Programming
metaheuristics with Li0

Spain

Juan L. Mateo and Luis de la Ossa

R
B N

e~ 7

ANy
a Vv

B m—asvase
==


http://www.dsi.uclm.es/simd
http://www.dsi.uclm.es/simd
http://www.dsi.uclm.es/simd
http://www.dsi.uclm.es/
http://www.dsi.uclm.es/simd
http://www.i3a.uclm.es/
http://www.i3a.uclm.es/
http://www.i3a.uclm.es/
http://www.uclm.es/
http://www.uclm.es/
http://www.uclm.es/
http://www.uclm.es/

AVN

——
A A

4

N

7 ~7

i

——
-

=

2

=
1574
ANV
N
O

Programming metaheuristics with .10

mm Introduction to LiO:
* Individuals and data types.

* Resorces.
Em Creating new tasks.
mm Implementation of operators.
B Search algorithms in L10.
Em Custom data types
B Internal functioning of Li0
mm Using Li0 from outside.
[ | |

am  Some useful hints

N
g

—7

'/ \
CINE
= (

7]

_

7

l\j ~




Introduction to .10

Wy
_ P
B iz

{,
DAY

)
= Y i

==




Introduction to .10

Individuals and data types

In 1,10, solutions of problemas are codified in classes extending
lio.individuals.Individual.

The most important method in an individual is value () , which
returns a double resulting from evaluating the solution.

Currently, 3 kind of individuals are defined in Li0:

Chains of bits: BitChain
Chains of real numbers: ContChain
Permutations: Permutation

However, most algorithms can deal with datatypes defined by the
. user.

e
éé
Z

AA AN

7
%4
N
<
w

SO RE
v VA.,;QF,{/ A
&




Introduction to .10

Individuals and data types

Each one of the classes provides methods to access its data.

Thus, for the pre-defined data typed we have:

BitChain bCh = new BitChain (100) ;
int[] elements = bCh.getElements () ;

ContChain oCh = new ContChain(100]) ;
double[] elements = cCh.getElements () ;

Permutation pm new Permutation(100) ;

int[] elewments pro.getElements () ;

\;)ii, See lio.individuals.Individual.java, lio.individuals.ContChain, etc.
<




Introduction to .10

Individuals and data types

There are operators which can only deal with a certain kind of
representation:

|.e, mutations, crossovers, etc.

However, there are some other, as RouletteWWheelSelector,
which work with all data types.

It is quite important pointing out that operators used in the set
up of an algorithm must be compatible with the kind of
. individual used to code the solutions.

Y/
N
<
w




Introduction to .10

Resources

In 110, almost everything (tasks, operators, search algorithms,
stop conditions) is defined as a resource.

Technically, it means that almost everything implements the
interface

lio.core.LiOResource

In this interface, only a function is declared:

public LiOResourceDefinition getDefinition ()

I\
N
Y

AN
i\ 4

—

o

A~

D

I ONRE
SBE i
Qe

>

|

A

N

SIMD.

g
\



Introduction to .10

Resources

Next code shows the implementation of getDefinition () for an
operator which implements the arithmetical crossover for real vectors
(ContChain).

pubhlic LiOFResourcelDefinition getbhefinitioni() |

LiCoResourcelefinition def = new LiCFEesourcelefinition|
"lio.crossover.Crossover ™,
"lio.crossover.contchain.ArithmeticalCrossover ™,
Flio.individuals.ContChain™,
"Trplements the aritmethical crossover. ™) !

def.addMember ("alpha™, "ALlpha constant. [(0.35)7");

return def;




Introduction to .10

Resources
The constructor takes four parameters:

1) The interface or class implemented or extended by the object
which defines its functionality.

2) The name of the class implementing the resource.
3) The kind of individuals the resource is designed to work with.

4) A description of the resource.

