O

X\

Abo Akademi

Inter-service Dependency in
the Action System Formalism

Kaisa Sere
Abo Akademi University, Finland

Joint work with
Mats Neovius
and
Fredrik Degerlund

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

/%\ Overview of the talk

= Part |I: Basics of Action Systems
— Schematic view
— Weakest preconditions
— Stepwise refinement
— etc.

= Part IlI: Modelling Services in the
Action System Formalism

— General approach

— Dependency operator

— Contract-based interface
— etc.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

Abo Akademi
University

Part |

Basics of Action Systems

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

Abo Akademi
University

Why use formal methods?

* Formal methods provide a means of
proving correctness of programs.

— Testing alone cannot guarantee the non-
existence of flaws in non-trivial programs.

= Different types of formal methods.

— Program refinement

* Stepwise derivation from initial
specification.

— Model checking
* Proving properties about a model.

= Our approach is based on refinement.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

Abo Akademi

The action system formalism

= Originally proposed by R.J.R. Back and R.
Kurki-Suonio.

— Has been extended by several
contributors.

= Supports stepwise refinement.

= Based on E.W. Dijkstra's guarded
command language.

— Weakest precondition semantics.
* Predicate transformers.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

O

Schematic view of an action system

Abo Akademi
University

4= list of Local variables
var X, y*<« — list of exported global variables

procp<«-.
list of procedures incl. their body

S, \

do initialisation guard
(enabledness)

A

1 \ /
0. :/ actions of the form A.=gA. — SA
A,

od Nondeterministic
choice between
]l : Z\ enabled actions.
list of imported Termination when no action is enabled.

global variables

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

Weakest precondition predicate
transformers

Abo Akademi

* Predicate.
— A boolean function from the state space.

* Predicate transformer.

— A higher order functions, mapping predicates
to predicates.

" Weakest precondition predicate transformer.

— Wp(A, q) is the weakest precondition predicate
transformer for action A, returning a predicate
evaluating true exactly in the states in which
executing A will establish predicate q.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 7

List of fundamental wp's

= wp(magic, q) = true

= wp(abort, q) = false

= wp(skip, q) = q

= wp(x:=E, q) = qlE/x]

= wp(A []1B, q) = wp(A, q) A wp(B, g)
= wp(A; B, q) = wp(A, wp(B, q))

" wp(lal,g) =a=gq

" wp({a},q)=anAgqg

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

s Guards

* In the do-od loop, each action is of the form:

A=0gA - SA
= This is a short-hand notation for:
A = [gA]; sA

— gA Is called the guard (of the action).
— SA Is called the statement (of the action).
—[...] Is an assumption.
*wp(la], q) =a=(q
— “” Indicates sequential composition.

* Wp(A; B, q) = wp(A, wp(B, q))

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 9

Abo Akademi

Extracting the quard

* The guard can be computed as:
— g(A) = 'wp(A, false)

= \We assume that for each guarded
command A = gA - SA, the following holds:

—g(A) = gA
— g(SA) = true
— This means that the guard of a guarded

command can easily be identified as its gA
part.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 10

e Enabledness

= Each action is of the form:

A=0gA - SA
= This is a short-hand notation for:
A = [gA]; sA

— gA Is called the guard (of the action).
— SA Is called the statement (of the action).
—[...] Is an assumption.
*wp(la], q) =a=(q
— “” Indicates sequential composition.

* Wp(A; B, q) = wp(A, wp(B, q))

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

Abo Akademi
University

Refinement

= Definition: Refinement of actions.
—AE A e VYq.wp(A, q) = wp(A', q)
= Refinement of action systems.

— Refinement w.r.t. input-output.
e Total correctness

— Trace refinement.

e |nterest In intermediate, observable states.

* Needed in our work.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

12

O

A\ Stepwise refinement chain

University

1) Start from an initial, abstract specification.

2) Rewrite into a more concrete specification.

3) Prove the correctness of the new specification
w.r.t. the previous one.

