|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectlio.probdistributions.bitchain.BinaryProbDistribution
lio.probdistributions.bitchain.BivariateProbDistribution
lio.probdistributions.bitchain.Chain
public class Chain
Learns a bivariate model from bitChains where each node can have only one child. The learning method is the one used in MIMIC algorithm.
Field Summary |
---|
Fields inherited from class lio.probdistributions.bitchain.BivariateProbDistribution |
---|
conditionals, marginals, parents, variables |
Fields inherited from class lio.probdistributions.bitchain.BinaryProbDistribution |
---|
data, laplace, size |
Constructor Summary | |
---|---|
Chain()
|
Method Summary | |
---|---|
LiOResourceDefinition |
getDefinition()
Return a LiOResDescription object with the information of each object. |
void |
learn(Individual[] individuals)
Learns a probability distribution from a set of data |
static void |
main(java.lang.String[] args)
Main method to test the task. |
Methods inherited from class lio.probdistributions.bitchain.BivariateProbDistribution |
---|
createStructures, sample |
Methods inherited from class lio.probdistributions.bitchain.BinaryProbDistribution |
---|
isLaplace, setLaplace |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public Chain()
Method Detail |
---|
public void learn(Individual[] individuals)
individuals
- Set of individiduals from which de distribution
is estimated.public static void main(java.lang.String[] args)
public LiOResourceDefinition getDefinition()
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |