|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectlio.probdistributions.contchain.ContinuousProbDistribution
lio.probdistributions.contchain.MarginalProbabilityVector
public class MarginalProbabilityVector
This class represents the marginal probability distributions of a set of variables. It assumes a gaussian distribution for them.
| Field Summary | |
|---|---|
(package private) double[] |
lowerLimits
Lower limist for the variables |
(package private) double[] |
upperLimits
Upper limits for the variables |
| Fields inherited from class lio.probdistributions.contchain.ContinuousProbDistribution |
|---|
data, size |
| Constructor Summary | |
|---|---|
MarginalProbabilityVector()
|
|
| Method Summary | |
|---|---|
LiOResourceDefinition |
getDefinition()
Return a LiOResDescription object which holds the name and all parameters that describe the resource. |
double[] |
getMeans()
Getter for property means. |
void |
getTaskInformation(LiOTask task)
Allows passing information of the task to the resource. |
double[] |
getVariances()
Getter for property variances. |
void |
learn(Individual[] individuals)
Learns a probability distribution from a set of data |
static void |
main(java.lang.String[] args)
|
Individual[] |
sample(int nIndividuals)
Samples a population from the probability distribution. |
void |
setBounds(ContChainBounds bounds)
Fixes the range of values for individuals and their size. |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Field Detail |
|---|
double[] upperLimits
double[] lowerLimits
| Constructor Detail |
|---|
public MarginalProbabilityVector()
| Method Detail |
|---|
public void getTaskInformation(LiOTask task)
LiODependentResource
getTaskInformation in interface LiODependentResourcetask - Task.public void setBounds(ContChainBounds bounds)
bounds - Object containing the description of the individuals.public void learn(Individual[] individuals)
learn in interface ProbDistributionindividuals - Set of individiduals from which de distribution
is estimated.public Individual[] sample(int nIndividuals)
sample in interface ProbDistributionpublic LiOResourceDefinition getDefinition()
LiOResource
getDefinition in interface LiOResourcepublic static void main(java.lang.String[] args)
public double[] getMeans()
public double[] getVariances()
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||