N
)

:

Ay

—
.“
=

SN
VR
7
=7

[
=
O

—

Xé

—
/4
Y

N
v

N~

=
Y
774

2

~=




Introduction to .10

Resources
Moreover, a line must be added for each parameter of the resource

that is going to be configured either in the GUI or in the configuration
file:

def.addMember ("alpha®™, "Alpha constant. (0.35)7");

It is composed by the name of the parameter and one description.

The class must declare a member called alpha.

N
v

21 SR
i\ 4

=N

WWARNG/Zis S
Y/ VA.,;;W,{/
&

—

S

D

G
N
=
O

|

~7




Introduction to .10

Resources

The last thing about resouces is that, for each parameter, there
must be two functions defined in order to be able to automatically
access to it.

public double getlilpha() { return alpha;:

public void sSetlilphalidouble alpha) { this.alpha = alphar:}

The convention used with the names of the functions is the one
from JavaBeans, consisting in prefixing with get and set the name of
the variable.

2)@, See lio.crossover.contchain.ArithmeticalCrossover.java
¢
2




Creating new tasks

/AN
T 2280
\&@«N&’Aﬂ(%w )

‘
IS

NN
AN

N —




I\

AN,

7]

§§\

S\

0

/7

i

e —
o

2

=7/

Creating new tasks

LiOTask

Classes implementing tasks, extends the class LiOTask:

public abstract class LioTask implements LiOFesource |

public abstract LiOEounds definelndividualsi():
public abstract double evaluate (Individual indiwvidual);
public double optimwun() { }

public LioResourcelefinition getDhefinitioni() {}

N
o

=~ /\

)
%

_v,/ 4,
U
<
O

il

o4
g

:@;v/

l\‘ NV




Creating new tasks

LiOTask

* The first function, getDefinition (), has been described and it is
necessary for both defining the kind of individuals and configurating
the resource.

- Since we work with maximization problem, the optimum is fixed to
infinity. If the optimum of a task is known, the function must be

overrided.
o A
- \§
i\

>

Vi

N

=Y,

il

\! %4\ Shi

gl
:

—
/4

2 Wi

—~

.%{




Creating new tasks

LiOTask

* The third function must be implemented. It is necessary to specify the
ranges of the individuals.

public LiOFBounds definelndividuals() |
ContChainbBounds bounds = new ContChainBoundsisize, 0O, 1):
return bounds;

In this case, we use a ContChainBounds object (which extends
LiOBounds), necessary to define size and ranges ([0,1]) for the
variables in a chain of real numbers. Li0 also implements
BitChainBounds and PermutationBounds

g)@; See lio.individuals.LiOBounds and lio.individuals.ContChainBounds
-




Creating new tasks

LiOTask

Last, the function evaluate () evaluates an individual and returns the value
of the solution represented with it. The example shows the evaluation in
OneMax for continuous problems.

public double evaluate(Individual indiwvidual) {
double fitness = 0;
double[] elements = ({(ContChain)indiwvidual).getElements() ;

for {(int i=0;i<elements.length;it++)

fitness=fitnesstelements[i] ;

return fitness;

| Notice that it is necessary to make a cast to the specific kind
, m"\\ of individual used by the task!

@.< See lio.LiOTask and problems.contchain.OneMax




______\\ .\ /\____—= _________________/ |\ _______/ _____\\ \\[// \___________________

Creating new tasks

X

)

©

m i

~ iy
_,f< .

AN N 728N




Implementation of

operators

i

\ ‘\»A‘ v
=

¢

/AN
A S >
4

A
Y

— T

= —



Implementation of operators

As mentioned, an operator is also a Resource, thus, it must implement the
interface LiOResource described above.

