On Behavioural Interfaces and Contracts for Software Aatampt

Javier Camara, José Antonio Martin, Gwen Salaiin, G&tknal, Ernesto Pimentel

Department of Computer Science, University of Malaga,rSpa

Abstract

Software Adaptation aims at composing in a non-intrusive ack-box components or services, even if they preserg som
mismatches in their interfaces. Adaptation is a complaxdssspecially when behavioural descriptions of servicesaken
into account in their interfaces. In this paper, we first gmasour abstract notations used to specify behaviourakfates
and adaptation contracts, and propose some solutions tpatithe specification of these contracts. Then, we overgiaw
techniques for the generation of centralized or distriloLeilaptor protocols and code based on the aforementionetlais.

1. Introduction

Service-based systems are built by reusing existing coemsrand services. These services can be used to fulfill basic
requirements, or be composed with other services to bujiddyisystems which aim at working out complex tasks. Sesvice
must be equipped with rich interfaces enabling externa¢s&to their functionality which can be described at différa-
teroperability levelsi(e., signature, protocol, quality of service, and semanticsyn@osition of services is seldom achieved
seamlessly because mismatch may occur at the differembpeeability levels and must be solveHoftware adaptatiors
the only way to compose non-intrusively black-box compds@n services with mismatching interfaces by automaticall
generating mediatingdaptor services. Adaptation goes beyond classic composition ofpoments or services since in
these approaches, see for instance [1, 2, 3], no solutiorojgoped to compensate possible differences existing leetwe
incompatible interfaces.

So far, most adaptation approaches have assumed intedasesbed by signatures (operation names and types) and
behaviours (interaction protocols). Describing protacoservice interfaces is essential because erroneous texesor
deadlock situations may occur if the designer does not densihem while building composite services. Deriving adept
is a complicated task since, in order to avoid undesiraltbaieurs, the different behavioural constraints of the position
must be respected, and the correct execution order of theages exchanged must be preserved.

Most existing works on model-based behavioural adaptgsee for instance [4, 5, 6]) favour the full automation of
the process. They are referred torastrictive approachebecause they try to solve interoperability issues by pryitire
behaviours that may lead to mismatch, thus restrictinguhetfonality of the services involved. These techniquediarited
since they are not able to fix subtle incompatibilities betweervice protocols by remembering and reordering events a
data when necessary. A second class of solution is refasradgenerative approachgsee for instance [7, 8, 9]). These
avoid restricting service behaviour, and support the $jgation of advanced adaptation scenarios. Generativeoappes
build adaptors automatically from an abstract specificatimmely aradaptation contragtof how mismatch cases can be
solved.

Manual writing of an adaptation contract is a difficult andoerprone task. In particular, incorrect correspondences
between operations in service interfaces, or syntactitakes are common, especially when the contract has to béisgdec
using cumbersome textual notations. Moreover, a consgest an abstract specification of how the different ses/gt®uld
interact and does not explicitly describe all the differex¢cution scenarios of a system, which may not be easils®emad
by the designer. Finally, writing a contract requires a goaghprehension of the services involved, and understaradiitioge
details of service protocols is quite complicated for napegts.

Email addresses: camar a@ cc. unma. es (Javier Camaraj,amarti n@ cc. una. es (José Antonio Martin)sal aun@ cc. una. es (Gwen
Salatin)canal @ cc. uma. es (Carlos Canal)er nest o@ cc. una. es (Ernesto Pimentel)

Preprint submitted to Elsevier June 16, 2009

In this paper, we present an approach that fully supporterg¢ime adaptation, which starts with the automatic eximac
of behavioural models from existing interface descripgieither in Abstract BPEL or Windows Workflows (WF), and ends
with the generation of a monolithic adaptor or a set of distied adaptation wrappers that are automatically gertbeate
deployed. We will present the different parts of our solntiith a particular focus on the notations used here to specif
behavioural interfaces and adaptation contracts. Moreigely, we will present two alternatives to manual contsgci-
fication. A first one, namelputomatic contract specificatipaims at constructing adaptation contracts without anydrum
intervention. A second one, namadhteractive contract specificatigrsupports the user through the adaptation contract
design process using a graphical notation and interagtjyeinting out suggestions and inconsistencies in the desjg
using protocol similarity, simulation and verification tetques. We also propose a combined use of both approaches. O
approach is fully supported by a toolbox called ITACA.

The rest of this paper is structured as follows: Section 2gmts our service model and some techniques supporting the
contract specification. In Section 3, we overview our soluito generate the adaptor protocol and code from the bmivavi
interfaces and adaptation contract. Section 4 present®olsupport and Section 5 some concluding remarks.

