
A Coloured Petri Net Approach to Model and

Analyse Stateful Workflows Based on WS-BPEL

and WSRF

José Antonio Mateo, Valent́ın Valero, Hermenegilda Macià, and Gregorio Dı́az⋆

Escuela Superior de Ingenieŕıa Informática, Universidad de Castilla-La Mancha,
Campus Universitario s/n, 02071. Albacete, SPAIN.,

{JoseAntonio.Mateo,Valentin.Valero,Hermenegilda.Macia,
Gregorio.Diaz}@uclm.es

Abstract. Composite Web services technologies are widely used due to
its ability to provide interoperability among services from different com-
panies. Web services are usually stateless, which means that no state
is stored from the clients viewpoint. However, some new applications
and services have emerged, which require to capture the state of some
resources. Thus, new standards to model Web services states have ap-
peared, such as Open Grid Services Infrastructure (OGSI), which be-
came Web Services Resource Framework (WSRF). In this paper, we
present a formal model based on WS-BPEL and WSRF, and we provide
a prioritised-timed coloured Petri net semantics for it. This semantics
captures the main activities of BPEL, but we also consider other impor-
tant aspects, both from BPEL and WSRF, such as the fault and event
handlers, time-outs and the WSRF publish-subscribe system.

Keywords: Web service composition, orchestration, stateful workflow,
WSRF, WS-BPEL, timed coloured Petri nets.

1 Introduction

The development of software systems is becoming more complex with the ap-
pearance of new computational paradigms such as Service-Oriented Computing
(SOC), Grid Computing and Cloud Computing. In these systems, the service
provider needs to ensure some levels of quality and privacy to the final user
in a way that had never been raised. It is therefore necessary to develop new
techniques to benefit from the advantages of recent approaches, as Web ser-
vice compositions. Formal models of concurrency have been widely used for the
description and analysis of concurrent and distributed systems. Grid/Cloud en-
vironments are characterized by a dynamic environment due to the heterogeneity
and volatility of resources. There are two complementary views to composite Web

⋆ This work received financial support from the Spanish Government, Secretaŕıa de
Estado de Investigación (cofinanced by FEDER funds) through the TIN2009-14312-
C02-02 Project, and the JCCLM Regional Project PEII09-0232-7745.

services: Choreography and Orchestration. The choreography view describes the
observable interactions among services and can be defined by using specific lan-
guages such as Web Services Choreography Description Language (WS-CDL) or
by using more general languages like UML Messages Sequence Charts (MSC).
On the other hand, orchestration concerns the internal behaviour of a Web ser-
vice in terms of invocations to other services. Web Services Business Process
Execution Language (WS-BPEL) [1] is normally used to describe Web service
orchestrations, so this is considered the de-facto standard language for describing
Web services workflows in terms of Web service compositions.

To facilitate additional interoperability among services, more standardization
is required to deal with distributed resources. In January of 2004, several mem-
bers of the Globus Alliance organization and the computer multinational IBM
with the help of experts from companies such as HP, SAP, Akamai, etc. defined
the basis architecture and the initial specification documents of a new standard
for that purpose, Web Services Resource Framework (WSRF) [9]. Although the
Web service definition does not consider the notion of state, interfaces frequently
provide the user with the ability to access and manipulate states, that is, data
values that persist across, and evolve as a result of Web service interactions. The
messages that the services send and receive imply (or encourage programmers
to infer) the existence of an associated stateful resource. It is then desirable to
define Web service conventions to enable the discovery of, introspection on, and
interaction with stateful resources in standard and interoperable ways [4].

The main motivation of this work is to provide a formal semantics for WS-
BPEL+WSRF to manage stateful Web services workflows by using the existing
machinery in distributed systems, and specifically a well-known formalism, such
as prioritised-timed Petri nets, which are a graphical model, but they also provide
us with the ability to simulate and analyse the modelled system.

Thus, our aim is not to provide just another WS-BPEL semantics. In order to
deal with the integration of BPEL plus WSRF in a proper way, we have realized
that it is more convenient to introduce a specific semantic model, which covers
properly all the relevant aspects of WSRF such as notifications and resource
time-outs. The integration of WS-BPEL and WSRF is not new; in the literature,
there are a bundle of works defining this integration, but none of these works
define a formal semantics in terms of Petri nets. In the next Section we present
an overview of these works.

2 Background and Related Work

In this Section, we provide an overview of WS-BPEL and WSRF, and we also
review some related works.

2.1 Overview of BPEL/WSRF

WS-BPEL [1], for short BPEL, is an OASIS orchestration language for specifying
actions within Web service business processes. BPEL is therefore an orchestra-
tion language in the sense that it is used to define the composition of services

2

from a local viewpoint, describing the individual behaviour of each participant.
Thus, we will consider a composite Web service consisting of a set of orches-
trators, described by BPEL+WSRF syntax, which exchange messages through
some communication channels, which are called PartnerLinks in BPEL termi-
nology. These are instances of typed connectors which specify the WSDL port
types the process offers to and requires from a partner at the other end of the
partner link.

BPEL processes use variables to temporarily store data. Variables are there-
fore declared on a process or on a scope within that process. In our case, there
will be a single scope (root), so no nesting is considered in our framework. Be-
sides, for simplicity again, we will only consider integer variables.

An orchestrator consists of a main activity, representing the normal behaviour
of this participant. There are also event and fault activities, which are executed
upon the occurrence of some events, or due to some execution failures, respec-
tively. BPEL activities can be basic or structured. Basic activities are those which
describe the elemental steps of the process behaviour, such as the assignment
of variables (assign), empty action (empty), time delay (wait), invoke a service
(invoke) and receive a message (receive), reply to a client (reply), and throw an
exception (throw). We also have an action to terminate the process execution at
any moment (exit). For technical reasons we have also included a barred form
of reply action, which is used when a service invocation expects a reply, in order
to implement the synchronization with the reply action from the server.