For instance, in the ArithmeticalCrossover, the getDefinition ()
function looks as follows:

public LiOResourcelefinition getDefinition() |

LiOResourcelefinition def = new LiOResourcelefinitioni
"lio.croszsover.Crossover ™,
"lio.crossover.contchain. ArithmeticalCrossower™,
Mlio.individuals.ContChain®™,
"Implements the aritmethical crossover. ™) !

def.addMember ("alpha'™, "Alpha constant. [(0.35)7):

return def:

Moreover, the get and set methods must be declared for each
: ,<§\>“ parameter, in this case, for the member alpha.

g See lio.individuals.LiOBounds and lio.individuals.ContChainBounds




Implementation of operators

Besides the common interface LiOResource, each operator has a certain
functionality. In the case considered, as it is shown in the resource definition
this is given by the interface:

lio.crossover.Crossover

public interface Crossover extends LiOResource {

II."fr#
* @return The =size of the offspring produced by the operator.
By

public int get3izelff3pring()

,u"l""""""

* Crosses two individuals.

* @param parentl First parent

* @param parentZ Second parent

* @dreturn in array of individuals containing the offspring.
By

public Individual[] cross(lndividual parentl, Indiwvidual parenti) ;

[

4
i

—

%
N
<
O

l\‘ NV




Implementation of operators

As it can be seen, the interface is generic, that is, doesn’t depend on the
kind of data, and neither the class implementing it. Thus, a cast must be done
in the implementation.

public Individual[] crossi(Individual parentl, Individual parent2) |

Size = parentl.get3izel):

A4 Gets the elements.

double[] plElements = [ [(ContChain) parentl) .getElementcs|();
double[] pZElements = [ [(ContChain) parentZ) .getElements|() ;

/f Crosses them

double hl, hz:

for (int i = 0; i < size; i++) {
hl = alpha * plElements[i] + (1 - alpha) * pZElements[i]:
h2 = alpha * pZElements[i] + (1 - alpha) * plElements[i]:
paElement=s[i] = hi:
plElement=[i] = hil:

K

ContChain indl, indzZ;

indl = new ContChain(plElewents) :

indZ = new ContChain(pZElewents)

Individual[] ind = { indl, indZ }:

return ind:;




______\\ .\ /\____—= _________________/ |\ _______/ _____\\ \\[// \___________________

Implementation of operators

PN
o

RN
=

AN N 728N




O
-
—
S
0
=
C
=
-
®)
ko)
©
e
O
-
O
O
)

\\\p

A
2B
«,AM,‘\\"{}A AN
e Nl

& \
4
Ry

K] 7

i‘v’Aﬁ\ Svave

===




Search algorithms in Li0

LiOEnv

This class provides some statics members that must be
accesed from several parts of LiO such as (algorithms,
individuals, etc.)

The most important are shown below:

public abstract class LiOEnv |

S¥% This ohject iz used to manage error and exception messages +/f
public static LioErrorlogy errorlog = new LiOPrint2treamErrorLogi()

£ **% Task which i= going to he solwved */
public static LiOTask task = null:

S¥% Chiect that contains and computes statistics of the search. */f
public static Statistics séatistics = new Statistics():

I\
N
Y

—
4

‘ ?%VK/V
}}}?As A

Q

AW
4

—
.
AN,

VINSS
VR
SO\ 4

—

>
7%

D

|

>

\

~>
N

< 9 I1LM.D.

g
\



Search algorithms in Li0

The search algorithms implemented in LiO allow the configuration
of some of their components.

They can work with several data types always that resources
required are defined for them.

The execution process of an algorithm can be decomposed in 4
steps:
* Read of the algorithm configuration, either from GUI or
from a configuration file.

- Consistency checking among data types used in tasks,
resources, and the algorithm itself. Assignament of
default resources for non specified parameters.

- Objects instantiation
21 SR
W‘\F\ * Algorithm execution

WA
PO s

S
N
<
w




Search algorithms in Li0

All these actions are transparent even for the programmer!!

..and are implemented in the class 1io.search.LiOSearch.

public ahstract class LiOSearch implements LiCResource, Runnable |

All search algorithms must inherit this class, composed by two
abstract functions that must be implemented:

public abstract hoolean worksWith (LiCTask kindCfTask);

public abstract void runl);




Search algorithms in Li0

The first function, workswith () , is to use the compatibility
of the task with the search algorithm: For instance, a Greedy
based algorithm can only process L.iOGreedyTask tasks.

