β = 0.05 we could have just taken the eighth

first explanations, the other could be considered as too little relevant. Anyhow, as

we have remarked above, we show them because we wanted to take a big mass of

explanation in order to make the comparison advantageous to partial abduction in the

way that many explanations are regarded. In a practical case, the user would not

normally need to have up to 20 different reasons.

The main conclusion from the previous discussed point is that when we perform

the search of the K-best explanations, they are not necessarily K. With the resulting

ET we can see that for example 7 out of 10 explanations could be (and should be in

our opinion) amalgamate in only one.

Even if we think that our method manages to outperform partial abduction in both

efficiency and results, there are still doubtful issues in its own nature. For example,

with the same principle as the previously explained, we could think that having Theory

as average could also be an explanation by itself. Observe that ET-explanations #2,#4

and #5 presents that configuration and they differ in the practical part value. But here

there could be nuances to take into account. For example having theory and practice

ordinary (avg) is the second explanation, very near from having bad practice and good

theory whereas average theory and good practice decrease considerably the probability

when we know that the student has failed. This instability is even more clear when

6.4. Further experimentation 203

theory is good, we need to distinguish the possible states for Practice to reach a valid

explanation. Look at the different probabilities for these three branches: {Practice

= bad} is 4 times more probable than the other two. Nevertheless, in the 20-best

explanations this one would appear in the forth place without standing out specially

from the rest, and later this explanation reappears in #12 and #18.

Circuit example

Unlike the first example, the provided ETs differ a lot from using MI or GINI as

the Info measure both in size and also in the nodes situation along the tree. So, in this

second case, we are going to divide this comparative study into two parts: one for tree

in figure 6.5.(a) and the other for tree in fig. 6.6.(a). This last one is in fact the smallest

tree, that is precisely why we have found of interest to examine this “minimal”6 too

from this juxtaposing perspective.

•When Info is Mutual Information

The notation for figures is exactly the same as for the previous example. So, we

can find the 20-best explanations in fig. 6.11, the ranking for ET in fig. 6.13 and the

integrated tree in fig. 6.14.

Looking at the two rankings, again we can detect that not only the first explanation,

but the two first (which are equiprobable) are alike in the sense that the extracted

anomaly is that either A1 does not work properly or the failure is inA2. But again, since

the K-MPEs need a value for every variable, this method burdens this explanation with

values that are not relevant, all the other gates are set to ok. Here the overspecification

problem is again quite clear. And, from the quantitative point of view (probability

ordering) the same situation repeats: as the significant data is that gateA1 (orA2) fails,

the rest of configurations when A1 = fault are regarded here, losing the corresponding

probability for the other states. Luckily, in this example, this difference is slightly

greater than 0.015 (0.32775 - 0.311406), because the accumulation of two gates faults

is quite improbable. To check that, we should just look explanations from #5 to #20,

where the probability barely reaches 0.007. Also, it is curious to see how three faults

are not even considered within the 20 best explanations.

In ET depending on the side of the tree, there could be three or four gates included

in the explanation. This gives us the hint that this designed algorithm is also able

of discerning those variables within the explanation set which are in fact relevant to

6“Minimal” not in a strict way, just the minimum tree among the generated by our ET executions.

204 Chapter 6: Incremental algorithm for performing parcial abductive inference

N1 N2 A1 A2 A3 O1 O2 Prob.

1 ok ok ok fault ok ok ok 0.311406

2 ok ok fault ok ok ok ok 0.311406

3 ok ok ok ok ok fault ok 0.205486

4 ok fault ok ok ok ok ok 0.101705

5 ok ok fault fault ok ok ok 0.014447

6 ok ok ok fault ok fault ok 0.006355

7 ok ok fault ok ok fault ok 0.006355

8 ok ok ok fault fault ok ok 0.004815

9 ok ok fault ok fault ok ok 0.004815

10 ok ok ok fault ok ok fault 0.003178

11 ok ok fault ok ok ok fault 0.003178

12 ok ok ok ok fault fault ok 0.003178

13 ok fault ok fault ok ok ok 0.003145

14 ok fault fault ok ok ok ok 0.003145

15 ok ok ok ok ok fault fault 0.002097

16 ok fault ok ok ok ok fault 0.002076

17 ok fault ok ok ok fault ok 0.002076

18 fault ok ok fault ok ok ok 0.001573

19 fault ok fault ok ok ok ok 0.001573

20 fault ok ok ok fault ok ok 0.001573

Figure 6.11: 20-best explanations for gates with XO = {ABCDEKL = 0101000} and

XE = {A1, A2, A3, O1, O2, N1, N2}.

6.4. Further experimentation 205

explain the given observations. A1 and A2 (with a symmetrical behaviour for this

example) together with N2 are clearly the three involved gates that could have caused

the given error. In this particular example, even without considering the threshold

β(=0.0), gates O2 and A3 never appear in the explanation tree. We can see that the

erroneous output is in signal K and these two gates do not play a role for that value.

In certain cases O1 (depending on the thresholds’ values) could appear. As we already

commented, this gate, even if it is related to the bad output K, increases its belief of

working properly (or, the other way round, decreases its belief of being faulty) because

it also participates in producing signal L, which is correct. In K-best explanations this

happens to be the third possible faulty gate, so we find that this implication (L signal

valid then O1 is likely to work properly) is not caught there.

The nice feature about ET selecting the explanatory variables has also been shown

in the academe example where Theory and Practice stood out as the significant vari-

ables.

"0"

"0"

"0"

"0"

"1"

"1"

"0"

"0""0"

"0"

"0"

"0"

A1

A2

O2

C

A

N1

O1 N2

A3

KI

F

D

E
H

G

LJ

B

Figure 6.12: Circuit with the evidence (ABCDEKL=0101000) incorporated and the as-

sumed signal values when if everything works ok annotated.

Also, let us comment that the set of paired explanations (for instance #1 and #2,

#8 and #9, #10 and #11, · · ·) comes from the symmetrical influence of gates A1 and

A2. From figure 6.12 this symmetry can easily observed.

A glance at the combined tree in fig. 6.14 reinforces the conjectures previously

remarked. The two branches that accumulate a larger number of (MPE) explanations

(5 of them each) are exactly the two first candidates: A1 is faulty or A2 is faulty. Next,

unexpectedly maybe, we have that gates N2,A1,A2,N1 are ok. This explanation is

206 Chapter 6: Incremental algorithm for performing parcial abductive inference

Configuration Prob.

1 {N2 = ok, A1 = ok, A2 = fault} 0.32775

2 {N2 = ok, A1 = fault, A2 = ok} 0.32775

3 {N2 = ok, A1 = ok, A2 = ok, N1 = ok} 0.21082

4 {N2 = fault, A1 = ok, A2 = ok} 0.10809

5 {N2 = ok, A1 = fault, A2 = fault} 0.01510

6 {N2 = ok, A1 = ok, A2 = ok, N1 = fault} 0.00373

7 {N2 = fault, A1 = fault} 0.00343

8 {N2 = fault, A1 = ok, A2 = fault} 0.00333

Figure 6.13: Explanation ranking corresponding to ET in figure 6.5.(a).

necessary to be given, since our second concern was to give a partition of the explanation

space, but for these cases we plan to use the explanatory power (EP) defined in [22] in

order to give them a second level of classification on this value. This value is obtained

by EP (X,E) = P (E|X)
P (E)

, being X an explanation (next variable) and E the observations

(XO plus path). Using this concept, in this case both O1 and O2 would have failed

this test.

Again, notice that if we had taken for example the 10-best explanations, our tree

would have given even a deeper level of detail just with 8 leaves/explanations because

some leaves will not correspond to any of the 10-best explanations, ET adds then more

information.

Finally, we would like to add again that the small probabilities of explanations from

#5 to #20 prove that they were unnecessary. Even though, with a few propagation

steps with the explanation tree we are able of capturing all of them. Besides, these

explanations are presented to the user in a more intuitive and simpler manner.