Structured activities encode control-flow logic in a nested way. The considered
structured activities are the following: a sequence of activities, separated by a
semicolon, the parallel composition, represented by two parallel bars (‖), the
conditional repetitive behaviour (while), and a timed extension of the receive
activity, which allows to receive different types of messages with a time-out
associated (pick).

WSRF [2] is a resource specification language developed by OASIS and some
of the most pioneering computer companies, whose purpose is to define a generic
framework for modelling Web services with stateful resources, as well as the re-
lationships among these services in a Grid/Cloud environment. This approach
consists of a set of specifications that define the representation of a WS-Resource
in the terms that specify the messages exchanged and the related XML docu-
ments. These specifications allow the programmer to declare and implement the
association between a service and one or more resources. It also includes mecha-
nisms to describe the means to check the status and the service description of a
resource, which together form the definition of a WS-Resource. We now describe
the WSRF elements that are considered in the BPEL+WSRF framework:

– WS-ResourceProperties: There is a precise specification to define WS-
Resource properties, based on a Resource Properties Document (RPD),
which defines the properties of the associated resource (disk size, processor
capacity, . . .). Nevertheless, for simplicity, we only consider a single prop-
erty for each resource, which is an integer value. Resources are identified by
their EPRs (End-Point References), so we will also use this mechanism for

3

identification purposes, but, for simplicity, we will consider these references
as static, instead of assuming a dynamic mechanism to assign them. As a
shorthand notation, EPRs will also be used to denote the resource property
values.

Furthermore, a WSDL file must be provided in order to facilitate the al-
lowed resource operations. Among the operations allowed by the standard are
GetResourceProperty and SetResourceProperty, which are used to manipu-
late the resource property values.

– WS-ResourceLifetime: The WSRF specification does not provide a stan-
dard way to create resources. However, resources have an associated lifetime,
which means that once this time has elapsed, the resource is considered to be
destroyed, and the subscribers are correspondingly notified. We have then in-
cluded, for completeness, an operation to create resources, createResource, in
which the initial value of the resource, its lifetime and the activity that must
be launched upon its destruction are indicated. We also have an operation
in order to modify the current resource lifetime, setTimeout.

– WS-Notification: Clients can subscribe to WSRF resources in order to be
notified about some topics (resource conditions). We therefore include the
subscribe operator for a customer to subscribe to a resource, indicating the
condition under which it must be notified, and the activity that must be
executed upon that event.

In WSRF there are some additional technical elements to increase the mod-
elling power that due to its technical nature are not considered in our framework.
Among them, we have the so-called WS-Basefaults, which define a standard for-
mat for delivering error messages. WS-ServiceGroup is a tool to create “Service
groups”, which can be created with the purpose of sharing a common set of
properties, i.e. it is a mechanism for grouping together different Web services
with similar behaviour. Finally, WS-BrokeredNotification allows us to define No-
tificationBrokers, which are intermediary elements who, among other things,
allow interactions between one or more NotificationPublishers and one or more
NotificationConsumers.

2.2 Related Work

WS-BPEL has been extensively studied with many formalisms, such as Petri
nets, Finite State Machines and process algebras, but there are only a few works
considering WS-BPEL enriched with WSRF, and they only show a description of
this union, without a formalization of the model. In [15] Slomiski uses BPEL4WS
in Grid environments and discusses the benefits and challenges of extensibility in
the particular case of OGSI workflows combined with WSRF-based Grids. Other
two works centred around Grid environments are [11] and [7]. The first justifies
the use of BPEL extensibility to allow the combination of different GRIDs,
whereas Ezenwoye et al. [7] share their experience on BPEL to integrate, create
and manage WS-Resources that implement the factory/instance pattern.

4

On the other hand, Ouyang et al. [13] define the necessary elements for trans-
lating BPEL processes into Petri nets. Thus, they cover all the important aspects
in the standard such as exception handling, dead path elimination and so on.
The model they consider differs from ours in that we formalize the whole sys-
tem as a composition of orchestrators with resources associated, whereas they
describe the system as a general scope with nested sub-scopes leaving aside the
possibility of administering resources. Furthermore, we have also formalized the
event handling and notification mechanisms. Another extensive semantics for
BPEL 2.0 is presented in [6] by Dumas et al, which introduces two new inter-
esting improvements. They define several patterns to simplify some huge nets
and introduce the semantics for the WS-BPEL 2.0 new patterns. Related to
π-calculus semantics, Dragoni and Mazzara [5] propose a theoretical scheme fo-
cused on dependable composition for the WS-BPEL recovery framework. In this
approach, the recovery framework is simplified and analysed via a conservative
extension of π-calculus. The aim of this approach clearly differs from ours, but
it helps us to have a better understanding of the WS-BPEL recovery framework.
Other work focused on the BPEL recovery framework is [14]. Although this is
more focused in the compensation handler, they describe the corresponding rules
that manage a Web service composition. Our work is therefore quite complete
as we define rules for nearly all possible activities. In addition, we also consider
time constraints. Finally, we would like to highlight the works of Farahbod et
al. [8] and Busi et al. [3]. In the first one, the authors extract an abstract opera-
tional semantics for BPEL based on abstract state machines (ASM) defining the
framework BPELAM to manage the agents who perform the workflow activities.
In this approach time constraints are considered, but they do not formalize the
timed model. On the other hand, the goal of the latter one is fairly similar to
ours. They also define a π-calculus operational semantics for BPEL and describe
a conformance notion. They present all the machinery to model Web service
compositions (choreographies and orchestrations). The main difference with our
work is that we deal with distributed resources.