The second, run (), implements the main cycle of the search.

\
AN

N
v

L)

SRS
DA
v '.A..';aﬁ,{/ =

RiS7

A
74
&
]
O

=
N




Search algorithms in Li0

Next, some members and methods of L.i0Search that can be usefull
for the programmer are shown.

*public static SearchOutput searchOutput:

Provides an interface with the statistics .LiOEnv.statistic that allows
selecting which data are shown and how.

The class Statistics is aresource, thus, it can be extended and configured
so that some information non computed by default can be processed. For
instance, since steps necessary to build a valid solution with a Greedy
algorithm which are not evaluations of whole solutions, it should be accounted
apart.

SearchOutput also implements LiOResource in order to adapt to the
—=._ different kind of statistics. Thus, a GreedySearchOutput is used to show the

o A
' W‘\%\g statistics in GreedyStatistics.
| A{s’\

<
K

'\ O Avv/7 RAR

See lio.search.local.greedy.GreedySearchOutput

i%‘f’/
1%
U
<
O




Search algorithms in Li0

public static StopCondition stopCondition:

This object determines the stop conditions of the algorithm according to
LiOEnv.statistics.

Thus, it is also a resource that can be configured to adapt to particular
algorithms and statistics.

LiOSearch implements the function:
protected boolean stopCondition ()

It returns the value depending on the stopCondition object or an external
interruption.

I\
N
X

~ /\

L~

iﬁfﬁa

PN
R

ﬂ;ﬂ
A
/’;

VAW ‘/
et
&

B
\ Y/

>

/74

|

A

N

N

SIMD.

g
\




Search algorithms in Li0

Last, LiOSearch provides an static method to carry out all the
tasks necessary to build an algorithm and run it in an independent
thread.

public static hoolean execute (Li0Search algorithw, String[] options) {...}

[

—

%
N
<
O

A 7
YAV mv{
&

l\‘ NV




Search algorithms in Li0

Next, the code of the StdGeneticAlgorith is shown, notice that
declarations use generic interfaces or abstract classes.

public clasgs StdGenetichlgorithm extends LioSearch |
/¢ Parameters of the search.
f#% 3ize of the population #/
private int populationfSize;
f%% Prohability of croasowver *f
private douhle probCrossover:
F#% Probhability of mutation */
private douhle probMutation:

£ Besources used by the search.
Fuw Generator of individusls #f
private Generator generator;
Fu% To select individuals +/
private Selector selector:

A% Mutation operator */f

private Mutation mutation:

/% Crossover operator */
private Crossover CrosSsSover:
%% Replacement operator ¥/
private EReplacement replacer;

ff Other private members.

f#% Population of individuals #/
private S3taticPopulation population;
F#% Intermediate population */

private StaticPopulation intPopulation:




Search algorithms in Li0

The constructor is simple since resources are configured outside
the class and depending on the kind of data.

S%% Creates a new instance of 3tdGenetichlgorithm */
public StdGeneticllgorithmi) |
A SBomwe default walues for the menbers.
populationSize = 200;
probCrossover = 0.6;
probMutation = 0.05;

Since the Genetic Algorithm can a priori work with every kind of

tasks:
Ff Inherited from LidSearch
public bhoolean worksWith(LioTask kindOofTask) |
Ff It works with all kind of data and tasks

return true:;

AN

N
v

7 )

Vi
N
____
O

A%

—

2
L7

—

l\‘ NV

B



Search algorithms in Li0

As we are working with resources:

public LiOResourcelbefinition gethefinitioni) |
LioResourcelefinition def:
def = new LiOFEesourcelefinition("lio.Lid3earch™,
Mlic.search.genetic.3tdGeneticllgorithm™) ;
def.sethescription("Implements the standard genetic algorithm™) :
def.addMember ("populationfize™, "3Iize of the populaticon.™):
def.addMember ("probMutation™, "Probability of mwutation.™):;

def.addMembher ("probhCrossover™, "Probability of crossover. ™) !

def.addMember ("generator™, "Generates the initial population.™):

def.addMember ("selector™, "3elects individuals from a population in order to cross them. ™)

def.addMemwber ("crossowver ™, "oOperator of crossover.™):

def.addMember ("wutation’™, "Operator of mutation. ™) ;

def.addMembher ("replacer™, "Generates a hew phopulation by keeping sowme of the individuals in the former one.™):

return def;

We must declare the methods getGenerator (), setGenerator (), efc.