•When Info is GINI index

Using GINI index instead of MI has changed the order of selected variables in the

tree, as reviewed in section 6.3. Also, see that in figure 6.6.(b) the second level variable

is distinct depending on the state taken by the root variable A1. But we are going to

examine tree 6.6.(a) and when incorporating the 20-best explanations on it we obtain

the one depicted in fig. 6.16. As this tree shows and as the corresponding ranking (fig.

6.15) does too, again the two main explanations are that either A1 or A2 does not

work. In this case A1 has been first selected, but we think is a question of tie breaks.

6.4. Further experimentation 207

N2

A1

fault fault

fault

fault

fault

N1

A2

A1

A2A2

fault

1expl.
(0.00314)

{0.1081}

3expl.
(0.1058)

{0.32775}

(0.3273)
5expl.

{0.01510}

1expl.

ok

ok

(0.01445)

1expl.

ok

[3,12,15]
ok

(0.2108)
3expl.

{0.32775}
fault

[20]

{0.2108} {0.00373}

(0.00314)
1expl.

(0.00157)

{0.00343}

ok
[14]

5expl.

[5]

(0.3273)

[13][4,16,17]
ok

[2,7,9,11,19]
ok

[1,6,8,10,18]

{0.00333}

Figure 6.14: ET structure for gates with MI including 20-best explanations.

Apart from the tree level of the involved gates and the slight difference between ET-

explanations #1 and #2 the same conditions as with MI accomplish. But this time we

have the advantage of presenting a more compact tree, where the system determines

that the relevant gates to be tested are A1, A2 and N2 in this order (according to

the probability ranking). This is influenced by the thresholds α and β 7, as the other

technique was influenced by the K number. The user can make a choice on these values

depending the level of detail s/he requests. But for a general case these explanations

seem good enough and they have been reached with a reasonably low effort, just a few

propagations on the join tree. Once again, we can also say, that the method has made

a reduction of the explanation set from seven variables down to only three, which also

simplifies quite a lot the problem.

6.4.2 Looking into simplification methods. A new example:

car-start

To finish in this evaluation of the Explanation Tree technique, we find interesting

to add some detail about the already mentioned method of simplifying explanations

[46, 15]. We just would like to set out the basic ideas in order to see similarities

and differences of this method with our proposal. In these two works, the objective

7And by the min, avg or max criteria as well.

208 Chapter 6: Incremental algorithm for performing parcial abductive inference

Configuration Prob.

1 {A1 = fault} 0.34628

2 {A1 = ok, N2 = ok, A2 = fault} 0.32775

3 {A1 = ok, N2 = ok, A2 = ok} 0.21456

4 {A1 = ok, N2 = fault, A2 = ok} 0.11141

Figure 6.15: Explanation ranking corresponding to ET in figure 6.6.(a).

N2
fault

[2,5,7,9,11,14,19]

[4,13,16,17]

{0.21456}

fault

[1,6,8,10,18]
fault

{0.32775}

ok
[3,12,15,20] {0.1141}

ok

A1

A2

ok

{0.34628}
4expl.

(0.34492)
7expl.

5expl.
(0.3273)(0.21233)

4expl.

(0.1090)

Figure 6.16: ET structure for gates with GINI including 20-best explanations.

was to simplify the explanations given after applying MPE as figure 6.17 illustrates.

They also state the process as follows: “Let expl(xO) = {x1
E , x

1
E , . . . , x

k
E} be the K

MPEs obtained for evidence XO = xO. Then, for all xE ∈ expl(xO) we are looking

for a sub-configuration x′E [X ′
E ⊂ XE], so that x′E is still accounting for the observed

evidence.”

So, the process is differentiated into two main steps:

1. Generation of complete explanations (configurations of XE with |XE| literals),

ordered by their posterior probabilities given the observations.

2. Simplification of these explanations by removing unimportant literals.

To design a mechanism for this reduction of explanations, the authors define and

propose two important criteria: Independence (I∼simplification) and Relevance

6.4. Further experimentation 209

Observed
 facts

inference K MPEs simplification explanations
simplified

Figure 6.17: Process followed in the simplification of explanations in [15].

(R∼simplification)8. We avoid theoretical details and formulas, aiming the concep-

tion of both criteria. The first one will try to detect those variables that are useless

in the explanation since the value this variable takes does not affect the evidence. In

the case of relevance-based criteria they attempted to remove those literals that could

be considered as insignificant in the sense that they are (almost) irrelevant for the

observed evidence.

We see easily an analogy between these two kind of simplification rules and our

two methods for pruning the explanation tree. α value was related to the information

measure and intended to determine when a variable is not decisive to be in the tree be-

cause it does not contribute with new information. Mutual information of independent

variables is zero, so the threshold α measures in some extent the independence factor.

On the other hand, with β-pruning we wanted to avoid explanations with a very little

probability associated, estimating them as trifling, that is irrelevant, which resembles

the second criteria. However, there is a notable difference between both techniques: in

ET the root variable will always be in all the explanations whereas when simplifying

explanations it could happen that one explanation is {A = a1, B = b1} and another

one {C = c1, D = d1}.

It is clear that both approaches come up from the same concern: avoid the overspec-

ification problem when dealing with abductive inference in BNs. In fact, the current

work was inspired on the previous one, but attempting to skip its two main draw-

backs: (1)little efficiency.- since it requires a two-step process and the first one includes

K-MPEs and (2)being this simplification K-MPE guided the obtained solutions are

somehow influenced by them. As we have just verified, in many occasions the K-best

explanations do not correspond to K different scenarios, because some explanations

should have been aggregated into one. Remember the previous example, where 7 of

the 10th best explanations could be summarised in only one. We observe that these 7

explanations are just the combination of the simple explanation extended with different

8In this work the authors develop other simplification techniques such as those induced by the

graph, that we will not touch on here.

210 Chapter 6: Incremental algorithm for performing parcial abductive inference

configurations of other variables. We also believe this happens very frequently when

performing partial abduction. Actually, the experiments executed in [46] discovered

that after applying simplification to the K-best explanations, most of the times the

same subset of simplified explanations were repeated following a certain pattern.

To confirm our feeling that ET succeeds not only in giving explanations with dif-

ferent number of literals, but also in improving the simplification procedure in [15] we

are going to take a couple of examples in this work and apply the ET-algorithm on

them.

To start with, we take again the gates network, but this time we fixed the evidence to

XO = {D = 0, K = 1, L = 1} and the explanation set toXE = {F,G,H, I, J, A1, A2, A3,

O1, O2, N1, N2}. To have a visualisation of this situation we have depicted fig. 6.18.

They have selected the explanation set as those variables that are not observable in

the network.

"1"

"1""0"

"1"

"1"
"1"

A1

A2

O2

C

B

A

N1

O1 N2

A3

K

D

E L
H

G

F

J

I

Figure 6.18: Circuit with the evidence (DKL=011) incorporated and the assumed signal

values when everything works ok annotated. Notice that here there is a conflict: if

output L is 1, and being H = 1 an input of the or-gate O1, then I should be 1, but

that will imply K = 0 which is inconsistent with the evidence.

For this example in [46] it is applied a technique called successive explanations

search that after several stages gives rise to explanation X5
S = {A3 = ok}.

If we execute the ET-algorithm on this same data and some of the standard thresh-

olds (for example α = 0.05, β = 0.05) with MI the given tree is as simple as the one

depicted in figure 6.19.

Well, we could say that both explanations are not inconsistent, A3 can work prop-

6.4. Further experimentation 211

N2

0.96140.03856

ok fault

Figure 6.19: ET obtained for the gates with (MI,0.05,max) and β = 0.05 in the situation

of fig. 6.18.

erly at the same time as N2 presents a fault. Besides, if A3 works a failure in N2 is the

fact that better would explain this circumstance, because the output of A3 should be

correct. Thus, if L = 1 that means that I = 1, but this is an input for the NOT-gate

N2 that should have been the opposite signal, 0, according to the introduced evidence.