For further details about the formalization of service oriented languages we
would like to encourage the reader to review the works presented at the SEN-
SORIA project in [16]. Here, an extensive work is presented from different in-
ternational research groups aimed by the common goal of providing a rigorous
software engineering view point for service-oriented system using as a corner-
stone the formal specification of Web Services and WS-BPEL in particular.

3 Prioritised-Timed Coloured Petri Nets

In this section we introduce the specific model of prioritised-timed coloured Petri
net that we consider for the translation.

5

4 Prioritised-Timed Coloured Petri Net Semantics for

WS-BPEL+WSRF

4.1 Prioritised-Timed Coloured Petri Nets

We use prioritised-timed coloured Petri nets, which are a prioritised-timed ex-
tension of coloured Petri nets [10], the well-known model supported by CPN
Tools1.

Definition 1. (Prioritised-Timed Coloured Petri Nets)
We define a prioritised-timed coloured Petri net (PTCPN) as a tuple (P, T,A, V,
G,E, λ,D, π), where2:

– P is a finite set of coloured places. Colours used in this semantics will be
introduced progressively, as we define the PTCPNs corresponding to each
activity. We will use timed and untimed coloured tokens, so timed tokens will
have associated a time stamp, according to the CPNTools interpretation [10].

– T is a finite set of transitions (P ∩ T = ∅).
– A ⊆ (P × T) ∪ (T × P) is a set of directed arcs.
– V is a finite set of integer variables i.e. Type(v) ∈ Z, for all v ∈ V . We will

assume that all variables have 0 as initial value.
– G : T −→ EXPRV is the guard function, which assigns a Boolean expression

to each transition, i.e. Type(G(t)) = Bool . EXPRV denotes the expressions
constructed using the variables in V , with the same syntax admitted by CPN
Tools.

– E : A −→ EXPRV is the arc expression function, which assigns an expres-
sion to each arc.

– λ is the labelling function, defined both on places and transitions. Transitions
can be labelled with either activity names or ∅. Places are labelled as entry
places, output places, error places, exit places, internal places, variable places
and resource places, which, respectively, correspond to the following labels:
{in, ok , er , ex , i , v , r}. In our specific model, a PTCPN will have an only
entry place pin , such that•pin = ∅, which will be initially marked with a single
token, whose colour value will be 0. According to WS-BPEL and WSRF
standards, we can distinguish between two kind of termination: normal and
abnormal. On the one hand, the normal mode corresponds to the execution
of a workflow without faults or without executing any exit activity. Thus, in
our net model, there is an output place pok , such that p•ok = ∅, which will be
marked with one token of colour 0 when the workflow ends normally. On the
other hand, a workflow can finish abnormally by means of the execution of

1 Official web page: http://cpntools.org/
2 We use the classical notation on Petri nets to denote the precondition and postcon-
dition of both places and transitions:

∀x ∈ P ∪ T : •

x = {y | (y, x) ∈ A} x
• = {y | (x, y) ∈ A}

6

an explicit activity (exit or throw) as well as the occurrence of an internal
fault in the system. Each PTCPN has also a single error place per , which
will become marked with one token of colour 0 in the event of a failure, then
starting the fault handling activity. In a similar way, the exit place will be
marked when the exit is executed by an orchestrator.
Variable places are denoted by pv , to mean that they capture the value of
variable v. They contain a single token, whose colour is the variable value.
For any resource r in the system we will have two complementary resource
places, pri , pra . The first one will be marked with one token when the re-
source has not been instantiated or has been released (due to a time-out
expiration), whereas the second one becomes marked when the resource is
created, its token colour being a tuple representing the resource identifier
(EPR), lifetime, value, list of subscribers and activity to be executed upon
the time-out expiration. All the remaining places will be considered as in-
ternal.

– D : T −→ IN× IN(delay function), which associates a time interval to each
transition. For D(t) = [d1, d2], this means that the time delay associated to
t can be any value in this interval, all of them with the same probability.

– π : T −→ IN is the priority function, which assigns a priority level to each
transition. 2

Markings of PTCPNs are defined in the same way supported by CPNTools,
as well as the semantics of PTCPNs, so due to the lack of space we omit the
formal definitions. The interested reader may see for instance [10].

4.2 PTCPN Semantics for WSRF/BPEL

Before introducing the PTCPN semantics, we define the formal model that cap-
tures the integration of BPEL and WSRF.

A system for our purposes consists of a set of orchestrators that run in parallel
using a set of distributed resources. Orchestrators relate with one another by
invoking the services they respectively provide. This set of orchestrators and
resources is here called a choreography. We use the following notation: ORCH is
the set of orchestrators in the system, Var is the set of integer variable names,
PL is the set of partnerlinks, OPS is the set of operation names that can be
performed, EPRS is the set of resource identifiers, and A is the set of basic or
structured activities that can form the body of a process.

An orchestrator O is defined as a tuple O = (PL,Vars ,A,Af ,Ae), where PL
are the partnerlinks this orchestrator uses to communicate with others, Vars is
the set of local variables of this orchestrator, A and Af are activities of WS-BPEL
and WSRF, and Ae is a set of activities. Specifically, A represents the normal
workflow, Af is the orchestrator fault handling activity and Ae = {Aei}

m
i=1

are
the event handling activities.

Activities in BPEL-WSRF follow the syntax defined by the following BNF
expression (see Table 1 for the equivalence with the XML syntax of BPEL and
WSRF):

7

WS-BPEL/WSRF Syntax Model

<process ...>
<partnerLinks> ... </partnerLinks>?
<Variables> ... </Variables>?
<faultHandlers> ... </faultHandlers>?
<eventHandlers> ... </eventHandlers>?