4) If not yet concrete enough (implementation)

go to Step 2. < Abstract specification

More concrete specification

More concrete specification

< Implementation

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 13

Abo Akademi
iversit

Part ||

Modelling Services in the
Action System Formalism

22.09.09

Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

14

Abo Akademi
University

Our current goals / challenges

= Avoid modelling systems as a monolith.

= Encouraging reusable and replacable
modules.

= Components can be treated as services.

= A contract-based interface between the
utilising entity and the service(s).

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

/%\ Concepts

Y

= Source.

— An entity constituting the origin of
some information.

= Utiliser.

— An entity using information provided
by a source.

— Can also be a source itself.

= Dependency.

— A utiliser is said to be dependent on a
source if it needs said source in order
to provide its functionality.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

Abo Akademi
University

Expressing dependencies

We introduce a special dependency
operator for expressing dependencies.

Definition: Dependency operator.
—~A\B=gAAgB-A;B

Can also be expressed as:

— A\\B = gA A gB = (sA; gB —» sB)
Intuition: In A\\B, A Iis an entity

depending on another entity, the service
B, in order to provide its functionality.

— A constitutes a utiliser.
— B constitutes a source.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 17

O

Abo Akademi
University

Weakest precondition for \\

= wp for \\ can be derived using
fundamental wp formulae.

wp(A\\B, q)
= Wp(gA A gB - A; B, q)
= gA A gB = wp(A; B, q)
= gA A gB = wp(A, wp (B, q))
= wp(gA A gB - A, wp(B, q))

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

18

/%\ Guard of \\

g(A\\B)

= wp (A\B, false)

= —wp (gA A gB = A, wp (B, false)

= —(gA A gB = wp (A, wp (B, false))

= —=(gA A gB = wp (A, wp (gB — sB, false)))

= —(gA AN gB = wp (A, gB = wp (sB, false))

= —(gA A gB = wp (A, gB = false))

= —(gA A gB = wp (A, ~gB v false)) // def. =

= —=(gA A gB = wp (A, =gB)) /] tautology
= —(=(gA A gB) v wp (A, =gB)) /] def. =

= —=(gA A gB) A ~wp (A, =gB) // deMorgan
gA A gB A ~-wp (A, ~gB) /] double neg

AN N N N

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 19

Abo Akademi
University

Example

A=l
var x
proc utiliser ={...},
service ={...}
S,

do
utiliser \\ service

] ...
od

|

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

20

Abo Akademi

Direct vs indirect dependencies

= Direct / hard dependencies.

— Utiliser and service executed as an
atomic entity.

— Easily expressed using the \\
operator.

* Indirect / soft dependencies.

— Utiliser executed first, then possibly
other actions. Service is guaranteed
to be executed at some point.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 21

Abo Akademi

Contracts

» Defines the interface between utiliser
and source.

= Source defines a contract.

— Utiliser must accept it in order to use
the service of the source.

= General constraints:

— The utiliser must not write on the
source's variables in such a way that
the latter becomes disabled.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

Abo Akademi
University

Contracts continued

* The general constraints can be expressed

as follows:
gA A gB - SA; gB - sB
R util var R util var R util var R util var R util var
R servvar R servvar |[Rservvar Rservvar |R servvar
W util var W util var
W serv_var W serv var
= R =read, W = write

= util var/ serv var = utiliser's / service's var
= Wsserv var = write only in such a way as
not the disable the service

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 23

Hon e Conclusions

* Presented a framework for expressing
dependencies / use of services in
action systems.

* |Introduced a new dependency operator.

= Explored properties of the dependency
operator.

= |Interface between utiliser and source is
contract based.

* |ndirect dependencies are an alternative
to direct, atomic dependencies.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo 24

Abo Akademi

Recent & future work

= We have recently submitted a
conference paper on the topic.

* More closely explore separation not
only into utiliser/source, but also into
separate action systems.

= More research into refinement rules
for dependencies.

= Explore indirect dependencies (soft
dependencies) more closely.

22.09.09 Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

Abo Akademi
University

Thank you!

22.09.09

Abo Akademi University - Domkyrkotorget 3 - 20500 Abo

26

	ÅA Power Point botten
	Användning av text och bild
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26