2. Behavioural Interfaces and Adaptation Contracts
2.1. Behavioural Interfaces

We assume that service interfaces are specified using baghatgre and a protocol. Signatures correspond to operatio
names associated with arguments and return types relatihe tmessages and data being exchanged when the operation is
called. Protocols are represented by mearSywhbolic Transition SysteniSTSs), which are Labelled Transition Systems
(LTSs) extended with value passing [10]. Communicatiomvieen services is represented using events relative to thee em
sion and reception of messages corresponding to operaltm &vents may come with a set of data terms whose types
respect the operation signatures.

This formal model has been chosen because it is simple, igaphnd provides a good level of abstraction to tackle
verification, composition, or adaptation issues[11, 12, ABthe user level, one can specify service interfaces@igres and
protocols) using respectively WSDL, and Abstract BPEL (ARPor WF workflows (AWF) [14]. These, are automatically
parsed and translated into our internal STS model.

2.2. Adaptation Contract Specification

An adaptation contract [8] contains an interface mappin¢cimag operations (including their arguments) required by
service interfaces with those offered by others in orderetmncile interface mismatch at the signature and behaaliour
levels. Furthermore, a contract may also contain additipr@perties to be imposed on the composition of the differen
services, such as specific orderings on operation invotatid herefore, understanding how two protocols differ fiep
build adaptation contracts, for instance by suggestingptist possible operation matches to the user. To do so, otwagp
is able to compute protocol similarities [15], which aim airging out differences between protocols, but also atalitg
parts of them which turn out to be similar. Our similarity qoutation relies on divide-and-conqueapproach to compute
the similarity of service protocols (described as STSsnfanset of detailed similarity comparisons (states, lalpths
and graphs). This information can be used to guide the cttrgpecification process, regardless of the specific tedkeniq
employed. In particular, we introduce in this section ountcact notation and two different specification techniqfars
adaptation contracts:

Notation. Our adaptation language makes communication among ssreiplicit, and specifies how to work out mismatch
situations. To make communication explicit, we relym@ttors(inspired from synchronization vectors [16]), which denot
communication between several services, where each eppeteng in one vector is executed by one service and the
overall result corresponds to an interaction between alirfiolved services. A vector may involve any number of smvi
and does not require interactions to occur on the same nameesrts. Vectors express correspondences between mgssage
like bindings between ports, or connectors in archite¢tieacriptions. Furthermore, variables are used as pldadetson
message parameters. The same variable name appearingierifabels (possibly in different vectors) enables #iation
of sent and received arguments of messages.

In addition, the contract notation includes an LTS with weston transitions (vector LTS or VLTS). This is used as a
guide in the application order of the interactions denotgddctors. VLTSs go beyond port and parameter bindings, and

express more advanced adaptation properties (such asimg@osequence of vectors or a choice between some of them). If
the application order of vectors does not matter, the vad6rcontains a single state with all transitions loopington i

Automatic Contract Specification. In order to alleviate the cumbersome task of designingtatiap contracts and to avoid
mistakes in the specification (which may lead to undesirbableaviours of the system), we can use the above mentioned
similarity measures for the automatic generation of can$rfl 7]. This automatic contract generation is achievagetrsing

the behaviour of the services and matching the differentadjpems found based on similarity measures. In such a wagrere
able to match compatible operations and to adapt the minisetraf operations required for the deadlock-free compositi

of services. The generated contracts successfully sphoifyto overcome signature mismatdke(different operation
names and arguments) and behavioural incompatibilities (nessage splitting/merging, missing messages and message
reordering) in such a way that all services are able to intewith each other and reach a correct termination stateeif th
execution.

Interactive Contract Specification. Automatic contract generation may produce solutionsiteptb deadlock-free compo-
sitions unable to fulfill their intended goals, since theoawdtic approach is not currently aware of the underlyingasgins

of the services. Therefore, our approach incorporates aptation Contract Interactive Design Environment [18]jckih
aims at helping the designer in specifying a contract, rieduihe risk of errors introduced by manual specificationcdn-
trast with using textual notations where the designer catewany (correct or incorrect) statement, our environmeakes
use of a graphical notation which enables interactive anteinental construction and checks on the contract. Thys, an
contract produced with our proposal is syntactically corend consistent. In addition, the interactive environhieable

to:

e Assist the designer by pointing out the best matches betpess graphically using protocol similarity information.

e Simulate the execution of the system step-by-step andrdietethow the different behavioural interfaces evolve as the
different parts of the contract are executed, highlightintive states and fired transitions on the graphical reptese
tion of interfaces.

e Automatically identify execution traces leading to deattlor livelock. These can be replayed step-by-step using
simulation to understand the cause of the incorrect behavidhis helps the designer to detect the behavioural issues
that might be raised during execution and to understanceibthaviour of the system complies with his/her design
intentions.