(activities)*
</process>

(PL,Var,A,Af ,Ae)

<throw/>/any fault throw

<receive partnerLink=“pl” operation=“op” variable=“v” createInstance=“no”>
</receive>

receive(pl,op,v)

<reply partnerLink=“pl” variable=“v”> </reply> reply(pl,v)

<invoke partnerLink=“pl”
operation=“op”
inputVariable=“v1”
outputVariable=“v2”?> </invoke>

invoke(pl,op,v1); [reply(pl,op,v2)]

<empty> . . . </empty> empty

<exit> . . . </exit> exit

<assign><copy><from>expr</from><to>v1</to></copy></assign> assign(expr,v1)

<wait><from>a</from><to>b</to> </wait> wait(a,b)

<sequence>
activity1
activity2

</sequence>

<flow>
activity1
activity2

</flow>

A1 ; A2

—————–
A1 ‖ A2

<while><condition>cond</condition>activity1</while> while(cond,A)

<pick createInstance=“no”>
<onMessage partnerLink=“pl” operation=“op”variable=“v”>
activity1

</onMessage>
<onAlarm><for>timeout</for>activity1</onAlarm>

</pick>

pick({(pli, opi, vi, Ai)}
n
i=1, A,timeout)

<invoke partnerLink=“Factory”operation=“CreateResource”
inputVariable=“val,timeout” outputVariable=“EPR”>
</invoke><assign><copy><from variable=“EPR”>part=“ref”
query=“/test:CreateOut/wsa:endpointreference”</from>
<to> partnerlink=“Factory”</to></copy></assign>

createResource(EPR,val,timeout,A)

<wsrp:GetResourceProperty>
<wsa:Address>EPR< /wsa:Address>

variable identifier
</wsrp:GetResourceProperty>

getProp(EPR,v)

<wsrp:SetResourceProperties>
<wsa:Address>EPR< /wsa:Address>
<wsrp:Update>expression</wsrp:Update>

< /wsrp:SetResourceProperties>

setProp(EPR,expr)

<wsrl:SetTerminationTime>
<wsa:Address>EPR< /wsa:Address>
<wsrl:RequestedTerminationTime>
timeout

</wsrl:RequestedTerminationTime>
</wsrl:SetTerminationTime>

setTimeout(EPR,timeout)

<wsnt:Subscribe>
<wsnt:ProducerReference>EPR</wsnt: ProducerReference>
<wsnt:Precondition>cond′</Precondition>

</wsnt:Subscribe>

subscribe(EPR,cond′,A)

<wsnt:Notify>
<wsnt:NotificationMessage>
<wsnt:ProducerReference>EPR</wsnt:ProducerReference>
<wsnt:Message> ... </wsnt:Message>
</wsnt:NotificationMessage>
</wsnt:Notify>

Executes the associated event handler ac-
tivity

Table 1: Conversion table

8

A ::= throw | receive(pl, op, v) | invoke(pl, op, v1) | exit |
reply(pl, v) | reply(pl , op, v2) | assign(expr, v1) | empty |
A ;A | A ‖A |while(cond,A) | wait(a, b)|
pick({(pli, opi, vi, Ai)}

n
i=1

, A, timeout) | getProp(EPR, v)|
createResource(EPR, val, timeout,A) |
setProp(EPR, expr) | setTimeout(EPR, timeout) |
subscribe(EPR, cond′, A)

whereO ∈ ORCH ,EPR ∈ EPRS , pl , pli ∈ PL, op, opi ∈ OPS , a, b ∈ IN, a ≤ b,
expr is an arithmetic expression constructed by using the variables in Var and
integers; v , v1 , v2 , vi range over Var, and val ∈ Z. A condition cond is a predi-
cate constructed by using conjunctions, disjunctions, and negations over the set
of variables Var and integers, whereas cond ′ is a predicate constructed by using
the corresponding EPR (as the resource value) and integers. Notice that setProp
and getProp do not contain the property name since, for simplicity, we are only
considering a single property for each resource. We therefore use its EPR as rep-
resentative of this property. It is worth noting that we have previously presented
an operational semantics for this language in the previous work [12].

Let us call NA, Nf and Nei the PTCPNs that are obtained by applying the
translation to each one of these activities A, Af , Aei , with i ∈ {1,m}:

NA = (Pa, Ta, Aa, Va, Ga, Ea, λa, Da) (PTCPN for A)
Nf = (Pf , Tf , Af , Vf , Gf , Ef , λf , Df) (PTCPN for Af)
Nei = (Pei , Tei , Aei , Vei , Gei , Eei , λei , Dei) (PTCPN for Aei)

Let pain
, pfin and peiin be the initial places of NA, Nf and Neirespectively;

paok
, pfok and peiok their correct output places, paer

, pfer and peier their error
places and, finally, paex

, pfex and peiex their exit places. The PTCPN for the
orchestrator is then constructed as indicated in Fig. 1. This PTCPN is then
activated by putting one token 0 on pain

. However, we can have other marked
places, for instance, those associated with integer variables or resources. The
other places are initially unmarked. The other places are initially unmarked.

Variables and resources: There is one place for each variable, whose token
value is the current variable value. As regards resources, there are two places
associated to each resource, pri , pra . For any resource r, pra becomes marked
when the orchestrator executes the createResource activity, whereas the second
one, pri , is marked as far as the orchestrator does not execute the createResource
activity. When the resource lifetime terminates, the resource is released, passing
the token from pra to pri . Observe that we can know in advance the number of
resources in the system by reading the WS-BPEL/WSRF document.