We think that the second explanation ({N2 = fault} with 96% of strength) is quite

more informative in a diagnosis task. So we really find that our answer is of better

quality than the other one.

Another example: car-start problem

As a second example we have taken the car-start network from [15]9. We are go-

ing to firstly introduce a simple and intuitive example, where the evidence is that

the car does not start (Starts = No), and the explanation set is {XE = Alternator,

FanBelt, Leak, Charge, BatteryAge, BatteryState, BatteryPower, GasInTank, Starter,

EngineCranks, Leak2, FuelPump, Distributor, SparkPlugs}. With an ET -execution of

kind [Info,criterion,α,β] =[MI,min,0.07,0.05] the resulting tree is the one in fig. 6.21.

Even with real probability tables unknown, any person with a little knowledge

about cars could try to interpret this answer which just says that the two most probable

explanations are that the battery state is weak (0.77) or as a second and less probable

explanation (0.13) that the started could be faulted.

Let us now show a more complex case studied in [46] where evidence is XO =

{GasGauge = Gas,Lights = Work,Radio = Works, Starts = No} and the explanation

set is the same of the previous example. With the simplification method the final

obtained explanation is {GasInTank = Yes, Starter = Faulted}. We have performed

an execution of the Explanation Tree algorithm of kind (MI,min,0.07,0.05) as before,

9They indicate that this network has been originally found in JavaBayes package.

http://www.cs.cmu.edu/∼javabayes is the web site.

212 Chapter 6: Incremental algorithm for performing parcial abductive inference

Radio

Starter

Alternator FanBelt Leak

Charge

BatteryAge

Battery
State

Battery
PowerLights

GasGauge

GasInTank

Leak2

Engine
Cranks

FuelPump Distributor SparkPlugs

Starts

Figure 6.20: Network modelling the car-start problem.

BatteryState

0.0325

0.13423

FanBelt

0.3425

faulted

ok

0.7774

weak

broken
slipping

ok

Starter

ok

0.03247

Figure 6.21: ET for the car-start problem, when {Starts = No} and (MI,min,0.07,0.05).

6.5. Further experimentation 213

and the given tree is drawn in fig. 6.22. In this case we find that both simplified

explanations are quite close. It is clear that the starter does not work properly, which

is probably the main explanation. But both simplification and ET go further adding

also that there is no problem with the gas status. In simplification it says that there is

gas in the tank while ET has checked the possibility of presenting a leak of kind ”2”,

but this is quite improbable. Since the evidence included that the gas gauge indicates

enough gas, and this device is not determined as faulted, we could have supposed that

it works properly and therefore {GasInTank = Yes}.

0.815

faultedok

0.008

false

0.177

Starter

Leak2
true

Figure 6.22: ET for the car-start problem, when {GasGauge = Gas,Lights =

Work,Radio = Works, Starts = No} and (MI,min,0.07,0.05).

We have performed a final comparison “simplification vs. ET” taking randomly

selected examples from [15]. In this study they just indicate the explanation set and

the observed variables and, using different types of algorithms for simplification, they

show the obtained number of literals. We have then reproduced these tests with all

the possible configurations for the observed variables with (MI,max,0.07,0.05) and in

all cases either the tree was empty or it presented one variable. In simplification

experiments the number of literals could vary from 1.5 until 6. In the cases where an

empty tree was obtained, it could indicate that all variables have a very low entropy

and they present a fixed value. Then, there is only one possible scenario that will be

the most probable explanation. On the other hand, in the cases with one variable the

distribution was quite clear giving probability numbers such as 0.933 or 0.8146.

214 Chapter 6: Incremental algorithm for performing parcial abductive inference

6.5 Discussion and further work

This chapter has proposed a new approach to the problem of obtaining the most

probable explanations given a set of observations in a Bayesian network. The method

provides a set of possibilities ordered by their probabilities. The main novelties are

three:

1. The level of detail of each one of the explanations is not uniform (with the idea

of being as simple as possible in each case).

2. The generated explanations are mutually exclusive.

3. The number of required explanations is not fixed (it depends on the particular

case we are solving).

Our goals are achieved by means of the construction of the so called explanation tree

which can have asymmetric branching and that will determine the different possibilities.

We have described the procedure for its computation based on information theo-

retic criteria. To show its behaviour some simple examples have been proved and we

have presented a comparison with the K-best explanations and with the simplification

of explanations. From this experimental analysis, we can conclude that our method

outperforms the K-best explanations search by far both in quality and efficiency, since

our method minimises the number of propagations and manage to do them in a very

quick form. We find that the description given by an ET is more useful for a user than

the one given by k complete explanations because in the former case the possibilities

are given in a more compact and structured way.

With respect to efficiency we have that ET construction is polynomic in the number

of cases where probabilistic propagation is polynomic in the case of polytrees, whereas

K-MPEs are NP-hard in these cases.

Regarding the simplification of explanations, we could say that the obtained expla-

nations are different, but not always of different quality. Nevertheless, ET is able of

giving simpler explanations and what is more important it achieves the task in a direct

way, avoiding the cost of performing traditional abduction first.

Our main conclusion is that this technique behaves in a very satisfactory way, but

we would like to run more sophisticated experiments in order to evaluate it in depth.

We believe it is quite promising, even though we are conscious that a better refinement

should be done for some issues such as the determination of α and β thresholds or the

6.5. Discussion and further work 215

characterisation of those explanations given for partitioning the explanation space, but

not relevant as an explanation.

As further work we plan also to study the possibility of using Kullback-Leibler

distance as the Info measure. In addition, very useful comments have suggested us to

explore the connection about this method and the so-called Hitting set which is quite

broadly studied by researchers on the logical field together with theories of diagnosis

[104]. Finally, we would like to analyse if our diagnosis method could be benefitted

from the conflict analysis theory, as long as conflicts are applicable to the particular

problem.

216 Chapter 6: Incremental algorithm for performing parcial abductive inference

Conclusions and further work

Conclusions

As the main title says, Bayesian networks inference: Advanced algorithms for tri-

angulation and partial abduction, the global goal of this work was to do a thorough

study of inference performance in Bayesian networks, and the investigation of advanced

algorithms to optimise this (normally) complex process.

We have undertaken this problem from three distinct, but related, aspects:

1. Improvement on the compilation process that constructs a join tree from a

Bayesian network.

Chapter 2 have dealt with the most problematic step within compilation: trian-

gulating the graph. We have presented a new method for triangulation which

makes use of a decomposition of the graph in order to subdivide the problem

into smaller triangulation problems (Re-Triangulation). The presented re-

sults prove that the process of triangulation can generally be benefitted from our

technique. This contribution was also published in [42].

Chapter 3 goes one step further trying to tackle the whole problem of compilation

(triangulation + tree construction) in a more efficient way. We have presented

the MPSD-based Incremental Compilation technique. This new algorithm is able

of avoiding unnecessary recompilation for a network that has been only partially

changed. The shown experimentation, made through a set of networks, confirms

that the behaviour of the Incremental Compilation is quite good, especially for

large networks and a few modifications. This scenery is precisely the expected

one, since IC is particularly thought to make easier and quicker the process

of compiling a network during the refinement steps, and no big changes are

supposed to be done at once. Since the complexity of compilation grows with

the complexity of the networks, an important result is that the gain of this

218 Conclusions and further work

technique (versus traditional full compilation) increases for large networks. These

contributions can be found in two publications: algorithmically in [43] and an

initial empirical study in [44].

2. Improvement on the inference process when working with modular structures, in

particular with Object Oriented Bayesian Networks.

Even if chapter 4 is a revision on already existing methods, it has involved a hard

task of documentation and assimilation of the main notions and complex algo-

rithms related to them. This previous study was necessary to develop the Plug

& Play inference technique and the reported summary gives the required new

information in order to understand its description in chapter 5. The main con-

tribution of Plug & Play (published in [6]) is the design of an efficient method to

perform inference in OOBNs, that is, another advanced algorithm for inference.

3. Improvement on the abductive inference for Bayesian networks.

The search of explanations is clearly another important research field which im-

plies different inference techniques. Partial abduction has been more studied in

the recent years. Nevertheless, the lack of conciseness and the fixed number of

variables in the given explanations make the solution less satisfactory than a real

user would expect. We have succeeded in the design of a new algorithm that

resolves these two problems, and it is at the same time able of presenting a par-

tition of the explanation space. We have called this new abduction method as

Explanation Tree since the given explanations are presented in a form of a tree.

This technique was first published in [45], and in this work we have extended

the study of its behaviour through a set of new examples in order to compare

it with other existing techniques. This comparative gives nice results about the

new technique, although we plan a more sophisticated experimentation in the

future.

Further work

Through the different chapters of this thesis report some new proposals and ideas

have already been launched. The main ones will be summarised here.

Regarding triangulation, we would like to utilise the concept of α-completeness. By

that, we could design an α-ReTriangulation method, that is, a heuristic version

Conclusions and further work 219

of our original algorithm, but with the advantage that the division of the graph in

α-MPSs can be more profitable for the Divide & Conquer philosophy of this technique.

The method will not be deterministic, i.e. the division will depend on factors such as

the value of α or the way of splitting groups. So, after defining the technique, we plan

to do a serious experimentation to study its behaviour.

Another idea we would like to implement is the obtaining of elimination orderings

guided by the join tree structure, or by the α-Maximal prime subgraph tree.

This concept links directly to another commented approach: a possible future adap-

tation of MSBN inference communication in the IC technique. Again, we would like to

utilise the concept of α-completeness to make a more balanced division of the problem.

Since when subgraphs are not prime the original algorithm we developed is not correct,

we believe that the fill-in propagation scheme might be applied to accomplish this task.

With respect to the Incremental Compilation, we find that it can be successfully

applied to certain situations, and that a deeper study with real users can be very

interesting. We also intend to enhance the implementation in order to make it even

more efficient. An analysis of the applicability of IC to other graphical structures

beyond BNs and OOBNs can be of great interest too.

Finally, we think there is still an open field concerning abduction. The Explanation

Tree technique seems to give nice and promising results, but we feel it should be

studied and improved in a short future. As another immediate and important goal we

also expect to use this technique in the area of data clustering. Since this algorithm

is able of classifying instantiated variables in mutually exclusive subsets, we reckon

that it can probably be adjusted to work with data bases in order to detect relevant

configurations of variables.

220 Conclusions and further work

Appendix A

Aspects of implementation

In this appendix we will deal with certain points about the implementations carried

out along the whole work. We intend to indicate and remark the main points, without

going into minor details. The three implementation tasks included in this thesis are

those for which we have shown any experimentation results:

1. Triangulation by re-triangulation (chapter 2).

2. MPSD-based Incremental Compilation (chapter 3).

3. Explanation Tree (chapter 6).

In the next three sections we will tackle these three items with the aim of giving

the most important features. These three tasks have needed a considerable amount of

time and work to obtain a definitive structure for the different techniques in classes

and methods as well as the design, validation and performance of the corresponding

experiments. However, we would like to remark that the Incremental Compilation

method has definitively involved the greatest effort from the programming point of

view. This is due to the difficulty of replacing the traditional compilation method,

which obtains a join tree from the network in a direct way, by partial compilations that

should extract the affected parts in both structures and then recombine the obtained

trees. These particular troubles belonging to the nature of the method itself had

first to be solved algorithmically (chapter 3), but their translation into programming

code was not an easy task either. That is why we will devote more space and some

diagrams to show the main perspectives. We have considered suitable to clarify the

main implementation aspects for this method (section A.2) using the standard UML for

diagrams. We assume that the reader will be familiarised with this notation. Anyway,

all of them will be commented and described along the text.

222 Appendix A: Aspects of implementation

A.1 Triangulation by re-triangulation

This is not only the first technique described in the report, but also the first one we

implemented. When we programmed this method we decided to make a reduced version

of the Elvira code in order to focus uniquely on the graphical triangulation process.

That is, we intended to avoid working with further information (unnecessary for our

concrete initial goal) which makes Elvira code so powerful but also slower and mainly

difficult to work with in this preliminary approach to the code. The programming

language we chose is also JAVA, and we created simplified and adapted classes of Graph

and Bnet. We also had to add new classes for the MPS Decomposition (MPSDTree and

MPSDGraph).

Initially, we had to program the method to obtain the MPS Tree (alg. 11 described

in detail in [93]). With all this, we could then include our method Re-Triangulation

technique and finally a test suite was designed in order to execute it on different

networks and obtaining several statistics and data.

A.2 MPSD-based Incremental Compilation

For this particular task, we decided to integrate it completely in the Elvira Project

software [39]. Downloads of the current version or a deeper view in the whole classes

structure can be done through the website http://leo.ugr.es/∼elvira. In this

section, we will focus on the classes specifically created for our purposes, even though

some new methods have certainly been needed in those classes representing the basic,

but not simple, elements such as graph, Bayesian network, Join Tree, etc...

We would like to indicate that we had to implement a compilation method that

followed the steps described in figure 3.3 because the construction of the MPS Tree

needed the condition of having a minimal triangulation, and that forced to a method

able of controlling such circumstance.

Once this extension had been done, we could then start the task of implementing

the Incremental Compilation method. The final result can be summarised as figure A.1

illustrates. As alg. 15 showed there are two main steps in the Incremental Compilation

method:

1. The performance of the modification(s)1: runICModification.

1Remember that IC could receive a single modification or a list of them.

A. MPSD-based Incremental Compilation 223

2. The connection of the obtained tree(s) with the unchanged parts of the original

one: makeConnection.

When implementing this class these two main methods appear as well. The first

one, runICModification, can be executed several times depending on the number

and nature (deleting a node involves the previous deletion of any incident link) of the

modifications to be done. The execution of a modification is divided into two stages:

modification of the graph and marking of the affected maximal prime subgraphs. To

perform these actions, the main class IncrementalCompilation will be assisted by the

abstract class ICModification, as figure A.1 shows in the first stage of the process. In

this part, the JoinTree class plays an active role as well, since the affected clusters are

taken from it. We can also observe the need of having accessible the trees. We should

note that, since they share the same structure, both MPS Tree and Join Tree belong

to the same class, differing only in tha boolean value of one attribute (isMPS).

Figure A.1: Sequence diagram which describes classes interaction including the main

executed methods chronologically.

Another important implementation feature is the diversification of the abstract

class ICModification into four different classes, as figure A.2 depicts. This inheritance

224 Appendix A: Aspects of implementation

solves the different actions to be performed according to the kind of modification, as

several switch sentences indicated in the algorithms of chapter 3. From fig. A.2 we

can also see the simplification of the operations for removing (alg. 19) or adding a

node (alg. 20) which present fewer methods in contrast to the more complex classes

for the modifications of addition/deletion of one link (algs. 21/18). As discussed in

the corresponding chapter this situation comes from our particular approach when

performing the distinct modifications.

Again taking fig. A.1 we can jump to the second important part (makeConnec-

tion). In this sequence diagram we show how the IncrementalCompilation class, given

the affected MPSs is able of obtaining the projected subgraph(s). This/these sub-

graph(s) will be compiled in a similar way as the original and complete one producing

(a) partial join tree(s). Finally, the main class will complete the action of connecting

the initial tree with the partial one(s). This operation is probably one of the most com-

plex ones in both the algorithm and the code, since many exceptional situations (for

instance empty connections) had to be taken into account, as well as many structures

had to be controlled and synchronised (clusters, trees, ..). So, we find this connection

action a key issue for both design and implementation of our technique.