'\

—

—
/4
Y

‘!;4

S

7

|

A

-
A




Search algorithms in Li0

The main bucle is as follows:

A Implementation of the search algorithm.
public void runi() {
init () :
while (true)] {
selectBestIndividuals|() ;
applyCrossowver (] ;
applvyMutationi) ;
if [(stopConditioni())
break:
replacePopulation() :
LiCoEnv.statistics.newseneration(] ;
b

cleanExecution() ;

N
N
Y

21 Ry

&7

—

1
=
O

l\‘ NV




Search algorithms in 110

Notice that functions work with Tndividuals:

AT Mutate individuals. */f
private void applyMutationi() {
for (int i = 0; i < population3ize; i++)
mutation.mitate (intPopulation.elementit (i), probMutation):

A%% Generates new generation from both the current and the forwer one. %/
private void replacePopulation() |
population = new ItaticPopulation(replacer.replace (intPopulation, population)):;

/74
74

A

|

A




Search algorithms in Li0

Last, the main function allows executing the algorithm:

!
public static void main(3tring[] args) {
StdGeneticlilgorithm ga = new StdCGeneticihlgorithmi)
execute(ga, args):

[

‘£§'Z§E§§
i\
N

—

g
N
2
»)

A 7
YAV mv{
R 7

i




Custom Data Types

2N
— __ 2P
= ISR

N” \ /4\ ﬁ/ﬁ»m/v

\

rl"\\ ase

N —



Custom data types

L10 search algorithms allow working with data types other than
BitChain, ContChain, Or Permutation.

Thus, a new datatype can be created with the only condition that it
extends the class ITndividual

public class CustombataType extends Individual |
private double[] [] elements:;

public CustombataType (double[] [] pElements) {
elements = pElements;




/7

i

-

2

~

<

AV

Custom data types

Resources necessary to perform the search with this kind of
individual must be also implemented.

getDefinition () would take this form:

public LioResourcelefinition getDefinitioni() 1
LioRe=sourcelDefinition def = new LiCOResourcelDefinition|
"lio.Ccrossover.Ccrossover '™,
fexternal.customw. CustomCrassover ™,
fexternal.customw. CustombataType™,
"Implements a Crossover for CustombDataTlype.™) !
return def;

AN

N
v

T
e <l
P

A%

S\

L7

&2
L7

e

N\

4 Iy
A\ <P % )

i
=<7,
74

l \‘ X

SIMD.

g
\



______\\ .\ /\____—= _________________/ |\ _______/ _____\\ \\[// \___________________

x\\wm,w,ﬂ(»‘

NQ\\ //ﬁw‘ //‘&v
\ <>\»A§a T

AN N 728N

Custom data types




Internal functioning of LiO

/

RN
=t

¢

PN
A p

— T

= —



Internal functioning of LiO

As mentioned above, one of the main tasks that must be carried out
before the algorithm is executed consists of checkint data type
consiscency. This is done trough their definitiones.

Li0 also contains a configuration file where all resources are
registered, besides the data type they can work with.

This file is used to select default resources when no instantiations
of them have been specified.

Moreover, the file is also used for integrating the resources in the
GUI menus.