4.3 Basic activities

– Throw, Empty, Assign, Exit and Wait activities:
These are translated as indicated in Fig. 2, by means of a single transition
labelled with the name of the corresponding activity linked with the cor-
responding terminating place. The time required to execute assign, empty,

9

paok

Ne1 p

p pe1

e1

pe1

in

e1er ok ex

control

er
pen

p

pen

en

pen

in

ok ex

Nen

pain

Nf

pf er
pf ex

pf ok

NA

paer
paex

f in
p

Fig. 1: Orchestration Translation

throw and exit is negligible, so that the corresponding transitions have a null
delay associated. Notice that for the assign activity translation we use a self
loop between the transition and the place associated with the variable (pv)
in order to replace its previous value by the new one, being this new value
obtained from an expression (exp) consisting of variables pv1, . . . , pvn and
integers. For the wait activity, we have a time interval [a, b] associated, so
the delay is randomly selected inside this interval.
Notice the use of a “control” place, to arrest all possible remaining activities
in the system when either throw or exit are executed. Thus, the idea is that
all transitions in the net must be connected with this place, as the different
illustrations show.

0

0
throw

@+0

INT

Pex

INT

Pok

INT

Per

INT

Pin

INT

control

0

(a) Throw PTCPN

0

0
exit

@+0

INT

Pex

INT

Per

INT

Pok

INT

Pin

INT

0

control

(b) Exit PTCPN

00
empty

@+0

Pok

INT

Pex

INT

Per

INT

Pin

INT

control

INT

00

(c) Empty PTCPN

00
wait

@+discrete(a,b)

Pex

INT

Per

INT

Pok

INT

Pin

INT

INT

0 0

control

(d) Wait PTCPN

value1

value1 valuen

valuen

00

0
assign

@+0

pvn

INT

INT

pv1

INT

pex

INT

per

INT

pok

INT

pin

INT

.......

control

INT

exp

pv

value'

0

(e) Assign PTCPN

Fig. 2: Basic Activities Translation

10

– Communication activities: The model we use is based on the invoke and
receive operations, as well as the reply activity that uses a server to reply to
a client. We have also added a barred version of reply to synchronise with
the response from the client. We have therefore introduced this last activity
in our semantics to deal with the synchronous or asynchronous nature of
invoke activity (one-way or request-response operation, respectively), so the
reply activity is optional in the syntax depicted in Table 1.

ServerClient

value

0

0

value'

value
("pl","oper",value)

0

0

0

0

("pl","oper",value)

value

0

receive

@+0

invoke

PerR

INT

PexR

INT

PokR

INT

Pv1

INT

PinR

INT

PLij_r

INT

INT

PLij_s

STRINGxSTRINGxINT

Pv

INT

Pex

INT

Pok

INT

Per

INT

Pin

INT

INT

0
0

control

0

0

0

0

0

(a) Invoke/Receive PTCPN

ServerClient

00

0

0

0

0

0

0

0

0

("pl","oper",value) ("pl","oper",value)

value

value

value
0

0

value'

0

Reply

@+0

O_reply

control

INT

PerR

INT

PexR

INT

PokR

INT

Pv1

INT

PinR

INT

PLij_r

INT

INT

PLij_s

STRINGxSTRINGxINT

Pv

INT

Pex

INT

Pok

INT

Per

INT

Pin

INT

0

(b) Reply/Reply PTCPN

Fig. 3: Invoke/Receive Activities Translation

Fig. 3 shows the translation for both the invoke/receive and the reply/reply
pairs of activities. Part 3a of the figure corresponds to the invoke/receive
translation, in which the net of the invoke activity is depicted on the left-
hand-side part, whereas the receive activity is depicted on the right-hand-side
part. There are two shared places, PLijs and PLijr , which are used to imple-
ment the synchronisation between the invocation and reception of services.
Both places are associated to the partnerlink used for this communication,
denoted here by (i, j), where i and j are the orchestrator identifiers perform-
ing those activities. Notice that the value of a single variable is transmitted,
which is obtained from the corresponding variable place, pv. In the same way,
the receive activity stores this value in its own variable. The interpretation
of Fig. 3b is analogous.

4.4 Ordering structures

WS-BPEL defines structured activities for various control-flow patterns:

– Sequential control between activities is provided by <sequence>, <if>,
<while>, <repeatUntil>, and the serial variant of <forEach>.

– Concurrency and synchronization between activities is provided by <flow>
and the parallel variant of <forEach>.

– Deferred choice controlled by external and internal events is provided by
<pick>.

The set of structured activities in WS-BPEL is not intended to be minimal
[1], so there are cases where the semantics of one activity can be represented

11

using another activity. Nevertheless, in order to reduce the complexity of our
translation, our approach omits many derived activities only dealing with the
most important ones from the modelling viewpoint, such as sequence, parallel
and choice. For all these cases we provide the translation by only considering
two activities. However, the generalization to a greater number of activities is
straightforward in all of them.

– Sequence : A sequence of two activities A1;A2 (with PTCPNs NA1
and NA2

,
respectively) is translated in a simple way (Fig. 4), by just collapsing in a
single place (this will be an internal place of the new PTCPN) the output
place Pok of NA1

, and the entry place of NA2
. The entry place of the new

PTCPN will be the entry place of NA1
. The output place of the new PTCPN

will be the output place of NA2
, and we also collapse the exit, error and

control places of both PTCPNs.

pa1ok
pa2in

pa1er
pa2er

pa2ex

NA1

pa2ok

pa1ex

a1control

NA2

a2control

pa1
in =

=

=

=

Fig. 4: Sequence Translation

– Parallel : The translation for a parallel activity is depicted in Fig. 5, which
includes two new transitions t1 and t2. The first to fork both parallel activ-
ities and the second to join them when correctly terminated. Transition t1
thus puts one token on the initial places of both PTCPNs, NA1

and NA2
, in

order to activate them, and also puts one token on a new place, pc, which
is used to stop the execution of one branch when the other has failed or the
exit activity is explicitly executed in one of them. This place is therefore a
precondition of every transition in both PTCPNs, and it is also a postcon-
dition of the non-failing transitions. However, in the event of a failure or
an exit activity, the corresponding throw or exit transition will not put the
token back on pc, thus arresting the other parallel activity.