Figure A.2: Abstract class ICModification and its four inherited classes.

A. Explanation Tree 225

With figure A.3 we attempt to show the interaction between the main class Incre-

mentalCompilation with both the modifications and with the needed structures: moral

graph, directed graph and trees. We already mentioned when explaining algorithms in

chapter 3 that we assumed to have them accessible, since they are used along all the

process.

Figure A.3: IncrementalCompilation class and all the relevant elements it has to access

in order to perform its actions on the network, graph and cluster trees.

In fig. A.4 all the attributes and methods for the class IncrementalCompilation are

shown. Among them, we can find the previously commented major methods/actions:

runICModification (or its batch version runListOfModifications that will in-

voke various times the other) and makeConnection2. The item labelled as myIC

indicates the attribute/field that the modifications maintain to refer the main class.

A.3 Explanation Tree

This abduction technique has also been integrated in the Elvira Project code, al-

though we plan to do further refinements on it. We also would like to design a system-

atic way of performing an experimental suite through a set of networks.

At this moment, there is a main class called ExplanationTree which interacts mainly

with ShenoyShaferPropagation because our main method performs several propagations

2When a method appear more than one is due to the overload option possible in JAVA.

226 Appendix A: Aspects of implementation

Figure A.4: Main class IncrementalCompilation associated to the different modifications

ICModificationXXX and showing all methods and attributes.

over the join tree. As indicated in chapter 6 certain optimisations were performed

on the original Shenoy-Shafer algorithm and we implemented in this class a particular

adaptation of this architecture with the aim of accomplish our specific purposes. These

particular new improvements can be summarised in these main points:

• For every variable in the network, the binary join tree will present a leaf cluster

containing only this variable (singleCliques). We will use this in order to intro-

duce/retract evidence. In our method this was done incrementally, the creation

of a new branch/path will imply adding a simple configuration X = xi to the

A. Explanation Tree 227

evidence. The same happens when a branch is stopped or pruned, the evidence

elements are retracted one by one.

• For every family, there exist a cluster containing its corresponding potential, and

this cluster will uniquely contain this one. This feature will make easier the

computation of marginal probabilities (for that they were called marginalCliques).

• We have used probability trees to represent the probability distributions of the

potentials. This usually makes computations faster. They are also nicer and

quicker for approximate methods.

• Special methods to enter/retract one evidence on a single variable (EvidenceItem)

has been implemented. Thanks to the tree structure, the procedure results sim-

pler and some computations can be saved.

• For certain tasks, we have used HashTables which contribute to a quicker access

to the needed elements (variables, clusters, etc...).

On the other hand, in order to represent the tree we have made use of an already

existing structure: the ProbabilityTree. This class provides a probability distribution in

the form of a tree used to represent potentials (PotentialTree). For example, potentials

can also be described by means of a PotentialTable (in the form of a table). The reason

why we chose this structure for our ET is that probability trees can be represented in a

simplified mode when all hanging branches present the same probability. So, we could

construct explanation trees of different level of complexity (or different depth).

Therefore, in our case we could reuse all its information interpreting it as an ET

where every branch will represent a configuration, and the leaf value will indicate the

probability associated to this branch/path. The method CreateNewNode which

can be found in the class ExplanationTree has been implemented recursively as in alg.

26. This method performs all the necessary calculations and verifications stated in the

algorithm making use of auxiliary calls and is the one charged of the accumulation of

nodes in the returned tree.

228 Aspects of implementation

Bibliography

[1] S. Acid, L.M. de Campos, A. González, R. Molina and N. Pérez de la Blanca. CAS-

TLE: a tool for Bayesian learning. In: Proceedings of the ESPRIT 91 Conference,

Commission of the European Communities, pp. 363–377, 1991.

[2] E. Amir. Efficient approximation for triangulation of minimum treewidth.

In:Proceedings of the 17th Conference on Uncertainty in Artificial Intelligene (UAI-

01), pp. 7–15. 2001.

[3] S. Arnborg, D. G. Corneil and A. Proskurowski. Complexity of finding embedding

in k-tree. SIAM Journal of Algebraic and Discrete Methods 8(2): 277–284,1987.

[4] O. Bangsø and P.-H. Wuillemin. Object oriented Bayesian networks, a framework

for top-down specification of large Bayesian networks with repetitive structures.

Technical report, Department of Computer Science, Aalborg University, Denmark,

2000.

[5] O. Bangsø and P.-H. Wuillemin. Top-down construction and repetitive struc-

tures representation in Bayesian networks. In:Proceedings of the 13th International

Florida Artificial Intelligene Research Society Conference (FLAIRS-2000), pp. 282–

286, AAAI Press, 2000.

[6] O. Bangsø, M. J. Flores and F. V. Jensen. Plug & Play Object Oriented Bayesian

Networks. In:Current Topics in Artificial Intelligence, CAEPIA-TTIA 2003, Lecture

Notes in Artificial Intelligence, volume 3040, pp. 457-467, Springer Verlag, 2004.

[7] O. Bangsø. Object Oriented Bayesian Networks. PhD thesis, Computer Science

Department, Aalborg University, 2004.

[8] V.E. Barker, D.E. O’Connor, J. Bachant and E. Soloway. Expert systems for config-

uration at Digital: XCON and beyond. Communications of the ACM, 30(3):298–318,

ACM Press, USA, 1989.

230 BIBLIOGRAPHY

[9] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal

junction trees. In: Proceedings of the 12h Annual Conference on Uncertainty in

Artificial Intelligence (UAI–96), pp. 81–89, 1996.

[10] A. Berry, J.R.S. Blair, P.Heggernes and B.W. Peyton. Maximum Cardinality

Search for Computing Minimal Triangulations of Graphs. Algorithmica 39(4): 287–

298, 2004.

[11] A. Berry, J-P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range

algorithm for minimal triangulation from an arbitrary ordering. To appear in Journal

of Algorithms.

[12] A.Berry, J.R.S. Blair and P. Heggernes. Maximum Cardinality Search for Com-

puting Minimal Triangulations. WG ’02: Revised Papers from the 28th International

Workshop on Graph-Theoretic Concepts in Computer Science. In: Lecture Notes in

Computer Science, Vol. 2573, pp. 1–12, Springer Verlag, 2002.

[13] J.R.S. Blair, P.Heggernes and J.A. Telle. A practical algorithm for making filled

graphs minimal. Theoretical Computer Science 205(1-2):125–141, 2001.

[14] H.L. Bodlaender, A.M. Koster, F. van den Eijkhof and L.C. van der Gaag. Pre-

processing for triangulation of probabilistic networks. In: Proceedings of the 17th

Conference on Uncertainty in Artificial Intelligene (UAI-01), pp. 32–39, 2001.

[15] L.M. de Campos, J.A. Gámez, and S. Moral. Simplifying explanations in Bayesian

belief networks. International Journal of Uncertainty, Fuzziness and Knowledge-

based Systems, 9:461–489, 2001.

[16] L.M. de Campos, J.A. Gámez, and S. Moral. On the problem of performing

exact partial abductive inference in Bayesian belief networks using junction trees.

In: B. Bouchon-Meunier , J. Gutierrez, L. Magdalena, and R.R. Yager, editors,

Technologies for Constructing Intelligent Systems 2: Tools, pp. 289–302. Springer

Verlag, 2002.

[17] L.M. de Campos, J.A. Gámez, and S. Moral. Partial abductive inference in

Bayesian networks by using probability trees. In: O. Camp, J. Filipe, S. Ham-

moudi, and M. Piattini, editors, Enterprise Information Systems V, pp. 146–154.

Kluwer Academic Publishers, 2004.

