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/%\ Overview of the talk

= Part |I: Basics of Action Systems
— Schematic view
— Weakest preconditions
— Stepwise refinement
— etc.

= Part IlI: Modelling Services in the
Action System Formalism

— General approach

— Dependency operator

— Contract-based interface
— etc.
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Part |

Basics of Action Systems
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Why use formal methods?

* Formal methods provide a means of
proving correctness of programs.

— Testing alone cannot guarantee the non-
existence of flaws in non-trivial programs.

= Different types of formal methods.

— Program refinement

* Stepwise derivation from initial
specification.

— Model checking
* Proving properties about a model.

= Our approach is based on refinement.
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The action system formalism

= Originally proposed by R.J.R. Back and R.
Kurki-Suonio.

— Has been extended by several
contributors.

= Supports stepwise refinement.

= Based on E.W. Dijkstra's guarded
command language.

— Weakest precondition semantics.
* Predicate transformers.
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Schematic view of an action system
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4= list of Local variables
var X, y*<« — list of exported global variables

procp<«-.
list of procedures incl. their body

S, \

do initialisation guard
(enabledness)

A

1 \ /
0. :/ actions of the form A.=gA. — SA
A,

od Nondeterministic
choice between
]l : Z\ enabled actions.
list of imported Termination when no action is enabled.

global variables
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Weakest precondition predicate
transformers
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* Predicate.
— A boolean function from the state space.

* Predicate transformer.

— A higher order functions, mapping predicates
to predicates.

" Weakest precondition predicate transformer.

— Wp(A, q) is the weakest precondition predicate
transformer for action A, returning a predicate
evaluating true exactly in the states in which
executing A will establish predicate q.
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List of fundamental wp's

= wp(magic, q) = true

= wp(abort, q) = false

= wp(skip, q) = q

= wp(x:=E, q) = qlE/x]

= wp(A []1B, q) = wp(A, q) A wp(B, g)
= wp(A; B, q) = wp(A, wp(B, q))

" wp(lal,g) =a=gq

" wp({a},q)=anAgqg
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s Guards

* In the do-od loop, each action is of the form:

A=0gA - SA
= This is a short-hand notation for:
A = [gA]; sA

— gA Is called the guard (of the action).
— SA Is called the statement (of the action).
—[...] Is an assumption.
*wp(la], q) =a=(q
— “” Indicates sequential composition.

* Wp(A; B, q) = wp(A, wp(B, q))
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Extracting the quard

* The guard can be computed as:
— g(A) = 'wp(A, false)

= \We assume that for each guarded
command A = gA - SA, the following holds:

—g(A) = gA
— g(SA) = true
— This means that the guard of a guarded

command can easily be identified as its gA
part.
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e Enabledness

= Each action is of the form:

A=0gA - SA
= This is a short-hand notation for:
A = [gA]; sA

— gA Is called the guard (of the action).
— SA Is called the statement (of the action).
—[...] Is an assumption.
*wp(la], q) =a=(q
— “” Indicates sequential composition.

* Wp(A; B, q) = wp(A, wp(B, q))
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Refinement

= Definition: Refinement of actions.
—AE A e VYq.wp(A, q) = wp(A', q)
= Refinement of action systems.

— Refinement w.r.t. input-output.
e Total correctness

— Trace refinement.

e |nterest In intermediate, observable states.

* Needed in our work.
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A\ Stepwise refinement chain

University

1) Start from an initial, abstract specification.

2) Rewrite into a more concrete specification.

3) Prove the correctness of the new specification
w.r.t. the previous one.

4) If not yet concrete enough (implementation)

go to Step 2. < Abstract specification

More concrete specification

More concrete specification

< Implementation
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Part ||

Modelling Services in the
Action System Formalism
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Our current goals / challenges

= Avoid modelling systems as a monolith.

= Encouraging reusable and replacable
modules.

= Components can be treated as services.

= A contract-based interface between the
utilising entity and the service(s).
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/%\ Concepts

Y

= Source.

— An entity constituting the origin of
some information.

= Utiliser.

— An entity using information provided
by a source.

— Can also be a source itself.

= Dependency.

— A utiliser is said to be dependent on a
source if it needs said source in order
to provide its functionality.
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Expressing dependencies

We introduce a special dependency
operator for expressing dependencies.

Definition: Dependency operator.
—~A\B=gAAgB-A;B

Can also be expressed as:

— A\\B = gA A gB = (sA; gB —» sB)
Intuition: In A\\B, A Iis an entity

depending on another entity, the service
B, in order to provide its functionality.

— A constitutes a utiliser.
— B constitutes a source.
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Weakest precondition for \\

= wp for \\ can be derived using
fundamental wp formulae.

wp(A\\B, q)
= Wp(gA A gB - A; B, q)
= gA A gB = wp(A; B, q)
= gA A gB = wp(A, wp (B, q))
= wp(gA A gB - A, wp(B, q))
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/%\ Guard of \\

g(A\\B)

= wp (A\B, false)

= —wp (gA A gB = A, wp (B, false)

= —(gA A gB = wp (A, wp (B, false))

= —=(gA A gB = wp (A, wp (gB — sB, false)))

= —(gA AN gB = wp (A, gB = wp (sB, false))

= —(gA A gB = wp (A, gB = false))

= —(gA A gB = wp (A, ~gB v false)) // def. =

= —=(gA A gB = wp (A, =gB)) /] tautology
= —(=(gA A gB) v wp (A, =gB)) /] def. =

= —=(gA A gB) A ~wp (A, =gB) // deMorgan
gA A gB A ~-wp (A, ~gB) /] double neg

AN N N N
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Example

A=l
var x
proc utiliser ={...},
service ={...}
S,

do
utiliser \\ service

] ...
od

|
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Direct vs indirect dependencies

= Direct / hard dependencies.

— Utiliser and service executed as an
atomic entity.

— Easily expressed using the \\
operator.

* Indirect / soft dependencies.

— Utiliser executed first, then possibly
other actions. Service is guaranteed
to be executed at some point.
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Contracts

» Defines the interface between utiliser
and source.

= Source defines a contract.

— Utiliser must accept it in order to use
the service of the source.

= General constraints:

— The utiliser must not write on the
source's variables in such a way that
the latter becomes disabled.
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Contracts continued

* The general constraints can be expressed

as follows:
gA A gB - SA; gB - sB
R util var R util var R util var R util var R util var
R servvar R servvar |[Rservvar Rservvar |R servvar
W util var W util var
W serv_var W serv var
= R =read, W = write

= util var/ serv var = utiliser's / service's var
= Wsserv var = write only in such a way as
not the disable the service
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Hon e Conclusions

* Presented a framework for expressing
dependencies / use of services in
action systems.

* |Introduced a new dependency operator.

= Explored properties of the dependency
operator.

= |Interface between utiliser and source is
contract based.

* |ndirect dependencies are an alternative
to direct, atomic dependencies.
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Recent & future work

= We have recently submitted a
conference paper on the topic.

* More closely explore separation not
only into utiliser/source, but also into
separate action systems.

= More research into refinement rules
for dependencies.

= Explore indirect dependencies (soft
dependencies) more closely.
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Thank you!
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