Notice also that the error places of NA1
and NA2

have been joined in a single
error place (per), which becomes marked with one token on the firing of one
throw transition. In this case, the other activity cannot execute any more
actions (pc is empty), so some dead tokens would remain permanently on
some places in the PTCPN. However, these tokens cannot cause any dam-
age, since the control flow has been transferred either to the fault handling

12

activity of the PTCPN, once the place per has become marked, or the whole
system has terminated once the place pex is marked.

pA1in

pin

pc

pA2in

pA2ok
pA1ok

throwi throwj

@+0

exit i

pA1er
pA2er

per= =

pA1ex
pA2ex

pex

pok

t2
@+0

0

NA1
NA2

A2
controlcontrol

A1

0

0
0

0

0

0

tj

0

0

0

ti

0

t1

@+0

0
0

0
0

=
00

@+0 @+0

exit j

@+0

0

0

=

=

Fig. 5: Parallel Activity Translation.

– Pick ({(pli, opi, vi, Ai)}
n
i=1

, A, timeout): The <pick> activity waits for the
occurrence of exactly one event from a set of events, also establishing a time-
out for this selection. The translation is depicted in Fig. 6 where a timer is
implemented on the place p a in order to enforce the firing of transition ta
when the timeout has elapsed, thus activating NA. Notice also the use of
both timed and untimed places in this figure, respectively called INT and
UINT.

– While (cond,A): The machinery needed to model this construction is fairly
straightforward since we only must check if the repetition condition holds or
not in order to execute the contained activity or skip it. Fig. 7 shows this
translation.

4.5 WSRF-compliant

Let us now see the WSRF activities, and their corresponding translations.

13

pina pinn

controla controli controln= = ... =

per pex

pin

p_a

plij_1_r

pv1

NA Ni

plij_1_s

pok

poki pokn

pvn

plij_n_r

pini

poka

0

value

value

value

value

0 00

plij_n_s

0

0

0

 0

Nn

0
0

00

0 0

r1 rn

0

0

p_rec

(pl,oper,value) (pl,oper,value)

z

timeout+1 0

x−1

x
x

x
x

0@+1

0 0

0

P_LOW

[x=0]

[x>0]

[x>0] [x>0]

tr

ta

0

0

INT

INT

INT

INT

INT

INT

UINT

INT INT

INT

0

0
0

Fig. 6: Pick Activity Translation.

pin pin

pok

controlA

perpex

A
pokA

[g]

[g]

[not g]

0

0 0

0

00

0

value

value

0

NA

0

0

[not g]
0

pv1 pvn.........

value value

value

value

value

0

value

value

Fig. 7: While Activity Translation.

– CreateResource (EPR,val,timeout,A): EPR is the resource identifier, for which
we have two complementary places in Fig. 8, pri and pra , where the sub-index

14

represents the state of the resource: i when it is inactive and a when it is
active. The initial value is val, and A is the activity that must be executed
when the time-out indicated as third parameter has elapsed.
We can see in Fig. 8 how the transition createResource removes the token
from the inactive place, and puts a new token on the active place, whose
colour contains the following information: resource identifier (EPR), its life-
time (max), and its value (val). Transition t0 is executed when the lifetime

p_r_i p_r_a

pAin

pAok

perpex

crcontrol

subs1 subsn

NA
Ncond1 Ncondn

(EPR,max) createResource(EPR,max,val)

(EPR,max,val)

0

pok pin

(EPR,max,val)

 0 0

0

pCond1in

pCond1ok pCondnok

 0
 0

0 0

pCondnin

(EPR,max,val)

[g1] [gn]

0 0

t0

(EPR,max)

0

0

0@+max

Fig. 8: CreateResource Activity Translation.

of the resource has expired, thus removing the token from the active place,
marking again the inactive place, and activating NA. We can also see that
the active place is linked with a number of transitions, which correspond
to the subscribers (we know in advance these possible subscribers from the
WS-BPEL/WSRF document). These transitions can only become enabled if
the corresponding places subsi are marked by performing the corresponding
activity subscribe. The PTCPNs Ncondi are the nets for the activities passed
as parameter in the invocation of a subscribe activity.

– Subscribe (EPR,cond′,A): In this case, an orchestrator subscribes to the
resource EPR, with the associated condition cond′, upon which the activity
A must be performed. Fig. 9 shows this translation, where we can observe
that the associated place subsi is marked in order to allow the execution of
the PTCPN for the activity A if the condition gi holds. On the contrary, if
the resource is not active, we will throw the fault handling activity.

15

0

(EPR,max,value)

(EPR,max,value)(EPR,max)

(EPR,max)

Subscribe

INT

p_r_a

INTxINTxINT

INT

p_r_i

INTxINT

INT
pin

INT

pok

0

INT

0 0
0

control subs
per

0 0

Fig. 9: Subscribe Activity Translation.

– GetProp (EPR,v) and SetProp (EPR,expr): These are easily translated, as
shown in Figs. 10 and 11, where the resource value is obtained and assigned
to variable v (GetProp), or a new value is assigned to the resource (SetProp).

0

00

0

0

(EPR,max)

(EPR,max)

0 valuevalue'

0

(EPR,max,value)

(EPR,max,value)

0

control

INT

p_r_i

INTxINT

pin

INT

pv

INT

pex

INT

per

INT

pok

INT

INTxINTxINT

p_r_a

Fig. 10: GetProperty Activity Translation.

v1

0
0

0

(EPR,max,value)

(EPR,max,expr)(EPR,max)

(EPR,max)

0

INT

pex

INT

per

INT

pok

INT

INTxINTxINT

p_r_i

INTxINT

INT

control

INT

0

0

0

0

vn

vn

v1

pin

vn........

INT

p_r_a

v1

Fig. 11: SetProperty Activity Translation.