See lio.core.LiO.conf

il
N
<
w




Internal functioning of LiO

The file gathers resources available for each data type

[Alio.individuals. ContChain

4 lio.crossower. Crossowver
* lio.crossover . contchain. ArithmeticalCrossover
- lio.crossover . contchain. SimpleCrossower
- lio.crossover  contchain. LinearCrossowver
- lio.crossover . contchain. BLHAlphaCrossover
- lio.crossover . contchain.Discretelrossover
- lio.crossover . contchain. ExtendedIntermediatelfrossover
- lio.ecrossover . contchain. ExtendedlineCrossowver
- lio.crossover . contchain. FlatCrossower

- lio.crossover.contchain. WrightsHeuristicCrossower

4 lio.mutation.Matation

* lio.muatation. contchain. Pandonfatation

- lio.matation. contchain. MinMaxMatation

i lio.generators. Generator

* lio.generators. contbchain. PandonGenerator




Internal functioning of LiO

Thus, some operators are generic.

Anondependent

flio. generators. GreedyConstractor

*lio.generators. GreedyConstructor

4 lio_selectors.S2elector

* lio.selectors. BouletellheslSelector

4 lio.replacement. Peplacement

* lio.replacement SinpleElitistPeplacement

4 lio. memetic HillClimbing
* lioc.memetic . HillClimbhing

& lioc.misc. Searchiutput
* lio.misc. Searchlutput
& lio.misc. StopCondition

* lio.misc.3topCondition




Internal functioning of LiO

The file also keeps a register with tasks and algotithms in order to
show them on the menus:

:problems. permutation. PermutationExample
sproblems. permutation. SynmnetricTSP

$lio.search.genetic. CHC
$lio.gearch.genetic.3tdéeneticilgorithm
$lio.=search. local.greedy. GEASF

$lio.gearch. local.greedy. GreedyConstruction
$lio.search.local . hillelimkbing., ILS
$lio.search. local . hillelinbing. MEHi11Climbing
$lio.gearch. local.girmulatedannealing. 34
$lio.search.probabilistic.EDL
$lio.gearch.prokbabilistic.PBIL
$lio.search.pso. P30




Using LiO from outside

KZN
A X
WY

AN
2P
N A AVAVis g
\\\k@mﬁ\.’ﬂiﬁ N

i ; ‘Q\NVW

¢

==

N —



Using LiO from outside

Lets imagine that we want to program some algorithm but neither
want it to be integrated in the library, nor to be generic, for
iInstance, this dummy algorithm:

solucion = generateSolucion ()
best = fitness (solucion);
noImproves = 0;

while (noImproves<10) do
newSolution = Mutation(solution);

fNS = fitness (newSolution);
1if fNS>best
best=fNS;
noImproves=0;
solution = newSolution;
e =a if not
8 RS
léi "\\\ noImproves++;
P

V%
:@;v/

—

~=
D

\"

>

%45 A

\

>

|

A

N

SILMD. B 400000

g
\



Using LiO from outside

Lets also imagine that we want to solve this evaluation function:
f (x)=x,+..+x_, n=100.

Which is already implemented (although it doesn’t have to):
problems.continuous.OneMaxCont

And codifies solutions in objects:

lio.individuals.ContChain

I\
N
X

~ /\

N [/‘l 4\: iv‘
A AR
Vav: VIR

Vi

AN
N
O

L~

—
574

Q7
&

l\‘ NV




Using LiO from outside

First, we need to know which objects we need:
An object which generates individuals (ContChain)

lio.generators.contchain.RandomGenerator

An object to mutate individuals

lio.mutation.contchain.MinMaxMutation

I\
N
o

iz

<
PORE

i

AN
N
O

SN

—

e
74

Q7
&

l\‘ NV




Using LiO from outside

Let’'s show the declarations necessary to implement this
algorithm

import lio.individuals.ContChain:

import lio.generators.contchain. Fandomzenerator;
import lio.mutation.contchain.MinMaxMutation;
import problews.contchain. CnelMax;

public cla=s=s Tutoriall

private ContChain solution;
private ContChain newZolution:
private BFandomGenerator generator;
private MHinMaxMutation mutation:
private OnelMax tazk;

private double hestValue;
private double fitnessNewZolution:

| (SR
“‘\‘& private int evalsWithoutImprowving = 0O;
g




I\

AN,

7]

\\§\

S\

0

/7

X

/'