BIBLIOGRAPHY 231

[18] A. Cano and S. Moral. Heuristic algorithms for the triangulation of graphs. In:

Proceedings of the 5th International Conference on Information Processing and Man-

agement of Uncertainty in Knowledge Based Systems (IPMU), Vol. 1, pp. 166–171,

Paris (France), 1994.

[19] A. Cano, S. Moral, and A. Salmerón. Penniless propagation. International Journal

of Intelligent Systems, 15:1027–1059, 2000.

[20] A. Cano, S. Moral, A. Salmerón. Lazy evaluation in Penniless propagation over

join trees. Networks, 39:175–185, 2002.

[21] E. Castillo, J.M. Gutiérrez and A.S. Hadi. Expert Systems and Probabilistic Net-

work Models. Springer-Verlag, 1997.

[22] U. Chajewska and J. Y. Halpern. Defining explanation in probabilistic systems.

In: Proc. of 13th Conf. on Uncertainty in Artificial Intelligence (UAI–97), pp. 62–71,

1997.

[23] P. Cohen and M. Grinberg. A theory of heuristic reasoning about uncertainty. AI

Magazine, 4(3):17–23, 1983.

[24] P. Cohen and M. Grinberg. A framework for heuristic reasoning about uncertainty.

In: Proceedings of the 8th International Joint Conference on Artificial Intelligence

(IJCAI–83), pp. 355–357, 1983.

[25] G.F. Cooper and E. Herskovits. A Bayesian method for constructing Bayesian

belief networks from databases. In: B. D’Ambrosio, P. Smets and P. Bonissone

(eds.), 7th Conference on Uncertainty in Artificial Intelligence, pp. 86–94. Morgan-

Kaufmann, 1991.

[26] G.F. Cooper and E. Herskovits. A Bayesian method for the induction of proba-

bilistic networks from data. Machine Learning, 9:309–347, 1992.

[27] A. Darwiche. Dynamic Jointrees. In: Proceedings of the 14th Annual Conference

on Uncertainty in Artificial Intelligence (UAI–98), pp. 97–104. Morgan Kaufmann,

1998.

[28] A.D. Dawid. Conditional independence in statistical theory. Journal of the Royal

Statistical Society Series B, 41:1–31, 1979.

232 BIBLIOGRAPHY

[29] A.P. Dawid. Applications of a general propagation algorithm for probabilistic

expert systems. Statistics and Computing, 2:25–36, 1992.

[30] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference.

In: Proceedings of the Twelthth Conference on Uncertainty in Artificial Intelligence

(UAI–96), pp. 211-219, 1996.

[31] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[32] J. deKleer and B.C. Williams. Diagnosing multiple faults. Artificial Intelligence,

32(1):97–130, 1987.

[33] F.J. Dı́ez. Local conditioning in Bayesian networks. Artificial Intelligence, 87:1–

20, 1996.

[34] L. David. Genetic algorithms and simulated annealing. London, Pitman, 1987.

[35] M. Dorigo and L. Gambardella. Ant Colony System: a Cooperative Learning

Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary

Computation, 1:53–66, 1997.

[36] M. Dorigo and G. Di Caro. The Ant Colony System Meta-Heuristic. In: D. Corne,

M. Dorigo and F. Glover(eds.), New Ideas in optimization, pp. 11–32, McGraw-Hill,

1999.

[37] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231-272, 1979.

[38] D.L. Draper. Clustering Without (Thinking About) Triangulation. In: Proceedings

of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence (UAI–

95), pp. 125–133, 1995.

[39] Elvira Consortium. Elvira: An Environment for creating and using probabilistic

graphical models. Proc. of the First European Workshop on Probabilistic Graphical

Models (PGM’02) ,pp. 1–11, Spain, 2002.

[40] S. Even and R.E. Tarjan. Network flow and testing graph connectivity. SIAM

Journal on Computing, 4 :507–518, 1975.

[41] M.J. Flores. Incremental compilation of a Bayesian network. Master Thesis, MSc.

in Computer Science, Department of Computer Science. Aalborg University, 2000.

BIBLIOGRAPHY 233

[42] M. J. Flores and J. A. Gámez. Triangulation of Bayesian networks by retriangu-

lation. International Journal of Intelligent Systems 18(2):153–164, 2003.

[43] M. J. Flores, J. A. Gámez and K. G. Olesen. Incremental Compilation of Bayesian

networks. In: Proceedings of the 19th Annual Conference on Uncertainty in Artificial

Intelligence (UAI–03), Morgan Kaufmann. pp. 233–240, 2003.

[44] M. J. Flores, J. A. Gámez and K. G. Olesen. Incremental Compilation of Bayesian

networks in practice. In: Proceedings of the 4th International Conference on Intel-

ligent Systems Design and Applications (ISDA–04), pp. 843–848, Budapest (Hun-

gary), 2004.

[45] M. J. Flores, J. A. Gámez and S. Moral. Abductive inference in Bayesian networks:

finding a partition of the explanation space. In: Proceedings of the 8th European

Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty

(ECSQARU–05), Lecture Notes in Artificial Intelligence (LNAI), volume 3571, pp.

63–75, Springer Verlag, 2005.

[46] J.A. Gámez. Inferencia abductiva en redes causales (Abductive inference in casual

networks). Doctoral thesis, Dpto. de Ciencias de la Computación e I.A. Universidad

de Granada, June 1998.

[47] J.A. Gámez and J.M. Puerta. Searching for the best elimination sequence in

Bayesian networks by using ant colony optimization. Pattern Recognition Letters.,

23:261–277, 2002.

[48] J.A. Gámez. Abductive inference in Bayesian networks: A review. In: J.A. Gámez,

S. Moral, and A. Salmerón, editors, Advances in Bayesian Networks, pp. 101–120.

Springer Verlag, 2004.

[49] D. Geiger, A. Paz and J. Pearl. Axioms and algorithms for inferences involving

probabilistic independence. Information and Computation, 91:128–141, 1991.

[50] E.S. Gelsema. Abductive reasoning in Bayesian belief networks using a genetic

algorithm. Pattern Recognition Letters, 16:865–871, 1995.

[51] V. Gogate and R. Dechter. A Complete Anytime Algorithm for Treewidth In:

Proceedings of the Twentieth Annual Conference on Uncertainty in Artificial Intel-

ligence (UAI–04), pp. 201–208, AUAI Press, 2004.

234 BIBLIOGRAPHY

[52] D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, 1989.

[53] D. Heckerman, D. Geiger and D. M. Chickering. Learning Bayesian networks: The

combination of knowledge and statistical data. In: Proceedings of the Tenth Annual

Conference on Uncertainty in Artificial Intelligence (UAI–94), pp. 293–301, 1994.

[54] P. Heggernes and Y. Villanger. Efficient Implementation of a Minimal Triangula-

tion Algorithm. In: ESA ’02: Proceedings of the 10th Annual European Symposium

on Algorithms. Lecture Notes in Computer Science, Vol. 2461, pp. 550–561, Springer

Verlag, 2002.

[55] M. Henrion and M.J. Druzdzel. Qualitative propagation and scenario-based

schemes for explaining probabilistic reasoning. In: P.P. Bonissone, M. Henrion,

L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence 6, pp.

17–32. Elsevier Science, 1991.

[56] L.D. Hernández. Diseño y validación de nuevos algoritmos para el tratamiento.

de grafos de dependencias (Validation and design of new algorithms to dependency

graph processing.). Doctoral thesis, Dpto. de Ciencias de la Computación e I.A.

Universidad de Granada, March 1995.

[57] L.D. Hernández, S. Moral and A. Salmerón A Monte Carlo Algorithm for Proba-

bilistic Propagation in Belief Networks based on Importance Sampling and Stratified

Simulation Techniques, International Journal of Approximate Reasoning 18: 53–91,

1998.