– SetTimeout (EPR,timeout): This activity is analogous to SetProp activity.
In this case, the resource lifetime is updated with a new value. Fig. 11 shows
this translation.

16

0

(EPR,max,value)

(EPR,timeout,value)(EPR,max)

(EPR,max)

0

0

0

setTime

INT

INT

INT

Pin
INT

p_r_a

INTxINTxINT

p_r_i

INTxINT

INT

Per

Pok

0

0
0

control

0

Pex

Fig. 12: SetTimeout Activity Translation.

5 Case study: Online auction service

The case study concerns a typical online auction process, which consists of three
participants: the online auction system and two buyers, A1 and A2. A seller owes
a good that wants to sell to the highest possible price. Therefore, he introduces
the product in an auction system for a certain time. Then, buyers (or bidders)
may place bids for the product and, when time runs out, the highest bid wins.
In our case, we suppose the resource is the product for auction, the value of
the resource property is the current price (only the auction system can mod-
ify it), the resource subscribers will be the buyers, their subscription conditions
hold when the current product value is higher than their bid, and the resource
lifetime will be the time in which the auction is active. Finally, when the life-
time has expired, the auction system sends a notification to the buyers with the
result of the process (the identifier of the winner, vw) and, after that, all the
processes finish. Let us consider the choreography C = (Osys ,O1 ,O2), where
Oi = (PLi ,Vari ,Ai ,Af i

,Aei
), i=1,2, Varsys = {vw , v1 , v2 , vEPR, at , t}, Var1 =

{at1 , v1 , vw1
}, Var2 = {at2 , v2 , vw2

}, Af 1
= exit , andAf 2

= exit . Variable vEPR

serves to temporarily store the value of the resource property before being sent;
v1, v2, vw , vw1

, vw2
are variables used for the interaction among participants,

and, finally, at, at1 and at2 are used to control the period of time in which the
auction is active. In this example, we consider a period of 10 time units. Suppose
s0 sys

, s0 1
and s0 2

are the initial states of Osys, O1 and O2, respectively, and all
the variables are initially 0:

Asys = assign(10 , at); createResource(EPR, 25 , 11 ,Anot);
while(actualTime() <= at ,Abid)

A1 = wait(1 , 1); subscribe(O1 ,EPR,EPR >= 0 ,Acond1
);

invoke(pl1 , auction time1 , at1); reply(pl1 , auction time1 , at1);
while(actualTime() <= at1 ,Abid1

); receive(pl3, bid finish1, vw1, empty)
A2 = wait(1 , 1); subscribe(O2 ,EPR,EPR >= 0 ,Acond2

);
invoke(pl2 , auction time2 , at2); reply(pl2 , auction time2 , at2);
while(actualTime() <= at2 ,Abid2

); receive(pl4, bid finish2, vw2, empty)
Anot = ((invoke(pl3 , bid finish1 , vw)||invoke(pl4 , bid finish2 , vw))
Abid = getprop(EPR, vEPR); pick(

(pl1 , auction time1 , t , reply(pl1 , auction time1 , at)),
(pl2 , auction time2 , t , reply(pl2 , auction time2 , at)),

17

(pl1 , cmp, v1 ,while(v1 > vEPR, assign(v1 , vEPR);
setProp(EPR, vEPR); assign(1 , vw))),

(pl2 , cmp, v2 ,while(v2 > vEPR, assign(v2 , vEPR);
setProp(EPR, vEPR); assign(2 , vw))), empty , 1)

Acond1
= getProp(EPR, vEPR); invoke(pl1 , bid up1 , vEPR)

Acond2
= getProp(EPR, vEPR); invoke(pl2 , bid up2 , vEPR)

Abid1
= receive(pl1 , bid up1 , v1); assign(v1 + random(), v1);
invoke(pl1 , cmp, v1); subscribe(O1 ,EPR,EPR > v1 ,Acond1

);wait(1 , 1)
Abid2

= receive(pl2 , bid up2 , v2); assign(v2 + random(), v2);
invoke(pl2 , cmp, v2); subscribe(O2 ,EPR,EPR > v2 ,Acond2

);wait(1 , 1)

Regarding to the operations auction time1 and auction time2 inform buyers
about the period of time in which the auction is active via variables at, at1 and
at2, which are used in the while structures to control this period. The operations
bid up1 and bid up2 are used to increase the current bid by adding a random
amount to the corresponding variable vi. The operation cmp is an auction sys-
tem operation that receives as parameter a variable of the buyers, vi. If the
value of this variable is greater than the current value of vEPR, then vEPR is
modified with this new value, that is, the new bid exceeds the current bid. After
that, by means of the activity setProp(EPR, vEPR), we can update the value
of the resource property with the new bid. Finally, the operations bid finish1,
bid finish2 update the value of vw to inform the buyers who is the winner once
the auction has expired.

In Fig. 13, we depict a simplified version of the PTCPN for the online auc-
tion system. The complete model can be accessed at the following web ad-
dress: http://www.dsi.uclm.es/retics/PetriNets2012/. Here, we have con-
structed a hierarchical net relying on the notions of substitution transitions,
sockets and ports offered by CPNTools [10]. We have then simulated and anal-
ysed the system, and we have concluded that the system finalizes successfully,
that is, the output place of the system (p ok) is reached in all the simulations. To
check the consistency of the model, we have simulated the possibility of reaching
an error place. For instance, if we delete the wait(1, 1) sentences from activities
A1 and A2, then it would imply that the buyers could access to the resource,
that is the bid, even before the resource has been created. This possibility would
trigger the expected error. Furthermore, we have analysed the data output from
an experiment consisting of 5000 simulations. From the analysis of these data,
we observe that the system is fair, from the point of view of the buyers, since
they have equal right to place a bid. Indeed, the average of placed bids from
each buyer is similar. Other information gathered from these data shows that
buyers can evenly place higher bids than their competitors.