It is worth observing that the automatic and interactiverapphes mutually improve their results when they are cogthin
On one hand, when the automatic contract specification psoeeeives adaptation constraints from the interactisgde
environment, it is able to discard solutions leading to deedfree compositions that may not fulfill their intendedais
(e.g., aclient-supplier system which always aborts reqyile®ts the other hand, the designer can use the automaticagipro
to complete parts of a contract through the interactiverenvnent.

3. Adaptor Generation and Implementation

From a set of service protocols and a contract specificatiertan generate either adaptorprotocol (centralized view),
or a set ofadaptation wrappeprotocols (distributed view). In the first case, the adapéorbe deployed on a single machine.
In the case of wrappers, they can be distributed and deplasiad middleware technologies, preserving a full parisielof
the system’s execution. Adaptor and wrapper protocols@agatically generated in two steps: (i) system’s constsare
encoded into the LOTOS [19] process algebra, and (ii) adapto wrapper protocols are computed from this encodinggusin
on-the-fly exploration and reduction techniques. Beyontutation and verification techniques integrated in therattve
environment, the LOTOS encoding allows to check tempomikclproperties on the adaptor under construction using the
CADP model-checker [20]. The reader interested in moreildetay refer to [10, 21].

Our internal model (STS) can take into account some additibehaviours (interleavings) that cannot be implemented
into executable languages. To make platform-independiayitar protocols (obtained in the former step) implemeetab
wrt. a specific platformé.g.,BPEL), we proceed in two steps: (i) filtering the interleayoases that cannot be implemented
(e.g.,several emissions and receptions outgoing from a samé,stati(ii) encoding the filtered model into the correspogdin
implementation language. Following the guidelines presgim [10], the adaptor protocol is implemented as a BPEkgse
using a state machine pattern. The main body of the BPEL psom@responds to a glohahile activity with if statements

used inside it to encode adaptor states. Habbdy encodes transitions outgoing from the correspondatg.sVariables are
used to store data passing through the adaptor and the tstaitmof the protocol.

4. Tool Support

Our solution for model-based software adaptation overgakin this paper is fully supported BJACA [22], an integrated
toolbox we implemented (see Fig. 1IJTACA has been implemented in Python and Java, and consists of ab®00 lines
of code. We have intensively applied and validated our ok many case studies such as a travel agency, rate finder
services, on-line computer material store, library managyg systems, SQL servers, and many other systems.

Although our toolbox automates all the steps of the adapigtiocess, contract specification requires human intéoren
to ensure that the goal of the composition is fulfilled. Hoereexperiments we have carried out show that the techniques
proposed inTACA to support the adaptation contract construction draggicatiuce the time spent to build the contract and
the number of errors made during this process.

Service Interfaces (Abstract BPEL+WSDL)
SaasraserarEe Designer

Interactive Contract Specification +
Simulation and Verification (ACIDE) w

Adaptor Protocol / Service £
Wrapper Protocols Generatio -
((D)COMPOSITOR) N

7

1
ector id="vector_0">

<componentVector eventName="user"
ventType="OUT" index="client'>
<dataltem (
name="clientuserOUTusr"/>
mponentvector> Adaptor Protbeol Filtering 3,
(t)r\ =vector_1"> + Service Deployment @
(STS2BPEL)

=

1

e) =

Adaptor
Protocol

Service Protocol+Signature
Extraction
(WSDL2SIG+ABPEL2STS/
AWF2STS)

Similarity
Computation
(SIM)

Adaptation Contract

Service Interface Models
(Signature + Protocol STS)

Automatic Contract Specification .
1 (DINAPTER) Deployed System
Service Interfaces (Abstract WF+WSDL) (BPEL Adaptor + Original Service
Implementations)

Figure 1. Adaptation process overview in ITACA

5. Concluding Remarks

Software adaptation is a satisfactory solution to build sgBtems involving reusable software services that presene
mismatch cases in their interfaces. However, this is arr-@mane task and therefore must be automated as much ablpossi
In this work, we have presented our approach to softwaretatiap and we focused on the adaptation contract specditati
the only step of our proposal which requires human intefeant To help the designer in this task, we have proposed
two alternative solutions to the manual design of contragtsch rely on graphical notation, interactive environmemd
automatic generation techniques. In this work, we haveiatsoduced what is, to the best of our knowledge, the firsttoo
(ITACA) that fully supports a generative adaptation approach fseginning to endITACA supports the specification and
verification of adaptation contracts, automates the géioeraf adaptor protocols, and relates our abstract modéls w
implementation languages.