Using LiO from outside

Next, constructor is shown:

public Tutorialli(){
df Creates ohjects
Lask = new OnelMax():
generator = new BRandomGenerator() :
mutation = new MinMaxMutationi() ;
Ff Some obijeta need information about the task.
generator..getTaskInformationitask) ;
mutation.getTaskInformation(task) ;

N
o

~ /\
e~

) RS
s
Q7
Xy

L~

=—7
4

_

l\: NV

Vi
N
O



Using LiO from outside

Last, we show the search function:

public void searchi(){

solution = [(ContChain) generator.generate (1) [0] !
bestValue = task.evaluate(solution):;
while ([(evalsWithoutImproving-<10) {
newlolution = [(ContChain)solution.clonel) ;
mutation.matate (newiolution) ;
fitnessiNewlolution = task.evaluate (newZolution) ;

if (fitnessNewSolutionrxhestWValue) {
evalslithout Improwving=0;
solution = newlolution:
bhestWValue = fitnessNewsolution:

¥

else{
evalsWithout Improving++;

—7
8 = :
jz% Svstem. out.println(bestValue) ;

~ /\

INE
s

NV

—
/4

Vi
‘7
N7iY4

\V/

7

A

(o
N
<
O




Using LiO from outside

We can also use the class LiOEnv. Then, the search
algorithm described could be written as follows:

import lio.Li0Env:

import lio.individuals.ContChain:

import lio.generators.contchain. Randomzenerator:
import lio.mutation.contchain.MinMaxMutation:
import problems.contchain. OneMax:

public class TutorialZ {

private ContChain solution:
private ContChain new3olution;
private Random>enerator generator;
private MinMaxMutation mutation:

public TutorialZ () {

// Creates ohijects

LidEnv. task = new OneMax ()

generator = new BandomZenerator():

mutation = new MNinMaxMutationi) :
-;%\s Af Some objets need information shout the task.
' generator.getTaskInformation (LiOEnwv. task) ;
mutation.getTaskInformation(Li0OEnv. £ask) ;

s
i
A

As."f@

n
w

SPRE
s

VA

/4

—_—

Vs
&
J

—~



Using LiO from outside

And the main cycle is reduced to:

public void searchi)d
LiCEnw.statistica.initc () ;
solution = [(ContChain)generator.generate(l) [0O] !
while [(LiQEnwv.statistics.getNumEvalsWithoutImprowving()<10]) {
newZolution = [(ContChain)solution.clone() :
mutation.mwutate (newlolution) !
(newlolution.wvalue () *solution.value ()] {

if
solution = new3olution:

h
System. out.println (LiCEnv.sta3tistics.getBestFitness () ) ;

8 WA
1& /

/)

NSy, {; RN
N

O

‘Eﬂ
AN,

i

NNE
AR

-

L

7]
Y aq
R

Ny
3

==
4
T

>




Some useful hints

SR

/AN
A %o

NN
AN

N —




Some usefull hints

Individuals

It is necessary to take a look at the value () method:

public double wvalue (] |
if (! (evaluated)) |
value = LiOEnwv. task.evaluate(this) ;
evaluated = true;
ff Notifies the ewvaluation to the sStatistics register.
if (Li0Enwv.st3tistics '= null)
LidEnw.statistics.nevEvaluationithis, walue);

h
return wvalue;

As it can be seen, it only makes a real evaluation of the
individual if it hasn’t been evaluated yet.

N
)

7 | _~
7 “A
r\_,:/ 7?, 7

v
n
O

A%

=

~=

S R%
A RS
VA A5

QX

e

>

D

l \‘ X




Some usefull hints

Individuals

Thus, if some change is carried out in the individual by
some operator like a mutation, it must be evaluated again.

The change is notified as follows:

public void change () !
evaluated = fal=se:
¥

In the class inheriting Individual implemented in LiO, calls to
change () are made automatically whenever a change on the
elements is done.




FIN

oy
P

KZ7V TR

by
N | )5
Y-