6 Conclusions and Future Work

In this paper, we have integrated two complementary approaches in order to
improve the definition of business processes models on BPEL by adding the

18

http://www.dsi.uclm.es/retics/PetriNets2012/

Orchestrator 1Orchestrator Sys

ac2

Acond2

ap2

Abid2

subs2

Wait&Subscribe2

ac1

Acond1

ap1

Abid1

subs1

Wait&Subscribe1

while

While

as

Assign

per_Os

pex_O2

pok_ac2

INT

pin_ap2

pex_Os

pin_ap1

pin_O2

pok_ac1 pok_w

pok_as

pin_w

pok_O1

pin_O1pin_Os

Assign

While

Abid1

Acond1

Wait&Subscribe2

Abid2

Acond2

Wait&Subscribe1

pin_ac1 pin_ac2

per_O1

per_O2

tok

p_OK

pok_O2

Orchestrator 2

pex_O1

CR

CreateResourceCreateResource

Fig. 13: A simplified PTCPN for the online auction system.

capability of storing their state. We have thus transformed stateless business
processes into stateful business processes. To this end, we have defined a Timed
Coloured Petri net model and presented its corresponding semantics to represent
the constructions of WS-BPEL and the standard selected for the definition of
resources, namely WSRF. Apart from including the notion of state in business
processes, our work also includes a publish-subscribe notification system based
on WS-BaseNotification, presenting a TCPN model and its semantics. Thus,
an orchestrator can show interest of being notified when a condition holds, e.g,
the load of a server exceeds a certain limit. Our approach is based on the one
used in CPNTools, allowing us to take advantage of its capability of analysis
and verification systems. Moreover, our work in progress is the development
of a tool3 to transform automatically WS-BPEL and WSRF specifications into
CPNTools nets. As future work, we plan to study some interesting properties
such as safeness, soundness and so on. As well, it is interesting to define a
complete semantics of WS-BPEL and WSRF. Finally, as commented above,
we defined an operational semantics in a previous work, so we will demonstrate
in a future work the equivalence between both semantics.

3 The beta version can be accessed at: http://www.dsi.uclm.es/retics/Petrinets2012/

19

http://www.dsi.uclm.es/retics/Petrinets2012/

References

1. T. Andrews et. al. BPEL4WS – Business Process Execution Language for Web
Services, Version 1.1, 2003.
http://www.ibm.com/developerworks/library/specification/ws-bpel/.

2. T. Banks, Web Services Resource Framework (WSRF) - Primer, OASIS, 2006.
3. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi and G. Zavattaro, Choreography and Or-

chestration: A Synergic Approach for System Design. In International Conference
of Service Oriented Computing (ICSOC), Lecture Notes in Computer Science, vol.
3826, pp. 228-240, 2005.

4. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.
Snelling, S. Tuecke and W. Vambenepe, The WS-Resource Framework Version
1.0, http://www.globus.org/wsrf/specs/ws-wsrf.pdf, 2004.

5. N. Dragoni and M. Mazzara, A formal Semantics for the WS-BPEL Recovery
Framework - The pi-Calculus Way. In International Workshop on Web Services
and Formal Methods (WS-FM). Lecture Notes in Computer Science, vol. 6194,
pp. 92-109, 2009.

6. M. Dumas, R. Heckel and N. Lohmann, A Feature-Complete Petri Net Semantics
for WS-BPEL 2.0. In International Workshop on Web Services and Formal Meth-
ods (WS-FM). Lecture Notes in Computer Science, vol. 4937, pp. 77-91, 2008.

7. O. Ezenwoye, S.M. Sadjadi, A. Cary, and M. Robinson, Orchestrating WSRF-based
GridServices. Technical Report FIU-SCIS-2007-04-01, 2007.

8. R. Farahbod, U. Glässer and M. Vajihollahi, A Formal Semantics for the Busi-
ness Process Execution Language for Web Services. In Joint Workshop on Web
Services and Model-Driven Enterprise Information Services (WSMDEIS), pp. 122-
133, 2005.

9. I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Leymann,
M. Nally, T. Storey and S. Weerawaranna, Modeling Stateful Resources with Web
Services, Globus Alliance, 2004.

10. K. Jensen and L. M. Kristensen, Coloured Petri Nets - Modelling and Validation
of Concurrent Systems, Springer, 2009.

11. F. Leyman. Choreography for the Grid: towards fitting BPEL to the resource frame-
work. Journal of Concurrency and Computation : Practice & Experience, vol. 18,
issue 10, pp. 1201-1217, 2006.

12. J.A. Mateo, V. Valero and G. Diaz. An Operational Semantics of BPEL Orches-
trations Integrating Web Services Resource Framework. In International Workshop
on Web Services and Formal Methods (WS-FM), 2011.

13. C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas and A.H.M.
ter Hofstede. Formal semantics and analysis of control flow in WS-BPEL. Science
of Computing Programming, vol. 67, issue 2-3, pp. 162-198, 2007.

14. Z. Qiu, S. Wang, G. Pu and X. Zhao. Semantics of BPEL4WS-Like Fault and
Compensation Handling. World Congress on Formal Methods (FM), pp. 350-365,
2005.

15. A. Slomiski. On using BPEL extensibility to implement OGSI and WSRF Grid
workflows. Journal of Concurrency and Computation : Practice & Experience, vol.
18, pp. 1229-1241, 2006.

16. M. Wirsing and M. Holzl (Eds.), Rigorous Software Engineering for Service-
Oriented Systems, Lecture Notes in Computer Science, Vol. 6582. Springer-Verlag,
2011.

20

	A Coloured Petri Net Approach to Model and Analyse Stateful Workflows Based on WS-BPEL and WSRF