[58] J.H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

[59] HUGIN Expert A/S. API manual for the Hugin Decision Engine V6.3.

http://developer.hugin.com/documentation/API Manuals/

[60] F.V. Jensen, S.L. Lauritzen and K.G. Olesen. Bayesian updating in causal prob-

abilistic networks by local computation. Computational Statistics Quarterly, 4:269–

282, 1990.

[61] F.V. Jensen and F. Jensen. Optimal junction trees. In: Proceedings of the Tenth

Annual Conference on Uncertainty in Artificial Intelligence (UAI–94), pp. 360–366,

Morgan-Kaufmann, 1994.

BIBLIOGRAPHY 235

[62] F.V. Jensen. Bayesian Networks and Decision Graphs. Springer Verlag, 2001.

[63] U. Kjærulff. Triangulation of graphs - algorithms giving small total space. Tech-

nical Report R 90-09, Department of Mathematics and Computer Science. Institute

of Electronic Systems. Aalborg University, March 1990.

[64] U. Kjærulff. Optimal decomposition of probabilistic networks by simulated an-

nealing. Statistics and Computing, 2:7–17, 1992.

[65] U. Kjærulff. Aspects of efficiency improvement in Bayesian Networks. PhD thesis,

Dept. of Mathematics and Computer Science, Aalborg University, 1993.

[66] D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In: Proceedings of

the Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 302–313,

Morgan Kaufmann Publishers, 1997.

[67] C. Lacave. Explicación en redes bayesianas causales. Aplicaciones médicas. (Expla-

nations in causal bayesian networks. Medical applications.) Doctoral Thesis, Dpto.

Inteligencia Artificial, UNED. December 2002.

[68] C. Lacave and F.J. Dı́ez. A review of explanation methods for Bayesian networks.

The Knowledge Engineering Review, 17:107–127, 2002.

[69] C. Lacave and F.J. Dı́ez. Knowledge acquisition in Prostanet, a Bayesian net-

work for diagnosing prostate cancer Knowledge-Based Intelligent Information and

Engineering Systems, Lecture Notes in Computer Science (LNCS), Volume 2774, pp.

1345–1350, Springer Verlag, 2003.

[70] P. Larrañaga. Aprendizaje estructural y descomposición de redes Bayesianas via

algoritmos genéticos (Structural learning and decomposition of Bayesian newtroks by

means of genetic algorithms). Doctoral thesis. Dpto. de Ciencias de la Computación

e Inteligencia Artificial, Universidad del Páıs Vasco, Donostia, 1995.

[71] P. Larrañaga, C.M. Kuijpers, M. Poza and R.H. Murga. Decomposing Bayesian

networks: triangulation of the moral graph with genetic algorithms. Statistics and

Computing, 7:19–34, 1997.

[72] K. B. Laskey and S. M. Mahoney. Network fragments: Representing knowledge for

constructing probabilistic models. In: Proceedings of the Thirteenth Conference on

236 BIBLIOGRAPHY

Uncertainty in Artificial Intelligence, pp. 302–313, Morgan Kaufmann Publishers,

1997.

[73] S.L. Lauritzen, T.P. Speed and K. Vijayan. Decomposable graphs and hyper-

graphs. Journal of the Australian Mathematical Society Series A 36: 12–29, 1984.

[74] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on

graphical structures and their application to expert systems. J.R. Statistics Society.

Series B, 50(2):157–224, 1988.

[75] S.L. Lauritzen, A.P. Dawid, B.N. Larsen and H.G. Leimer. Independence proper-

ties of directed markov fields. Networks, 20:491–505, 1990.

[76] H.G. Leimer. Optimal decomposition by clique separators. Discrete Mathematics,

113:99-123, 1993.

[77] V. Lepar and P.P. Shenoy. A Comparison of Lauritzen-Spiegelhalter, Hugin, and

Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions.

In: Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelli-

gence, pp. 328–337, 1998.

[78] Z. Li and B. D’Ambrosio. An efficient approach for finding the MPE in belief

networks. In: Proceedings of the 9th Conference on Uncertainty in Artificial Intelli-

gence, pp. 342–349. Morgan Kaufmann, 1993.

[79] Z. Li and B. D’Ambrosio. Efficient inference in Bayes networks as a combinatorial

optimization problem. International Journal of Approximate Reasoning, 11(1):55–

81, 1994.

[80] A.L. Madsen and F.V. Jensen. Lazy propagation in junction trees. In: Proceedings

of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI–98),

pp. 362–369, 1998.

[81] A.L. Madsen and F.V. Jensen. Lazy Propagation: A Junction Tree Inference Algo-

rithm based on Lazy Evaluation. Artificial Intelligence, 113 (1-2):203-245, Elsevier

Science Publishers, North-Holland ,1999.

[82] S. M. Mahoney and K. B. Laskey. Network engineering for complex belief networks.

In: Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence

(UAI–99), pp. 389–396, 1996.

BIBLIOGRAPHY 237

[83] S. M. Mahoney and K. B. Laskey. Constructing Situation-Specific Networks. In:

Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence

(UAI–98), pp. 370-377, 1998.

[84] S. M. Mahoney and K. B. Laskey. Representing and Combining Partially Spec-

ified CPTs. In: Proceedings of the Fifteen Conference on Uncertainty in Artificial

Intelligence (UAI–99), pp. 391-400, 1999.

[85] J. W. Myers, K. B. Laskey, and K. A. DeJong. Learning bayesian networks from

incomplete data using evolutionary algorithms. In: Proceedings of the Genetic and

Evolutionary Computation Conference, volume 1, pp. 458–465, Morgan Kaufmann

1999.

[86] Z. Michalewicz. Genectic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, 1996.

[87] R. E. Neapolitan. Probabilistic Reasoning in Expert Systems. Theory and Algo-

rithms. Wiley Interscience, New York, 1990.

[88] R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

[89] http://www.norsys.com

[90] D. Nilsson. An algorithm for finding the most probable configurations of discrete

variables that are specified in probabilistic expert systems. MSc.Thesis, University

of Copenhagen, Copenhagen, Denmark, 1994.

[91] D. Nilsson. An efficient algorithm for finding the M most probable configurations

in Bayesian networks. Statistics and Computing, 8:159–173, 1998.

[92] K. Murphy, Y. Weiss, and M. Jordan. Loopy-belief Propagation for Approximate

Inference: An Empirical Study. In: Proceedings of the 15th Annual Conference on

Uncertainty in Artificial Intelligence, pp. 467–475, 1999.

[93] K.G. Olesen and A.L. Madsen. Maximal prime subgraph decomposition of

bayesian networks. IEEE Transactions on Systems, Man and Cybernetics, Part

B:(32), 21-31, 2002.

[94] J.D. Park and A. Darwiche. Solving MAP exactly using systematic search. In:

Proceedings of the 19th Conference on Uncertainty in Artificial Intelligene (UAI–03),

pages 459–468, 2003.

238 BIBLIOGRAPHY

[95] J.D. Park and A. Darwiche. Complexity results and approximation strategies for

MAP explanations. Journal of Artificial Intelligence Research, 21:101–133, 2004.

[96] J. Pearl. and A. Paz. Graphoids: a graph-based logic for reasoning about rele-

vance relations. Technical Report, Cognignitive Science Laboratory, University Of

California, Los Angeles, 1985.

[97] J. Pearl. A constraint-propagation approach to probabilistic reasoning. In: L.N.

Kanal and J.F. Lemmer (eds.), Uncertainty in Artificial Intelligence, pp. 357–370.

North Holland, 1986.

[98] J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intel-

ligence, 29:241–288, 1986.

[99] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Mateo, 1988.

[100] Y. Peng and J.A. Reggia. A probabilistic causal model for diagnostic problem

solving. IEEE Transactions on Systems, Man, and Cybernetics, 17(2):146–162, 1987.