Acknowledgements.This work has been partially supported by the project TINR08932 funded by the Spanish Ministry
of Innovation and Science (MICINN), and project PO6-TIC262 funded by thdunta de Andalue.

References

[1] L. de Alfaro, T. Henzinger, Interface Automata, in: Pro€ ESEC/FSE’01, ACM Press, 2001, pp. 109-120.

[2] S. Uchitel, M. Chechik, Mergin Partial Behavioural Mdslein: Proc. of FSE’'04, ACM Press, 2004, pp. 43-52.

[3] A. Basu, M. Bozga, J. Sifakis, Modeling HeterogeneoualRene Components in BIP, in: Proc. of SEFM'06, IEEE
Computer Society, 2006, pp. 3—12.

[4] M. Autili, P. Inverardi, A. Navarra, M. Tivoli, SYNTHESS: A Tool for Automatically Assembling Correct and Dis-
tributed Component-based Systems, in: Proc. of ICSE’OEEEomputer Society, 2007, pp. 784—-787.

[5] A. Brogi, R. Popescu, Automated Generation of BPEL Adaptin: Proc. of ICSOC’06, Vol. 4294 of LNCS, Springer,
2006, pp. 27-39.

[6] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Gueh F. Casati, Semi-Automated Adaptation of Service
Interactions, in: Proc. of WWW’'07, ACM Press, 2007, pp. 99362.

[7] A. Bracciali, A. Brogi, C. Canal, A Formal Approach to Cponent Adaptation, Journal of Systems and Software
74 (1) (2005) 45-54.

[8] C. Canal, P. Poizat, G. Salaiin, Model-Based Adaptaifdehavioural Mismatching Components, IEEE Transactions
on Software Engineering 34 (4) (2008) 546-563.

[9] M. Dumas, M. Spork, K. Wang, Adapt or Perish: Algebra ansiMl Notation for Service Interface Adaptation, in: In
Proc. of BPM’'06, Vol. 4102 of LNCS, Springer, 2006, pp. 65-80

[10] R. Mateescu, P. Poizat, G. Salaiin, Adaptation of $erfArotocols using Process Algebra and On-the-Fly Reductio
Techniques, in: Proc. of ICSOC’08, LNCS, Springer, 2008,8%5-99.

[11] H. Foster, S. Uchitel, J. Kramer, LTSA-WS: A Tool for Meldbased Verification of Web Service Compositions and
Choreography, in: Proc. of ICSE’'06, ACM Press, 2006, pp~774.

[12] X. Fu, T. Bultan, J. Su, Analysis of Interacting BPEL WBbrvices, in: Proc. of WWW’04, ACM Press, 2004, pp.
621-630.

[13] G. Salauin, L. Bordeaux, M. Schaerf, Describing and€Raing on Web Services using Process Algebra, IJBPIM 1 (2)
(2006) 116-128.

[14] J. Cubo, G. Salaiin, C. Canal, E. Pimentel, P. Poizat,d8lél-Based Approach to the Verification and Adaptation of
WF/.NET Components, in: Proc. of FACS’07, Vol. 215 of ENT&3sevier, 2007, pp. 39-55.

[15] M. Ouederni, Measuring Similarity of Service ProtagoMaster Thesis, University of Malaga. Available on Merie
Ouederni's Webpage (Sep. 2008).

[16] A. Arnold, Finite Transition Systems, Internationaris in Computer Science, Prentice-Hall, 1994.

[17] J. A. Martin, E. Pimentel, Automatic Generation of Adation Contracts, in: Proc. of FOCLASA08, ENTCS, 2008, to
appear.

[18] J. Camara, G. Salalin, C. Canal, M. Ouederni, Intaa@&pecification and Verification of Behavioural Adaptatio
Contracts, in: 9th International Conference on Qualityt8afe (QSIC’'09), IEEE, 2009, to appear.

[19] ISO/IEC, LOTOS — A Formal Description Technique Basedtbe Temporal Ordering of Observational Behaviour,
International Standard 8807, ISO (1989).

[20] R. Mateescu, M. Sighireanu, Efficient On-the-Fly Mo@ecking for Regular Alternation-Free Mu-Calculus, &cie
of Computer Programming 46 (3) (2003) 255-281.

[21] G. Salalin, Generation of Service Wrapper ProtocamfChoreography Specifications, in: Proc. of SEFM'08, IEEE
Computer Society, 2008, pp. 313-322.

[22] ITACAs Webpage, accesible from Javier Camara’s Wi