[101] B.W. Peyton. Minimal Orderings Revisited SIAM Journal on Matrix Analysis

and Applications, 23(1):271–294, 2001.

[102] A. J. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD Thesis, Stan-

ford University, January 2000.

[103] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132,

1980.

[104] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,

32(1):57–95, 1987.

[105] D. Rose. A graph theoretic study of the numerical solution of sparse positive

definite systems of linear equations. In: R. Reed ed. Graph Theory and Computing,

pp. 183–217, Academic Press, New York, 1972.

[106] D. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertex elimination

graphs. SIAM Journal on Computing, 5:266–283, 1976.

[107] R.Y. Rubinstein Simulation and the Monte Carlo Method John Wiley & Sons,

Inc., New York, USA, 1981.

BIBLIOGRAPHY 239

[108] A. Salmerón, A. Cano and S. Moral. Importance sampling in Bayesian networks

using probability trees. Computational Statistics and Data Analysis, 34:387–413,

2000.

[109] B. Seroussi and J.L. Goldmard. An algorithm directly finding the k most prob-

able configurations in Bayesian networks. International Journal of Approximate

Reasoning, 11:205–233, 1994.

[110] R. D. Shachter,B. D’Ambrosio and B. Del Favero. Symbolic probabilistic infer-

ence in belief networks. In: Proceedings of the 8th National Conference on Artificial

Intelligence, pp. 126-131, MIT Press, 1990.

[111] R. D. Shachter, S. K. Andersen and P. Szolovits. Global Conditioning for Proba-

bilistic Inference in Belief Networks In: Proceedings of the 10th National Conference

on Artificial Intelligence, pp. 514-522, Morgan-Kaufmann, 1994.

[112] G.R. Shafer. A Mathematical Theory of Evidence. Princeton University Press,

1976.

[113] G.R. Shafer and P.P. Shenoy. Probability propagation. Annals of Mathematics

and Artificial Intelligence, 2:327–352, 1990.

[114] P.P. Shenoy and G.R. Shafer. Axioms for probability and belief-function prop-

agation. In: R.D. Shachter, T.S. Levitt, L.N. Kanal and J.F. Lemmer (eds.), Un-

certainty in Artificial Intelligence, 4., pp. 169–198. Elsevier Science Publishers B.V.

(North-Holland), 1990.

[115] P. P. Shenoy. Binary join trees. In: Proceedings of the Twelfth Annual Conference

on Uncertainty in Artificial Intelligence (UAI–96), pp. 492–499, 1996.

[116] P.P. Shenoy. Binary join trees for computing marginals in the Shenoy-Shafer ar-

chitecture. International Journal of Approximate Reasoning, 17(2-3):239–263, 1997.

[117] S.E. Shimony. Explanation, irrelevance and statistical independence. In: Proc.

of the National Conf. in Artificial Intelligence, pages 482–487, 1991.

[118] S.E. Shimony. The role of relevance in explanation I: Irrelevance as statistical

independence. International Journal of Approximate Reasoning, 8:281–324, 1993.

[119] S.E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelli-

gence, 68:399–410, 1994.

240 BIBLIOGRAPHY

[120] K. Shoikhet and D. Geiger. Practical algorithm for finding optimal triangulations.

In: Proceedings of the National Conference on Artificial Intelligence, AAAI, Menlo

Park, CA, USA. pp. 185-190, 1997.

[121] E. Shortliffe. Computer-Based Medical Consultation: MYCIN. Elsevier, New

York, 1976.

[122] M. Studený. Attemps at axiomatic description of conditional independence. Ky-

bernetika, 25:72–79, 1989.

[123] R.E. Tarjan. Maximum cardinality search and chordal graphs. Unpublished

lecture notes, Standford University, 1976.

[124] R.E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality

of graps, text acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.

SIAM Journal on Computing, 13:566–579, 1984.

[125] R.E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55:221–

232, 1985.

[126] T. Verma and J. Pearl. Causal networks: Semantics and expressiveness. In:

Proceedings of the 4th AAAI Workshop on Uncertainty in Artificial Intelligence, pp.

69–78 Minneapolis, North-Holland, 1988.

[127] Y. Villanger. LEX M versus MCS-M. Technical Report Reports in Informatics

261, University of Bergen, Norway, 2004.

[128] W.X. Wen. Optimal decomposition of belief networks. In: P.P. Bonissone,

M. Henrion, L.N. Kanal and J.F. Lemmer (eds.), Uncertainty in Artificial Intel-

ligence 6, pp. 209–224. North-Holland, 1991.

[129] Y. Xiang. Multiply sectioned bayesian belief networks for large knowledge sys-

tems: an application to neuromuscular diagnosis. PhD Thesis. Department of Com-

puter Science, University of South Carolina, 1992.

[130] Y. Xiang, B. Pant, A. Eisen and M.P. Beddoes. Multiply sectioned bayesian

networks for neuromuscular diagnosis. Artificial Intelligence in Medicine, 5:293–

314, 1993.

BIBLIOGRAPHY 241

[131] Y. Xiang, D. Poole and M.P. Beddoes. Multiply sectioned bayesian networks

and junction forests for large knowledge-based systems Computational Intelligence,

9(2):171–220, 1993.

[132] Y. Xiang and F. Jensen. Inference in multiply sectioned bayesian networks with

extended shafer-shenoy and lazy propagation. In: Proceedings of the 15th Annual

Conference on Uncertainty in Artificial Intelligence (UAI–99), pp. 680–687, Morgan

Kaufmann Publishers, 1999.

[133] Y. Xiang. Probabilistic Reasoning in Multiagent Systems. A graphical models

approach. Cambridge University Press, Cambridge, UK, 2002.

[134] Y. Xiang. Comparison of multiagent inference methods in multiply sectioned

bayesian networks. International Journal of Approximate Reasoning, 33: 235–254,

2003.

[135] N.L.Zhang and D. Poole Exploiting Causal Independence in Bayesian Network

Inference. Journal of Artificial Intelligence Research, 5:301–328, 1996.

Different and various inference methods, both
approximate and exact, have been proposed in the
literature. Nevertheless, those using a secondary structure
called junction or join tree are quite broadly applied. The
Join Tree (JT) is built from the corresponding BN and can
be seen as the Inference Engine of the expert system.
The steps necessary to perform this construction are
included in a process called compilation. The complexity of
compilation increases with the number of variables and
depends on the graph structure. Triangulation means a
particular compilation stage that is practically unavoidable
and presents an NP-hard problem.

Throughout this thesis, three main and distinct inference
processes have been analysed in depth and we have
proposed new approaches and algorithms to
enhance these procedures:

• Triangulation by Re-Triangulation
• MPSD-based Incremental Compilation
• Plug & Play Object Oriented Bayesian Networks
• Explanation Tree-based abduction

Within the field of Artificial Intelligence (AI), Expert Systems stand out
due to their proven utility and their numerous applications. These systems,
which try to imitate human experts in a certain knowledge domain, will
need to manage the uncertainty inherent in most real life problems. One
successful tool to treat uncertainty is the Probability Theory, which gives
rise to Probabilistic Expert Systems (PES).

Bayesian networks can be located in this PES framework. They provide a
quite powerful formalism that gives a representation of the modelled world,
which is intuitive (graph structure) and adaptable (belief update). Another
appealing feature is their capability of being constructed either by means
of experts' contribution or automatically from data, or both.

In a general scheme of an Expert System, the Bayesian
network (BN) is equivalent to the Knowledge Base indicating
both variable relationships (presence/absence of graph arcs) and
their strength (probability distributions). BNs answer queries also
in the form of probabilities: given some observed facts, the user
will want to know the resulting posterior probabilities for some
other unobserved factors/variables of the problem. That is what
basically inference in Bayesian networks will attempt to do.
Moreover, the search of explanations for those given facts can
also be of interest (abductive inference).

